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We analyze the magnetic mode structure of axially magnetized finite-length nanoscopic cylinders in a
regime where the exchange interaction dominates, along with simulations of the mode frequencies of the
ferrimagnet yttrium iron garnet. For the bulk modes, we find that the frequencies can be represented by
an expression given by Herring and Kittel by using wavevector components obtained by fitting the mode
patterns emerging from these simulations. In addition to the axial, radial, and azimuthal modes that are
present in an infinite cylinder, we find localized “cap modes” that are “trapped” at the top and bottom
cylinder faces by the inhomogeneous dipole field emerging from the ends. Semiquantitative explanations
are given for some of the modes, in terms of a one-dimensional Schrodinger equation, which is valid in
the exchange-dominant case. The assignment of the azimuthal-mode number is carefully discussed, and
the frequency splitting of a few pairs of nearly degenerate modes is determined through the beat pattern
emerging from them.
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I. INTRODUCTION

With recent advances in submicron patterning tech-
niques, dynamic magnetic studies of arrays of objects (so
as to have large signals), for which the largest dimen-
sion is a few hundred nanometers or less, are attracting
increasing attention. With advanced techniques, it is even
possible to probe the dynamic properties of individual sub-
micron particles [1–3]. Measurements on such samples can
even be performed in the absence of an external field, i.e.,
solely in the presence of the internal demagnetization field
(for shapes where such a field exists), provided the sam-
ple is small enough to be in a single-domain state [4].
Modes with an odd number of maxima and minima can
be excited directly with a uniform microwave field; cou-
pling to modes with higher wave numbers will be more
challenging [5].

Here, we report on an exhaustive numerical study, using
the OOMMF micromagnetic simulation code [6], of the
resonance modes of yttrium iron garnet (YIG) cylinders,
primarily of diameter d = 75 nm and height h = 300 nm,
although some aspects are studied for other values of h
(7.5–1200 nm). Our methodology shares many features
with the work of McMichael and Stiles [7] on two-
dimensional elliptical disks and three-dimensional thin
cylindrical disks. Our three-dimensional geometry dis-
plays a much richer mode structure, however, requiring
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a more detailed theoretical framework. In addition, we
also develop techniques to resolve modes that are nearly
degenerate in frequency.

Here, we are primarily concerned with size-quantization
effects arising from finite sample dimensions. In particular,
we will examine the mode spectrum in samples having a
cylindrical shape with radius a (and corresponding diame-
ter d = 2a) and height h, both analytically and numerically.
Due to the ease of preparation of some materials as wires,
such samples are widely studied experimentally, e.g., in
Permalloy [8] and in Ni [9,10]. Cylinders of finite length
with h/d ratios of order unity and larger can be readily pat-
terned using optical and e-beam lithography by creating
hole arrays in a resist followed by deposition and lift-off
[11].

A. Theoretical background

Free spins in a magnetic field, H, precess at the Larmor
frequency, ω = γ H , where γ = g|e|/2 mc with g, e, and
m being the electron g factor, charge, and mass, respec-
tively. As noted, in materials with internal magnetization,
additional fields are present that can alter the precession
frequency. To describe this and related effects, Landau and
Lifshitz [12] (LL) introduced the following equation of
motion:

dM
dt

= −γ M × H − αγ

M0
M × (M × H), (1)
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where H is the total field at a given position within the
sample arising from the external field plus that produced
by the magnetization itself and an effective field arising
from quantum-mechanical exchange; it can also include
crystalline anisotropy, but this is suppressed in what fol-
lows. The second term on the right-hand side of Eq. (1) is
incorporated to phenomenologically account for damping,
which will largely be neglected in what follows. In addi-
tion to satisfying Eq. (1), M and H must satisfy appropriate
boundary conditions at the surface of the body.

For ellipsoidal samples (including degenerate forms
thereof), and in the presence of a homogeneous external
field H, the magnetization M is nominally homogeneous,
as is the resulting demagnetization field; one can then
observe sharp absorption lines in ferromagnetic resonance
(FMR) experiments (in the absence of strong damping),
with all spins then seeing the same local field. The reso-
nance frequency of this uniformly precessing mode in a
spheroidal sample (where two of the principal axes of the
ellipsoid are identical) with the external field, H0, along
the axis of rotation is given by what is commonly called
the Kittel formula [13]:

ω = γ [H0 + 4π(N⊥ − N‖)M0], (2)

where N⊥ and N‖ are coefficients accounting for the effect
of demagnetization perpendicular and parallel to the rota-
tion axes (with 2N⊥ + N‖ = 1), respectively, and M0 is
the internal magnetization, which is taken as a constant;
notably, γ may differ from the free-space value due to
atomic and solid-state effects.

In addition to the uniformly precessing mode, there
are nonuniform modes [14], which we can characterize

by some effective wavelength, λ. At shorter (nanometer-
scale) wavelengths, the exchange interaction dominates,
and the associated modes are termed exchange modes,
as introduced by Bloch [15]. The importance of modes
with longer wavelengths (in suitably large samples) was
emphasized by Clogston et al. [16,17]. They arise from
the solution of Eq. (1) together with ∇ · B = 0 and the
Maxwell boundary conditions; they are commonly referred
to as magnetostatic modes. Modes in the region where both
exchange and magnetostatic effects compete are called
dipole-exchange modes.

For the case of a sphere, some of the low-lying magne-
tostatic modes were examined by Mercerau and Feynman
[18]. They were later studied in much greater detail for
spheroidal samples by Walker [19].

For the case of an infinitely long cylinder (N⊥ =
0.5; N‖ = 0), with H0 parallel to the rotational axis, which
is relevant for the work presented here, the mode struc-
ture was studied by Joseph and Schlomann [20]. Here, we
encounter families of purely azimuthal as well as radially
quantized modes propagating up and down the cylinder
axis, which approach ω = γ H0 at large k (in the absence
of exchange). Recently, this problem was reexamined by
Arias and Mills [21], who also considered the effects of
exchange via perturbation theory.

At shorter wavelengths, the effects of exchange con-
tribute. In this regime, the frequency of a mode with
wavevector k = 2π/λ for a spheroidal sample with exter-
nal field H0 aligned along the rotational axis can be
described by the Herring-Kittel (HK) formula [22], which
we discuss in Appendix A:

ω = γ

√
(H0 − 4πN‖M0 + Dexk2)(H0 − 4πN‖M0 + Dexk2 + 4πM0sin2θ), (3)

where Dex is a parameter measuring the strength of
exchange (see below); k2 = k2

z + k2
⊥, where kz and k⊥ are

the components of the wavevector parallel and perpendicu-
lar to the spheroid axis, respectively; and θ = tan−1(k⊥/kz)

is the angle between the spin-wave propagation direction
and the spheroid axes. Note that at k = 0, the factor involv-
ing N⊥ that appears in Eq. (2) is absent from Eq. (3),
since it is assumed that the transverse demagnetization
field is “screened out” at short wavelengths. Indeed, ω
is ill defined at precisely k = 0, since θ is ambiguous.
This shortcoming also signals the importance of the mag-
netostatic modes at intermediate k values, i.e., as the
sample size is reduced, there is a crossover between dipole-
dominated and exchange-dominated modes. Modes with

k values straddling these regimes are the dipole-exchange
modes mentioned above. At short wavelengths, which will
be the case in sufficiently small samples, Eq. (3) should
provide a representation of the mode structure in rota-
tionally symmetric samples, provided suitable quantized
values of k⊥ and kz are available; we will utilize Eq. (3)
to represent some of our finite-size sample simulations in
what follows.

More generally, and in the absence of exchange effects,
magnetostatic effects will dominate the mode frequencies,
which, for a spheroid, will lie in the range

γ (H0 − 4πN‖M0 + 2πM0) ≥ ω ≥ γ (H0 − 4πN‖M0).
(4)
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Note that the number of modes in this interval is bounded
only by the number of spins, i.e., the mode density is very
high, making the resolution of individual modes extremely
difficult at shorter wavelengths (where they pile up). When
exchange is present, the mode frequencies are spread over
a much wider interval.

In an inhomogeneous external field, or for samples
with an arbitrary shape, one might initially expect to
observe a broadened line (as happens in most nuclear-
magnetic-resonance experiments). However, in the pres-
ence of exchange, this is not the case and well-defined
modes emerge, as will be discussed further below.

B. Plan of the paper

We develop the theoretical framework for our prob-
lem in Sec. II, beginning with a discussion of cylindrical
symmetry and the resulting angular-momentum quantum
number (or azimuthal-mode number) in Sec. II A. In the
magnetostatic limit, it is convenient to take this as the
total angular momentum, m, as done by Walker, and by
Joseph and Schlomann. In the exchange-dominated limit,
it becomes more important to understand the separation of
the angular momentum into its orbital and spin parts. The
major component of a mode has spin ms = 1 and orbital
angular momentum ml = p , and there is a small admix-
ture of ms = −1 and ml = p + 2. Accordingly, we find it
better to label the modes by the orbital angular momen-
tum, p, of the major component. This is especially so when
examining the computer-generated mode patterns, since
the orbital behavior of any component of M is immediately
apparent.

That the two components of a mode are so unequal goes
hand in hand with the fact that modes with ml = p and
−p are nearly degenerate, as we discuss in Sec. II B. A
clear understanding of this issue is important, as this near
degeneracy can lead to some confusion when looking at
the mode patterns. In one case, we resolve this degeneracy
(see Sec. III D) by exciting and examining the beat pattern
between the ±p modes.

In Sec. II C, we show that exchange-dominated modes
in long cylinders are approximately described via a
Schrodinger-like equation for a particle in a cylindrical box
with a modified boundary condition, such that the axial and
radial dependence of the mode function factorizes, and the
resulting quantization gives rise to axial and radial mode
numbers. In an infinite cylinder, this separation is exact,
which is exploited to good effect in the analyses of Joseph
and Schlomann and of Arias and Mills. In a finite cylin-
der, the separation is approximate, since the demagnetizing
field is nonuniform and flares away from the axis near
the perimeter of caps at z = 0 and z = h. We give a semi-
quantitative argument in Sec. II D that the Schrodinger
equation possesses bound-state solutions near these caps,
corresponding to “cap modes,” which we see very clearly

in our simulations. For any p, there are two such modes
(one for each cap), the frequencies of which lie below those
of the bulk modes with the same p. This means that the uni-
form FMR or Kittel mode, which is the lowest bulk mode
with p = 0, is not the lowest-frequency mode of the body.
For this case, we present numerical results for the solu-
tion of the Schrodinger equation in Sec. II E and find good
agreement with the simulations.

