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One of the big challenges of current electronics is the design and implementation of hardware neural
networks that perform fast and energy-efficient machine learning. Spintronics is a promising catalyst for
this field with the capabilities of nanosecond operation and compatibility with existing microelectronics.
Considering large-scale, viable neuromorphic systems however, variability of device properties is a serious
concern. In this paper, we show an autonomously operating circuit that performs hardware-aware machine
learning utilizing probabilistic neurons built with stochastic magnetic tunnel junctions. We show that in
situ learning of weights and biases in a Boltzmann machine can counter device-to-device variations and
learn the probability distribution of meaningful operations such as a full adder. This scalable autonomously
operating learning circuit using spintronics-based neurons could be especially of interest for standalone
artificial-intelligence devices capable of fast and efficient learning at the edge.
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I. INTRODUCTION

Conventional computers use deterministic bits to oper-
ate and encode information. While this approach is effec-
tive for well-defined tasks like arithmetic operations, there
are many difficult tasks like stochastic optimization, sam-
pling, and probabilistic inference, which instead are readily
addressed by utilizing stochasticity. A promising approach
for solving these difficult tasks is using computers that are
naturally probabilistic. In a well-known piece, Feynman
[1] suggested that in the same way that the use of quan-
tum computers is useful to simulate quantum phenomena, a
probabilistic computer could be a natural solution to prob-
lems that are intrinsically probabilistic. Recently, utilizing
spintronics technology, Borders et al. [2] demonstrated
such an autonomously running probabilistic computer
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consisting of probabilistic bits (p-bits) with a stochas-
tic magnetic tunnel junction (SMTJ), which can perform
computationally hard tasks like integer factorization.

Machine learning is another field in which probabilistic
computation and a large amount of random numbers could
be highly beneficial. It holds promise for various tasks like
image recognition, medical application, and autonomous
driving [3–5]. For these applications, conventional von
Neumann computers are inefficient and alternative com-
puting architectures inspired by information processing
in the human brain are of interest [6–10]. Boltzmann
machines offer a promising route for hardware learning
due to their local learning rule and tolerance to stochastic-
ity [11–16]. Boltzmann machines are generative stochastic
recurrent neural networks having a large application space
ranging from optimization to generative machine learning
[17–20]. This suggests that building a compact hardware
implementation in the form of a probabilistic computer that
resembles a Boltzmann machine could be highly beneficial
in terms of energy consumption and training speed. While
some hardware implementations have been presented for
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restricted Boltzmann machines (RBMs) [14,21,22], in this
paper we focus on fully connected unrestricted Boltzmann
machines. The usual challenge in learning unrestricted
Boltzmann machines is that they are hard to train since the
equilibrium samples of the network are harder to extract
[19,23]. In this work we show a system that performs
this sampling naturally and could hence make it possible
to train unrestricted Boltzmann machines more efficiently
using the natural physics of SMTJs.

A common concern for the development of neuromor-
phic systems based on emerging devices like SMTJs is the
inevitable device variability [8,24]. This poses an obsta-
cle to deploy these systems for real-world application
on a large scale while preserving high reliability. Sev-
eral approaches have been proposed to overcome these
challenges on a device level for example by applying
external magnetic fields [25], performing a calibration
phase [2] or by postprocessing [26]. Another interesting
approach to counter the effect of variability and realize
high performance in neuromorphic systems is to per-
form training and inference on the same hardware sys-
tem [27–29]. In this paper, we present a proof-of-concept
demonstration of a probabilistic computer that can per-
form in situ learning allowing device-to-device variations
to be countered naturally as part of its learning pro-
cess. Here, device variability is addressed on a system’s
level. We show that devices with nonideal characteristics
can be used to perform given tasks successfully with-
out the necessity to individually calibrate each device.
This is achieved by learning hardware-aware weights and
biases. Such a natural variation tolerance could enable
large-scaled implementations of MTJ-based probabilistic
computers.

II. HARDWARE-AWARE LEARNING WITH
MTJ-BASEDP-BITS

The main building block of a probabilistic computer is
the p-bit, analogous to a binary stochastic neuron (BSN)
[30]. Its activation function can be described by [31]

mi(t + τN ) = sgn{tanh [Ii(t)] − r}. (1)

Here, mi is the output of the p-bit and a bipolar random
variable, τN is the time the p-bit takes to perform the acti-
vation operation, Ii is the dimensionless input to p-bit i, and
r is a uniformly distributed random number between −1
and +1. Equation (1) can also be written in binary nota-
tion with a unit step function and a sigmoid function. To
connect multiple p-bits, a synaptic function computes the
input of every p-bit Ii by taking the weighted sum of all
p-bit outputs mi,

Ii(t + τS) =
∑

j

Wi,j mj (t), (2)

where τS is the synapse execution time and Wi,j is the
weight matrix that couples p-bit i and p-bit j . Here, the bias
to p-bit i is subsumed into Wi,j . Given a particular weight
matrix, every p-bit configuration has a defined probabil-
ity given by the Boltzmann distribution where P(m) ∝
exp

[−βE(m)
]

with energy E(m) = −∑
Wi,j mimj and

inverse temperature β. For training a Boltzmann machine,
the goal is to find a weight matrix W that results in a Boltz-
mann distribution that fits closely to the given training
vectors {v}. The distribution of training vectors is referred
to as data distribution in this paper. To find a fitting weight
matrix for a given data distribution, the weights are trained
by performing gradient ascent of the log likelihood [32]. It
is well known that the ideal Boltzmann-machine algorithm
based on log-likelihood learning is generally intractable
since learning time scales exponentially with the size of
the system [19,33]. However, it has been shown that the
approximate version of the Boltzmann learning rule like
the contrastive divergence algorithm [11,12] can be used
to perform approximate learning for large Boltzmann-
machine systems. This algorithmic scaling motivates the
use of domain-specific, efficient, and fast hardware accel-
erators like the p-bit building block that naturally rep-
resents the neuron function of the Boltzmann machine
in order to accelerate the learning process [34]. To map
the Boltzmann-machine learning algorithm to our hard-
ware system, we use a continuous learning rule similar
to the persistent contrastive divergence algorithm given
by [35,36]

dWi,j

dt
= 〈vivj 〉 − mimj − λWi,j

τL
, (3)

that can be implemented in hardware. Here, 〈vivj 〉 is the
average correlation between two neurons in the data distri-
bution where vi is the training vector entry for p-bit i, mimj
is the correlation of the p-bit outputs defined in Eq. (1) and
τL is the learning time constant. Regularization parameter-
ized by λ assures that weights do not become too large
and helps the algorithm to converge to a solution [37].
This learning rule requires only the correlation between
two p-bits mimj for updating weight Wi,j , which makes
this learning algorithm attractive for hardware implemen-
tations. Equation (3) does not change when the system
becomes larger. Another advantage of the presented hard-
ware implementation of the Boltzmann machine is that the
computational expensive part of getting the equilibrium
samples of the correlation term mimj needed for learning
is performed naturally.

