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Disorder in condensed matter and atomic physics is responsible for a great variety of fascinating quan-
tum phenomena, which are still challenging for understanding, not to mention the relevant dynamical
control. Here we introduce proof of the concept and analyze a neural-network-based machine-learning
algorithm for achieving feasible high-fidelity quantum control of a particle in random environment. To
explicitly demonstrate its capabilities, we show that convolutional neural networks are able to solve this
problem as they can recognize the disorder and, by supervised learning, further produce the policy for the
efficient low-energy cost control of a quantum particle in a time-dependent random potential. We show
that the accuracy of the proposed algorithm is enhanced by a higher-dimensional mapping of the disorder
pattern and using two neural networks, each properly trained for the given task. The designed method,
being computationally more efficient than the gradient-descent optimization, can be applicable to identify
and control various noisy quantum systems on a heuristic basis.
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I. INTRODUCTION

Machine learning (ML), which enables computers to
learn automatically from available task-specific data [1–
4], is revolutionizing modern approaches in physical sci-
ences [5]. In quantum science, ML becomes useful and
powerful [6] in particle physics, many-body physics [7],
and quantum computing [8] among others. Recently devel-
oped learning architectures [9] such as convolution neu-
ral networks (CNNs), having a considerable success in
object detection and image classification, were beneficial
to classify phases of matter [10], study nonequilibrium
glasses [11], find hidden order in electronic-quantum-
matter imaging data [12], and identify the thermodynamic
time arrow [13].

All of the above studies were performed for systems
where disorder is either nonexisting or plays a negligible
role in the system dynamics. In practice, impurities, noise,
and other imperfections are ubiquitous and unavoidable in
condensed matter [14] and its simulated counterparts [15].
Particularly, the ultracold atoms offer a feasible and con-
trollable platform for studying the disorder [16–19]. In this
scenario, the random potential is implemented by optical
means, and brings about a variety of intriguing phenomena
[20–24], i.e., localization effects, phase transitions, and
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superfluidity, due to the interplay among the disorder, non-
linearity, trapping potential, or/and spin-orbit coupling.
Along with these developments, the power of supervised
learning (SL) is harnessed to categorize stochastic data,
extract quantitative information from this data, and predict
the features of complex quantum systems, at a reasonable
computational cost [25–30].

However, quantum control under disorder still remains
a major challenge [31–35], though optimal control [36–
38], ML [25,39–42], and shortcuts to adiabaticity [43,44]
have been exploited for fast manipulations in regular sys-
tems. The extensive study of stochastic systems [45,46]
have emerged in the quest for controlling the dissipative
dynamics most efficiently. However, when it comes to dis-
order, to classify or identify stochastic data embodied in
the dynamics is a conundrum. As the size of the stochastic
sample increases dramatically, the higher power of ML is
demanding in such complexity.

To work out this problem, we establish the ML approach
for identifying and controlling dynamics of a quantum
system with disorder. For this purpose, we use deep learn-
ing with two CNNs for high-fidelity control of a quantum
particle in a time-varying trapping potential embedded in
random environment. We begin with a useful result: train-
ing the CNN can efficiently preselect the relevant type of
the disorder realization from tens of thousands of stochas-
tic samples. Then, we introduce the second CNN to find the
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optimal control policy such as the time-dependent poten-
tial shape, in a training regression model. To make the
optimization more efficient, the randomness classification
from deep learning is an essential pretraining for disor-
dered system under control, thus removing the redundant
data. Thus, the SL with CNNs provides the ability to
generalize the tasks beyond their original design, appli-
cable to any realization of random potential. Our meth-
ods pave an efficient way for the robust optimal control,
i.e., cooling, transporting, trapping atoms, or charged parti-
cles (ions and electrons) [39,43,47], by taking into account
environmental noise and randomness.

II. DISORDERED SYSTEM AND CONTROL
STRATEGY

Consider a quantum particle of mass m ≡ 1, located
at the sum of time-dependent harmonic potential and a
random potential of impurities. The corresponding Hamil-
tonian (with � ≡ 1) reads

H(t) = p2

2
+ 1

2
ω2(t)x2 + Ur(x), (1)

where p is the momentum, ω(t) is the frequency of har-
monic trap, and Ur(x) is the random potential of interest.
Equation (1) describes atoms in optical traps and electrons
in acoustic traps [47] and gate-formed quantum dots. The
motivation behind the frequency modulation, i.e., from
ω(t ≤ 0) = ω0 to ω(t = tf ) = ωf , is to achieve the fast
high-fidelity expansion and compression within a short
time tf , beyond the adiabatic criteria [39,43].

We study generic random potential Ur(x), correspond-
ing to the Anderson-like disorder, produced by N � 1
impurities at the positions xj = xj −1 + d regularly sepa-
rated by the distance d. The potential can be presented in
the following form:

Ur(x) = U0

N∑

j =1

sj u(x − xj ), (2)

with u(z) = exp(−z2/ξ 2). Here U0 is the amplitude
potential of a single impurity, and sj = ±1 is a ran-
dom function of j with mean values

〈
sj

〉 = 〈Ur(x)〉 = 0,
and correlators

〈
sj sl

〉 = δjl,
〈
Ur(x)Ur(x′)

〉 = √
π/2U2

0ξ exp[−(x − x′)2/2ξ 2
]
/d. Each disorder realization is a ran-

dom sequence of ±1, e.g., Si[j ] = {1, −1, 1 · · · 1}, with i
and j being the realization number and impurities position,
respectively.

We consider narrow impurities, where the width ξ satis-
fies condition ξ 	 U−1/2

0 and the corresponding localiza-
tion length at the impurity with sj = −1 is of the order
of 1/(U0ξ) � d. Thus, localization by disorder involves
many impurities [32] while the interaction energy with a

single impurity behaves as approximately U0ξsj |ψ(xj )|2,
where ψ(x) is the wave function. For a sufficiently strong
parabolic potential ω2x2/2, the ground state has the energy
close to ω/2 and the harmonic oscillator (ho) width who ∼
1/

√
ω. As the potential fluctuations behave as

√
Nimp,

where Nimp ∼ 1/(d
√
ω) is the number of impurities at

the localization length of the state, we estimate the shift
in the ground-state energy as �ε/ω ∼ U0ξ/(

√
dω3/4). To

estimate the length 	 of the disorder-induced localization,
we minimize the sum of the kinetic energy approximately
1/	2 and potential energy in the disorder potential as
∼ U0ξ/

√
	d and obtain 	 ∼ (U0ξ/

√
d)−2/3 with the cor-

responding energy εloc ∼ (U0ξ/
√

d)4/3. Therefore, in the
parabolic potential, localized states can be located at the
distances up to wd ∼ √

εloc/ω ∼ (U0ξ/
√

d)2/3/ω, mean-
ing that with the decrease in ω, the ground state can be
positioned at a large distance from the origin.