The cap modes are an unexpected feature of our study,
as they do not exist in an infinite cylinder or a finite-sized
ellipsoid of revolution. Similar “end modes” were found
by McMichael and Stiles [7], who did not, however, inves-
tigate their origin. We expect that such localized modes
will exist near the surfaces of other sample shapes as well
as whenever the demagnetizing field departs significantly
from uniformity.

Our simulation approach is described in Sec. III. It is
based on the OOMMF code developed at the National Insti-
tute of Standards and Technology. After finding the static
equilibrium magnetization, Meq(r) (Sec. III A), we excite
the system by applying pulses that are localized in space,
time, or both [23]. The spatial center and the width and fre-
quency bandwidth are varied, depending on which mode(s)
we wish to excite. The resulting time development of
M(r, t) is Fourier transformed, and the point-wise power
spectrum is added over all the cells. The resulting sum
displays peaks at many mode frequencies, and by honing
in on individual peaks, we can identify the magnetization
patterns for each mode, as explained in Sec. III C

Once a particular mode pattern is obtained in a simula-
tion, it can be used as is or altered in some way, say by
combining it with some other mode, to study the subse-
quent development in time. This is a potentially promising
way to study mode-mode coupling or large-amplitude
responses, which we hope to pursue in the future. As an
application of this idea, and as noted above, ±p modes
are sometimes nearly degenerate, as are the even and odd
superpositions of the cap modes. In Sec. III D, we show
that, by starting the simulation in a suitable real-space pat-
tern, we can find a beat pattern in the time development
of the magnetization from which we can obtain the fre-
quency splitting of the modes. We perform this exercise
for only a few cases, as it is computationally intensive,
and the physical principles are the same for the other
cases.

In Sec. IV, we tabulate the frequencies of all the modes
we find (approximately 90) and discuss the assignment of
mode numbers further. The assignment of the longitudinal
quantum number, nz, on the basis of the one-dimensional
Schrodinger equation is particularly tricky, as the existence
of cap modes forces nodes in the bulk-mode functions
near the caps and prevents accurate fitting of the lowest-
few bulk modes to a sinusoidal form, sin(kzz), with kz
strictly equal to π /h times an integer. Nevertheless, an
unambiguous labeling of the modes is possible.
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In Sec. V, we show that the mode frequencies we obtain
agree surprisingly well with the Herring-Kittel expression
(3), provided we identify k⊥ and kz in this formula cor-
rectly. We give reasons why this agreement might be so
good and explain how the wavevector components are
found and how this allows us to organize the normal-mode
spectrum into families of modes labeled by p.

Spatial patterns for a variety of modes are given in Secs.
VI and VII (in Figs. 11–18 and 20). These patterns are
the centerpiece of our paper and show beautiful regularity
and symmetry. In Sec. VI, we consider only the d = 75 nm
h = 300 nm sample, while, in Sec. VII, we consider the
lowest-three p = 0 modes as a function of h. We find that,
at small h/d (disklike sample), the symmetric cap mode
(which has the lowest frequency of all three) is, in fact, the
mode that one would regard as the uniform FMR or Kittel
mode, and its frequency fits well with the Kittel formula
with an appropriate choice of demagnetization coefficients.
For large h/d, however, it is the lowest bulk mode (the
frequency of which lies above the two cap modes) that
should be identified with the Kittel mode. For intermediate
values of h/d � 6–8, the Kittel formula does not actually
describe any of the modes. This point has not been appre-
ciated before. Once again, it illustrates the richness of the
normal-mode spectrum in nonellipsoidal samples.

Finally, Sec. VIII summarizes our conclusions. Here, we
take the opportunity to emphasize the importance that sim-
ulations of the small-amplitude mode structure in nanos-
tructures have for present and possible future applications,
some of which are currently speculative in character.

II. MODES IN THE EXCHANGE-DOMINATED
LIMIT

In the presence of an isotropic exchange interaction,
and neglecting the effects of damping, Eq. (1) takes the
form [24]

dM
dt

= −γ M ×
(

H − 2Aex

M 2
0

∇2M
)

,

= −γ M ×
(

H − Dex

M0
∇2M

)
,

(5)

where Aex is a parameter fixing the strength of the
exchange interaction and Dex ≡ 2Aex/M0 Here, H is the
applied magnetic field, H0ẑ, plus the dipolar or demagne-
tizing field generated by M. In a cylinder of finite height,
the dipolar field is not uniform, especially near the caps,
and thus, the static equilibrium field, Meq(r), is not every-
where parallel to ẑ. A linearized normal-mode analysis
should, therefore, consider deviations, δ M(r, t)⊥Meq, that
do not lie in the x-y plane. If exchange is strong, how-
ever, the nonuniformity in Meq is very small (this is true
for all the simulations we perform), and we may then take
δMz = 0. This assumption makes it much easier to discuss

the physics, and relaxing it only obscures the key ideas
without adding substance. We stress that it is not essential
to our argument, especially with respect to the symmetries
and the azimuthal quantum number. With this assumption,
we may write

M(r, t) = M0[(1 − m2)
1/2

ẑ + m(r, t)], (6)

where m has only x and y components and is dimension-
less, since we have scaled out M0.

For small deviations, |m| << 1, the linearized LL
equation can be cast as

dm(r, t)
dt

= γ ẑ × [Hz(r, z)m(r, t)− M0hd(r, t)

− Dex∇2m(r, t)]. (7)

Here, Hz(r, z) consists of the applied field, H0ẑ, together
with the position-dependent longitudinal demagnetization
field arising from the static magnetization, and hd is the
(small) demagnetization field induced by m. (We use
cylindrical coordinates r = (r,ϕ, z) here and below.)

A. Assignment of the angular-momentum quantum
number

Equation (7) defines an eigenvalue problem with cylin-
drical symmetry, so there must exist solutions with a
definite azimuthal-mode number. In the zero-exchange or
magnetostatic limit, the analysis is best done in terms of a
scalar magnetic potential, ψ , which varies as eimϕ in the
eigenmodes; the integer m (which we must be careful to
distinguish from the scalar value of m) is then naturally
interpreted as the angular-momentum quantum number. In
the strong-exchange limit, the problem is better formulated
in terms of m directly, which as a vector field transforms
differently under rotations than a scalar field [25] [such as
ψ(r) in the Schrodinger equation].

Let us examine the effect of a rotation on the vector m at
a point (x, y, z) by an angle ε about the z axis to a vector m′
at the point (x′, y ′, z). We need only carry this analysis out
to leading order in ε. The components of the rotated vector
m′ are then (see Fig. 1)

m′
x(x

′, y ′, z) = mx(x, y, z)− εmy(x, y, z), (8a)

m′
y(x

′, y ′, z) = εmx(x, y, z)+ my(x, y, z). (8b)

The coordinates (x′, y ′, z) themselves are related to
(x, y, z) by

x′ = x cos ε + y sin ε = x − εy, (9a)

y ′ = y cos ε + x sin ε = y + εx. (9b)

If we expand the left side of Eq. (8) to first order in
ε, note that to zeroth order m′(x′, y ′, z) = m(x, y, z), and
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FIG. 1. Transformation of a vector field.

recall the definition of the (dimensionless) orbital angular-
momentum operator, lz, in quantum mechanics as

lz = −i
(

x
∂

∂y
− y

∂

∂x

)
= −i

∂

∂ϕ
, (10)

we can write m′ in terms of m as

m′
x(x, y, z) = (1 − iε lz)mx(x, y, z)− iε[−imy(x, y, z)],

(11a)

m′
y(x, y, z) = (1 − iε lz)my(x, y, z)− iε[imx(x, y, z)].

(11b)

Equation (11) can be rewritten in the form

(
m′

x
m′

y

)
=

(
1 − iε lz 0

0 1 − iε lz

) (
mx
my

)
− iε

(
0 −i
i 0

)

×
(

mx
my

)
. (12)

For a scalar field, ψ(r), we simply have ψ ′(r) = (1 −
iε lz)ψ(r), but the presence of the last term in Eq. (12)
mixes the two components of the vector field m. This can
be interpreted as arising from an “internal” or “spin” angu-
lar momentum of ms = ±1 that is added to or subtracted
from the orbital angular momentum, ml , associated with
our vector field m (a tensor of rank 1). A similar separation
exists in the description of light fields [26].

Consider the case of a vector field of the form

mx(r) = a(r, z)eipϕ , my(r) = b(r, z)eipϕ , (13)

where a and b are arbitrary functions. This field has orbital
angular momentum ml ≡ p , but has no definite spin angu-
lar momentum. For it to have a definite spin, a and b must

be proportional, according to

(
mx
my

)
∝

(
1
i

)
⇔ ms = 1 or

(
mx
my

)
∝

(
1
−i

)
⇔ ms = −1.

(14a,b)

Writing m± = mx ± imy , it then follows that

ms = 1 yields m+ = 0, m− ∝ eipϕ , and mtot = p + 1,
(15a)

and

ms = −1 yields m+ ∝ eipϕ , m− = 0, and mtot = p − 1,
(15b)

where we write mtot = ml + ms. It follows that an eigen-
mode with total angular momentum p + 1 must be of the
form

[
mx(r, t)
my(r, t)

]
= F−(r, z)

(
1
i

)
ei(pϕ−ωt)

+ F+(r, z)
(

1
−i

)
ei[(p+2)ϕ−ωt], (16)

where we adopt an e−iωt time dependence, following stan-
dard practice. The physical solution is obtained by taking
the real part of this complex-valued solution. We shall see
below that, for positive-frequency solutions, F− � F+ in
the strong-exchange limit, and it is often convenient to
neglect F+ entirely. It is then more useful to label the
modes by p, the orbital angular momentum of the domi-
nant component, F−. This is especially so when looking
at mode patterns generated by OOMMF, since we can read
off p by seeing how many times m turns, as we go around
a circle in the x-y plane. For example, in a p = 0 mode
[see Figs. 11(a) and 11(b)], m appears uniform, while in
p =−1 (Fig. 13) and p = 1 (Fig. 14) modes, m winds by
2π and −2π , respectively as we go anticlockwise around
a circle.

In the magnetostatic limit by contrast, F+/F− ∼ O(1),
and the m labeling is better. Thus, for the sphere, while
we would describe the uniform or Kittel mode as having
p = 0, Walker assigns m = 1 to it [see Fig 3 of Ref. [19]
where the mode is labeled (110)].

