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Underwater Focusing of Sound by Umklapp Diffraction
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Scholte modes that are localized between a submerged axisymmetric structured elastic plate and sur-
rounding fluid can undergo mode conversion via Umklapp diffraction into radiative modes; this radiative
response is verified by experiments that show focusing of underwater sound across a broad range of fre-
quencies. The diffracted beams, that form a cone, are engineered to exist at a desired spatial position,
associated with an abrupt change in the patterning of the plate. These structures take the form of grooves
present only on one side of the plate, yet the focusing phenomena is achieved on both sides, even as viewed
from the flat surface.
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I. INTRODUCTION

Several classes of surface waves exist at the interfaces
between differing media that propagate along the inter-
face and exponentially decay away from it. In elasticity,
surface Rayleigh waves [1] and Lamb waves [2] are com-
mon such examples. At interfaces between two elastic
solids there exist localized Stoneley waves and radiative
leaky Rayleigh waves [3,4]; special cases of Stoneley
waves exist at fluid-solid interfaces that are often called
Scholte waves [5,6]. For thin elastic plates submerged in
a fluid the Scholte modes on either interface can cou-
ple, displaying dispersive behavior at low frequencies [7].
These interfacial waves are analogous to electromagnetic
surface plasmons [8] in that they exist independently of
any periodic structuring. However, introducing a (typi-
cally subwavelength) periodic structure to the interfaces
permits the existence of array-guided modes that exist,
by virtue of the periodicity, through the interaction of
evanescent diffracted fields from the structure (e.g., perfo-
rations or cavities). These exist under many guises across
several wave regimes; spoof surface plasmons in electro-
magnetism, between patterned metals and dielectrics [9,
10]; acoustic surface waves (ASWs) in acoustics [11,12],
often in air assuming sound hard rigid boundaries [13];
Rayleigh-Bloch waves in elasticity, on structured half-
spaces and thin plates [14–17]; and edge waves in water
waves along coastlines [18]. Typical applications and phe-
nomena for surface and array-guided waves range from
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sensing, collimation [19,20], energy harvesting [21], mode
conversion [22], signal processing and material character-
ization [23].

For the case of a patterned elastic plate submerged in
a fluid there exist nonleaky acoustic surface waves that
propagate in the fluid above the subwavelength structured
surface [13,24–26], and it is the manipulation of these
waves that we focus on throughout—specifically demon-
strating the ability to couple these to radiative waves for
focusing applications. Throughout this paper we consider
the “focusing” as a designed overlap of diffracted beams,
similar to the focusing mechanism of Bessel beams [27],
rather than the focusing associated with an imaging sys-
tem. In this sense, the focal spots presented throughout
are regions in which acoustic energy is concentrated; this
phenomenon occurs only due to the designs presented
throughout.

Here we demonstrate that localized Scholte modes
can be modified [hereby termed modified Scholte modes
(MSMs)] and mode converted to free-space acoustic radi-
ation, and focussed over a broad frequency band. Our
mechanism perturbs the dispersion of Scholte modes by
adding concentric groove structures to an otherwise flat
plate, modifying the supported symmetric and antisym-
metric Scholte modes. We achieve focusing in free space
by designing a structure comprised of two differently pat-
terned regions, each supporting their own MSM pair,
with an abrupt transition between them. At this transi-
tion point, the diffraction of the MSMs results in the
radiation of beams that can form a focal spot, the posi-
tion of which is frequency dependent. We achieve this

2331-7019/21/16(6)/064029(11) 064029-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9868-8453
https://orcid.org/0000-0001-9799-9639
https://orcid.org/0000-0001-5406-0162
https://orcid.org/0000-0001-6027-1046
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.16.064029&domain=pdf&date_stamp=2021-12-13
http://dx.doi.org/10.1103/PhysRevApplied.16.064029


GREGORY J. CHAPLAIN et al. PHYS. REV. APPLIED 16, 064029 (2021)

focusing over a broad frequency range (approximately
50 kHz).