Figure 1 illustrates that the eigenstates of the final trap
can be completely changed by different realizations of ran-
dom potential, as compared to the disorder-free results. For
the realization in Fig. 1(b), where the initial and final states
are almost orthogonal, the high-fidelity results cannot be
achieved even with the optimal control policy presented
below. This intriguing feature makes the previous methods
[39,43] invalid in our current problem. As a consequence,
we need improved statistical analysis and computational
method.

To proof the principle of ML application we choose the
third-order polynomial

ω(t) = a0 + a1t + a2t2 + a3t3, (3)

(a) (b)

FIG. 1. Probability densities of the initial (t = 0, black solid
line) and final (t = tf , black dashed line) ground states in the har-
monic trap in the random environment forming the total potential
U(x). Two realizations are presented to illustrate the effect of
disorder. The corresponding final states (blue dotted lines) pro-
duced by the optimal control policy with SL are shown as well.
The total initial (red solid line) and final (red dashed line) poten-
tials, are also shown for the eye. Parameters: U0 = 1, ω0 = 1,
and ωf = 0.1. Here and below we use ξ = d = 1/8 for N = 160
impurities at the {−10, 10} interval. Since we are using the sys-
tem of units with � ≡ m ≡ 1, the length and the energy are
measured in units of 1/

√
ω0 and ω0, respectively.
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as the control function for the trap frequency, where a0 =
ω0, and a3 =

[
ωf − (ω0 + a1tf + a2t2f )

]
/t3f are given by

the boundary conditions, ω(0) = ω0 and ω(tf ) = ωf . The
initial state at t = 0 is assumed to be the ground state for
simplicity. The freedom left in a1 and a2 offers the possi-
bility to optimize the control function ω(t), thus finding the
maximum ground-state fidelity defined as

F ≡
∣∣∣∣
∫ ∞

−∞
ψ∗(x, tf )ψgr(x|ωf )dx

∣∣∣∣
2

, (4)

where ψgr(x|ωf ) is the ground state in the random poten-
tial corresponding to ωf , and ψ(x, tf ) is obtained by a
direct numerical solution of the nonstationary Schrödinger
equation with the Hamiltonian H(t) from Eq. (1). The opti-
mal design of the trap frequency through the control pol-
icy A = {a1, a2} can produce ψ(x, tf ) with the maximum
possible fidelity.

We impose two conditions on the optimal control func-
tion, with the hint from the analysis on the high-fidelity
control without disorder in Appendix A. First, it has to pro-
vide a high fidelity for the quantities of interest, in this
case, as defined in Eq. (4). Second, ω2(t) should corre-
spond to a moderate energy consumption required for the
transition, suggesting that the maximum ω2

max(t) does not
exceed a certain value 
2 such that the process is exper-
imentally feasible. Figure 2 illustrates the high-fidelity
zone control policy A = {a1, a2} and corresponding feasi-
ble control function ω(t), satisfying the criteria ω2

max(t) ≤

2 = 6. The search for the optimal coefficients in the rel-
evant {a1, a2} range (see Fig. 2) is a time-consuming task

(a) (b)

(c)

FIG. 2. (a) The fidelity of the control policy A = {a1, a2}
for disorder-free harmonic potential (the blue-pink background)
with the high-fidelity zone (dashed line) satisfying the crite-
ria ω2

max(t) ≤ 
2. The “feasible” and “unfeasible” (with F ≥
Fb = 0.9, where Fb is the fidelity bound) control policies in
the presence of disorder are indicated by “◦” and “�” sym-
bols. Two example functions of ω2(t) are compared in (b) and
(c), corresponding to the “feasible” and “unfeasible” solutions.
Parameters: ω0 = 1, ωf = 0.1, tf = 1, and 
 = √

6, taken here
as an example. Interestingly, for a given set A = {a1, a2} the
fidelity in the presence of disorder can be higher than that for
the disorder-free harmonic potential. The parameters a1 and a2
are measured in the units of ω2

0 and ω3
0, respectively.

even for a given realization. Since the stationary state and
dynamics rely on the disorder realizations, the optimiza-
tion of control policy also requires immense computing
power. Note that the total number of disorder realiza-
tions in Eq. (2) is approximately 2N . However, in agree-
ment with the manifold hypothesis [48], many of these
realizations produce similar Ur(x) functions with similar
ψgr(x|ωf ) width and positions. Therefore, the ML can use
databases of moderate (≤ 105) size. In what follows, we
are motivated to develop the SL based on two CNNs to
overcome such a challenge.

III. MACHINE-LEARNING PROCEDURE

Now, we proceed to use SL, comprising two CNNs, for
classifying the disorder realizations and constructing the
optimal control policy, through the connection between
the random sequence Si[j ] and the optimal control policy
Aopt, see the schematic diagram in Fig. 3. One can refer to
Appendix B 1 for the technical description of SL.

First, we generate 4 × 104 disorder realizations with the
labeled sequences Si[j ] as the inputs. For each realization,
the fidelity of overlap between the eigenstates at t = tf
and final wave functions resulting from the state evolu-
tion [see Eq. (4)] is numerically calculated with the control
function ω(t) in Eq. (3). The maximum fidelity for the
given ith realization, Fmax

i , and corresponding control pol-
icy Ai are thus determined by using the same approach
in Fig. 2, where the criteria 
2 = 6 and Fb = 0.9 are
applied to bound the feasibility and fidelity, while keep-
ing a considerable size of database. The whole database
X = {Si, Fmax

i , Ai} is finally established, where 80% of the
database is selected as a training set, and the rest as a
testing set.