B. Near degeneracy of p and −p modes

When exchange dominates over dipole-dipole interac-
tions, we may, as a first approximation, neglect hd in
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Eq. (7). In component form, the equation then reads

d
dt

[
mx(r, t)
my(r, t)

]
= γ [H(r, z)− Dex∇2]

[−my(r, t)
mx(r, t)

]
, (17)

or

d
dt

m±(r, t) = ±iγ [H(r, z)− Dex∇2]m±(r, t), (18)

with

m±(r, t) = mx(r, t)± imy(r, t). (19)

We seek solutions of the form

m±(r, t) = m±(r)e−iωt, (20)

and demand that ω > 0, with the understanding that the
physical solution will be given by the real part. These
solutions then obey

γ [Hz(r, z)− Dex∇2]m±(r) = ∓ωm±(r). (21)

This equation is like a one-particle Schrodinger equation
and, since γ > 0 in our convention, the operator on the
left is a positive operator, which cannot have negative
eigenvalues. Since we also demand that ω> 0, we must
choose m+ = 0. Finally, since our finite cylinder retains
full azimuthal symmetry, the solution for m− takes the
form m−(r,ϕ, z) = F−(r, z)eipϕ , where F−(r, z) can be
chosen to be real, and ω has the same (positive) value
for either sign of p. In terms of the general form (16),
this solution corresponds to putting F+ = 0, and a physical
solution

[
mx(r, t)
my(r, t)

]
= F−(r, z)

(
1
i

)
ei(pϕ−ωt) + c.c.

= 2F−(r, z)
[

cos(pϕ − ωt)
sin(pϕ − ωt)

]
. (22)

If we now include the dipolar field, hd, as a perturba-
tion, we can expect that F+ will become nonzero, with
F+/F− ∼ 4πM0/Dexk2, where 2π/k is the typical length
scale on which the solution varies.

The source of the degeneracy with respect to ±p is
that Eq. (17) is invariant under reflection in the y-z plane,
provided we do not also reflect the vector m. Hence, the
operations mx(x, y, z) → mx(−x, y, z) and my(x, y, z) →
my(−x, y, z) also produce a solution. This operation is
equivalent to ϕ→−ϕ or alternatively to p →−p. Inclu-
sion of the dipole-dipole interaction destroys this invari-
ance: the field hd produced by the operation is not the same
field as before.

Strictly speaking, therefore, modes differing only in the
sign of p are not degenerate, although the nondegeneracy

may be small. Indeed, as explained below, we have spent
significant effort in numerically resolving the splitting and
have not always succeeded. The physical origin of this
nondegeneracy is just that the applied external field breaks
time-reversal and parity symmetries. In the magnetostatic
limit, this point emerges directly from the solution in terms
of the scalar potential. Joseph and Schlomann [27] find
that ω−|m| > ω|m| for the volume modes (where we here
use m instead of p to label the modes) and that only m> 0
solutions exist for the surface modes. This is an extreme
form of the nondegeneracy and is the cylindrical analog of
Damon and Eshbach’s [28] discovery of one-sided surface
modes in the slab geometry. Joseph and Schlomann also
find that the ±p splitting becomes smaller with increas-
ing kz or increasing radial mode number (see Fig. 5 of
Ref. [20]). The same behavior is found for the general
spheroid by Walker [29]. Arias and Mills, on the other
hand, appear to us to be finding that modes with opposite
sign of angular momentum are degenerate; we are unable
to pinpoint why.

The near degeneracy of ±p modes also underlies
whether one sees azimuthal standing- or running-wave pat-
terns in the OOMMF simulations. We discuss this issue in
Sec. III C.

C. The long cylinder in the exchange-dominated
approximation

For an infinite cylinder, the variables in the Schrodinger
equation separate, and we can write

F−(r, z) = m0Jp(k⊥r){A cos[kz(z − h/2)]

+ B sin[kz(z − h/2)]}, (23)

yielding
[

mx(r, t)
my(r, t)

]
= m0Jp(k⊥r){A cos[kz(z − h/2)]

+ B sin[kz(z − h/2)]}
[

cos(pφ − ωt)
− sin(pφ − ωt)

]
.

(24)

Here, Jp is the Bessel function of order p. For a long but
finite cylinder, Eq. (23) should be a good approximation,
except for the cap modes.

If we take the modes +p and −p as degenerate, we can
superimpose them and form standing waves in ϕ, an opera-
tion we carry out in the next section. Inserting any of these
forms into Eq. (12) yields the frequencies

ω = γ [H0 + Dex(k2
z + k2

⊥)]. (25)

If we adopt the boundary condition (discussed below)
(

n · d
dr

)
m = 0, (26)
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where n is a vector normal to the surface, the values of k⊥
will be fixed by the condition

dJp(k⊥a)
dk⊥

= 0, (27)

where a is the cylinder radius. We write the solutions of
Eq. (27) as kp ,nr

, where nr denotes the number of additional
zeros of Jp (other than those for Jp �=0 at r = 0) within the
cylinder of radius a. We find that Eq. (27) agrees quite well
with the simulations.

For the finite cylinder, we present the argument in two
stages. In the first stage, we assume that the inhomogeneity
in the static demagnetization field can be ignored and take
H(r, z) = H0 − 4πN‖M0, with N‖ being the longitudinal
demagnetization coefficient. The solution (25) continues to
hold, but the mode frequencies are given by

ω(kz, k⊥) = γ [H0 − 4πN‖M0 + Dex(k2
z + k2

⊥)]. (28)

The allowed values of k⊥ are given by kp ,nr , as discussed
above, but the quantization of kz is less simple. If the end
caps are taken to be at z = 0 and z = h, then to have defi-
nite parity under reflection in the mid plane at z = h/2, the
mode function must depend on z as either cos[kz(z − h/2)]
(even parity) or sin[kz(z − h/2)] (odd parity), but the asso-
ciation between kz and parity depends on the boundary
condition applied at the caps.

If the boundary condition is taken as (n · ∇)m = 0, then
the allowed kz values are

kz = π

h
υz, υz = 0, 1, 2 · · · . (29)

Even parity is associated with even υz and odd parity with
odd υz.

If instead the boundary condition is taken as m = 0, the
allowed values of kz are

kz = π

h
υz, υz = 1, 2 · · · . (30)

Now even parity is associated with odd .. and odd parity
with even υz.

The boundary condition obeyed by OOMMF mode func-
tions is closer to (n · ∇)m = 0 than to m = 0. In addition,
they do have definite parity. Except for the two lowest-
frequency modes, which we call cap modes and which
require a separate discussion, they are well fitted by the
cos[kz(z − h/2)] and sin[kz(z − h/2)] forms. However, it
is advantageous to allow for a shift and write

kz = π

h
υ ′

z, (31)

where

υ ′
z = υz + δυz (υz ≥ 2). (32)

We can refer to δυz as an “end defect,” analogous to
the concept of a quantum defect in atomic spectroscopy
[30]. With this correction, Eq. (28) continues to be a good
approximation for the mode frequencies.

We comment further on the boundary condition,
Eq. (26), that the normal derivative vanishes at the sur-
face. The isotropic continuum exchange field, −Dex∇2M ,
arises from a microscopic Si · Sj Heisenberg interaction,
which has the property that, for any pair of spins, the torque
on Si due to Sj cancels that on Sj due to Si. Thus, the
total exchange torque on the body vanishes and Eq. (26)
is the continuum expression of this fact. This argument
dates back to Ament and Rado [31] and has been used by
many authors since. Aharoni [32] offers a different deriva-
tion. Thus, it would appear to be very general and valid
for any Dex, however small. For the magnetostatic limit,
Dex = 0, there is, however, no such condition on M. Turn-
ing on Dex perturbatively would then appear to lead to a
contradiction. This is not so for the following reason.

In the boundary-value problem for the spatial form
of the eigenmodes, Dex multiplies the highest derivative
and is thus a singular perturbation from the mathemati-
cal point of view. Such perturbations are known to lead
to thin boundary layers, where the solution changes char-
acter rapidly [33]. Thus, while the normal derivative at
the surface may formally be zero, there could be large
curvature in the boundary layer, and the derivative of m,
as we approach this layer, need not be small. This is
especially relevant for our OOMMF simulations, where the
discretization into cells may (a) be too coarse to reveal any
boundary-layer behavior, and (b) fundamentally preclude
measurements of this derivative by fitting to the mode
functions. In this case, adoption of an end defect, δνz, is
an effective practical procedure.

D. A variational solution for a cylinder of finite length

In the second stage of our argument, we attempt to
include the inhomogeneity in the static demagnetizing field
by adopting the trial form

m ±(r) = Z(z) Jp(k⊥r)cos(pϕ). (33)

If we substitute this form into Eq. (21), together with some
radially averaged z-dependent magnetic field, H̄(z), we
obtain the following one-dimensional eigenvalue problem:

ω Z(z)− γ

[
H̄(z)− Dex

(
d2

dx2 − k2
⊥

)]
Z(z) = 0, (34)

with the boundary conditions

Z ′(0) = Z ′(h) = 0. (35)

In the spirit of this variational approach. we can obtain
H̄(z) by averaging with respect to J 2

p (k⊥r), which will
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FIG. 2. Dashed lines show the analytical demagnetization field
calculated from Eq. (36) using 4πM0 = 1750 Oe for YIG cylin-
ders with a diameter of 75 nm and five different lengths of 75,
150, 300, 600, and 1200 nm in a field of 2000 Oe. For compari-
son, the solid lines show the field computed by OOMMF along the
line r = 0. Note how for long cylinders, the field profile near one
cap is insensitive to the presence of the other cap.

lead to slight differences between modes with differing k⊥.
Alternatively, we can use the analytical expression for the
dipole field along the cylinder axis Hz(z, r = 0) that arises
from spins which are fully aligned (as expected for the
case where exchange is totally dominant) [34]. Assuming
a cylinder of radius a and height h, and setting z = 0 and
z = h at the caps, the resulting demagnetization field along
the z axis is

Hdemag(r = 0, z) = −2πM0

×
[
− h − z√

(h − z)2 + a2
− z√

z2 + a2
+ 2

]
. (36)

In the limit of a/h → 0, Hdemag(r = 0, z) = 0 (correspond-
ing to an infinite rod), and in the limit of a/h → ∞,
Hdemag(r = 0, z) = −4πM0 (corresponding to a thin disk).
Figure 2 shows the resulting magnetic field for YIG cylin-
ders with a diameter of 75 nm and lengths of 75, 150,
300, 600, and 1200 nm as calculated from Eq. (36) (dashed
lines) and along the r = 0 axis by OOMMF. The close corre-
spondence arises from the dominance of exchange in these
small-diameter samples.