Figure 1 shows exemplar experimental data of this effect
where an acoustic source (56 kHz) below the center on
the flat side of the plate is focused a distance above the
plate on the structured side. The diffraction mechanism can
be readily explained via considering diffractive scattering
from higher Brillouin zones (BZs), i.e., Umklapp diffrac-
tion [28]. The theory presented for the modified Scholte
modes is entirely general, and solely rests on the introduc-
tion of the designed periodic regions. As such it can be
extended to manipulate, for example, Lamb waves, and as
such extend the frequency range of the effect.

The structure of this paper is as follows. In Sec.
II we outline the Umklapp diffraction mechanism with
an illustrative example of a two-dimensional structured
plate composed of two different one-dimensionally peri-
odic regions and then, in Sec. III, present the dispersion
curves for both regions calculated using the finite-element
method (FEM) with the commercial software COMSOL
Multiphysics® [29]. To clearly and unequivocally visual-
ize the focusing effect we use the one-dimensional periodic
theory to inform the design of an axisymmetric device, this
has the implication that the local curvature of the grooves
that we now introduce is negligible and can be ignored.
We justify this physically by only considering modes with

FIG. 1. Focusing of underwater sound by Umklapp diffraction
(experimental data, normalized absolute acoustic pressure): an
acoustic source (56 kHz) located centrally beneath the plate (the
lower surface is unstructured) is focussed to a spot within the
fluid above the plate (structured side). White arrows show the
ray path. A schematic of the plate is shown, with design given in
Fig. 3.

circumferential order of 0, i.e., we do not consider radi-
ally quantized modes of the device. In Sec. IV we outline
the experimental method and detail the setup. In Sec. V
we present the experimental results and cross-validation
by comparisons with a completely bare, unstructured plate
and finally draw conclusions in Sec. VI.

II. THEORETICAL DESCRIPTION

Motivated by recent devices in electromagnetism and
elasticity, which leverage so-called Umklapp diffraction
[30,31], we apply these concepts to the setting of focusing
underwater sound.

The Umklapp or “flip-over” process, first hypothesized
by Peierls [32], is conventionally used to understand ther-
mal conductivity at high temperatures due to phonon-
phonon scattering [33]. The mechanism rests on the fact
that wave vectors k in a periodic crystal are defined mod-
ulo a reciprocal lattice vector G. The standard textbook
definition of scattering events in a periodic crystal are then
distinguished between normal N processes and Umklapp
U processes according to

k1 + k2 − k3 =
{

0 N process,
G U process,

(1)

where k1,2 are the wave vectors of two incident phonons
that scatter into a resultant with wave vector k3.

This definition then gives rise to the familiar reduced-
zone scheme by translating wave vectors outwith the first
BZ, effectively “folding” the bands, by an integer multi-
ple of reciprocal lattice vectors such that they lie within
the first BZ. Despite its origins in solid-state physics, not
diffraction from surfaces, this (in the words of Peierls him-
self “rather ugly” [34]) term is adopted to be synonymous
with band-folding effects [35].

We utilize this phenomena to, at a designed spatial posi-
tion, ensure that a propagating MSM with a wave vector
in the first BZ of one periodic region excites a wave with
wave vector outwith the first BZ in a second periodic struc-
ture. The resulting wave then undergoes Umklapp diffrac-
tion into the surrounding fluid with focusing achieved by
the axisymmetry of the structure.

The general design paradigm to achieve this effect is as
follows: (i) we first consider a thin, infinite elastic plate
submerged in water. On one side of the plate we define
a structuring that forms a one-dimensional (1D), infinitely
periodic array of grooves, of pitch a1 and depth d. The dis-
persion curves corresponding to the infinite crystal are then
obtained, with this geometry being termed region 1 (R1).
(ii) We then define, separately, a second infinite 1D array
of grooves with a larger unit cell of pitch a2 > a1, such that
the reciprocal space cell of this second region (henceforth
R2) is smaller than that of R1. (iii) The geometry of the
second region is designed such that the supported MSM in
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(a)

(c)

(d)

(b)

FIG. 2. FEM simulation of Umklapp diffraction at an interface
between two regions of periodic structures. (a),(b) Total acous-
tic pressure (amplitude and intensity, respectively), for a point
source 1 mm below the flat side of the plate (29 kHz, marked
as white star). The arrows in (b) show the ray path of the ini-
tial MSM in R1, which, upon reaching the boundary at R2, is
diffracted out of the plate, forming beams with negative in-plane
momentum. (c) Schematic illustrating the two regions (dashed
vertical lines providing an indication the location of the change
in structure). (d) Schematic of Umklapp diffraction mechanism
whereby an incident surface wave, localized to the plate (green
region), with wave vector kR1 is translated by a reciprocal lat-
tice vector G2. The blue semicircle represents the isofrequency
contour of the free fluid.