Then, we introduce the first CNN, named in what fol-
lows CNN1, in deep learning to assign each given realiza-
tion of the random potential to a set of classes, for instance,

FIG. 3. Schematic diagram (left) of SL with two CNNs for
randomness recognition and regression. Working flow (right)
of CNN includes conversion from a 1D Si[j ] to a 2D grid
S[2D]

i [j1, j2], convolution and pooling layers, fully connected
layer with the ReLU activation function and the output yi.
Details, including description of the ReLU function, are pre-
sented in Appendix B.
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(a) (b) (c)

FIG. 4. The accuracy of CNN1 (a) and the fidelity deviation (b) are displayed for classification and regression, where the dashed
and solid lines represent the average value of test and training batches in each epoch. The shadow area indicates the value distribution
of batches. (c) The fidelity deviation from two trained CNNs are presented for 100 testing realizations of random potential.

whether it determines feasible high fidelity (FH) or not.
Such randomness recognition is classification, aiming at
selecting the reasonable inputs of realizations. To be more
efficient, we extend the input Si[j ] into a two-dimensional
(2D) grid (see Appendix B 2) before the neural network is
trained, by converting each sequence Si[j ] into a 2D matrix
S[2D]

i [j1, j2] by using

S[2D]
i [j1, j2] ≡ Si [j1] + Si [j2] . (5)

As expected, the randomness recognition based on the 2D
grid surpasses the one-dimensional (1D) one, in the sense
that the accuracy of classification and loss of regression are
improved at the cost of computation time. Therefore, we
use S[2D]

i [j1, j2] as the inputs and yi as the output, where FH
(yi = 1) and anti-FH (yi = 0) suggests the aforementioned
criteria, F > Fb = 0.9 and ω2

max(t) ≤ 6, is satisfied or not.
For classification in the CNN1 we employ the standard

sequential structure (convolution and pooling layers), and
choose the loss function as L1(y, p) = −∑

i [yi log(pi)],
with pi being the probability produced by network, and the
accuracy Nr/N , with Nr being the number of the right pre-
dictions out of total N . After using optimizer Adam() at
the rate of 10−4, we manage to select 5886 out of 4 × 104

realizations, with the accuracy above 97%, see Fig. 4(a)
and the relative portion of the selected realizations being of
the order of the who/wd ∼ ω1/2/(U0ξ/

√
d)2/3 ratio. Obvi-

ously, this pretraining process is critical for classifying
the disorder and excluding realizations yielding the low-
fidelity control, as shown in Fig. 1(b). Remarkably, the
high efficiency of CNN1 can be conceptually interpreted
by comparing its feature map with the corresponding posi-
tion of final wave packet, also see the detailed discussion
in Appendix C 2.

Next, to find the optimal control policy Aopt, we con-
struct the second CNN (CNN2) for regression. We choose
the loss function L2(y, y ′) = ∑

i(yi − y ′
i )

2/N , where y and
y ′ are the actual and predicted results of control policy A.
The residual neural network [49] is used in CNN2, with

a shortcut channel. We define the fidelity deviation for
each realizations�Fi = |Fmax

i − F ′
i | with F ′

i here being the
fidelity predicted by the CNN-based control policy. Fur-
ther, we define the average value over each N -sized batch
�F = ∑N

i �Fi/N in every training epoch for quantifying
the performance of CNN2. As a consequence, we train the
CNN2 for achieving �F ≤ 10−4, see Fig. 4(b). Thereby,
during the process we record the loss at each batch and
the fidelity of predicted policies, and finally obtain the
trained CNN1 and CNN2, as indicated by solid lines in
Figs. 4(a) and 4(b). Moreover, we produce 100 realizations
for verifying the performance of trained CNNs in Fig. 4(c),
and also discuss the dependence of their efficiency on
the hyperparameter in Appendix B 3. Accordingly, after
training two CNNs with 4 × 104 input disorder realiza-
tions, the optimal control policy Aopt to design ω(t) for the
high-fidelity control with any random potential is obtained.

IV. DISCUSSION

There are several points to be addressed on the general-
ity of our proposed method. We can, in principle, choose
other ω(t) ansatzes with more parameters or even use
the results from the gradient-descent optimization. The
detailed analysis clarifies that the influence of the form of
ansatz (or moderate changing in the bound Fb and/or 
)
on the classification of disorder, performed by the CNN1,
is essentially negligible, since the border line between high
and low fidelity is mostly determined by the intrinsic prop-
erty such as the shape of the disorder rather than by the
external condition. However, malfunctioning or poor per-
formance of CNN1 can cause low efficiency of CNN2,
obtaining the input from CNN1. The ansatz (3) serves as
a reference for setting the criteria. Note that the CNNs
trained with the gradient-descent optimization is not better
than the ones with such a simple ansatz, see the detailed
discussion in Appendix C 1.

Moreover, we can also apply the trained CNNs to
different values of tf and ωf . Figure 5 indicates the average
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(a) (b)

FIG. 5. The average accuracy in CNN1 (a) and the aver-
age fidelity deviation in CNN2 (b) for the last ten epochs are
illustrated for different ωf and tf , where the structure and hyper-
parameters are the same as those in Fig. 4, and the error bars
represent their deviations.

accuracy in CNN1 and the average fidelity deviation in
CNN2 for the last ten epochs by using the same struc-
ture and hyperparameter as before. On the one hand, when
ωf is increased, the random realizations are much easier
to recognize, thus resulting in higher accuracy. It makes
sense that the influence of random potentials on the fidelity
can be negligible, when the trap potential is strong enough
to localize the state near the origin. However, the more
realizations as the inputs of CNN2 finally lead to the
larger fidelity deviation as shown in Fig. 5. On the other
hand, according to the time-energy trade-off, larger tf (still
far away from the adiabaticity) increase the area corre-
sponding to condition ω2

max(t) ≤ 
2 (cf. Fig. 2). Thus,
more random realizations corresponding to the feasible
Aopt increase the statistical uncertainty and degrade the per-
formance of trained CNNs. That is, the fidelity deviation
in CNN2 becomes larger because of worse classification,
depending on the distribution and number of the selected
realizations in CNN1, see Fig. 5. In other words, the com-
bined effects of the trapping potential and disorder plays a
role in dynamical control, characterized by the fidelity and
the required energy cost, e.g., the laser power for optical
trap or the electrical power for quantum dots.