Equations (1), (2), (3) are implemented in hardware to
build a probabilistic circuit that performs learning. The
dimensionless quantities of Eqs. (1) and (2) are converted
to the physical quantities shown in Fig. 1 as follows: mi =
2 × Vout,i/VDD − 1 with p-bit output voltage Vout,i and sup-
ply voltage VDD, and Ii = Vin,i/V0 with p-bit input voltage
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Vin,i and p-bit reference voltage V0, which is defined by the
response of the p-bit [38]. Equation (3) can be written into
circuit parameters using RC elements [36]

C
dVi,j

dt
= Vv;i,j − Vm;i,j − Vi,j

R
, (4)

where Vi,j is the voltage across capacitor C, R is the series
resistance, Vv;i,j =̂ 〈vivj 〉 is the voltage representing the
average correlation of two neurons in the data distribution
and Vm;i,j =̂ mimj is the voltage representing the corre-
lation of p-bit outputs [39]. Equations (3) and (4) can
be converted into each other by setting Wi,j = AvVi,j /V0,
λ = V0/(AvVDD/2), and τL = λRC, where Av is a voltage
gain factor between the voltage across the capacitor and
the used weight value for the weighted sum in Eq. (2).
While for memory usage, nonvolatile storage of a capacitor
can be detrimental, the discharging of the capacitor is used
here as weight decay or regularization in the learning pro-
cess that ensures that the learning converges. The voltage
gain is used to adjust the regularization parameter λ for the
update rule, Eq. (3). High λ produces smaller weight val-
ues during learning. More information about the learning
rule is presented within the Supplemental Material [40].
Note that while we choose a RC network in this proof-
of-concept experiment to conveniently represent analog
voltages as weights, the synaptic functionality in our sys-
tem could also be implemented out of memristor crossbar
arrays [27,41,42] to support in situ learning by mapping
the weight update rule [Eq. (3)] to an equation of chang-
ing conductance Gi,j instead of changing voltage Vi,j . The
use of memristor crossbars would have the main advantage
that the weight storage becomes nonvolatile.

Figure 1(a) shows the block diagram of the learning cir-
cuit. The neurons [Eq. (1)] are implemented with a SMTJ
in series to a transistor and a resistor RS. The random num-
ber in Eq. (1) is generated by the SMTJ, which fluctuates
between two resistance values RP and RAP, which repre-
sents the parallel and antiparallel configuration of the fixed
and free layer of the MTJ. While the fixed layer is a nor-
mal ferromagnet (FM), the free layer is designed to be a
low-barrier magnet (LBM), where the magnetic orientation
changes due to thermal noise resulting in resistance fluctu-
ations of the MTJ. The drain voltage gets thresholded by
using a comparator [2,38] where the reference voltage is
chosen to be Vref = VDD − I50/50

(
RP + RAP/2

)
with I50/50

being the bias current where the stochastic MTJ stays in
the parallel and antiparallel 50% of the time. The synapse
[Eq. (2)] is implemented by using a microcontroller in con-
junction with a digital-to-analog converter (DAC) where
the p-bit output voltages {Vout} and capacitor voltages {VC}
with Vi,j = Vv;i,j − VC;i,j are taken as an input. To compute
the correlation of p-bit outputs mimj a XNOR gate is needed
between the p-bit and the learning block [Eq. (3)], where
the weights are updated using a RC array. Figure 1(b)

TABLE I. Truth table of full adder. A and B are inputs, Cin is
the carry in, S the sum, and Cout the carry out. In the Boltzmann-
machine context, all visible units are equivalent so that inputs and
outputs can be written as v′

1−5. The bipolar training vectors vi of
Eq. (3) can be calculated from the truth table by converting them
from binary to bipolar vi = 2v′

i − 1, where [v′
1, v′

2, v′
3, v′

4, v′
5] =

[A, B, Cin, S, Cout] for the data distribution. Pideal(v) is the ideal
data probability distribution where every line has a probability of
p = 1/8 = 0.125.

A B Cin S Cout
v′

1 v′
2 v′

3 v′
4 v′

5 Pideal(v)

0 0 0 0 0 0.125
0 0 1 1 0 0.125
0 1 0 1 0 0.125
0 1 1 0 1 0.125
1 0 0 1 0 0.125
1 0 1 0 1 0.125
1 1 0 0 1 0.125
1 1 1 1 1 0.125

shows the printed circuit board (PCB) with the five p-bits
and the RC array with 15 RC elements used in the exper-
iment. In Sec. V E, more details about the experimental
implementation are presented.

III. VARIATION-TOLERANT LEARNING OF A
FULL ADDER

We demonstrate the learning of the hardware circuit
using the data distribution of a full adder (FA). In gen-
eral, for a fully visible Boltzmann machine with N p-bits,
(N + 1)N/2 weights and biases have to be learned. A FA
has three inputs and two outputs resulting in N = 5 p-bits.
To connect these p-bits, ten weights and five biases have
to be learned [in total 15 RC elements as shown in Fig. 1
(b)]. For the FA, the binary inputs [ABCin] get added and
the outputs are given by the sum S and the carry out Cout,
as shown in Table I. This corresponds to a data distribution
that is given by 8 out of the 32 (2N ) possible configurations.
Because of the probabilistic nature of this circuit, input
and outputs are treated equally, which allows, for example,
invertible full-adder operation [31,38] and distinguishes
our probabilistic circuit from conventional logic gates that
can operate only in one direction. While we choose the FA
truth table as data distribution, any probability distribution
could be chosen to be represented by our probabilistic cir-
cuit. In Sec. V F, the data distribution in the form of the
truth table of the FA and the mapping from the truth table
to analog voltages Vv;i,j is explained in more detail. For
the FA, the learning is performed for a total of 3000 s. In
the Supplemental Material [40], learning examples for an
AND, OR, and XOR gate with less p-bits are shown.
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(a) (b)

FIG. 1. Probabilistic learning circuit. (a) Block diagram of the learning circuit with p-bit output voltages {Vout}, p-bit input voltages
{Vin}, weight voltages {Vi,j }, capacitor voltages {VC}, p-bit correlation voltages {Vm}, and data distribution correlation voltages {Vv}.
(b) A photograph of the PCB with the five p-bits (each consisting of a SMTJ, a NMOS transistor, and a source resistor RS) and 15 RC
elements and 20 operational amplifiers (five used as a comparator and 15 as a buffer). The p-bits are interconnected with the RC array
as shown in (a).

A. Full-adder learning with emulated ideal MTJ

Figure 2(a) shows the normalized, time-averaged p-bit
response of every p-bit using the ideal SMTJ implemen-
tation when the input voltage Vin is swept. These SMTJs
are emulated in hardware with two resistances that are ran-
domly selected by a multiplexer (MUX) to obtain nearly
ideal p-bit response characteristics (see Sec. V B for more
details). Due to variations in the circuit, every curve is
slightly shifted from the ideal 50/50 point at Vin = 1.95 V.
Even though we are using the MUX model here, it has
been shown by Borders et al. [2] that near ideal p-bit
responses can be obtained with real SMTJs. In previous
hardware p-circuit implementations, lateral shifts of the
p-bit response had to be eliminated by adjusting synap-
tic biases to calibrate the experiment [2,43]. By contrast
in this demonstration, since the biases are learned during
operation, no calibration phase is necessary. This is a sig-
nificant advantage since learning can account for transistor
and SMTJ variations between p-bits. After obtaining the
response of all p-bits, the learning experiment is performed
(see Sec. V E for more detail about the experimental
procedure).