R1 couples efficiently into R2; this requires matching the
modal profiles in the regions and ensuring the dispersion
curves of the two regions overlap. (iv) The two regions are
then joined such that the boundary between them is abrupt
(opposed to adiabatically graded, e.g., Ref. [21]). The dis-
persion curves of the infinitely periodic media are used to
infer that a MSM in R1 will excite a MSM in R2; due to this
wave vector now being beyond the first BZ in R2 it then
couples to a radiative mode by diffraction through Umk-
lapp scattering. Sound is diffracted at the transition point,
at an angle determined by momentum conservation of the
translated wave vector.

(a) (b)

(c)

FIG. 3. (a),(b) Schematics of unit cells for R1 and R2, respec-
tively; The aluminium plate is patterned with the grooves shown
in each region, on one side only. Above and below the plate are
regions of fluid (water). (c) Dispersion curves for the modes sup-
ported by a infinite array of the R1 unit cells (purple) and the
coupled Scholte modes [antisymmetric (A) and symmetric (S),
respectively] for an unstructured plate (red). The inset similarly
shows the modal dispersion curves in the first BZ for R2. The
dashed black line shows the fluid sound line. The side panels
show, at two marked frequencies, the plate displacement field
u = (u, v) and the corresponding acoustic pressure fields in the
fluid.

We elucidate this phenomena with an example, Fig. 2,
which shows a plane of a FEM simulation with axial sym-
metry with absorbing boundary conditions on the edges
of the domain. We structure one side of an elastic plate,
partitioning it into two regions consisting of differing peri-
odically arranged grooves: R1 and R2, shown in Fig. 2(c).
A MSM is excited in the first region using a point acous-
tic source (29 kHz) 1 mm below the center of the plate
on the lower, flat side. This MSM has in-plane wave vec-
tor k|| = kR1, shown in Fig. 2(d), which lies within the
first Brillouin zone of R1. At the interface between the
two regions, due to the designed matching of mode shapes
and overlap of the dispersion curves (Sec. III), a MSM is
excited in region R2. However, the corresponding wave
vector now lies within the second BZ of R2 since we ensure
a1 < a2 =⇒ kR1 > X2, where X2 ≡ k|| = π/a2. Due to
the periodicity of R2 the wave vector of the excited MSM
is equivalent to that translated by a reciprocal lattice vector,
leaving its parallel component k′ = kR1 − G2 with G2 =
2π/a2. This translated, or flipped, wave vector now lies
within the isofrequency contour of the free fluid surround-
ing the plate, and hence couples to radiation within the
bulk. The angle of the Umklapp diffracted beams is then
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FIG. 4. Band diagram for R2. (a) Schematic of portion of
numerical experiment domain. Dashed-dotted white lines labeled
1–3 show where the fields are extracted. (b) Normalized Fourier
spectra of the acoustic pressure field along lines 1 and 2 and
of the compressional and shear solid motion along line 3. The
dashed white lines represent the three sound lines present: cf for
the fluid sound line and cp , cs for the elastic compressional and
shear sound lines, respectively.

determined from the relative orientation directions of the
tangential component of the translated wave vector with
that representing the sound cone. Considering the axisym-
metric extension of this geometry then leads to a focal spot
due to the overlap of the diffracted beams, the angles of
which are frequency dependent.

In the following section we outline the exact design for
the experimental verification of this effect, and the tech-
niques used to obtain the dispersion curves for R2, which
is crucial to the operation of the device.