E. Zeros of mode functions and mode labels

The demagnetizing field plays the role of an exter-
nal potential in the Schrodinger equation, Eq. (34), and
the strong decrease in this field near the end caps leads
to surface-bound states or cap states, the wave functions
of which die off exponentially away from the caps. In
principle, there could be many bound states, but for our
parameters we find only one state at each cap. All higher-
energy states are extended along the z direction, and since
the demagnetization field is essentially uniform in the bulk

TABLE I. Labels for cap and bulk modes.

No. of zeros Mode label

0 g
1 u
νz nz = νz − 2

of the cylinder, their wave functions behave approximately
as sinusoidal standing waves.

Let us now recall that, for a one-dimensional
Schrodinger equation with a reflection-symmetric poten-
tial, states with successively higher energy alternate in
parity and have successively increasing number of zeros,
with the lowest-energy state having no nodes and even par-
ity. Furthermore, their wave functions must be mutually
orthogonal. For our problem, these theorems are satisfied
as follows. The two cap states are nearly degenerate, but
they are admixed by tunneling to form even and odd parity
states with zero and one node, respectively. (See, how-
ever, the discussion in Sec. VII on how the inclusion of
dipole-dipole interactions modifies the energy ordering.)
The first extended state must then have even parity and two
nodes. To be approximated by cos[kz(z − h/2)] and to be
orthogonal to the cap states, we must have kz

<∼ 2π/h, cor-
responding to νz = 2 and a negative end defect, δνz. Higher
extended states must have higher values of νz. In this way,
we see the need for the restriction νz ≥ 2 in Eq. (32) and
for the end defect at the same time.

For each value of p and nr, we could label the differently
quantized modes along z by the number of zeros. The low-
est extended or bulk mode in any family with given p and
nr would then have the label νz = 2, while the cap mode
will be labeled νz = 0. This is unaesthetic and does not
differentiate between the physically different characters of
the cap modes vis-à-vis the bulk modes. We therefore label
the bulk modes by an index nz, with

nz = νz − 2. (37)

For the cap modes, we replace the number nz by the letters
“g” (gerade, even parity) and “u” (ungerade, odd parity).
For reference, we summarize the correspondence between
the number of zeros and the mode labels in Table I.

The modes are labeled by the scheme (p nr nz), with the
letters g or u for cap modes in lieu of nz. In particular, the
mode nominally identified as the uniform FMR mode has
the label (000) (but see the discussion in Sec. VII).

F. Numerical results for the variational approximation
and comparison with simulations

We now describe some results from the numerical inte-
gration of Eq. (34) together with the position dependence
of Hdemag(r = 0, z) given by Eq. (36). Imposing the bound-
ary condition, Eq. (35), at the faces then yields Z(z)
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FIG. 3. Dashed lines show the behavior of mode function Z(z)
versus z obtained from integrating Eq. (34) for the (00g) cap
mode for cylinders with a diameter of 75 nm and heights of
75, 150, 300, 600, and 1200 nm. Solid lines show the OOMMF
simulation results for the same parameters.

together with the eigenvalues ω = ω[nz(p , nr)], where, for
the general case, nz(p , nr) denotes the eigenvalue for given
values of the azimuthal and radial mode numbers, p and nr,
respectively. Given that we neglect the transverse dipolar
field to obtain Eq. (34), we expect the resulting eigenvalues
to be most accurate in the limit of large nz mode num-
bers and, particularly, when both p = 0 and nr = 0 [which
corresponds to θ = 0 in Eq. (3)].

The dashed lines in Fig. 3 show the resulting form of
Z(z) for the lowest-lying cap mode with p = 0 and no
radial nodes for cylinders with a diameter of 75 nm and
heights of 75, 150, 300, 600, and 1200 nm in a field of

0

Schrodinger (dashed line)
OOMMF (solid line)

0

Z
(z

)

0

0  75 150 225 300
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0

(00g)

(000)
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FIG. 4. Dashed lines show mode function Z(z) versus z
obtained from integrating Eq. (37) for the (00g), (000), (002),
and (004) modes. Solid lines show the corresponding forms aris-
ing from OOMMF. Note how the behavior at the cylinder faces
closely conforms to the boundary condition, Eq. (26).

TABLE II. End defects for (00nz) modes.

Mode label νz hkz ,fit/π δνz

000 2 1.62 −0.38
001 3 2.50 −0.50
002 4 3.68 −0.32
003 5 4.78 −0.22
004 6 5.84 −0.16
005 7 6.96 −0.04
006 8 7.90 −0.10
007 9 8.92 −0.08
008 10 10.01 +0.01
009 11 10.91 −0.09
00,11 13 12.96 −0.04
00,13 15 14.98 −0.02
00,15 17 16.92 −0.08

2000 Oe. Notably, the approximately exponential decay
of the amplitude as we proceed deep into the interior for
longer samples confirms their surface-like character. Also
shown are the OOMMF simulations obtained using proce-
dures outlined below (the fact that their amplitudes do not
go strictly to zero in longer samples arises from a contam-
ination from other modes). Accompanying antisymmetric
modes (not shown) are also highly localized, in addition to
having a node at the cylinder midpoint.

As is evident, the semianalytical results for Z(z) are sur-
prisingly good for h ≥ 300 nm. The frequencies, however,
are not. These could be improved by including the trans-
verse dipolar field using perturbation theory, which will
raise the frequency. We do not attempt this exercise, since
our approximate treatment is quite rough in the first place,
and it would not add to our qualitative understanding.

As a crude estimate of the cap-mode frequency, we
can compare it with the frequency of a hat box (disk)
with a radius equal to its height. Reported demagnetiza-
tion coefficients [35] for this aspect ratio are N‖ = 0.4745
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FIG. 5. Example of a FFT spectrum. Left and right y axes
show S̄x(ω) and S̄z(ω). Power spectra are given in arbitrary units,
but with relative scales for left and right axes as shown. See
Eq. (40). A broad sinc pulse, as described in Eq. (38), is used
to excite this spectrum.
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FIG. 6. Beat patterns emerging from the time evolution arising
from splitting of (a) the (±105)modes with an average frequency
17.29 GHz and a splitting of 30.60 MHz, (b) p = 0, nr = 0, g
and u cap modes with an average frequency of 6.54 GHz and a
splitting of 14.4 MHz.

and N⊥ = 0.2628. For a field of H0 = 2.000 kOe and
4πM0 = 1.750 kOe, Eq. (2) yields f = 4.568 GHz. For
our exchange-dominated sample, it is reasonable to add a
correction of order γ Dex/a2 = 1.0 GHz, which raises the
frequency to 5.6 GHz and is comparable with the OOMMF
value of 6.64 GHz. (For our cylinders, a = 37.5 nm, and
we take Dex= 5 × 10−9 Oe cm2 as is appropriate for YIG.)

Calculations for extended states with mode number
nz = 0, 1, · ·· are also performed. Here, we encounter pro-
gressively higher mode frequencies, scaling approximately
as n2

z . Figure 4 shows the results of such calculations for
the (00g), (000), (002), and (004) modes, according to the
designation (pnrnz), where p and nr refer to the azimuthal
and radial behavior, which is discussed in Sec. III D, but
is absent in this one-dimensional model. Table II lists val-
ues of kzh/π , νz, and δνz for these and neighboring modes.
Notably, δνz → 0 with increasing νz. We will explain why
modes (00,10), (00,12), and (00,14) are not in this table at
the end of Sec. III B.

III. COMPUTATIONAL APPROACHES

The material studied here is YIG, which is chosen
for its long mode lifetimes. Whether these long life-
times survive in submicron structures is an open question.

The majority of studies are for a sample with h = 4d
= 300 nm. The material parameters used are typical for
YIG [36]: γ = 2π × 2.8 GHz/kOe, saturation magneti-
zation Ms = 139 emu/cm3, damping constant α = 5 ×
10--5, and exchange constant Aex = 3.5 × 10--7 erg/cm.

The applied field is 2 kOe along the z direction. Damping
is turned on to relax the system to its initial state and turned
off after the system is excited for most simulations. In the
few that it is not, it is too small to have any significant
effect.

As noted above, our simulations are carried out with the
OOMMF code developed by the U.S. National Institute for
Standards and Technology. This program divides a cho-
sen sample into cells on a rectilinear grid and numerically
integrates the LL equation in time for their magnetiza-
tions, Mi(t), as they evolve under the influence of the
torques acting on them arising from an external field,
the nearest-neighbor exchange interaction, and the dipo-
lar fields of the remaining cells (anisotropy fields can be
included but is ignored in what follows). Each magnetic
moment is located at the center of the cell. The number
of cells scales with the cube of a characteristic sample
dimension but is nominally fixed at 1/54 cells/nm3, cor-
responding to a cell size of 3 × 3 × 6 nm3 for the d =
75 nm, h = 300 nm, sample. There are 50 cells in the z
direction and 489 cells in the x-y plane (489/625 = 0.7824
vs π /4 = 0.7854). In Sec. VII, we simulate samples with
other values of h. As described there, we then use cells
with the same x and y dimensions (3 × 3 nm2), but depend-
ing on the value of h, the dimension �z is adjusted
appropriately.

A. Static equilibrium

Prior to exciting the system, spins are initially aligned
along the cylinder axis (parallel to the external field) after
which the system is evolved in time (with damping) until it
stabilizes in an equilibrium configuration. Various tests can
be applied to determine that it is a global equilibrium state.
This part of our simulations yields the static magnetic field
distribution, which could also be used for the calculations
in Sec. II.