The goal of the learning process is that the p-bits
fluctuate according to a set data distribution. Since at
every point in time the p-bits can just be in one bipo-
lar state, to monitor the training progress, the distribu-
tion of the p-bits Pexp(t) is collected as a histogram
of the p-bit output states ([m1, m2, m3, m4, m5] + 1)/2 =
[A, B, Cin, S, Cout] over a fixed time window of 60 s, nor-
malized to 1, and compared to the ideal distribution of
a full adder given by the eight lines of the truth table

(see Table I). The experimental distribution at t = 0,
Pexp(t = 0) is shown in Fig. 2(b). At the start of learn-
ing the weights and biases are small and the distribu-
tion is close to a uniform random distribution. How-
ever, due to slight mismatches in the p-bit response of
every individual p-bit [Fig. 2(a)] some peaks are more
prominent than others. The distribution at the end of
learning Pexp(t = 3000 s) is shown in Fig. 2(c), where
the highest peaks correspond to the correct distribution
for the FA, demonstrating the circuit’s ability to learn
the given data distribution. To compare two probabil-
ity distributions quantitatively the Kullback-Leibler diver-
gence (KL divergence) defined by KL[Pideal||Pexp(t)] =∑

m Pideal(m) log[Pideal(m)/Pexp(m, t)] is commonly used
[44]. Figure 2(d) shows the learning performance mea-
sured by the KL divergence versus time t. The difference
between the ideal data distribution and the experimen-
tal distribution decreases significantly in the first 500 s
of learning. At the end of learning, the KL divergence
reaches a value of around 0.2. We note that as long as
the learned peaks are about equal, the KL divergence can
be reduced further by increasing all weight values equally,
i.e., decreasing the temperature of the Boltzmann machine.
In Fig. 3, the ten weight voltages across the capacitors
Vi,j = Vv;i,j − VC;i,j extracted from the circuit are shown.
The weights are measured throughout the whole learn-
ing process. The blue lines show the weight voltages for
the ideal MTJ. After around 500 s the weights saturate
and do not change anymore. In the Supplemental Material
[40], the weights values are compared to the weight matrix
commonly used for the FA in logic applications [45,46].
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FIG. 2. Full-adder learning. (a) Average response of emulated ideal MTJ p-bits for the five p-bits used in the FA with aver-
age normalized output voltage 〈norm. Vout,i〉 = 2 × 〈Vout,i〉/VDD − 1 = 〈mi〉. Every point is averaged over 15 s. (b) Experimental
distribution of emulated ideal MTJ circuit Pexp(m) with p-bit output states ([m1, m2, m3, m4, m5] + 1)/2 = [A, B, Cin, S, Cout] where
mi = 2 × Vout,i/VDD − 1 collected as a histogram over for the first 60 s of learning. (c) Experimental distribution of emulated
ideal MTJ circuit collected as a histogram over the last 60 s of learning. (d) KL divergence between ideal and experimental dis-
tribution KL[Pideal||Pexp(t)] versus time of ideal and nonideal MTJ system. The experimental distribution is obtained over 60 s
of learning. (e) Average response of nonideal MTJ p-bits for the 5 p-bits used in the FA with average normalized output voltage
〈norm. Vout,i〉 = 2 × 〈Vout,i〉/VDD − 1 = 〈mi〉. Every point is averaged over 15 s. (f) Experimental distribution of nonideal MTJ circuit
Pexp(m) collected as a histogram over the first 60 s of learning. (g) Experimental distribution of nonideal MTJ circuit Pexp(m) collected
as a histogram over the last 60 s of learning.

B. Full-adder learning with nonideal MTJ

To examine the effects of variability, we investigate the
learning experiment implemented with fabricated SMTJs
(see Sec. V A for more details regarding the fabrication).
Figure 2(e) shows the Vout versus Vin characteristics for the
five MTJ-based p-bits averaged over 15 s. At the transition
point between the stochastic and the deterministic region
of the response curve, the slope of the response is sharper
compared to the center of the curve, which shows a grad-
ual increase. The combination of these two characteristics
leads to a nonideal p-bit response that deviates from the
ideal response described by Eq. (1). The reason for the dis-
torted shape of the p-bit response is due to the fact that
the MTJs show stochastic behavior for a large window of
current flow in the order of > 10 μA. The change of the
current flow in the MTJ-transistor branch due to change
voltage at the gate of the transistor is not large enough to
pin the MTJ to RP or RAP state. This leads to the distorted
shape of the p-bit response in Fig. 2(e). For the best MTJ
characteristics, the stochastic range for current flow should
be in the order of around 5 μA in the design used here.

Figures 2(f) and 2(g) show the histogram of Pexp during
the first and last 60 s of learning. At the end of learn-
ing the eight desired peaks are the largest, showing that
even though the learning algorithm is based on an ideal
p-bit response derived from the Boltzmann distribution,

the circuit can still learn the desired functionality. Despite
the noted nonidealities, the KL divergence saturates to
a level comparable between ideal and nonideal MTJ, as
shown in Fig. 2(d). This can be explained by the fact that
in situ learning has the capabilities to counter device-to-
device variations by adjusting weights and biases to fit the
system (see Supplemental Material [40] for more details
on the learned bias voltages).

In Fig. 3, the red lines show the weight voltages of the
nonideal MTJ over the duration of the learning process.
It can be clearly seen that the weights differ significantly
between the ideal and nonideal p-bit implementation while
achieving similar performance in the KL divergence, lead-
ing to the conclusion that feedback in the system between
data and p-bit outputs is able to learn around variations,
a crucial ingredient to achieve a high level of performance
under device variability. In the Supplemental Material [40]
a system simulation on the MNIST dataset [47] is pre-
sented to show that the variation tolerance exists when the
proposed circuit is scaled up.

The fact that the circuit can learn around variations can
be useful not just for classical machine learning tasks like
classification or unsupervised learning but also for tasks
that have been demonstrated on probabilistic computers
like optimization [2,48], inference [49,50], or invertible
logic [25,31]. Instead of externally setting the coupling

014016-5



JAN KAISER et al. PHYS. REV. APPLIED 17, 014016 (2022)

Time (s) Time (s) Time (s) Time (s) Time (s)

FIG. 3. Weight voltages during FA learning. The ten weight voltages are shown during the 3000 s of learning. Blue lines are the
weights learned with the ideal MTJ circuit; red lines show the weights for the nonideal MTJ circuit. The solid lines in the middle are
the moving average of the actual weights taken over a window of 10 s.

between p-bits, an additional learning task could improve
the performance of the p-circuit by assuring that the cou-
pling between the p-bits is adjusted to the exact hardware
p-bit response. In addition, the proposed hardware can
be used to represent many different distinct probability
distributions by adjusting the coupling between p-bits
accordingly. For the particular combination of MTJ and
transistor, voltage change at the input can change the
output of the p-bit on a transistor response time scale.
Because the transistor response can be faster than the
implemented synapse, for this particular experiment each
p-bit is updated sequentially through the microcontroller
instead of autonomously to preserve functionality (see Ref.
[51] for more details).