V. CONCLUSIONS

The behavior of quantum objects such as atoms
and charged particles in random potentials is an active
research area, with a lot of the accumulated knowledge
and even more yet unknowns. The complexity prevents
the researchers from efficiently controlling the quantum
dynamics in random environments. We presented a remedy
by developing proof-of-principle supervised learning algo-
rithms, trained through deep neural networks, to classify
the randomness and find the optimal control policy. The
efficiency and accuracy of the proposed algorithm is based
on using two-dimensional mapping of the random potential
and sequential application of two neural networks, each

trained for the given different task. Our results indicate
that machine learning, based on the convolutional neural
network for classification and regression, can be used to
control various quantum systems with impurities, noise,
and imperfections, and ultimately to unveil the physical
insight into the interplay of disorder and quantum dynam-
ics. With the advent of techniques of configurable optical
traps [50] and surface acoustic waves [51,52], we suggest
the experimental verification of the proposed method for
trapped atoms or electrons in random environment.
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APPENDIX A: HIGH-FIDELITY QUANTUM
CONTROL WITHOUT DISORDER

To begin, we consider the case without random poten-
tial, Ur(x) ≡ 0, in order to have a reference for understand-
ing the effects induced by the disorder. By setting m ≡ 1
and � ≡ 1, the Hamiltonian of a single particle trapped in
a harmonic potential reads

H = p2

2
+ 1

2
ω2(t)x2, (A1)

which describes the compression and decompression by
tailoring the frequency ω(t) of the harmonic trap. Accord-
ing to the Lewis-Riesenfeld invariant theory, the solution
of time-dependent Schrödinger equation admits analytical
expression [43]:

ψ(x, t) =
( ω0

πb2

)1/4
exp

[
− i

2

∫ t

0

ω0

b2 dt′
]

× exp

[
i
1
2

(
ḃ
b

+ i
ω0

b2

)
x2

]
, (A2)

where the auxiliary function b(t) satisfies the Ermakov
equation:

b̈ + ω2(t)b = ω2
0

b3 . (A3)

For a decompression process from the initial frequency
ω0 to final frequency ωf , the boundary conditions can
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(a) (b) (c)

FIG. 6. Dependence of b(tf ), ḃ(tf ), and the fidelity F on the
coefficient grid {a1, a2}, where the parameters are ω0 = 0, ωf =
0.1, and tf = 1. The straight lines corresponding to the maximum
fidelity can be obtained with an approximate solution of Ermakov
Eq. (A3) as a2 = −3a1/tf + 12nπ/t3f , with integer n.

be formulated as b(0) = 1, b(tf ) = γ (γ = √
ω0/ωf > 1),

ḃ(0) = ḃ(tf ) = 0. Thus, for an arbitrary control function
ω(t), we are able to calculate the time-dependent scal-
ing parameter of b(t) and corresponding ḃ(t) by solving
the Ermakov equation. By considering the ground state,
with the initial and final boundary conditions, we, in gen-
eral, can reach the ideal target state, that is, ψgr(x|ωf ) =
(ω0/πγ

2)1/4e−ω0x2/(2γ 2). Based on Eq. (4), the fidelity thus
can be analytically expressed as

F =
[

4ω2
0b2

f γ
2

ω2
0(γ

2 + b2
f )

2 + (ḃf bf γ 2)2

]1/2

, (A4)

where bf = b(tf ) and ḃf = ḃ(tf ) are the numerical solution
of Eq. (A3) at t = tf . Obviously, the fidelity F strongly
depends on bf and ḃf . When bf = γ and ḃf = 0, we will
have F = 1. In this case, we recall the concept of short-
cuts to adiabaticity, that is, to achieve fast adiabaticlike
decompression without final excitation.

Without loss of the generality, we choose the simple
ansatz ω(t) = a0 + a1t + a2t2 + a3t3, such that the fidelity
is calculated, depending on the coefficients a1 and a2.
To understand the performance of the fidelity, Figs. 6(a)
and (b) illustrate the dependence of b(tf ) and ḃ(tf ) on
{a1, a2}, respectively. Figure 6(c) finally shows the plot of
the fidelity dependent of the coefficient set A = {a1, a2}, in
which the stripes occur due to the interplay between b(tf )
and ḃ(tf ). The high-fidelity regime in Fig. 6 gives the cri-
teria for machine learning later, when the random potential
is involved.

APPENDIX B: MACHINE LEARNING

Machine-learning (ML) methods, including support
vector machines, decision trees, random forests, and arti-
ficial neural networks (ANNs), have been developed in
recent decades. Moreover, the deep learning is proposed
to handle the huge quantity of data and complex system,
notably, the ANNs usually outperform the others. Nowa-
days, the ANNs are dedicated to solving complex tasks

such as the image and video recognition, analysis of strate-
gical games (AlphaGo), etc. In particular, the deep CNNs,
initially proposed for computer vision learning, now are
overwhelming in the artificial-intelligence (AI) industry.
Their unique architecture, inspired by research on the
brain’s visual cortex, greatly enhances the performance of
analysis of systems in complex surroundings, which is con-
sistent with our problem on quantum control in a random
environment.

The reasons for using the CNNs to analyze the dis-
ordered system are threefold: (1) Data grows exponen-
tially with a tremendous amount of disorder realizations;
(2) training an ANN can be accelerated by using graphic
processor units (GPUs); (3) CNN can be used to identify
the disorder as the application in image classification.

Next, we exploit the supervised learning, based on two
CNNs, for classifying and controlling the joint effect of a
regular (parabolic) potential and disorder.

1. Neural network and supervised learning

A deep ANN consists of input, hidden, and output lay-
ers, and the depth of network usually depends on the
amount of hidden layer. Meanwhile, a single layer is com-
posed by a set of nodes, and each node is connected with
the others from the next layer with a particular weight and
bias. Moreover, the learning process of ANNs is combined
by the forward-propagation and back-propagation compu-
tation based on the gradient-descent algorithm. We start
with the propagating data from the input layer, pass the
hidden layer(s), measure the output layer, and finally cal-
culate network error based upon the network predictions.
With the error function and the gradient-base optimizer, the
backpropagation decreases error by updating the weights
and bias of network. Compared with a regular ANNs,
the CNNs are trained to optimize the filters (or kernels)
through the automated learning, instead of the hand engi-
neered in feature extraction. It takes advantage of the
hierarchical pattern in capturing data feature and reducing
the number of the parameters involved. In order to explain
the functioning of this CNN, we make use of the following
notation:

1. x	 is the data flow of 	th layer.
2. The filter K with the size k1 × k2 has m and n as the

iterators.
3. The weight between 	 layer and 	− 1 layer is

represented by ω	, and the corresponding bias b	.
4. f (·) is an activation function.
5. The underlying data of layer is x	i,j = ∑

m,n f (w	m,n

x	−1
m,n + b	), where i and j are the iterator.