III. DESIGN

We consider an aluminium plate, of thickness h =
15 mm, density ρ = 2660 kg m−3, and Poisson’s ratio ν =
0.34 submerged in water, with density ρf = 1000 kg m−3

and sound speed cf = 1480 ms−1. The plate is split into the
two periodic regions R1 and R2, the unit cells of which are
shown in Figs. 3(a) and 3(b), respectively. The unit cells
comprising R1 are of pitch a1 = 8 mm with a groove of
depth d = 4.8 mm and width w1 = 5.5 mm. The cells com-
prising R2 are such that a2 = 4a1 with the groove width
w2 = 4W1 equally partitioned by an additional pillar of
width w1/4, as shown in Fig. 3(b). We then evaluate the

band diagrams (dispersion curves) for an infinite, 1D peri-
odic, array of unit cell that comprise R1 and R2. These
give the frequencies of the supported mode as a function of
wave vector parallel to the plate surface, k||, and are used
to infer the behavior of the axisymmetric device; consist-
ing of the two regions rotated 2π about the device center
(schematic shown in Fig. 5).

In order to calculate the dispersion curves of the local-
ized MSM in each region, the FEM is used. To extract
the decaying eigensolutions, a finite unit strip, of width a1,
is taken sufficiently long in the direction perpendicular to
the periodicity such that the exponentially decaying solu-
tions are not impacted by the boundary conditions at the
top, or bottom, of the strip. Floquet-Bloch periodic con-
ditions are applied to the side boundaries (dashed lines
in Fig. 3). In doing so, the dispersion curves within the
first Brillouin zone, between � − X1 (X1 ≡ k|| = π/a1),
and � − X2, X2 ≡ k|| = π/a2 are obtained, as shown in
Fig. 3(c). Shown too, at the frequencies marked by the
star and hexagon, are example modal shapes of the struc-
tural displacement field u = (u, v) through the exaggerated
deformation of the solid structure. Also shown are the
corresponding acoustic pressure fields in the fluid

Additionally shown in Fig. 3(c) are the classical coupled
Scholte-mode dispersion curves (red points) obtained for a
submerged unstructured plate with thickness t = 10.2 mm,
i.e., a flat plate without the “pillars,” opposed to the curves
for a plate of thickness t = 15 mm without the grooves
of depth d = 4.8 mm. These are characterized by anti-
symmetric (A) and symmetric (S) branches, calculated
numerically [36,37]. As expected, for a “hard” solid, where
both sound speeds in the solid are greater than that in the
liquid, i.e., cp > cs > cf , the symmetric coupled Scholte
mode follows the sound line of the fluid. The effect of the
structuring on these modes can be seen from the disper-
sion curves for the modes supported by R1; the lowest
branch displays a flat-band asymptote, characteristic of
MSM resonance. This is evidenced by the confined acous-
tic pressure field on one side of the device (Fig. 3). Unlike
for simple sound-hard cavities the asymptotic frequency
does not have a simple quarter-wavelength dependency
[26]. The upper branch of R1 above this resonance follows
the dispersion relation of the asymmetric coupled Scholte
mode. However, a deviation from the classical Scholte
dispersion can be seen at the band edge for the upper
branch of R1, due to the periodic structuring. This affects
the antisymmetric branch and can be seen through the
antisymmetry of both the solid displacement and acoustic
pressure fields on either interface. It is due to the mod-
ification of these modes by the influence of the periodic
structuring we term these modified Scholte modes.

The dispersion curves of R2 within the first BZ are
easily identified [inset of Fig. 3(c)]. However, to enable
Umklapp diffraction we require dispersion curves in higher
BZs (in this case up to the fourth BZ), which can be
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Schematic diagrams of tank arrangement and source and detector configurations. (a) Render of water tank and xyz scanning-
stage apparatus, with the Umklapp sample suspended in place. (b),(c) Front and back views of the plate in the x-y plane for a flat-side
excitation and structured-side detection configuration, showing the locations of the perspex mounts (d) and (e) rendered schematics of
the sample’s structured- and flat-side representative of the fabricated sample. (f) Demonstration of the alignment between the shrouded
transducer source and hydrophone detector at the plate center, note in (f) the plate is made transparent to view the source.

band folded into the radiative regime within the first BZ.
Extracting these eigensolutions from the infinitely peri-
odic unit-strip problem has the disadvantage that many
spurious modes arise that are valid solutions only to the
truncated numerical problem, but not the infinite physical
one.