C. Weight extraction

In the previous sections, we compare the distribution
of the output configurations of the hardware p-bits aver-
aged over 60 s with the ideal distribution by taking the
Kullback-Leibler divergence. In this section we compare
how the weights extracted as voltages across the capacitors
in the circuit would perform on an ideal platform, i.e., to
the Boltzmann distribution where P(m) ∝ exp

[ − βE(m)
]

and β is the inverse temperature of the system. The temper-
ature in a Boltzmann machine is a constant factor that all
weights and biases are multiplied with and represents how
strongly coupled the p-bits are with each other. The com-
parison has particular relevance since the nonideal effects
during learning should have an effect on the weights com-
pared to the weights that would be learned on an ideal
machine. Figure 4 shows the Boltzmann distribution with
the weights of Fig. 3. The conversion factor between the
voltages V across the capacitors and dimensionless weights
W of the Boltzmann distribution represented by the tem-
perature factor β is chosen in a way that the relative
difference between the peaks of the distribution can be seen

clearly. To reduce the effect of noise, the weight values are
averaged over the last 10 s of learning. For the example of
the FA, it is known from the truth table that an ideal sys-
tem has no bias. Hence, we do not use the extracted bias
but set it to 0 for the Boltzmann distribution. In Fig. 4(a) it
can be clearly seen that compared to Fig. 2(c) the learned
distribution differs more from the ideal distribution since
the peaks are not as uniform. The peaks for configuration
[ABCin] = 000, [CoutS] = 00 and [ABCin] = 111, [CoutS]
= 11 are not as prominent as the other six peaks that have
been learned. This discrepancy becomes even more visible
in Fig. 4(b) compared to Fig. 2(g) where the weights used
in the Boltzmann distribution are learned using a less ideal
response of the p-bits. Here, only peaks [ABCin] = 000,
[CoutS] = 00 and [ABCin] = 111, [CoutS] = 11 are promi-
nent. This shows that the learned weights fit to the activa-
tion of the hardware p-bits but not for the ideal Boltzmann
distribution. Hence, we can conclude that the probabilistic
computer adapted to the nonideal p-bit response during the
in situ learning process.

The results presented in this section suggest that learn-
ing and inference must be performed on the same hardware
to operate reliably. In contrast, initially training on this
nonideal machine, then transferring the weight values to
an ideal system to complete convergence and perform
the programmed task could allow for a hardware-based
speedup of the typically time-consuming weight training
step. This is similar in spirit to using pretrained weights
in a neural network [52,53]. While this can be a disad-
vantage, the advantages of using the efficient and compact
learning circuit that can be used for training and inference
should outweigh the problems of transferability between
platforms.

In this section, we show that device-to-device varia-
tions can be countered by performing hardware-aware in
situ learning by comparing the learning performance of
two systems, one system with ideal p-bit responses and
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the other with nonideal p-bit responses that differ signif-
icantly compared to Eq. (1). We show that the overall
performance is the same for both systems after the train-
ing is finished while the learned weights (Fig. 3) are
different. However, we also show that if the weights are
extracted from the learning circuit and used to calculate the
Boltzmann distribution, the obtained distribution differs
substantially from the desired data distribution [Fig. 4(b)].
These observations show clearly that the circuit can learn
around device-to-device variations.

IV. DISCUSSION

In this paper, we present a proof-of-concept demon-
stration of an autonomously operating fully connected
Boltzmann machine using MTJ-based p-bits. Furthermore,
we show how device-to-device variations can be countered
by performing hardware-aware in situ learning. In the fol-
lowing paragraphs, we compare the presented probabilistic
computer with other platforms like conventional CMOS
architectures.

On the device level, the closest digital CMOS alternative
to the MTJ-based p-bit is a linear feedback shift register
(LFSR), without considering the analog tunability of the p-
bit. A detailed comparison between p-bit versus LFSR has
been performed by Borders et al. [2]. The compact MTJ-
based p-bit uses around 10× less energy per random bit
and has about 300× less area than a 32-bit LFSR. Besides
these advantages, a standard LFSR is not tunable like the
hardware p-bit and relies on pseudo randomness. The p-bit
based on an SMTJ relies on thermal noise and is, hence,
a true random number generator. This can be significant
for applications for which the quality of the randomness is
relevant.

On the system level, the p-bits in combination with the
synapse [Eqs. (1) and (2)] are utilized to collect samples of

(a) (b)

(CoutS)

P(m)

(CoutS)
(ABCin)(ABCin)

FIG. 4. Boltzmann distribution obtained from learned weights.
(a) Boltzmann distribution P(m) = 1/Z exp(−βE) with energy
E = − ∑

Wi,jmimj computed by using the learned weights
Wi,j of the FA with the emulated ideal SMTJ p-bit circuit
where the bipolar p-bit states ([m1, m2, m3, m4, m5] + 1)/2 =
[A, B, Cin, S, Cout]. (b) Boltzmann distribution P(m) computed by
using the learned weights of the FA with the nonideal SMTJ p-bit
circuit. Biases are set to 0.

the distribution given by the current weights to update the
weights according to the correct gradient. Collecting statis-
tics by sampling drives the learning process since every
sample is directly utilized to update the weight voltages
[Eq. (3)]. Thus, the numbers of samples per unit time are
significant for the speed of the learning process. The MTJ
fluctuation time of the p-bit τN is a significant time scale
for the generation of samples since it describes how fast
Eq. (1) can be computed in hardware. The learning time
constant τL has to be larger than the MTJ fluctuation time
τN to collect enough statistics to ensure convergence of the
learning process. To ensure that every p-bit input is cor-
rectly calculated based on the state of the other p-bits, it
is necessary that the synapse time τS is smaller than τN .
In this experiment, since the synapse time defined by the
microcontroller is in the order of 100 μs to 1 ms, τN is
in the order of 10–100 ms, which results in slow train-
ing in the order of 103 s. However, it has to be noted that
the time scales of the circuit can be reduced significantly
in an integrated version of the proposed circuit where the
synapse based on crossbar architectures can operate with
GHz speeds with execution times down to 10 ps [51,54,55]
and the fluctuation time of SMTJs can be in the order of
100 ps [56–58]. This would allow a substantial decrease of
τL and an increase of the learning speed by up to 9 orders
of magnitude. Regarding energy consumption of the
synapse block, the efficient p-bit building block presented
here can be combined with any synapse option that pro-
vides the most power efficiency. For full inference oper-
ation, the RC array used here to represent weights as
voltages requires a constant memory refresh similar to
mainstream dynamic random-access memory (DRAM). To
save energy during the learning process, the presented p-
bit building block could be combined with nonvolatile
synapse implementations like memristive crossbar arrays
[13,14,55]. The learned weights could also be extracted
from the RC array and stored in a nonvolatile memory
array after the learning process.