6. x	 ⊗ Kk represents the data extracting process by
the kth filters.

7. yi and y ′
i are the actual and predicted values (labels),

respectively.

024040-6



MACHINE-LEARNING-ASSISTED QUANTUM CONTROL. . . PHYS. REV. APPLIED 17, 024040 (2022)

Supposing that we use k filters, the output of 	th convolu-
tional layer can be presented as

x	i,j =
k∑

k=0

x	−1
i,j ⊗ Kk =

k∑

k=0

k1,k2∑

m,n

f (Kk
m,nx	−1

i+m,j +n + b	),

(B1)

where the activation function f (·) is the logistic Sigmoid
function, f (z) = 1/[1 + exp(−z)], or the rectified linear
unit (ReLU) function, f (z) = max(0, z). The Sigmoid
function maps the data from [−∞, +∞] into [0, 1], result-
ing in the probability of prediction as the output of
network. And the ReLU is a piecewise step function,
ReLu(x) = max(x,0), that transfers the input data from
[−∞, +∞] into [0, +∞]. Two such nonlinear activation
functions are widely used to allow the nodes to learn more
complex structures in the data. A pooling layer, aiming to
reduce the spatial size, contains MaxPooling() and Aver-
agePooling(). More specifically, they extract the maximum
(or average) value of the pooling block from the previ-
ous layer, thus reducing the amount of the parameters. The
CNN layer is schematically shown in Fig. 7, in which we
set the 16 × 16 inputting data and three 7 × 7 filters for the
convolution layer and three 2 × 2 filters for calculating the
maximal pooling.

Next, we introduce the loss function and gradient-based
optimizer for classification and regression. Regarding the
classification task, the loss function is defined as the
following cross-entropy form:

J (W, b; y, y ′) = 1
N

N∑

i=1

J1(W, b; yi, y ′
i ), (B2)

with

J1(W, b; yi, y ′
i ) = −yi log

[
σ(y ′

i )
]

, (B3)

FIG. 7. A single unit of CNN includes the convolution, activa-
tion, and pooling process. We take 16 × 16 grids as an example
for illustrating the working flow and variables in the func-
tion Conv2d() and Maxpool(). In this case, the process can
be represented by Conv2d(1,3,7,3) and MaxPool2d(2) in the
PyTorch.

where W is the weight collection of network for N samples,
and σ(y ′

i ) is the softmax probability, where the Softmax
function σ(zi) = ezi/(

∑
j ezj ) is used for normalizing the

output. As for the two-category image classification k =
2 task, the input layer is a flatten pixel sequence xi of
image, and the result is the probability of labels. For
instance, when the actual binary label is y0 = {1, 0}, and
two-dimension output y ′

0 = {p0, p1}, the error for a single
prediction thus is j = −y0 log[y ′

0]T. On the other hand, for
the regression process, the loss function in Eq. (B2) is a
mean-squared error:

J2(W, b; yi, y ′
i ) =

∑

i

|yi − y ′
i |2, (B4)

which represents the deviation from the regression pre-
diction y ′

i to the actual sample yi. We use the optimizer
Adam(), which is included in the application programming
interface (API) of PyTorch, for optimizing the loss func-
tion in the learning process. Backpropagation (or forward
pass) refers to the calculation and storage of the interme-
diate variables (weights and bias) of a neural network, and
minimizes the cost function by a gradient-based optimizer.
This can be simply expressed as

Repeat :

{
W	

i,j = W	−1
i,j − η

∂J
∂W	

m,n

}
, (B5)

with learning rate η.
Following that, we create the algorithm for our task,

which consists of two CNNs for classification and regres-
sion, respectively. We encode the algorithm based on the
PyTorch [53] software platform, where the deep-learning
library consists of the tensor flow and the computation is
accelerated by GPUs. In order to illustrate the learning
algorithm, we briefly introduce the functions that we used
in the PyTorch API:

1. 2D convolution layer:
Conv2d(inchannel,outchannel,kernel.
size,stride).

2. Max pooling layer MaxPool2d(kernelsize).
3. ReLU and Sigmoid represent the rectified lin-

ear unit function and the corresponding logistic function,
respectively.

4. CrossEntropyLoss() and MSELoss() indi-
cates the loss function of Eqs. (B2) and (B4).

The variables include the following: inchannel, the depth
of channel in the input; outchannel, the number of out-
put channel depends on the amount of filter (or kernel);
kernelsize, the filter size; stride, controlling the stride for
the cross-correlation.

The detailed parameters can be further found in the
PyTorch tutorial [53]. Along with this user-friendly plat-
form, we now construct the algorithm for the supervised
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FIG. 8. Diagrammatic architectures of CNN1 and CNN2, are
illustrated, where the function and its parameters are presented
for each layer of network and the residual block of CNN2 in the
dashed frame is specified. More details can be found in the main
text.

learning. Before proceeding, we should design the archi-
tecture of CNN1 and CNN2, since the performance of a
neural network mostly depends on its structure and layer
depth. According to the complexity of task, the architec-
ture of CNN1 is built up as a standard sequential network
and CNN2 as a ResNet network [49], see the details in the
flow chart in Fig. 8. The residual block Residual(), with
so-called “identity shortcut connection,” skips two layers,
as shown in Fig. 8. It makes the network possible to train
hundreds of layers, keeping the compelling performance.
After introducing the CNN-based supervised learning and
the architecture of two networks, we can start with creating
the database and training the model for classification and
regression.

2. Classification and regression

For supervised learning, two essential steps, including
data preparation and model training, are required. In this
sense, the performance of model can be improved by
increasing the training data and selecting a high-quality
database. To calculate the database, however, is a time-
consuming task for a complex system, so it is significant
to preselect for producing a representative database with
high quality. Let us consult Fig. 1 of the main text, in
which the eigenstates of the final trap can be completely
changed by different realizations of random potential, and
some of them will result in the low-fidelity control for sure.
Thus, we propose CNN1 for the preselection, in order to
establish the link between input and output data of network
by choosing a small amount of high-quality database. We
demonstrate that the high-quality database not only brings
the benefits to training process, but also makes the trained
network more universal and tolerant.