Several numerical schemes exist to extract the desired
decaying solutions [17,28], however, the exercise remains
tedious. Instead we opt to obtain the physical solutions
via a numerical experiment by utilizing the fast Fourier
transform (FFT). This has the advantage of simplicity and
provides additional information on the solid-fluid interac-
tion. Instead of numerically solving the eigenvalue prob-
lem in the finite unit strip comprising R2, Fourier analysis
is conducted on frequency-domain simulations an array
consisting only of R2. Figure 4(a) shows a schematic of a
portion of such a domain. In total, 200 cells of R2 are taken,
with absorbing boundary conditions placed on the extrem-
ities of the long array. MSMs are excited with a point
monopole acoustic source placed 3 mm above the center
of the patterned surface. Performing a parametric sweep
in frequency then gives the fields in both the fluid and
solid domains. Along the dashed-dotted lines 1–2 shown
in Fig. 4 the pressure field is extracted and the shear and
compressional wavefields in the plate extracted along line
3. The spatial FFT is then computed, giving the required
dispersion relations.

In the band diagram for R2 (Fig. 4) we see similar
MSMs present in the higher BZs of R2; X ′

2 marks the edge
of the second BZ boundary (BZB) and X ′′

2 that of the third,
with X1 = 4X2 being the edge of the first BZ for R1, and
the fourth BZB for R2. The presented dispersion curves,
for each region, are for an infinite array of each unit cell
(i.e., 1D periodic). We now use these to infer the behav-
ior of an axisymmetric device consisting of 25 cells of R1
and three cells of R2. This cross section is rotated about the
central axis of the plate, forming a disk consisting of con-
centric rings of R1 and R2, as shown in Fig. 1. We consider
only isotropic MSMs with circumferential order 0—we do
not consider modes of the system with a higher degree of
radial symmetry. As such the linear 1D dispersion curves
provide a sufficient approximation to the supported modes
of the axisymmetric device.

Due to the careful design of the two periodic unit cells,
over a large range of frequencies (approximately 50 kHz),
the dispersion curves of the two regions almost exactly
overlap—see Fig. 4. This is due to the fact we are per-
turbing the dispersion of the coupled Scholte modes on the
same order (i.e., same depth of grooves in each region),
which exist over the frequency range we consider here. As
such there is a very low impedance mismatch at the junc-
tion between the two regions; the excited parallel wave
vector in R2 due to that in R1 are approximately equal,
i.e., �k|| = kR1

|| − kR2
|| ≈ 0. In addition to this the mode
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(a)

(b)

(c)

FIG. 6. Time-domain scans on a line parallel (at z = 300 mm) to the sample in y direction (±200 mm relative to y = 0 corresponding
to the point normal to plate center). Temporal maps show the acoustic signal for (a) an unstructured reference plate, (b) the Umklapp
sample excited on the flat side, detection on the structured side, and (c) the Umklapp sample excited on the structured side and measured
on the flat side, as indicated with their associated schematics.

shapes possess the same symmetry in each region and
so, given a sufficient number of unit cells in R2, the cor-
responding MSM in R2 is predominantly excited by the
incoming MSM in R1. This means that at the transition
region undesirable scattering is avoided, and so energy
is primarily coupled into the designed negative diffractive
orders through Umklapp scattering. This contributes to the
high efficiency of the device.

We first detail the experimental procedure before pre-
senting results and experimental corroboration.

IV. EXPERIMENTAL METHOD

A. Sample fabrication and material properties

The sample is fabricated based upon the unit-cell dimen-
sions for regions 1 and 2 presented in Fig. 3. From the
plate center, the sample comprises 25 cells of R1 and three
cells of R2, which have axial symmetry about the cen-
ter of the plate rotated about the plate normal as depicted
schematically in Figs. 1 and 2(c).