The overall power consumption can be estimated using
numbers from the literature. The MTJ-based p-bit con-
sumes about 20 μW [57]. In a memristive crossbar, each
memristor consumes about 1 μW and operational ampli-
fiers around 3 μW [51,55,59]. The XNOR operation con-
sumes 10 μW. For the overall circuit with five p-bits, 15
XNOR gates and memristors, and five operational ampli-
fiers would take approximately 300 μW. This is the pro-
jected power consumption of a fully connected Boltzmann-
machine hardware shown in this work. For specified
applications where less weight connections between neu-
rons are needed (for example, restricted Boltzmann
machines in digital computers), the number of components
can be reduced, which results in improved power con-
sumption. In this regard, the estimated power consumption
in our work can also be significantly reduced by employing
a higher-level approach.
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Another significant advantage of the probabilistic circuit
is that due to the compactness and area savings of the p-bit,
when scaling up, many more p-bits can be put on a chip
compared to CMOS alternatives like LFSRs. In addition,
the p-bit hardware implementation does not rely on any
clocking in order to function and is hence autonomously
operating. This has the advantage that many autonomously
operating p-bits can function in parallel leading to an over-
all acceleration of the operation. In this context, it has to
be noted that the information of the current state of a p-bit
has to be propagated to all other p-bits that are connected
to it on a time scale τS that is much shorter than the neuron
time τN for the probabilistic circuit to function properly.
When the p-bit fluctuation time varies between different
p-bit it has to be assured that the fastest p-bit with fluc-
tuation time τN ,f fluctuates slower than τS. Depending on
the sparsity of the weight matrix and the ratio of τS to τN ,
the number of parallel operating p-bits has to be adjusted
to ensure fidelity of the operation [51]. In a recent paper
by Sutton et al. [51] a FPGA design was implemented that
emulates a probabilistic circuit where the MTJ-based p-bit
is envisioned as a drop-in replacement. In this complete
system-level hardware realization of a p-computer that can
perform only inference not learning, a drastic reduction
in area footprint of the compact p-bit design compared to
digital implementations is confirmed. This shows that an
integrated version of the proposed learning circuit based
on the p-computer architecture could be very beneficial.

While we address that device-to-device variations of the
shape and shift of the p-bit response can be accounted for
by hardware-aware learning, it is worthwhile to note that
rate variation of the stochastic MTJ between p-bits cannot
be reduced by this approach. The system will in the worst
case learn as fast as the fluctuation rate of the slowest p-bit
τN ,s, which can slow down the overall operation. However,
in the case of p-bits with stochastic MTJs where the ther-
mal barrier of the magnet in the free layer is in the order of
kBT, the fluctuation rate does not go exponentially with the
size of the magnet making the system less susceptible to
rate variations [56,57,60,61]. It has to be noted that a way
to reduce rate variation in probabilistic circuits based on
stable MTJs that are biased using voltages and magnetic
fields was presented by Lv et al. [25].

We note that the fluctuation rate will also be affected by
the temperature of the probabilistic circuit. When increas-
ing the temperature, the fluctuation rate of the p-bits will
increase exponentially. However, the temperature varia-
tion will not affect the average p-bit response of the MTJ.
For proper operation it has to be assured that the synapse
time τS is shorter than the fluctuation time τN ,f of the
fastest fluctuating p-bit. As overall design criteria for the
autonomous circuit the following conditions have to be
met: τS � τN ,f and τN ,s � τL.

In conclusion, we show a proof-of-concept demonstra-
tion of a fully connected probabilistic computer built with

MTJ-based p-bits that can perform learning. We present
multiple learning examples for up to five p-bits and 15
learning parameters. The learning is robust and can oper-
ate even with strong device-to-device variations due to
hardware-aware learning. This shows that when scaled up
and with faster fluctuating building blocks, probabilistic
computers could accelerate computation while reducing
energy cost for a wide variety of tasks in the machine-
learning field such as generative learning or sampling, as
well as for tasks that could benefit from variation tolerance
like optimization or invertible logic.

V. MATERIALS AND METHODS

A. MTJ fabrication and characterization

The MTJs used in this work are fabricated with a
stack structure as follows, from the substrate side: Ta(5)/
Pt(5)/ [Co(0.4)/Pt(0.4)]6/ Co(0.4)/ Ru(0.4)/ [Co(0.4)/

Pt(0.4)]2/ Co(0.4)/ Ta(0.2)/ (Co0.25Fe0.75)75B25(1)/ MgO/
(Co0.25Fe0.75)75B25(1.7)/ Ta(5)/ Ru(5)/ Ta(50). The num-
bers in parentheses are the nominal thicknesses in nanome-
ters. All films are deposited on a thermally oxidized silicon
substrate by dc and rf magnetron sputtering at room tem-
perature. The stacks are then processed into circular MTJs
with nominal junction size of 20–25 nm in diameter by
electron-beam lithography and argon ion milling. The sam-
ples are annealed at 300 ◦C in vacuum for an hour. MTJs
are then cut out from wafers and bonded with wires to
IC sockets to be placed in the p-bit circuit board. To
determine nonideal MTJs with suitable characteristics, the
MTJ resistance is measured by sweeping the current from
negative to positive values, and the time-averaged and
high-frequency signals are read across a voltmeter and
oscilloscope, respectively. We measure an approximate
tunnel magnetoresistance ratio of 65% fluctuating between
an average RP = 18 k� and RAP = 30 k�. The current at
which the resistance switches by half is determined to be
I50/50, which is the bias current at which the MTJs will
spend equal time in the P and AP states. The I50/50 used in
this work ranges from 3 to 5 μA. We measure the average
fluctuation time τN by performing retention time measure-
ments when the MTJ is in either the high (AP) or the low
(P) state using voltage readings from the oscilloscope. To
ensure reliable collection of data, the oscilloscope sam-
pling rate is set 10 times faster than the fastest recorded
fluctuation time of the MTJ. The retention times used in
this work range from 1 to 100 ms.

B. Hardware implementation of the p-bit

Equation (1) is implemented with the SMTJ-based
p-bit proposed by Camsari et al. [38] and experimentally
demonstrated by Borders et al. [2]. The p-bit implementa-
tion in this paper follows Ref. [2] and is built with a SMTJ
in series to a transistor (2N7000,T0-92-3 package) and a
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FIG. 5. Multiplexer emulation. The SMTJ-based p-bit on the
left is modeled by a multiplexer that switches randomly between
RP and RAP but as a function of Vin so that the right statistics are
preserved [43].

source resistor RS. The supply voltage of the MTJ transis-
tor branch is set to VDD = 200 mV whereas the remaining
circuit operates at VDD = 5 V. The source resistance RS is
chosen so that I50/50 is flowing through the circuit when
Vin = 1.95 V. The transistor is biased in the subthreshold
region. The voltage at the drain of the transistor is then
thresholded using a comparator (AD8694, 16-SOIC pack-
age) with a bandwidth of 10 MHz. The reference voltage
is chosen to be Vref = VDD − I50/50

(
RP + RAP/2

)
. We use

a comparator to add another node where we can fine tune
Vref. However, in an integrated circuit the transistor should
be chosen so that Vref = VDD/2 so that the comparator
can be replaced by a simple inverter as simulated in Refs.
[36,38,57]. The overall p-bit is then just built with one MTJ
and three transistors. For the experiment with ideal MTJs,
the SMTJ is emulated by a MUX model that includes all
major characteristics of a real SMTJ and has been devel-
oped by Pervaiz et al. [43] as illustrated in Fig. 5. The
SMTJ is emulated by providing a noise signal to the MUX
where the statistics of the noise depend on Vin and are
generated using a microcontroller that switches between
a resistor RP and RAP representing the two resistive states
of the SMTJ. Here, the resistors values are chosen to be
RP = 11 k� and RAP = 22 k�. The advantage of this
approach is that the MTJ parameters like stochastic range
and resistance can be easily manipulated in this model. For
the MUX, a MAX 394 quad analog multiplexer is used.