Aiming to present the feature of each single random
sequence, we initially extend the one-dimension sequence
in the two-dimension grid, see Eq. (5). More specifically,

as in the main text, we select a 1 × 160 random sequence,
e.g., Si[j ] = {1, 1, −1, 1, . . . , −1, 1}. A typical resulting
2D grid with the elements 2,0, and −2, is shown in
Fig. 9(d). We see the advantage of 2D S[2D]

i [j1, j2] as the
input data, in the following discussion.

Next, we generate 4 × 104 realizations of disorder, and
thus calculate the maximum fidelity Fmax

i and the corre-
sponding policy Ai of the 200 × 200 coefficient grid in the
range of a1 ∈ [−30, 30] and a2 ∈ [−100, 100]. Here we set
two conditions for the optimal control function. First, it has
to provide a high fidelity for the quantities of interest, i.e.,
Fmax > Fb. Second, the corresponding ω2(t) should cor-
respond to a moderate energy consumption required for
the transition, implying that ω2

max(t) has not exceeded a
certain value 
2. In practice, by taking into account the
experimental constrains, such as the limited laser inten-
sity or the gate field in quantum dots, we set the control
policy, ω2

max(t) ≤ 
2, where we take 
 = √
6 as the crit-

ical value for defining “feasible” policy. In Fig. 9(a), the
contour curve for ω2

max(t) = 6 is presented. Moreover, the
optimal policy Aopt is constrained by these two condi-
tions: Fmax > Fb and ω2

max(t) ≤ 
2 (labeled by FH). The
ratio of the database as a function of Fb is also pre-
sented in Fig. 9(b), from which we find that the amount
of FH database is decreased when we set larger bound,
Fb, for the fidelity. Obviously, the disorder effect makes

(a) (b)

(c) (d)

FIG. 9. (a) Dependence of the maximum value of ω2(t) on the
coefficient set {a1, a2}, and the white dashed curve presents the
contour of ω2(t) ≡ 6. (b) The proportion of four classifications,
based on two criteria [F > Fb and ω2

max(t) ≤ 
2], in the prepared
database as the function of Fb. The distribution of maximum
fidelity Fmax for 400 exemplified realizations is plotted in (c),
and one of realization in the 2D grid is illustrated in (d). Here the
criteria Fb = 0.9 and 
 = √

6 are used, and other parameters as
the same as those in Fig. 6.
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the fidelity worse, though the higher fidelity is desirable
in the quantum control in the presence of random envi-
ronment. In order to keep balance between the amount of
high-fidelity realizations and the diversity of database, we
set the bound Fb = 0.9 as the criteria for keeping the rea-
sonable database, see Fig. 9(c). With the assistance of the
prepared database satisfying such criteria, we discuss the
network and training process as follows.

Previously, we attempted to find the regression between
S[2D]

i [j1, j2] and Aopt by using only one CNN. However, the
results are not reasonable, and a very complex neural net-
work is required to provide the expressibility and univer-
sality for the variety of disorder realization. Nevertheless,
we create an intuitive scheme to reduce the complexity
of database, that is, the classification is added prior to the
regression. The database is divided into two categories by
the pretraining process: the realization satisfying feasible
high-fidelity (labeled FH) criteria or not (labeled anti-FH).
As a consequence, the database for regression is firstly fil-
tered by the classification (CNN1) process based on two
aforementioned criteria, and secondly train the network
(CNN2) based on previously identified FH database.

Now, we train the CNN1 with the input X = S[2D]
i [j1, j2]

and output Y = {0, 1} by selecting the loss function
CrossEntropyLoss() with respect to Eq. (B2). The
identified FH database from CNN1 is the input data of
CNN2, and the output is optimal policy Aopt with the loss
function MSELoss() in Eq. (B4). Two architectures of
CNNs are presented in Fig. 8, where there are seven lay-
ers in a regular sequential network CNN1 and 34-layer
ResNet34 [49] for CNN2. Meanwhile, we use the opti-
mizer Adam() [54] to optimize the parameters based on
the gradient descent algorithm. Moreover, we define the
Accuracy = Nr/N (with Nr being the number of the
right predictions out of total N ) for CNN1, which is
the correct prediction number over the total amount of

Algorithm 1. Training CNN for classification and regression

database. Meanwhile, for quantifying the result of regres-
sion, we also define the fidelity deviation �F = |Fmax

i −
F ′

i |, where Fmax
i is the actual maximum fidelity and F ′

i
is the numerical result from the policy predicted by the
network (as in Sec. III of the main text).

To this end, we formulate the training algorithm as
follows:

3. Machine-learning outcome

In this section, we present a detailed training process
and further discuss the results. To proceed with the train-
ing and testing, we choose the parameters, such as ω0 = 1,
ωf = 0.1, and tf = 1. The coefficients in the control func-
tion of ω(t) are in the range of a1 ∈ [−30, 30] and a2 ∈
[−100, 100], and the classification criteria are Fb = 0.9
and 
 = √

6. The whole database X = {Si, Fmax
i , Ai} for

4 × 104 realizations in the 200 × 200 coefficient grid are
established by a 50-core computer for more than 10 h. The
input data for CNN1 is a 2D random grid xi = {Si[2D]}
and the output is yi = {0, 1}, to classify the optimal pol-
icy is FH (y = 1) or anti-FH (y = 0). Remarkably, CNN1
manages to select 5886 realizations out of 4 × 104, when
the criteria, F > Fb = 0.9 and ω2

max(t) ≤ 
2 = 6, are stip-
ulated. Eventually, we convert these classified realizations
into the CNN2 as the input database, and the corresponding
optimal policy Aopt is obtained as the output data. For both
of the two networks, 80% of the input database is the train-
ing database and the rest testing part. One can find other
parameters in Fig. 8 and more details in the code.

It turns out that the accuracy of CNN1 can reach 97%
after 30 iterations (epoch = 30), and the fidelity deviation
for CNN2 is below 10−4 after 50 iterations (epoch = 50).
The average loss of training and testing data are presented
by the solid and dashed curves in Figs. 10(a) and 10(b),
where we see that the overfitting occurs at 10 epoch for
classification, and at 20 epoch for regression.