B. Exciting the system

Several different excitation schemes are utilized. In the
simplest of these, all spins are tipped by a small fixed angle
relative to their equilibrium orientations in a plane con-
taining the z axis as an initial condition. This favors the
excitation of uniformly precessing modes. To drive a par-
ticular nonuniform mode, the spins are tipped from their
equilibrium positions in a manner that mimics the mode
(such as that obtained as the mode pattern in a prior simu-
lation) [37]. To drive a broader spectrum of modes that is
localized around a time, t0, and some position, r0, we tip
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TABLE III. Mode frequencies for a YIG cylinder with a height of 300 nm and a diameter of 75 nm in a static magnetic field
H0 = 2000 Oe organized into families with given mode numbers p and nr. Multiply listed modes [e.g., (−115) and (±115)] are
observed with both pure and mixed +p and −p character, depending on the methodology used to extract them (e.g., FFT versus beat
pattern).

p nr nz f (GHz) p nr nz f (GHz) p nr nz f (GHz)

0 0 Even cap (g) 6.543 1 0 g 10.35 ±1 0 5 17.29
0 0 Odd cap (u) 6.543 1 0 u 10.35 ±1 0 7 21.78
0 0 0 7.813 1 0 1 11.91 ±1 0 11 33.98
0 0 1 8.105 1 0 3 13.96 ±1 1 g 35.16
0 0 2 8.887 1 0 5 17.29 ±1 1 u 35.16
0 0 3 10.06 1 0 7 21.78 ±1 1 1 36.91
0 0 4 11.52 1 0 9 27.44 ±1 1 3 39.26
0 0 5 13.38 1 0 11 33.98 ±1 1 5 42.68
0 0 6 15.53 1 0 13 41.5 ±1 1 9 52.83
0 0 7 17.97 0 1 0 22.66 ±2 0 g 15.82
0 0 8 20.7 0 1 1 23.24 ±2 0 u 15.82
0 0 9 23.63 0 1 2 24.22 ±2 0 1 18.07
0 0 11 30.27 0 1 3 25.49 ±2 0 2 18.36
0 0 13 37.79 0 1 4 27.05 ±2 0 3 19.63
0 0 15 46.09 0 1 5 28.91 ±2 0 5 22.95
−1 0 g 10.06 0 1 6 30.96 ±2 0 9 33.11
−1 0 u 10.06 0 1 7 33.4 ±2 0 11 39.65
−1 0 1 11.72 0 1 8 36.04 ±2 0 15 55.37
−1 0 2 12.7 0 1 9 38.96 ±3 0 g 24.02
−1 0 3 13.87 0 1 10 42.19 ±3 0 u 24.02
−1 0 4 15.43 0 1 11 45.51 ±3 0 1 25.59
−1 0 5 17.19 0 1 12 49.12 ±3 0 3 27.83
−1 0 6 19.34 −1 1 g 35.16 ±3 0 5 31.25
−1 0 7 21.78 −1 1 u 35.16 ±3 0 7 35.84
−1 0 8 24.41 −1 1 3 39.26 ±3 0 11 47.95
−1 0 9 27.34 −1 1 5 42.68
−1 0 10 30.57 −1 1 6 44.82
−1 0 11 33.98 0 2 g 55.57
−1 0 12 37.6 0 2 0 56.64
−1 0 13 41.5 0 2 2 58.3
−1 0 14 45.51 0 2 4 61.23
−1 0 15 49.71 0 2 6 65.53

0 2 8 70.41

the spins in some direction according to the function

F(t, r) = A
sin[�ω(t − t0)]

(t − t0)
sin[�kx(x − x0)]

(x − x0)

× sin[�ky(y − y0)]
(y − y0)

sin[�kx(z − z0)]
(z − z0)

, (38)

where�ω, �kx, �ky , and �kx control the extent to which
the excitation is localized in time and space. Here, x, y,
and z denote cell coordinates. Such pulses can also be
introduced at multiple times and positions to favor the
excitation of modes with differing spatial and temporal
properties. In particular, the inclusion of only the last factor
induces modes propagating along z. Forms can be con-
structed that favor the excitation of radial or azimuthal
modes. Finally, some simulations are performed in which
individual spins are tipped in random directions within

some specified average angular range. This excites a very
broad range of modes and, if the tipping angles are large
(e.g., approaching 180°), generates a “hot” system, from
which it is difficult to extract clear modes. Altogether, we
have tried more than ten different excitation pulses in an
effort to identify modes with different symmetry and num-
bers of nodes. Despite this, our mode table (see Sec. IV)
has gaps. In some cases, modes are nearly degenerate [for
example, modes (003), (−10g), and (−10u)] and cannot be
easily resolved. In others, they are too high in frequency
to be seen with the particular excitation pulse employed.
We are confident that these modes exist and that our mode
classification is complete.

C. Identifying modes

As the system state simulated by OOMMF evolves in
time from some chosen initial configuration, the magne-
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FIG. 7. (a) Typical fit of the radial OOMMF amplitude to the
function J1(k⊥r) for the (−105) mode. (b) Typical fit of the axial
OOMMF amplitude to the function cos kz(z − h/2) for the (006)
mode.

tization vectors, m(ri, t), at the (discrete) cell sites, ri, are
recorded at regular time intervals. From this data set, we
can perform a cell-by-cell fast Fourier transform (FFT)
within some chosen time interval available from the simu-
lation to obtain the complex quantities m(ri,ω). We stress
that the OOMMF simulation does not assume that Meq(r)
is along ẑ or that the deviations m(ri, t) are in the x-y
plane, although the most useful information is contained in
these components for low-amplitude mode studies. From
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FIG. 9. Symbols show OOMMF simulations for mode frequen-
cies versus dimensionless wavevector kz for p = 0 and nr =
0, 1, and 2; solid lines show predictions of the HK expression.

the FFT, we follow McMichael and Stiles and construct
the cell-wise power spectra,

Sx(ri,ω) = |mx(ri,ω)|2, (39)

together with their sum over the entire sample,

S̄x(ω) =
∑

i

Sx(ri,ω), (40)

and likewise for Sy(ri,ω) and S̄y(ω). As noted by them,
this definition of a power spectrum is very different from
the power spectrum of the integrated magnetization (total
magnetic moment of the sample), which is what makes it
so useful in mode identification; in particular, the frequen-
cies where these total sample power spectra have sharp
maxima are identified as possible mode frequencies of the
system. As an example, the power spectra in Eq. (40) are
given in Fig. 5, which shows various modes, including
a very-high-frequency mode that is aliased to less than
5 GHz due to a Nyquist critical frequency of 50 GHz.
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FIG. 11. Mode pattern for lowest (Kittel-like) bulk (000) mode, with a frequency of 7.813 GHz. (a),(b) x-y Cross section of the
imaginary and real parts of the Fourier transform amplitude through the cylinder midpoint; (c) real y-z cross section containing the
cylinder axis. Arrows show the direction of spins. Spin orientations for the real part correspond to a time 1/4 cycle later than that for
the imaginary part. Lines show contours of constant |m(r,ω)| in (a),(b) and of constant mx(r,ω) in (c); these values are also color
coded according to the scale given to the right.

Suppose a mode is identified at a frequency ωa. With the
sign conventions used in our numerical FFT program, the
mode pattern associated with this frequency is given by

m(a)(ri, t) = Re[m(ri,ω)ei(ωat+φ)]. (41)

The phase φ is arbitrary and amounts to a choice of the
zero of time. To avoid unnecessary minus signs, we choose
φ = 3π/2, which gives

m(a)(ri, 0) = Imm(ri,ωa), m(a)(ri, T/4) = Rem(ri,ωa),
(42)

with T = 2π/ωa being the time period of the mode. Hence,
by examining the imaginary and real parts of the vector

m(ri,ωa), we can, respectively, obtain the real-space vec-
tor magnetization at some time and a quarter-cycle later for
the spatial pattern associated with some nominal mode at
the specific frequency. By plotting these vector fields, we
can get a highly visual depiction of the mode, permitting
easy mode assignment and further analysis.

In constructing the power spectrum, modes with higher
frequencies than the inverse of the chosen integration time
step, which violate the Nyquist sampling criterion and are
then aliased to lower frequencies, must be identified and
rejected. In the exchange-dominated samples considered
here, some of them can be identified as spurious peaks
with frequencies lower than the known uniform modes,
but, in dipole-dominated larger samples, genuine modes
below the uniform modes are expected. More generally,
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FIG. 12. p = 0, nr = 0, cap modes. (a) Real x-y cross section at
z = 0 of the (00g) symmetric cap mode; this mode has the glob-
ally lowest frequency of 6.543 GHz. (b),(c) Real and imaginary
y-z cross sections of the g and u modes, respectively, containing
the cylinder axis from which surface confinement is apparent.

they must be identified by altering the time interval over
which the transform is performed to determine if some
mode moves its position. Most simulations are done with a
time step of 10 ps and for a duration of 10.24 ns.

A curious spatial aliasing is also observed (as evidenced
by a rapid spatial variation of the mode intensity on the
scale of the cell period) in some patterns; it is thought to
be associated with a spatial FFT that is performed to calcu-
late the dipole field in the underlying program. Such modes
must also be rejected.

D. Implications of the ±p degeneracy for OOMMF
patterns

Using the procedures described, we can construct mode
maps in chosen planes by plotting the complex cell
amplitudes, m(r,ω) = mx(r,ω)x̂ + my(r,ω)ŷ, at frequen-
cies where the power spectrum shows maxima. On the
basis of these patterns, we are typically able to assign
approximate mode numbers, p, nr, and nz, and desig-
nate them as m(pnrnz)[r,ω(pnrnz)] for that frequency, ω =
ω(pnrnz). The p mode number requires special attention, as
we now discuss. In what immediately follows, we will drop
the mode designation, regarding it as being understood.

Writing the complex function m(r,ω) in component
form as

m(r,ω) =
[

mx(r,ω)
my(r,ω)

]
=

[
m′

x(r,ω)+ im′′
x(r,ω)

m′
y(r,ω)+ im′′

y(r,ω)

]
,

(43)

the corresponding behavior in the time domain follows as

m(r, t) =
[

mx(r, t)
my(r, t)

]
= Re

[
m′

x(r,ω)+ im′′
x(r,ω)

m′
y(r,ω)+ im′′

y(r,ω)

]
e−iωt,

=
[

m′
x(r,ω) cosωt + m′′

x(r,ω) sinωt
m′

y(r,ω) cosωt + m′′
y(r,ω) sinωt

]
. (44)

If the modes of the system have a pure p character, as in
Eq. (15), we can write the above components as

m′
x(r,ω) = m(r, z, p ,ω) cos(pϕ),

m′′
x (r,ω) = m(r, z, p ,ω) sin(pϕ), (45a,b)

m′
y(r,ω) = −m(r, z, p ,ω) sin(pϕ),

m′′
y (r,ω) = m(r, z, p ,ω) cos(pϕ). (45c,d)

Hence, we can write m(r, t) as

m(r, t) =
[

mx(r, z, p , t)
my(r, z, p , t)

]
= m(r, z, p ,ω)

×
[

cos(pϕ − ωt)
− sin(pϕ − ωt)

]
. (46)

Here, the magnetization vector rotates as ϕ changes with
a radially symmetric amplitude. In our approximation,
where the variables r and z separate, we write the solutions
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FIG. 13. (a),(b) Imaginary and real x-y cross sections at z = 0 of (−10u) antisymmetric cap mode with a frequency of 10.06 GHz.
(c) Real y-z cross section containing the cylinder axis from which surface confinement is apparent.

that have even parity as

[
mx(r, t)
my(r, t)

]
= m0 cos[kz(z − h/2)]Jp(k⊥r)

×
[

cos(pϕ − ωt)
− sin(pϕ − ωt)

]
. (47)

If the modes of the system have a pure p character and p
and −p are degenerate, we can form symmetric and anti-
symmetric standing-wave superpositions of the two forms
of Eq. (47) to obtain

m(r, t) =
[

mx(r, z, p , t)± mx(r, z, −p , t)
my(r, z, p , t)± mx(r, z, −p , t)

]
,

= m(r, z, p ,ω)
[

cos(pϕ − ωt)± cos(−pϕ − ωt)
− sin(pϕ − ωt)∓ sin(−pϕ − ωt)

]
,

(48)

which results in the following two forms:

m(r, z, p ,ω) cos(pϕ)
[

cos(ωt)
sin(ωt)

]
, (49a)

m(r, z, p ,ω) sin(pϕ)
[

sin(ωt)
− cos(ωt)

]
, (49b)

or, if our model product form is assumed,

m0 cos[kz(z − h/2)]Jp(k⊥r) cos(pϕ)
[

cos(ωt)
sin(ωt)

]
, (50a)

m0 cos(kz(z − h/2))Jp(k⊥r) sin(pϕ)
(

sin(ωt)
− cos(ωt)

)
.