C. Implementation of the synapse

The synapse is implemented with an Arduino MEGA
microcontroller and an eight-channel PMOD DA4 Digital-
Analog-Converter. The digital output voltages of the p-bits
{Vout} are fed into the microcontroller together with the
analog weight voltages {VC} of the learning circuit. The

internal analog-digital converter (ADC) of the microcon-
troller is used for sensing the weight voltages. Equation
(2) is then computed and the analog input voltages {Vin}
are wired back to the neurons by utilizing the DAC. To
reduce the synapse time in every iteration of the synapse
operation, only one of the 15 analog voltages are read out
and updated. This does not affect the circuit performance
since the capacitor voltages VC are changing slowly. The
synapse operation time τS is < 1 ms which is shorter than
the MTJ fluctuation time. The condition τS � τN has to be
satisfied to ensure fidelity of the autonomous operation of
the p-circuit.

D. Implementation of weight updating

For proper operation it is important that the learning
time constant τL is much larger than the neuron time τN .
To achieve this, a high RC constant is chosen with a 1 M�

resistor and a 10 μF capacitor. Since this circuit has a
high resistance in series to the capacitor, to ensure that
the reading of the weight voltage does not discharge the
capacitor, a buffer stage is used between the capacitor and
the synapse. The buffer is implemented with an operational
amplifier (AD8694, 16-SOIC package).

For the FA experiment, the voltage gain factor Av of
Eq. (4) is chosen to be 3 which turned out to be a reason-
able value for achieving a good degree of regularization
while achieving high peaks in the learned distribution. The
voltage gain operation is performed with the microcon-
troller. Additional details regarding Eq. (4) can be found
in Ref. [36].

For learning the correlations mimj , represented by volt-
age Vm;i,j , are crucial. To obtain the current correlations
between neuron mi and mj their product has to be com-
puted. This is done here by using another microcontroller.
Since the output m is bipolar (m ∈ {−1, 1}) only negative
or positive correlation is possible. Voltage Vm;i,j is lim-
ited by the output voltages of the DAC, which has a range
from 0 to 2.5 V. Vm;i,j can hence be calculated by solv-
ing Vm;i,j = (mimj + 1)/2 × 2.5 V. Voltage Vm;i,j is fed
back to the corresponding RC element by utilizing another
DAC. The described operation is the same as computing
the XNOR operation between two binary variables. Hence,
the operation is straight forward and the programmabil-
ity of the microcontroller not essential for operation of the
circuit.

E. Experimental procedure

Before the start of training the capacitor is fully
discharged so that Vi,j (t = 0) = 0 V corresponding to
VC;i,j (t = 0) = Vv;i,j . At t = 0 the training starts and volt-
ages {VC} and the p-bit output voltages {Vout} are mea-
sured at sampling frequency fS. The training is run for T
= 3000 s.
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The data is collected with an NI USB-6351 X SERIES
DAQ that has analog inputs for the 15 weights and biases
and digital inputs for the five p-bit outputs. The soft-
ware Labview is utilized to record data with a sampling
frequency of fS = 1 kHz.

In this paper we train the bias due to mismatch of p-bit
responses together with the bias needed to learn the data
distribution. In principle, these can be separated to obtain
a better bias value that can be used on other platforms.
However, this separation of calibration and learning is only
possible for the bias of every p-bit and not for the weights
connecting them since the calibration cannot be performed
with ideal p-bit responses with the hardware system.

F. Mapping of the truth table to node voltages for
learning

For a fully visible Boltzmann machine with N neu-
rons, (N + 1)N/2 weights and biases have to be learned.
The goal for learning is that the fully trained network has
the same distribution as the data distribution. For a FA,
the data distribution is given by the truth table shown in
Table I. The data distribution can be described by a matrix
in which the number of columns is equal to the number of
neurons N and the number of rows is equal to the number
of training examples d. For the biases, another neuron unit
with value 1 is added so that there are (N + 1) columns.
For the example of a FA, N = 5 and d = 8 for eight lines
in the truth table. The matrix VFA is then a 6 × 8 matrix
where all 0s of the truth table are converted to −1s since
we are using the bipolar representation:

VFA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1 1
−1 −1 1 1 −1 1
−1 1 −1 1 −1 1
−1 1 1 −1 1 1
1 −1 −1 1 −1 1
1 −1 1 −1 1 1
1 1 −1 −1 1 1
1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The density matrix is then calculated by computing
D = VTV/d, which is a 6 × 6 matrix for the FA:

DFA = VT
FAVFA

d
=

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0 0.5 0
0 1 0 0 0.5 0
0 0 1 0 0.5 0
0 0 0 1 −0.5 0

0.5 0.5 0.5 −0.5 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
,

(6)

with d = 8. The values in the last column of the density
matrix correspond to the average value of every neuron
in the data distribution and are used to learn the biases.
Only the terms above the diagonal of D are needed and

converted to voltages Vv;i,j in the circuit. Since the DAC
operates with positive voltages in the range of 0 to 2.5 V,
Vv;i,j = (Di,j + 1)/2 × 2.5 V.

ACKNOWLEDGMENTS

J.K. thanks A.Z. Pervaiz for helpful discussions. This
work is supported in part by ASCENT, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA and in part by JST-CREST
JPMJCR19K3, JSPS Kakenhi 19J12206, and Cooperative
Research Projects of RIEC. K.Y.C gratefully acknowl-
edges support from Center for Science of Information
(CSoI), an NSF Science and Technology Center, under
Grant No. CCF-0939370.

[1] Richard P. Feynman, Simulating physics with computers,
Int. J. Theor. Phys 21, 467 (1982).

[2] William A. Borders, Ahmed Z. Pervaiz, Shunsuke Fukami,
Kerem Y. Camsari, Hideo Ohno, and Supriyo Datta, Integer
factorization using stochastic magnetic tunnel junctions,
Nature 573, 390 (2019).

[3] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep
learning, Nature 521, 436 (2015).

[4] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,
Volodymyr Kuleshov, Mark DePristo, Katherine Chou,
Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean,
A guide to deep learning in healthcare, Nat. Med. 25, 24
(2019).

[5] Juergen Schmidhuber, Deep learning in neural networks:
An overview, Neural. Netw. 61, 85 (2015).

[6] Big data needs a hardware revolution, Nature 554, 145–146
(2018).

[7] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman,
and Zhengdong Zhang, in 2017 IEEE Custom Integrated
Circuits Conference (CICC) (2017), p. 1.

[8] J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte,
S. Fukami, and M. D. Stiles, Neuromorphic spintronics,
Nat. Electron. 3, 360 (2020).

[9] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza,
Andrew S. Cassidy, Jun Sawada, Filipp Akopyan, Bryan
L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura,
Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar
Appuswamy, Brian Taba, Arnon Amir, Myron D. Flick-
ner, William P. Risk, Rajit Manohar, and Dharmendra S.
Modha, A million spiking-neuron integrated circuit with
a scalable communication network and interface, Science
345, 668 (2014).