After that, we discuss the generality of our method and
the tolerance of model for changing the hyperparameters.
First of all, we compare the performance of two trained
CNNs by using 1D and 2D input data. The accuracy and
fidelity deviation �F for 1D and 2D input data are pre-
sented in Figs. 10(c) and 10(d), where Conv1d() and
Conv2d() are exploited for 1D and 2D cases, and the
rest parameters are the same. It is evident that the model
using 2D input data outperforms the 1D model in terms of
accuracy and fidelity deviation.

Second, we elaborate the generality of our training
model by checking the performance with various val-
ues of ωf and tf . To this end, we prepare the databases
of 1.6 × 104 realizations for tf = {1, 2, 3, 4} and ωf =
{0.2, 0.4, 0.6, 0.8}, the criteria and parameters of two CNNs
are the same as the previous case when tf = 1,ωf = 0.1.
In Fig. 11, we specify the maximum fidelity located in the
whole database for the various conditions, where (a) ωf =
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(a) (b)

(c) (d)

FIG. 10. Training and testing loss as a function of epochs in
CNN1 (a) and CNN2 (b) for classification and regression. The
performances of CNN1 (c) and CNN2 (d) are compared by using
1D (dashed curve) and 2D (solid curve) input data. Here the
shadows are the values of the batches in each epoch.

0.1, tf = 1, (b) ωf = 0.4, tf = 1, and (c) ωf = 0.1, tf =
2 are considered. By comparison, the larger ωf results
in the higher fidelity, since the random realizations are
much easier to recognize, when the final trap frequency
is increased. This is due to the fact that the influence of
random potentials on the fidelity can be negligible, when
the final trap potential is strong enough such that the local-
ized state has to be located near the origin. Consequently,
the lower loss of CNN1 is achieved since most of dis-
order realizations are labeled as FH, in contrast, more
inputs cause the performance of CNN2 to degrade. In addi-
tion, according to the time-energy trade-off, the increase
of total time tf makes the designed trap frequency eas-
ier to satisfy the predetermined criteria [F > Fb = 0.9 and
ω2

max(t) ≤ 
2 = 6], yielding the larger area in Fig. 7(c). In
this case, the database is difficult to recognize, see Fig. 11,
since more random realizations corresponding to the fea-
sible Aopt increase the statistical uncertainty and degrade
the performance of trained CNNs. Therefore, the loss of
CNN1 becomes larger when the total time tf , but the loss
of CNN2 decreases conversely. All these results are con-
sistent with those of accuracy and fidelity deviation in
Fig. 5 of the main text. Clearly, the quantity and quality of
the database determine the performance of CNNs, depend-
ing on the physical constraints or conditions, or the total
time, the amplitude of disorder, and trapping potential.
We conclude that the interplay of the trapping potential
and disorder is of critical significance for controlling the
dynamics in terms of the fidelity and the required energy.

Finally, we check the performance of the deep CNNs
in terms of the hyperparameter, such as the number of

(a) (b) (c)

FIG. 11. Fidelity as a function of the coefficient grid {a1, a2}
for various ωf and tf , where (a) ωf = 0.1, tf = 1, (b) ωf =
0.4, tf = 1, and (c)ωf = 0.1, tf = 2 are considered. The location
of the maximum fidelity (black cross) is specified for 3.2 × 104

realizations of disorder in each plot. The restriction imposed by

 = √

6 is illustrated by black dashed curve in (a), (b), and (c).
The other parameters are the same as those in Fig. 6.

hidden layers, the size and number of filters, etc. In our
model, the depth of the CNN2 is much larger than that
of CNN1, which suggests that the CNN2 is more sensi-
tive to the hyperparameters. For simplicity, we concentrate
on two hyperparameters, the filter number and hidden
layers, in the CNN2. In this network, the first layer’s
outchannel number is Nf (see Fig. 8), which determines the
total number of filters. With different Nf = [4, 8, 16, 32],
we compare the average loss of testing data for 10-layer
ResNet10, 18-layer ResNet18, 34-layer ResNet34, and
50-layer ResNet50. The clear dependence on these hyper-
parameters is presented in Figs. 12(a) and 12(b), in which
the corresponding average training and testing losses of
the last 10 epochs are calculated by using same parame-
ters, respectively. Obviously, the expressibility of network
depends on the number of parameters. The average train-
ing loss decreases when the number of layers or filters
increases. However, we emphasize that the over fitting
of the network appears when the network complexity
(the number of nodes and alternative paths) increases, see
Fig. 12(b). Here we note that all calculations are imple-
mented by using the online computation resource from
Google’s cloud service called “Colab,” which contains
GPU’s acceleration. For 30 epochs, it takes about 300 s

(a) (b)

FIG. 12. Average loss of training (a) and testing (b) data for
different layer number and Nf in CNN2. The average loss is the
average one of last 10 epochs among 50 epochs in the training
process. The other parameters are the same as those in Fig. 8.
Noting we here use another database with the same size of 4 ×
104 for clarifying the effect of hyperparameters.
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for training the CNN1, but more than 103 s for the CNN2
while calculation of the fidelity deviation�F takes several
hours. The suggested algorithm can be realized at a regular
computer without GPU’s acceleration albeit with a much
longer computation time.

APPENDIX C: DISCUSSIONS

1. Gradient-descent optimization

Here we discuss the generality of the ansatz used here
in our proposed method. One might be interested to
try other ansatz and even an optimal (or near-optimal)
approach, combined with ML. Regarding the latter, a pow-
erful numerical tool, for example, the gradient-descent
(GD) algorithm can be applied directly, not as a working
tool of the ML algorithms. To clarify the advantages and
disadvantages of this approach, let us study the possible
trade-off on the improvement of fidelity in the problem
of interest and the ability of training CNNs. Thus, we
compare the optimal solutions produced by GD with the
polynomial ansatz-based results.

A parametric optimization problem is the minimization
of a given cost function by gradient descent. The optimal
solution M opt can be produced by minimizing cost value
c = J (M ), which can be expressed as

M opt = min
c

J (M ). (C1)

In our scenario, the control function is the trap frequency,
f (t) = ω(t), with Nt intervals’ discrete time t ∈ [0, tf ]
(keeping the same tf = 1 as that in the main text). Accord-
ingly, the control tuple f (t) = {f (0), f (dt), . . . , f (tf )} is
constrained by |f (t)| ≤ 
 = √

6 and satisfies boundary
conditions, e.g., f (0) = 1 and f (tf ) = 0.1. Then, we opti-
mize the Nt-size tuple f (t) for approaching the highest
fidelity by minimizing the infidelity 1 − F , in the context
of parametric constrained minimization problem. In this
regard, we perform the optimization process by algorithm
SLSQP [55] based on the scipy platform. For one typical
realization of random potential, the GD takes several min-
utes to search the optimal control function, which satisfies
the convergent condition (|dJ/dM | < 10−7) of the cost
function while our two-step supervised learning method
produces the near-optimal solution in several seconds.
Next, we are concerned about the efficiency of training two
CNNs by using GD-produced databases.