(50b)
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FIG. 14. (a),(b) Imaginary and real x-y cross sections at z = 0 of the (10u) antisymmetric cap mode with a frequency of 10.35 GHz.
Important to note here is the retrograde character of spin winding.

Here, again the spin direction rotates (in both senses), but
now the amplitude is modulated in ϕ. A similar discussion
applies to the solutions that have odd parity.

In Appendix B, we discuss how a pure-p mode pat-
tern can be extracted from a superposition of +p and −p
OOMMF patterns.

E. Separating nearly degenerate modes

As noted above, in the absence of the dipole interaction,
modes with +p and −p are degenerate. When this interac-
tion is present, such modes are split, i.e., according to the
discussion of Sec. III D, our eigenmodes will be running
waves in ϕ. But the splitting rapidly decreases for larger
mode numbers, and for running times less than t ≤ �ω−1,
where �ω is the splitting, the power spectrum displays a
single (slightly broadened) peak at the mode frequency. To
resolve the splitting in a power spectrum, the OOMMF run
times must be increased.

When the splitting is not resolved in the power spec-
trum, the resulting mode patterns display a standing-wave
character. For a few of these, we use the standing-wave
mode pattern as an initial configuration and run the pro-
gram long enough to display a beat pattern in time from
which the splitting can be accurately determined. An
example of this technique is shown in Fig. 6 for the cylin-
der with d = 75 nm and h = 300 nm. Figure 6(a) shows the
case of the (±105) modes with an average frequency of
17.29 GHz. Note a beat waist occurs at t = 32.68 ns from
which we calculate the mode splitting as 30.60 MHz.

A very small splitting also occurs between the sym-
metric (or gerade, denoted g) and antisymmetric (unger-
ade, denoted u) combinations of the cap modes. In the
Schrodinger equation language of Sec. II, this is a tunnel
splitting between the surface-bound states. This splitting
is intrinsically small and hard to resolve in long cylin-
ders, although we resolve it for the p = 0, nr = 0, g and
u cap modes for the cylinder with h = 300 nm. Now, f =
6.54 GHz and �f = 14.4 MHz. The corresponding beat
pattern is shown in Fig. 6(b).

IV. FREQUENCIES OF LOW-LYING MODES

Most computations are carried out on a YIG sample with
h = 4d = 8a = 300 nm in a static field of H0 = 2000 Oe.
To test the behavior at small and large kz, some calculations
are carried out for samples with h = 7.5, 37.5, 75, 150, 600,
and 1200 nm. The material parameters used are typical for
YIG, as given earlier in Sec. III.

Table III lists the frequencies, fp nrnz = ωp nrnz/2π , of
low-lying modes, as obtained from the peaks in the power
spectrum; all entries are for h = 4d = 8a = 300 nm in a
static field of H0 = 2000 Oe. The mode numbers come
from a comparison of the accompanying mode pattern with
the forms discussed in Sec. II, with special attention paid
to the number of radial and longitudinal zeros and how
m winds around the z axis. By fitting to Eq. (25), we can
assign discrete wavevectors, k⊥,nr and knz ; these values are
used for a comparison with the HK formula, as we describe
in the next section. All modes with p �= 0 have a node at
r = 0; for larger values of k⊥, additional radial nodes can
be present and their mode number is denoted as nr �= 0.
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FIG. 15. (a),(b) Imaginary and real x-y cross sections at z = 39 nm of (±105) modes with a frequency of 17.29 GHz. Note the
standing-wave behavior of these cross sections arising from superposition of azimuthally counterpropagating modes. However, at a
fixed point in space, spins still precess counterclockwise. (c) Real y-z cross section containing the cylinder axis.

Modes listed as ±p are nearly degenerate in the sense
discussed above, and the mode patterns display standing
waves in ϕ, as described by Eq. (50 a,b).

V. COMPARISON OF SIMULATED FREQUENCIES
WITH THE HERRING-KITTEL EXPRESSION

It is interesting to examine the extent to which the
OOMMF mode frequencies in Table III can be represented
by the Herring-Kittel frequencies, as given by Eq. (3). To
do this, we need values of kz and kp ,nr for the extended
modes. A preliminary value of kz follows from count-
ing the number of nodes along z. Better values emerge
[38] from fitting mr(z, r = 0,ω) to cos[kz(z − h/2)] or
sin[kz(z − h/2)]. Values for kp ,n are obtained by fitting
mr(z, r,ω) to Jp(kp ,nr) at some z with kp ,n as an adjustable

parameter. Figures 7(a) and 7(b) show examples of such
fits. Note that although we do not employ it to find
kz and k⊥, the boundary condition at the faces for this
mode closely approximates the maximum amplitude as
opposed to the maximum derivative.

We now show some plots of the frequencies, f (p nrnz) =
ω(p nrnz)/2π , inferred from the simulations, for various
modes (p nrnz) versus kz at fixed kp ,n; the latter values
are obtained by the above procedures. Also shown are the
frequencies predicted by the HK expression, Eq. (3), for
the same wavevector components and a demagnetization
coefficient of N‖ = 0.098.

The triangle symbols in Fig. 8 show the results of
the OOMMF simulation for the (0 0 nz) modes, as a func-
tion of kz in units of π/h, for which the lowest fre-
quency is 7.81 GHz. Not included are the accompanying
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FIG. 16. The projection technique described in Appendix B is used to separate modes with p =+1 and p =−1 from the same data
as that used to construct Fig. 15. Notably, azimuthal intensity is now constant, as appropriate for running waves.

cap-mode frequencies, which are both 6.41 GHz within the
resolution. The solid line shows the frequencies predicted
by the HK formula. The agreement is surprisingly good,
especially at small kz, where the HK formula is expected
to break down. To some extent, this may arise from the fact
that the internal magnetic field is position dependent, being
lower at the caps, and thereby producing an effect partially
compensating that of N⊥. The square symbols show the
predictions of the one-dimensional Schrodinger equation,
as described in Sec. II B.

The symbols in Fig. 9 show the OOMMF simulations
of p = 0 mode frequencies as a function of dimension-
less kz for nr = 0, 1, and 2, while the solid lines show
the predictions for the corresponding mode numbers of the
HK formula. Again, the agreement is excellent. Readers
may notice that some modes are missing from these plots.
This is because they are not excited with the protocols
used, but we are confident they exist and that their mode
patterns conform with the general framework presented
here.

Lastly, Fig. 10 shows the OOMMF simulations for mode
frequencies versus kz for nr = 0 and p = 0, − 1, ± 2, ±
3 · ··. The HK formula again gives an excellent overall
representation.

Analogous to our approximating the position depen-
dence of the bulk states with a form cos(kzz), we can use
e−κz and eκ(z−h) to qualitatively describe the amplitude in
the vicinity of the cylinder faces for the cap modes, i.e.,
we take k as imaginary by writing k = iκ , in which case
k2 is replaced by −κ2 in a Herring-Kittel-like expression,
which pushes the frequency below that of the first extended
mode.

A. Why the HK formula works so well

The HK relation is sometimes referred to as a spin-wave
dispersion relation, and indeed it is tantamount to saying
that the normal modes of the body can be described by a
continuous (or quasi-continuous) variable, k. As explained
in Appendix A, this assertion is grossly incorrect when
the spatial variation of m is on a scale comparable to the
dimensions of the body [39]; the mode functions must then
take account of the shape of the body and be described by
discrete sets of appropriate mode numbers, which may or
may not be wavevectorlike.

To the extent that some discrete modes with slow spatial
variation are well described by wavevectorlike variables,
then for those modes the HK expression can be expected
to give the frequency to good approximation, especially if
one is in the exchange-dominated limit. This is the situ-
ation in the present investigation. We see that, for every
bulk mode, we can identify a reasonably well-defined kz
and an orbital angular-momentum quantum number, p. We
also see a radial dependence in m(r) that matches a Bessel
function well, Jp(k⊥r), from which can obtain k⊥.

That the mode functions should look this way is not
an accident. We have some support for this functional
behavior from the theory of the infinite cylinder in the
exchange-dominated limit. We intend to publish details
of this theory separately, and here we only summarize
the key results. In first-order perturbation in the small
parameter,

ζ = M0

Dexk2 , (51)
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FIG. 17. Real x-y cross section of the (±305) bulk mode with
a frequency of 31.25 GHz, showing multiplicity of azimuthal
nodes. Note also the deep central node due to r3 behavior of
J3(k⊥r).

we find that the mode function is given by
(

mx
my

)
= 1√

2

{
[Jp(k⊥r)+ f −(r)]ei(pϕ−ωt)

(
1
i

)

+ f +(r)ei[(p+2)ϕ−ωt]
(

1
−i

)}
e±ikzz. (52)

The corrections f ± are both O(ζ ). We add here that we
discovered the properties of the mode functions by exper-
imenting with OOMMF first and developed the theoretical
framework later.

VI. EXAMPLES OF MODE PATTERNS

Table III in Section IV lists approximately 90 modes that
we can identify. We will now present some accompanying
mode patterns that display various behaviors. All figures
in this section pertain to YIG cylinders with a diameter
d = 2a = 75 nm and a height h = 300 nm in a magnetic
field H 0= 2000 Oe.