The groove structures are milled using fluted cutters
with a CNC-assisted pillar drill into a circular aluminum-
alloy (5083) plate mounted on a rotating table to accom-
modate this large radius sample. The plate sample has
diameter D = 592 ± 0.1 mm and thickness h = 15.04 ±
0.01 mm. Grooves have cavity depths, d, of 5.07 ±
0.05 mm (50 μm depth variation arises due to the flatness
tolerance of the plate over the sample area). The thick-
ness error in radial features of the surface relief profile, i.e.,
the pillar widths, are realized with much smaller positional
tolerances of ±0.005 mm. For fabrication, six 5-mm bolt
holes and a 25-mm diameter, 6-mm-deep recess in the plate
center are milled into the flat side of the sample (these are
accounted for in the numerical simulations), the bolt holes
are later used to mount the sample as shown in Figs. 5(b)
and 5(c). A flat unstructured blank plate is also prepared as
a reference.

The alloy plate has elastic material parameters: elastic
modulus E = 72.0 ± 0.2 GPa, shear modulus G = 26.4 ±
0.2 GPa, density ρ = 2660 ± 610 kg m−3, and Poisson’s
ratio 0.34 ± 0.1, as reported in the literature [38], which
are in agreement with recent acoustic characterization
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measurements on submerged plates in this frequency
regime [26].

B. Acoustic measurements

To experimentally confirm acoustic focusing by our
lens design, extensive time-gated acoustic characterization
of the fluid-field pressure distributions are made using a
scanning tank facility [see Fig. 5(a)]. Measurements are
performed in a water tank without wall or surface treat-
ments, with dimensions 3.0 × 1.8 × 1.2 m (L × W × D).
The sample is mounted to two perspex rods using bolts
and washers to space the sample from the rod by 10 mm.
It is then suspended on a cross bar so that the plate hung
approximately at the half depth and width of the tank,
and offset from the center of the length to allow far-field
measurements out to 1 m from the sample plate. Figures
5(a)–5(c) display this experimental arrangement.

The sample is characterized under two different excita-
tion conditions, when the source is positioned on the struc-
tured side, and when the source is on the flat side of the
sample. For all experiments the sample is isonified using
a ball-shaped Neptune-Sonar D70 transducer mounted at
the center of the sample approximately 5 mm from the
surface (on either side of the sample). The transducer is
shrouded in a foam enclosure to produce a 600-mm2 area
radiating aperture to produce a more pointlike monopole
acoustic excitation, and excited with a pulse with a 50-
kHz center frequency. This excitation condition provides
a near-field acoustic source that excites over a range of
incident angles, θi, with the associated range of in-plane
wave vectors, k‖ (= k0 sin θi), required for excitation of the
modified Scholte modes.

To obtain pressure-field maps of sound radiated from the
source and plate, the signal at the detection hydrophone
(Brüel & Kjær 8103 hydrophone) is scanned in space,
using an xyz scanning stage (in-house built with Aerotech
controllers) to map the acoustic propagation; the voltage,
V, from the detector is recorded as a function of time, t, at
each position in the scan.

At each spatial point, signals are averaged in time over
20 repeat pulses to improve the signal-to-noise ratio. The
detector is sampled with sample rate, fs = 9.62 MHz to
record the signal for 1.6 ms at each point. The resulting
usable frequency range for this source-detector response
function is between 26 and 90 kHz.

V. EXPERIMENTAL RESULTS

To illustrate the focusing arising from the tailored scat-
tering of sound by the sample we present both temporal
and frequency-domain results.

As a consequence of our time-resolved excitation and
detection we can first consider the arrival of the acoustic
signal in the far field. Figure 6 shows the arrival of sound
as a function of time, spatially resolved along a line parallel

Unstructured plate
Source flat side (measured structured side)
Source structured side (measured flat side) 

t (ms)

FIG. 7. Time-domain scans along center lines (y = 0 mm)
in Fig. 6. The y axis displays normalized voltage Ṽ to maxi-
mum voltage in Fig. 6(b). The relative measured wave-packet
amplitude is over a factor of 2 larger in the patterned sur-
face measurement than for the reference sample or the opposite
structured-sample orientation.

to the sample at 300 mm in the z direction. For these mea-
surements a flat 15-mm-thick reference plate (a) and the
patterned sample (b) and (c), for two sample orientations,
are measured for excitation on one side and detection on
the opposite side of the sample.