[10] Mike Davies et al., Loihi: A neuromorphic manycore
processor with on-chip learning, IEEE Micro 38, 82
(2018).

[11] Geoffrey E. Hinton, Training products of experts by min-
imizing contrastive divergence, Neural Comput. 14, 1771
(2002).

[12] Miguel A. Carreira-Perpinan and Geoffrey E. Hinton, in
Aistats, (Citeseer, 2005),Vol. 10, p. 33.

014016-10

https://doi.org/10.1038/s41586-019-1557-9
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1162/089976602760128018


HARDWARE-AWARE IN SITU LEARNING. . . PHYS. REV. APPLIED 17, 014016 (2022)

[13] Maxence Ernoult, Julie Grollier, and Damien Querlioz,
Using memristors for robust local learning of hard-
ware restricted Boltzmann machines, Sci. Rep. 9, 1851
(2019).

[14] Mahdi Nazm Bojnordi and Engin Ipek, in 2016 IEEE
International Symposium on High Performance Computer
Architecture (HPCA) (2016), p. 1.

[15] Shamma Nasrin, Justine L. Drobitch, Supriyo Bandyopad-
hyay, and Amit Ranjan Trivedi, Low power restricted
Boltzmann machine using mixed-mode magneto-tunneling
junctions, IEEE Electron Device Lett. 40, 345 (2019).

[16] Nicolas Le Roux and Yoshua Bengio, Representational
power of restricted Boltzmann machines and deep belief
networks, Neural Comput. 20, 1631 (2008).

[17] Emile H. L. Aarts and Jan H. M. Korst, in PARLE Parallel
Architectures and Languages Europe, edited by G. Goos,
J. Hartmanis, D. Barstow, W. Brauer, P. Brinch Hansen, D.
Gries, D. Luckham, C. Moler, A. Pnueli, G. Seegmüller,
J. Stoer, N. Wirth, J. W. Bakker, A. J. Nijman, and P. C.
Treleaven (Springer Berlin Heidelberg, Berlin, Heidelberg,
1987), Vol. 258, p. 34.

[18] Thomas R. Osborn, in International Neural Network Con-
ference: July 9–13, 1990 Palais Des Congres – Paris –
France (Springer Netherlands, Dordrecht, 1990), p. 785.

[19] Ruslan Salakhutdinov and Geoffrey Hinton, in Artificial
Intelligence and Statistics (2009), p. 448.

[20] Nitish Srivastava and Russ R Salakhutdinov, in Advances
in Neural Information Processing Systems 25, edited by F.
Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Curran Associates, Inc., 2012), p. 2222.

[21] Sukru Burc Eryilmaz, Emre Neftci, Siddharth Joshi,
SangBum Kim, Matthew BrightSky, Hsiang-Lan Lung,
Chung Lam, Gert Cauwenberghs, and Hon-Sum Philip
Wong, Training a probabilistic graphical model with resis-
tive switching electronic synapses, IEEE Trans. Electron
Devices 63, 5004 (2016).

[22] Chang-Hung Tsai, Wan-Ju Yu, Wing Hung Wong, and
Chen-Yi Lee, A 41.3/26.7 pJ per neuron weight RBM
processor supporting on-chip Learning/Inference for IoT
applications, IEEE. J. Solid-State. Circuits 52, 2601
(2017).

[23] Ruslan Salakhutdinov, Learning and evaluating Boltzmann
machines, Utml Tr 2, 21 (2008).

[24] Raffaele De Rose, Marco Lanuzza, Felice Crupi, Giulio
Siracusano, Riccardo Tomasello, Giovanni Finocchio, and
Mario Carpentieri, Variability-aware analysis of hybrid
MTJ/CMOS circuits by a micromagnetic-based simulation
framework, IEEE Trans. Nanotechnol. 16, 160 (2017).

[25] Yang Lv, Robert P. Bloom, and Jian-Ping Wang, Experi-
mental demonstration of probabilistic spin logic by mag-
netic tunnel junctions, IEEE Magn. Lett. 10, 1 (2019).

[26] Yuanzhuo Qu, Bruce F. Cockburn, Zhe Huang, Hao Cai,
Yue Zhang, Weisheng Zhao, and Jie Han, Variation-
resilient true random number generators based on multiple
STT-MTJs, IEEE Trans. Nanotechnol. 17, 1270 (2018).

[27] Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu,
Ning Ge, Hao Jiang, Eric Montgomery, Peng Lin, Zhon-
grui Wang, Wenhao Song, John Paul Strachan, Mark Bar-
nell, Qing Wu, R. Stanley Williams, J. Joshua Yang, and
Qiangfei Xia, Efficient and self-adaptive in-situ learning

in multilayer memristor neural networks, Nat. Commun. 9,
2385 (2018).

[28] Thomas Dalgaty, Niccolo Castellani, Clément Turck,
Kamel-Eddine Harabi, Damien Querlioz, and Elisa
Vianello, In situ learning using intrinsic memristor variabil-
ity via markov chain monte carlo sampling, Nat. Electron.
4, 151 (2021).

[29] Brian Kiraly, Elze J. Knol, Werner M. J. van Weerdenburg,
Hilbert J. Kappen, and Alexander A. Khajetoorians, An
atomic Boltzmann machine capable of self-adaption, Nat.
Nanotechnol. 16, 414 (2021).

[30] David H. Ackley, Geoffrey E. Hinton, and Terrence J.
Sejnowski, A learning algorithm for Boltzmann machines,
Cogn. Sci. 9, 147 (1985).

[31] Kerem Yunus Camsari, Rafatul Faria, Brian M. Sutton,
and Supriyo Datta, Stochastic p -Bits for Invertible Logic,
Phys. Rev. X 7, 031014 (2017).

[32] Daphne Koller and Nir Friedman, Probabilistic Graphi-
cal Models: Principles and Techniques (MIT Press, Cam-
bridge, Massachusetts London, 2009).

[33] Vinod Nair and Geoffrey E Hinton, Implicit mixtures of
restricted Boltzmann machines, Adv. Neural Inf. Proc.
Syst., 1145 (2009).

[34] Kathleen E. Hamilton, Catherine D. Schuman, Steven R.
Young, Ryan S. Bennink, Neena Imam, and Travis S. Hum-
ble, Accelerating scientific computing in the post-moore’s
Era, ACM Trans. Parallel Comput. 7, 6:1 (2020).

[35] Tijmen Tieleman, in Proceedings of the 25th International
Conference on Machine Learning - ICML ’08 (ACM Press,
Helsinki, Finland, 2008), p. 1064.

[36] Jan Kaiser, Rafatul Faria, Kerem Y. Camsari, and Supriyo
Datta, Probabilistic circuits for autonomous learning: A
simulation study, Front. Comput. Neurosci. 14, 14 (2020).

[37] Andrew Y. Ng, in Twenty-First International Conference
on Machine Learning - ICML ’04 (ACM Press, Banff,
Alberta, Canada, 2004), p. 78.

[38] K. Y. Camsari, S. Salahuddin, and S. Datta, Implementing
p-bits with embedded MTJ, IEEE Electron Device Lett. 38,
1767 (2017).

[39] The exact mapping of the correlation voltages Vv;i,j and
Vm;i,j is discussed in the methods section.