There is a wealth of information in these figures, as
we now explain. They all depict various aspects of the
frequency-space Fourier amplitude, m(r, ω), which is a
complex vector, i.e., its x, y, and z components are all com-
plex numbers. The real parts make a vector, and so do the
imaginary parts, which we can call the real and imaginary
parts of the complex vector, Rem(r,ω) and Imm(r,ω).
We discard the z component, leaving the x-y projection,
m⊥(r, ω). Circular panels, such as Figs. 11(a) and 11(b),
show x-y cross sections of the cylinder, while rectangu-
lar panels, such as Fig. 11(c), show y-z cross sections

through a diameter of the cylinder. In the circular pan-
els, the arrows show the directions and relative magnitudes
of either Rem⊥(r,ω) or Imm⊥(r,ω), while the thin black
lines show contour levels of the magnitudes of these same
vectors, i.e., either |Rem⊥(r,ω)| or |Imm⊥(r,ω)|. These
contour levels are also color coded according to the scale
on the right. As explained in Sec. III C—see Eqs. (41)) and
(42)—the Re panel shows the spins a quarter cycle after the
Im panel. That is, time proceeds from Im to Re, which is
reflected in the sequence of panels (a) and (b) when both
Re and Im parts are shown. In the rectangular panels, we
show contours of Remx(r,ω); again, the contours are color
coded. Because the circular panels show the magnitude of
the vector in the x-y plane, while the rectangular panels
show only the x component, the contour levels in the two
types of panels cannot be directly compared. Depending on
just how a particular mode is excited, the spins can have
larger projections along the x or y directions at the partic-
ular time captured in the x-y cross sections, and this can
further affect the values of the contour levels in the rectan-
gular panels vis-à-vis the circular ones. If the spins are at
45° to the x and y directions in the x-y cross sections, the
values in the rectangular panel will be 2−1/2 of the circu-
lar panels. In general, however, we can only expect these
values to be of similar magnitude within a factor of order
unity. The most salient feature is the variation or the rel-
ative Fourier amplitude within a panel. We add here that
our simulations are done with 50 vertical layers of cells of
6 nm high each. There is a layer extending from z = 144
to 150 nm and another from z = 150 to 156 nm. Hence,
circular panels, such as in Figs. 11(a) and 11(b), which
are labeled z = 147 nm, correspond to the midpoint of the
cell layer just below the midplane of the cylinder; panels
labeled z = 3 nm, such as in Fig. 12(a), show the lowest
layer; panels labeled z = 39 nm, such as in Figs. 15(a) and
15(b), show the seventh layer from the bottom. However,
in the text and figure captions, we describe the panels at
z = 3 and 147 nm as lying at z = 0 and z = h/2, respectively,
as this is more natural and intuitively easier to understand.

In the interest of clarity, we shall repeat these points as
necessary and add further information about the patterns as
we discuss them one by one.

We start with the lowest-lying modes: the nominal bulk
uniform precession or cylindrical Kittel (000) mode with
f = 7.813 GHz, which is concentrated within the body of
the cylinder, away from the caps, together with the even
(00g) and odd (00u) cap modes concentrated on the top and
bottom cylinder faces with a mean frequency of 6.543 GHz
and a splitting that is too small to be resolved.

Figure 11(a) shows Imm(000)
⊥ (x, y, z = h/2,ω), while

Fig. 11(b) shows Rem(000)
⊥ (x, y, z = h/2,ω) for the (000)

bulk mode with f = 7.813 GHz; here Imm⊥(x, y, z =
h/2,ω) and Rem⊥(x, y, z = h/2,ω) denote the normalized
vector fields of the Fourier amplitude given by following

064007-19



LIM, GARG, and KETTERSON PHYS. REV. APPLIED 16, 064007 (2021)

10 20 30 40 50 60 70
x (nm)

10

20

30

40

50

60

70
y 

(n
m

)
(a)

1000

1000

10
00

1000

1000

10
001000

1000

1000

10
00

1000

1000

1000

10
00

10001000

20
00

2000

20
00

2000

2000

2000

20
00

20
002000

3000

4000 5000

1000

2000

3000

4000

5000

6000z = 147 nm

50 100 150 200 250
z (nm)

10

20

30

40

50

60

70

y 
(n

m
)

(b)

–1000

–1000

–1000

–1000

–1000

–1000

–1000
–1000

–1000 –1000

–500

– 500

–500–500

–500
–500 –500

–500

–500–500

–500
–500 –500

–500

00

0 0

000

0

0

0 0 0 0

0000

0 0 0

0

0

0

0

500
500

500
500

500
500

500
500

500 500
500

50000
500500

500
1000

1000
10

1000

1000 01000150
1500

0
150001500

1500
2000

5
2000

20 0200

2500 2 00

2500

300030
00 3500

–1000

0

1000

2000

3000

FIG. 18. Real x-y and y-z cross sections of the (020) mode with a frequency of 56.64 GHz exhibiting multiple radial nodes.

prescriptions:

Imm⊥(ri,ω)[
N - 1

cell
∑

i
|Imm(ri,ω)|2

]1/2 K and

Rem⊥(ri,ω)[
N - 1

cell
∑

i
|Rem(ri,ω)|2

]1/2 K , (53)

where K is a global constant scale factor, the value of
which is chosen as 1000 for convenience for all mode
patterns (this and subsequent ones). The arrows indicate
the x-y projection of magnetization. The lines and color
coding depict the contours of constant amplitude, either
Rem⊥(ri,ω) or Imm⊥(ri,ω). Ideally, these would be con-
centric circles, but there is always contamination at some
level from other modes. There may also be numerical
errors associated with the discretization. Time proceeds
from Im [panel (a)] to Re [panel (b)], a quarter-cycle later.

Figure 11(c) shows Rem(000)
x (x = 0, y, z,ω), again with

contour lines together with color coding. Notably, the con-
tour lines are quite parallel to the faces, a behavior that
arises from the strong influence of exchange in these small
samples and validates the factorized form of Eq. (23) for
F−(r, z).

Figure 12(a) shows Rem(00g)
⊥ (x, y, z = 0,ω) for the sym-

metric (g) cap mode with f = 6.543 GHz. Figures 12(b)
and 12(c) show Rem(00g)

x (x = 0, y, z,ω) and Imm(00u)
x (x =

0, y, z,ω) for the even (g) and odd (u) cap modes, respec-
tively. We see that the mode intensity is strongly concen-
trated near the cylinder faces, dropping off rapidly as one
proceeds to the interior. Notably, the antisymmetric char-
acter of the u mode is clearly apparent, as seen from the
node at z = h/2.

Figures 13(a) and 13(b) show Imm(−10u)
⊥ (x, y, z = 0,ω)

and Rem(−10u)
⊥ (x, y, z = 0,ω) of the (−10u) antisymmet-

ric 10.06-GHz cap mode, which has a node at r = 0. Note

how the spins wind through an angle of 2π as we pro-
ceed counterclockwise around the line r = 0. Figure 13(c)
shows Rem(−10u)

x (x = 0, y, z,ω), where the antisymmetric
behavior in z is evident.

Figures 14(a) and 14(b) show Imm(10u)
⊥ (x, y, z = 0,ω)

and Rem(10u)
⊥ (x, y, z = 0,ω) for the neighboring p =+1

mode with a frequency of 10.35 GHz. Here, one encoun-
ters the “retrograde” motion associated with the oppositely
winding sense of m with the azimuthal angle ϕ.

We next consider a mode with multiple nodes along
z. As remarked upon earlier, the splitting between ±p
modes diminishes as the overall mode number increases,
so we designate them with both signs, since our mode-
projection method generally yields a superposition. Here,
we consider the (±105) mode(s) with f = 17.29 GHz.
Figures 15(a) and 15(b) show Imm(±105)

⊥ (x, y, z = 39 nm,ω)
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FIG. 19. Dependence of frequency on h for the lowest-kz (000)
bulk mode, symmetric (00g) cap mode, and antisymmetric (00u)
cap mode of a YIG cylinder with d = 75 nm. Also shown is the
frequency predicted by the Kittel expression. The inset shows the
region where the symmetric cap mode crosses over the antisym-
metric cap mode for small h. In the region below about 100 nm,
the (00g) mode replaces the (000) mode as the quasi-uniform
mode we associate with the Kittel formula.
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FIG. 20. Contours of constant intensity for three modes of a YIG cylinder with d = 75 nm and h = 37.5 nm. (a) 4.59-GHz symmetric
(00g) cap mode, corresponding to the Kittel mode in the thin-disk limit; notably, it has no nodes. (b) 13.57-GHz antisymmetric (00u)
cap mode. (c) 42.97-GHz (000) bulk mode.

and Rem(±105)
⊥ (x, y, z = 39 nm,ω), while Fig. 15(c) shows

Rem(±105)
⊥ (x = 0, y, z,ω). (We recall that z = 39 nm is

the midplane of the seventh layer of cells from the
bottom of the cylinder.) Notably, the mode patterns in
the x-y plane now display nodes since the modes with
p =+1 and p =−1 interfere to form a partial standing
wave. Our plot in the y-z plane contains the two end
nodes, arising from orthogonality to the cap modes dis-
cussed above (the patterns for which we do not show), as
well as the five interior nodes. If we use the projection
technique described in Appendix B, we can again sep-
arate the two modes. This is shown in Figs. 16(a) and
16(b), where we plot Rem(+105)

⊥ (x, y, z = 39 nm,ω) and
Rem(−105)

⊥ (x, y, z = 39 nm,ω). These are also the modes
for which we resolve the splitting via the beat pattern in
Fig. 6(a).

As an example of a mode with a larger azimuthal-mode
number and mixed-p character, Fig. 17 shows a plot of
Rem(±305)

⊥ (x, y, z = 39 nm,ω), which has a frequency of
31.25 GHz.

Finally, we present a mode with additional radial
nodes. Such a mode will have a high frequency, consid-
ering the relatively small diameter of our sample. Fig-
ures 18(a) and 18(b) show Rem(020)

⊥ (x, y, z = h/2,ω) and
Rem(020)

x (x = 0, y, z,ω) for the (020) mode with a fre-
quency of f = 56.64 GHz.