The temporal evolutions display some common fea-
tures; the leading edge of the pulse arrives at approxi-
mately equal to 0.32 ms and disperses in ±y in a manner
expected when intersecting a spherical wave front, origi-
nating at the plate center, along a chord. In all cases the
pulse displays the sinusoidal three-cycle character of the
input signal. For the unstructured reference plate [Fig. 6(a)]
the signal rings down and displayed the same spatial cur-
vature. Other later arriving reflections are visible later in
time, for instance at approximately equal to 0.76 ms.

For the sample (excited on the flat side), in Fig. 6(b), the
behavior is critically different; whilst the leading edge of
the pulse behavior is similar across the y-spatial scan, there
is a significant signal enhancement later in time between

(a) (b)

FIG. 8. Linear detector scan measuring the temporal pressure
variations at the plate center in the plate normal (from z = 0 to 600
mm). (a) Normalized time-domain results with the inset indicat-
ing scanning direction. (b) Normalized logarithm of frequency
spectrum. Dashed lines show predicted focal-spot position as a
function of frequency. Dotted line shows band-gap frequency for
R1, above which no focal spots are observed as no guided wave
is excited in R1.
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(a) (b) (c) (d) (e) (f)

FIG. 9. (Top left),(top right) Numerical model band-diagram analysis displaying the allowed scattering processes and resulting
beaming angles for our experimental sample, for point-source acoustic excitation on the unstructured (top left) and structured (top
right) when the pressure field is evaluated on the opposite side of the plate. Panels (a)–(f) display composite maps of the absolute
pressure field (|p|) comparing numerical simulations and measurements. On each map the Umklapp sample and relative source location
are indicated; the maps plotted above and below the plate are the simulated (on the left of the plate normal) and measured (on the right
of the plate normal) absolute pressure fields. Maps (a)–(c) are for acoustic excitation on the flat side of the sample for example
frequencies (a) 29.5 kHz, (b) 63.4 kHz, and (c) 73.1 kHz. Maps (d)–(f) are for acoustic excitation on the structured side of the sample
for frequencies (d) 37.8 kHz, (e) 52.5 kHz, and (f) 67.9 kHz. Dashed lines show the transition point from region 1 to region 2 on the
sample, and the arrows show the expected angles at which sound will be projected, as calculated from the band folding and scattering
shown in the band diagrams (top left and right).

0.45 � t � 0.49 ms at y = 0 indicating focusing along the
plate normal from the center. The implication is that the
delayed signal has propagated along the plate before being
scattered to free-space radiation at the designed transition
between R1 and R2.

When the sample is flipped so excitation is now on the
structured side, and detection on the flat side, as in Fig. 6(c)
a similar signal enhancement is seen. In this measurement,
there is the presence of additional late arriving (t � 0.5 ms)
interference effects associated with unwanted diffraction
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by the perspex mounts that are now orientated on the
detection side of the plate.

Closer inspection of the time-domain signal shows that
there is a significant enhancement of the voltage measured
at the detector at x, y, z = 0, 0, 300 mm. The time signals
for each configuration are plotted in Fig. 7, and show that
(i) the relative measured wave-packet amplitude at the
“focus” is over a factor of 2 larger for the structured sample
when excited on the flat face and measured on the patterned
side when compared to the reference sample or the oppo-
site structured-sample orientation, and (ii) the amplitudes
are essentially the same for the pulse that arrives first.

Another way we explore this focal point is to observe the
temporal evolution as a function of distance from the plate.
Figure 8(a) shows a time-domain scan along the z direction
normal to the plate center. A focal spot is observed approx-
imately equal to 500 mm from the plate at approximately
equal to 0.5 ms. This time delay is consistent with the addi-
tional time of flight required for the guided wave to travel
along the plate and travel the longer path length due to the
angle of beaming. In Fig. 8(b) we show the frequency spec-
trum as a function of distance and make simple predictions
of the focal-spot position as a function of distance (dashed
lines). These are evaluated simply by trigonometry using
both the distance to the transition region (25a1 = 200 mm)
and the angle of beaming. This is extracted from the dis-
persion curves by subtracting mG2, with m ∈ 1, 2, 3 (since
we go up to the fourth BZ in R2) from the predicted k||.
The dotted line shows the band-gap frequency for R1, after
which no focal spots are observed due to no MSM being
excited in R1.