To this end, we calculate the GD-based control func-
tion for the same 4 × 104-realization database used in
the main text. It is expected that the GD method with
Nt = 100 improves the fidelity. Thus, it increases the
number of FH realizations, thus providing 6801 of them
against 5886 for the ansatz-based method. In Fig. 13
we present the fidelity distribution of 500 realizations
in (a) for two methods: GD (red circle) and ansatz

(a)

(c)

(b)

FIG. 13. Fidelity distribution for 500 realizations produced by
a GD-based (red circle) and ansatz-based (black cross) scheme
in (a), and 69 high-fidelity realizations satisfying high-fidelity
(F > 0.9) by both methods are illustrated in (b). We present
corresponding GD-based control functions in (c). Parameters:
Nt = 100, others that the two methods share are the same as those
in Fig. 6.

based (black cross). More distinctly, we compare 69 real-
izations among 500, which admit the high fidelity for
both methods in (b) of Fig. 13, with the correspond-
ing 69 optimal solutions produced by GD illustrated in
(c). One can see that, although the GD-based method
slightly increases the fidelity compared to the ansatz-
based one, it does not change the fidelity distribution
strongly. This result can be understood by the physics argu-
ment that the fidelity of control policy depends mainly
on the localization induced by random potential rather
than on the control strategy. Figure 14 further demon-
strates the performance of CNN1 (classification) and
CNN2 (regression) trained by the two databases gener-
ated from a simple ansatz (blue solid) and GD (black
dashed). In addition, one can see the disadvantages of
GD-based optimal control as the database for training
CNN2. The GD method indeed boosts the fidelity of
control policy on the cost of loosing the generality in
CNN2. It is due to the fact that the performance of GD-
based CNN2 is worse: the database dimension Nt = 100
is much larger than that for the ansatz-based database
(which is 2), eventually decreasing the reliability of the
regression process. Thus, the balance between the fidelity
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(a) (b)

FIG. 14. Databases generated for training two CNNs by two
techniques: GD (black dashed) and ansatz based (blue solid).
Left: the accuracy of classification for testing data versus train-
ing epoch. Right: �F of testing data versus training epoch for
regression. In both subfigures, the corresponding shadowed area
contains the result of training batches in each epoch, and curves
are the average values. The shared parameters are the same as
those in the main text.

improvement and the ability to train the CNN should be
kept as our method.

2. Interpretability of CNNs

It is difficult to explain the results obtained from ML
in an intuitive way, despite many successful applications
in quantum physics [1,10]. In order to understand the
machine-making decision in solving the optimal control
problem, we discuss the interpretability (or explainability)
of a ML task. The interpretability in ML is defined, for
example, by Miller [56]: “Interpretability is the degree
to which a human can understand the cause of a deci-
sion” or, similarly, by Kim [57] as “Interpretability is
the degree to which a human can constantly predict the
model’s result.” The interpretability of a training model
brings criteria such as comprehensibility, reliability, and
fairness of facts upon the process of ML. In a recent work
[58], Molnar offers a comprehensive review on the con-
cept, principles, and importance of explainable models in
the field of ML. Among them, we offer here the evidence
of interpretability by visualizing the feature map of CNN1
for understanding and explaining the ML outcomes [58].

First, we recall the element of output from the convolu-
tion operation Conv2d():

x	i,j =
k1,k2∑

m,n

Kk
m,nx	−1

i+m,j +n + b	, (C2)

where the 	th feature map x	i,j is the sum of the product
of filters Kk

m,n, and corresponding filter-size (l − 1)th fea-
ture map x	−1

i+m,j +n with bias b	. According to the structure
of CNN1 designed in Fig. 8, we have 16 7 × 7 weight
matrices (filters) in each convolution layer. In Fig. 15, we
present 16 parametric filters of the last layer in (a) and
corresponding bias in (e), and produce 16 feature maps

for three selected realizations in (b)–(d) after Sigmoid
function. For illustration, we extract the most representa-
tive feature maps (labeled by black dashed squares) out of
16 in (e)–(h) of Fig. 15, and compare them with the cor-
responding density of the final wave packet with the trap
frequency ω(tf ) = ωf . By performing the four-layer con-
volution product operation, an original input 2D random
grid (see Fig. 9) is transformed into a particular feature
map, which can be interpreted by the localization of the
target state density. More specifically, the feature map is
strongly correlated with the localization of density for low-
fidelity realization, such as (e) and (g) in Fig. 15. For the
high-fidelity case, the feature map is much more uniformly
distributed compared to the low-fidelity counterparts. In
Fig. 16, we further compare the final-state probability

(a) (b)

(c) (d)

(e)

(f) (g) (h)

FIG. 15. The 16 parametric filters of the fourth layer for CNN1
in (a) and related bias in (e). (b)–(d) The feature map for three dif-
ferent realizations, and corresponding densities of wave packets
and the selected feature map (labeled by black dashed squares)
in (f)–(h), respectively.
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(a)

(b)

(c)

(d)

FIG. 16. Wave-packet density and related feature map selected
as in Fig. 15 for 12 realizations. Panel (a) and (b) for low-fidelity
(F < 0.9) and (c) and (d) for high-fidelity (F > 0.9) cases.

density and feature map for 12 realizations including
low-fidelity (a) and (b) and high-fidelity (b) and (d) realiza-
tions. To this end, one cannot precisely identify the random
sequence just by watching the feature map, in particular,
for realizations with Fb close to neither 1 nor 0. How-
ever, for realizations with fidelity F 	 1 or F → 1 can
be easily identified and explained, according to the typical
feature map in (e)–(g) of Fig. 15. It should be emphasized
that our results can be interpreted based on the compar-
ison of the feature map and the wave-packet density. In
other words, the accurate ML outcome captures the hints
from the feature maps, which are related to the nature of
the localization physics in random potentials.
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