VII. EVOLUTION OF THE LOW-LYING MODE
BEHAVIOR WITH CYLINDER HEIGHT

Although the majority of our simulations for mode
patterns are carried out for a YIG cylinder with
d = 2a = 75 nm and h = 300 nm, the behavior of the three
lowest-lying p = 0 modes, (000), (00g), and (00u), is stud-
ied over a much-wider range of h, extending from 7.5 to
1200 nm [40]. Figure 19 shows the frequencies emerging
from the OOMMF simulations together with the predictions
based on the Kittel expression, Eq. (2), according to the
demagnetization coefficients found by Joseph and Schlo-
mann [41]. Importantly, we see that the (00g) cap mode
evolves into the dominant mode in the thin-disk limit, while
the (000) bulk mode becomes dominant (although lying
slightly higher in frequency) in the long-cylinder limit.
The Kittel formula, which is a single equation, actually
describes two different modes in these limits and does
not apply well to any mode for 150 nm <∼ h <∼ 300 nm.
The level crossing of the (00g) and (00u) modes does
not violate the Wigner-von Neumann anticrossing theorem
due to their even and odd character. Furthermore, the
apparent violation of the ordering of energy levels of one-
dimensional (1D) Schrodinger equations is resolved by
noting that the dipole-dipole interaction is a nonlocal per-
turbation, which puts the eigenvalue problem outside the
Sturm-Liouville class.
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It is clear from this discussion that the true behavior
of the dominant FMR response cannot be described by a
simple Kittel-like expression; a characterization in terms
of demagnetization coefficients is inadequate and glosses
over the spatial complexity of the mode with the greatest
spectral weight in a uniformly excited sample.

Some mode patterns for a YIG cylinder with d = 75 nm
and h = 37.5 nm are shown in Fig. 20. The cell size for
these simulations is 3 × 3 × 1.5 nm3. Figure 20(a) shows
the 4.59-GHz symmetric (00g) cap mode, which, for these
dimensions, has become the dominant mode. It is a cap
mode in name only, since it spans the entire sample. Rather
than the planar constant-amplitude contours encountered
in the longer cylinders, this mode now has approximately
cylindrical ones. Figure 20(b) shows the antisymmetric
cap mode for a cylinder with the same dimensions, which
now has a significantly higher frequency of 13.57 GHz;
here, the contours of constant amplitude run approximately
parallel to the faces, indicating that the odd mode has sub-
stantially changed character from the even one. Lastly,
we show the bulk mode in Fig. 20(c). Consistent with
the results in Fig. 19, this mode has the highest fre-
quency, 42.97 GHz. The contours of constant amplitude
run approximately parallel to the faces, and we obtain a
quite regular sine wave, with one complete wavelength
along z.

VIII. CONCLUSIONS AND POSSIBLE
APPLICATIONS

We have explored the mode structure of nanoscopic
cylinders of yttrium iron garnet, both analytically and
through many-spin simulations, in a regime where the
effects of exchange dominate the response. In addition
to the extended (bulk) modes, which can be classified in
terms of the azimuthal, radial, and axial mode numbers,
designated as p , nr, nz, we find symmetric and antisym-
metric combinations of cap modes that are localized at
each of the cylinder faces. In all cases, they lie lower in
frequency than the accompanying family of modes nz for
given azimuthal and radial mode numbers p and nr. When
examining the height dependence, we find that the dom-
inant FMR response cannot be precisely described by a
simple Kittel-like formula. How this picture would change
in passing to the dipole-dominated limit is deserving of
additional study.

By way of applications, there is a growing effort directed
at using magnetic bits for computation as well as data
storage. In particular, it has been demonstrated that the
required logic operations can be accomplished with lines
and arrays of dipole-coupled single-domain bar magnets
with dimensions of a few hundred nanometers [42]. While
promising, this approach is still restricted to what can be
done using binary macrospin flips (and cascades thereof)
of the individual magnets.

Looking further ahead, it is natural to ask if logic func-
tions can be performed by exploiting the internal dynamics
of nanoparticles. For the case of waveguide-based opera-
tions, this is already a worldwide activity [43]. But here
we envision exciting (and mixing) large-amplitude reso-
nant modes within a single nanoparticle. This can involve a
single or multiple inputs applied simultaneously or sequen-
tially, with different microwave frequencies and/or polar-
izations. When the particles are small, the various modes
are well separated and can be addressed individually and
rapidly. By exploiting intrinsic nonlinearities and optimiz-
ing the sample dimensions (to tune the mode frequencies),
different pump frequencies can be efficiently mixed, a topic
we are exploring independently. Progress in this direc-
tion requires an understanding of the low-amplitude mode
structure of the particles involved.

Apart from the cap modes, the modes studied here
are all extended in character and in that sense are the
standing-wave counterpart of the plane-wave modes that
are the typical starting point of most nonlinear analyses.
However, ongoing simulations of nanoscale cylinders and
elliptical disks at large precession amplitudes display insta-
bilities involving the edge nucleation of dynamic vortex
and antivortex modes. Possibly related instabilities occur
at domain walls in stripes [44,45]. The connection between
such states and low-lying extended modes in understand-
ing large-amplitude precession dynamics in nanomagnets
is currently unclear.
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APPENDIX A: THE HERRING-KITTEL
EQUATION

The HK expression, given earlier as Eq. (3), is

ω2 = γ 2(Hin,z + Dexk2)(Hin,z + 4πM0sin2θ + Dexk2),
(A1)

where we write Hin,z ≡ H0 − 4πN‖M0, with N‖ as an axial
demagnetization coefficient, and

Dex = 2Aex

M0
, (A2)
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which fixes the exchange-energy density used in the
OOMMF simulation,

Eex = Aex

M 2
0

∑
i,j

∂Mj

∂xi

∂Mj

∂xi
. (A3)

To understand the remarkable agreement between our
OOMMF results and this formula, let us recall how it is
derived.

The linearized Landau-Lifshitz equation is

dm
dt

= γ ẑ ×
(

Hin,zm − M0h + 2Aex

M0
∇2m

)
, (A4)

where h is the dynamic demagnetization (or dipolar) field
induced by m. Fourier transforming with respect to space
and assuming a time dependence, e−iωt, we obtain

−iωmk = γ ẑ ×
(

Hin,zmk − M0hk − 2Aex

M0
k2mk

)
.

(A5)

The field h is governed by the Maxwell equations,

∇ · h = − 4π∇ · m, ∇ × h = 0, (A6)

together with the requirements that the normal compo-
nent of b = h + 4πm and the tangential component of h
be continuous at the boundary of the particle. If we now
Fourier transform Eq. (A6), and simply ignore the effects
of the boundary conditions, we obtain

hk = −4π
k · mk

k2 k. (A7)

Inserting (A7) into Eq. (A5), requiring the equations for
the resulting two components to be compatible, and tak-
ing Hin,z to be homogeneous, leads immediately to the HK
formula, Eq. (A1).

From the above derivation, we see that, qualitatively, the
HK approximation accounts for the axial (static) demagne-
tization but neglects some part of the transverse contribu-
tion. Since the dipole-dipole interaction is long range, this
neglect is qualitatively profound and quantitatively valid
only for short wavelengths, when ka >

≈ 1. When this con-
dition is satisfied, we can argue that the magnetic charges
induced on the “lateral” surface by m change sign rapidly
on a length scale of k−1, so the field produced by them
dies off on the same length scale and may be ignored in
the bulk of the particle. To further clarify this behavior, we
will derive the HK formula in a second way.

As is known from magnetostatics, the (normalized)
magnetic field, h(r), can be regarded as arising from a

magnetic charge density, ∇ · m(r), according to

h(r) = −4π
∫

V+

(r − r′)
|r − r′|3 ∇′ · m(r′) d3r′. (A8)

The integral here is taken to extend infinitesimally beyond
the particle volume, as indicated by the superscript in V+.
In this way, both volume and surface charges are included.
If we Fourier transform this equation, we obtain

hk = − 4π
∫

d3k′ k
′ · mk′

k′2 k′ χk−k′ , (A9)

where χk is the Fourier transform of unity over the particle
volume:

χk = 1
(2π)3

∫

V+
e−ik·rd3r. (A10)

We can write Eq. (A9) more compactly as

hk = −4π
(

k · mk

k2 k
)

∗ χk (A11)

where ∗ denotes a convolution. For a cylinder of height h
and radius a,

χk = πa2h
(2π)3

sin kzh
kzh

2J1(k⊥a)
k⊥a

. (A12)

When kzh >∼ 1 and k⊥a >∼ π in the convolution in Eq. (A11),
χk can be approximated by a delta function, δ(k), and
we recover Eq. (A7). For smaller k, this approximation is
invalid.

APPENDIX B: RELATIONSHIP BETWEEN
STANDING AND RUNNING WAVES IN ϕ

The magnetization fields corresponding to running
waves associated with orbital angular momentum, p and
−p (with p > 0), have the form

mp(r, t) = F(r, z)[cos(pϕ − ωt)x̂ − sin(pϕ − ωt)ŷ],
(B1a)

m−p(r, t) = F(r, z)[cos(−pϕ − ωt)x̂ − sin(−pϕ − ωt)ŷ],
(B1b)

where F(r, z) is an unspecified function. By superposing
these fields, we obtain a standing-wave pattern,

ms
p(r, t) = mp + m−p = F(r, z) cos(pϕ)

× [cos(ωt)x̂ + sin(ωt)ŷ]. (B2)

We wish to recover the running-wave patterns from a
knowledge of the standing-wave pattern. To do this, we
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first transform the latter by rotating the amplitude by π /2p
and the vector direction by π /2. The transformed field is

mT
p(r, t) = ms

p [r, z,ϕ − (π/2p), t + (π/2ω)],

= F(r, z) sin(pϕ)[− sin(ωt)x̂ + cos(ωt)ŷ]. (B3)

It is now easy to see that the difference of the transformed
and original stationary-wave pattern gives us mp :

mp(r, t) = [ms
p(r, t)− mT

p(r, t)]

2
. (B4a)

Likewise, the sum gives m−p :

m−p(r, t) = [ms
p(r, t)+ mT

p(r, t)]

2
. (B4b)

What this means is the following. Supposing OOMMF pro-
duces a pattern that has p nodal lines in ϕ at some fixed
time. We denote this pattern by ms

p , as above. We then
consider the vector fields

[
m±p ,x(r, z,ϕ)
m±p ,y(r, z,ϕ)

]
= 1

2

[
ms

p ,x(r, z,ϕ)
ms

p ,y(r, z,ϕ)

]

∓ 1
2

[−ms
p ,y(r, z,ϕ − π/2p)

ms
p ,x(r, z,ϕ − π/2p)

]
. (B5)

If these combinations are used as initial conditions in
OOMMF, they should evolve into +p and −p running
waves, as indicated. In this way, we can obtain positive
confirmation that these running waves are indeed eigen-
modes; this is how we separate the +p and −p modes
shown in Figs. 15 and 16.
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