Due to the physical constraints of the tank apparatus,
all scans of the radiated fields are conducted in the +z
direction relative to the sample mount position, as indi-
cated in Fig. 5(a). The data presented required changing
both the plate orientation and source position to produce
the maps presented (i.e., two source positions × two sam-
ple orientations). In Fig. 9 we show comparisons between
simulations and experiments for a far-field scan performed
over a yz half-plane, for both configurations of sources. We
measure from z = 0 to 1 m when the source is on the oppo-
site side of the plate than that being measured, and from
z = 0.005 m to 1.005 m when we measure on the same
side, to account for the proximity of the source and sample.
In both cases we measure from y = 0 down to y = −0.3 m
so to avoid encountering interference from diffraction off
the tube holding the source [Fig. 5(c)]. Panels (a)–(c) and
(d)–(f) in Fig. 9 show comparisons of the simulated (left-
hand side) and experimental (right-hand side) absolute
pressure fields at several frequencies. The top left and right
panels show the dispersion curves for R1 (red) atop the full
dispersion curves for R2 calculated via the numerical sim-
ulation. These are used, similarly to in Fig. 2, to predict
the diffraction angle at the transition regions by subtracting
multiples of G2 from the wave vectors at the frequencies

marked by the white stars. In each case, good agreement
is seen between the theory, simulation, and experimental
results.

The focusing of sound, which we achieve, results from
the interference of diffracted beams from the transition
region. The width of the beams is influenced by the num-
ber of cells in R2, and these beams spread as they travel
through the free fluid. As such the size of the focal spot
depends on the angle of the diffracted beams; the larger the
angle, the greater area of overlap of the spreading beams
and hence the extension in z of the focal “spot.” This is
clearly visible when comparing, for example, Figs. 9(c)
and 9(e).

Figure 9 demonstrate it is therefore possible to couple
nonradiative guided array modes, such as the modified
Scholte modes here, to the surrounding bulk by engineer-
ing Umklapp diffraction at a given position. In each case,
as expected, the diffraction is strongest on the structured
side of the plate, and in general will depend on the momen-
tum mismatch (i.e., the difference of k|| in R1 and R2) and
overlap in mode shape between each mode in R1 and R2.
This is particularly noticeable in Fig. 9(d), which has the
largest �k||.

VI. CONCLUSIONS

We demonstrate that the Umklapp diffraction method
can be used to focus underwater sound over a broad range
of frequencies. We achieve this by modifying the coupled-
Scholte modes between a submerged elastic plate and the
surrounding fluid by patterning only one side of the device
with regions consisting of periodic concentric grooves.
Comparisons to bare, unstructured plates confirm that the
focusing capabilities are due to the designed structuring.
The coupling between these supported guided waves to
radiative modes is achieved by designing the regions to
consist of unit cells, which support similar mode shapes
and have overlapping dispersion curves. Indeed the disper-
sion curves and band diagrams are key to the operation
of the device and are calculated through a combination
of finite-element methods and numerical experimentation,
and highlight the need for careful design of the two com-
prising unit cells. We show in simulation and experimen-
tally verify that focal spots, whose position are frequency
dependent, exist on both sides of the device, no matter
which side the source is placed on. It is therefore possi-
ble to focus sound on the flat side of the device due to the
coupling and modulation of the Scholte modes.

The modulation of the nonradiative Scholte modes
through periodic structuring is achieved through the gen-
eral theory of Umklapp diffraction. As such we envis-
age extension to other wave types (e.g., Lamb waves)
and anticipate applications for underwater sensing through
nondestructive testing and evaluation, which is partic-
ularly relevant in the petrochemical industry. Further
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applications arise through the acousto-fluidic control of
microparticles [39]; the proposed structures could serve
as the basis of hybrid bulk-acoustic-wave and surface-
acoustic-wave devices [40,41] and as such have potential
reach in biochemical technologies.
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