[40] See Supplemental Material at http://link.aps.org/supplem
ental/10.1103/PhysRevApplied.17.014016 for more infor-
mation regarding the learning rule and learning examples
for AND, OR, and XOR gates.

[41] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert
M. Shelby, Irem Boybat, Carmelo di Nolfo, Severin Sidler,
Massimo Giordano, Martina Bodini, Nathan C. P. Farinha,
Benjamin Killeen, Christina Cheng, Yassine Jaoudi, and
Geoffrey W. Burr, Equivalent-accuracy accelerated neural-
network training using analogue memory, Nature 558, 60
(2018).

[42] M. R. Mahmoodi, M. Prezioso, and D. B. Strukov, Ver-
satile stochastic dot product circuits based on nonvolatile
memories for high performance neurocomputing and neu-
rooptimization, Nat. Commun. 10, 5113 (2019).

[43] Ahmed Zeeshan Pervaiz, Supriyo Datta, and Kerem Y.
Camsari, in 2019 IEEE BiCMOS and Compound Semi-
conductor Integrated Circuits and Technology Symposium
(BCICTS) (2019), p. 1.

014016-11

https://doi.org/10.1038/s41598-018-38181-3
https://doi.org/10.1162/neco.2008.04-07-510
https://doi.org/10.1109/TED.2016.2616483
https://doi.org/10.1109/JSSC.2017.2715171
https://doi.org/10.1109/TNANO.2016.2641681
https://doi.org/10.1109/LMAG.2019.2957258
https://doi.org/10.1109/TNANO.2018.2873970
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1038/s41565-020-00838-4
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1103/PhysRevX.7.031014
https://doi.org/10.3389/fncom.2020.00014
https://doi.org/10.1109/LED.2017.2768321
http://link.aps.org/supplemental/10.1103/PhysRevApplied.17.014016
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1038/s41467-019-13103-7


JAN KAISER et al. PHYS. REV. APPLIED 17, 014016 (2022)

[44] S. Kullback and R. A. Leibler, On information and suffi-
ciency, Ann. Math. Stat. 22, 79 (1951).

[45] O. Hassan, K. Y. Camsari, and S. Datta, Voltage-driven
building block for hardware belief networks, IEEE Design
Test 36, 15 (2019).

[46] Ahmed Zeeshan Pervaiz, Brian M. Sutton, Lakshmi
Anirudh Ghantasala, and Kerem Y. Camsari, Weighted
p-bits for FPGA implementation of probabilistic circuits,
IEEE Trans. Neural Netw. Learn. Syst. 30, 1920 (2019).

[47] Yann LeCun, Corinna Cortes, and Christopher J. C.
Burges, The MNIST database of handwritten digits,
http://yann.lecun.com/exdb/mnist/ (2010).

[48] Brian Sutton, Kerem Yunus Camsari, Behtash Behin-Aein,
and Supriyo Datta, Intrinsic optimization using stochastic
nanomagnets, Sci. Rep. 7, 44370 (2017).

[49] Rafatul Faria, Jan Kaiser, Kerem Y. Camsari, and Supriyo
Datta, Hardware design for autonomous Bayesian net-
works, Front. Comput. Neurosci. 15, 584797 (2021).

[50] Rafatul Faria, Kerem Y. Camsari, and Supriyo Datta,
Implementing Bayesian networks with embedded stochas-
tic MRAM, AIP Adv. 8, 045101 (2018).

[51] Brian Sutton, Rafatul Faria, Lakshmi A. Ghantasala,
Risi Jaiswal, Kerem Y. Camsari, and Supriyo Datta,
Autonomous probabilistic coprocessing with petaflips per
second, IEEE Access 8, 157238 (2020).

[52] Geoffrey E. Hinton and Russ R. Salakhutdinov, in Advances
in Neural Information Processing Systems (2012), p. 2447.

[53] Kaiming He, and Ross Girshick, and Piotr Dollar, in 2019
IEEE/CVF International Conference on Computer Vision
(ICCV) (IEEE, Seoul, Korea (South), 2019), p. 4917.

[54] Peng Gu, Boxun Li, Tianqi Tang, Shimeng Yu, Yu Cao,
Yu Wang, and Huazhong Yang, in The 20th Asia and South
Pacific Design Automation Conference (2015), p. 106.

[55] Fuxi Cai, Suhas Kumar, Thomas Van Vaerenbergh, Xia
Sheng, Rui Liu, Can Li, Zhan Liu, Martin Foltin, Shi-
meng Yu, Qiangfei Xia, J. Joshua Yang, Raymond Beau-
soleil, Wei D. Lu, and John Paul Strachan, ‘Power-efficient
combinatorial optimization using intrinsic noise in mem-
ristor Hopfield neural networks, Nat. Electron. 3, 409
(2020).

[56] J. Kaiser, A. Rustagi, K. Y. Camsari, J. Z. Sun, S. Datta, and
P. Upadhyaya, Subnanosecond Fluctuations in Low-Barrier
Nanomagnets, Phys. Rev. Appl. 12, 054056 (2019).

[57] O. Hassan, R. Faria, K. Y. Camsari, J. Z. Sun, and
S. Datta, Low-barrier magnet design for efficient hard-
ware binary stochastic neurons, IEEE Magn. Lett. 10, 1
(2019).

[58] M. Pufall, W. Rippard, Shehzaad Kaka, S. Russek, T. Silva,
Jordan Katine, and Matt Carey, Large-angle, gigahertz-rate
random telegraph switching induced by spin-momentum
transfer, Phys. Rev. B 69, 214409 (2004).

[59] Boxun Li, Yi Shan, Miao Hu, Yu Wang, Yiran Chen,
and Huazhong Yang, in International Symposium on Low
Power Electronics and Design (ISLPED) (IEEE, 2013),
p. 242.

[60] William Fuller Brown, Thermal fluctuations of a single-
domain particle, Phys. Rev. 130, 1677 (1963).

[61] William T. Coffey and Yuri P. Kalmykov, Thermal fluctu-
ations of magnetic nanoparticles: Fifty years after brown,
J. Appl. Phys. 112, 121301 (2012).

014016-12

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1109/MDAT.2019.2897964
https://doi.org/10.1109/TNNLS.2018.2874565
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/srep44370
https://doi.org/10.3389/fncom.2021.584797
https://doi.org/10.1063/1.5021332
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1103/PhysRevApplied.12.054056
https://doi.org/10.1109/LMAG.2019.2910787
https://doi.org/10.1103/PhysRevB.69.214409
https://doi.org/10.1103/PhysRev.130.1677
https://doi.org/10.1063/1.4754272

	I. INTRODUCTION
	II. HARDWARE-AWARE LEARNING WITH MTJ-BASEDP-BITS
	III. VARIATION-TOLERANT LEARNING OF A FULL ADDER
	A. Full-adder learning with emulated ideal MTJ
	B. Full-adder learning with nonideal MTJ
	C. Weight extraction

	IV. DISCUSSION
	V. MATERIALS AND METHODS
	A. MTJ fabrication and characterization
	B. Hardware implementation of the p-bit
	C. Implementation of the synapse
	D. Implementation of weight updating
	E. Experimental procedure
	F. Mapping of the truth table to node voltages for learning

	ACKNOWLEDGMENTS
	. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


