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Optimization is one of the key applications of quantum computing where a quantum speedup has been
an eagerly anticipated outcome. A promising approach to optimization using quantum dynamics is to
consider a linear combination s(t)B+ [1− s(t)]C of two noncommuting Hamiltonians B and C, where C
encodes the solution to the optimization problem in its ground state, B is a Hamiltonian whose ground
state is easy to prepare, and s(t) ∈ [0, 1] is the bounded “switching schedule” or “path,” with t ∈ [0, tf ].
This approach encompasses two of the most widely studied quantum-optimization algorithms: quantum
annealing [QA; continuous s(t)] and the quantum approximate optimization algorithm [QAOA; piecewise
constant s(t)]. While it is notoriously difficult to prove a quantum advantage for either algorithm, it is
possible to compare and contrast them by finding the optimal s(t). Here we provide a rigorous analysis
of this quantum optimal control problem, entirely within the geometric framework of Pontryagin’s max-
imum principle of optimal control theory. We extend earlier results, derived in a purely closed-system
setting, to open systems. This is the natural setting for experimental realizations of QA and QAOA. In
the closed-system setting it was shown that the optimal solution is a “bang-anneal-bang” schedule, with
the bangs characterized by s(t) = 0 and s(t) = 1 in finite subintervals of [0, tf ], in particular, s(0) = 0
and s(tf ) = 1, in contrast to the standard prescription s(0) = 1 and s(tf ) = 0 of QA. As an example,
we prove that for a single spin-1/2, the optimal solution in the closed-system setting is the bang-bang
schedule, switching midway from s ≡ 0 to s ≡ 1. For finite-dimensional environments and without any
approximations we identify sufficient conditions ensuring that either the bang-anneal, anneal-bang, or
bang-anneal-bang schedules are optimal, and recover the optimality of s(0) = 0 and s(tf ) = 1. However,
for infinite-dimensional environments and a system described by an adiabatic Redfield master equation
we do not recover the bang-type optimal solution. In fact we can only identify conditions under which
s(tf ) = 1, and even this result is not recovered in the fully Markovian limit, suggesting that the pure
anneal-type schedule is optimal. Our open-system results have implications for the use of experimental
quantum-information processors, which are by necessity noisy, and suggest that in this practical sense the
optimal schedules for quantum optimization are likely to be continuous.

DOI: 10.1103/PhysRevApplied.16.054023

I. INTRODUCTION

There is a great deal of interest in optimization algo-
rithms that can be run on today’s noisy intermediate-
scale quantum (NISQ) information processors [1], but so
far relatively little is known in the way of guarantees
of a quantum advantage. The reason is that quantum-
optimization algorithms are by and large heuristic, which
often precludes a rigorous analysis. Two of the most
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promising examples are quantum annealing (QA) [2] and
the quantum approximate optimization algorithm (QAOA)
[3]. Both algorithms switch between two noncommuting
Hamiltonians: a “driver” (or “mixer”) B and a “target”
(or “problem”) C. The latter encodes the solution to the
optimization problem as its ground state. The two algo-
rithms can be viewed as complementary: QA switches
continuously between B and C, while QAOA switches dis-
cretely; hence they are particularly well suited for analog
and gate-model quantum-computing devices, respectively.
In addition, both algorithms are related to the quantum
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adiabatic algorithm [4], which is guaranteed by the vener-
able adiabatic theorem [5] to converge to the optimal solu-
tion in the limit of arbitrarily long evolution times [6–8].
Exactly because this guarantee is too demanding, i.e., since
one would like to find paths to the ground state of C (or
to a suboptimal solution that is close to it) without hav-
ing to wait too long, alternative algorithms such as QA
and QAOA have been put forth. QA relaxes the strict
adiabaticity condition while retaining continuity of the
switching “schedule,” or “path” [2]. QAOA is based on
a parametrized square-pulse ansatz for the path between
B and C; the parameters are optimized variationally. The
adiabatic algorithm becomes an instance of QAOA when
the continuous evolution is replaced by pulsed segments
(“Trotterized”) [3, Sec. VI]. There have been numerous
studies of these algorithms, including some that have
compared them, with mixed results [9–12].

While rigorous statements about a quantum advantage
using QA or QAOA are notoriously hard to prove, it is
possible to address the question of optimality of the switch-
ing schedule, and hence to formulate rigorous results about
the relative performance of the two algorithms. Indeed,
in essence the question of which algorithm performs best
boils down to an optimization of this schedule. Various
results have already been established within the frame-
work of QA, QAOA, and also the adiabatic algorithm.
For example, it is well known that the latter can ben-
efit from schedule optimization, even to an extent that
can affect whether it provides a quantum speedup or not,
as in the case of the Grover search problem [13,14]. It
has also been established that a variational approach can
optimize the adiabatic schedule [15]. Likewise, optimal-
ity results are known for QA [16,17] and QAOA [18].
A natural question is whether one can jointly treat QA
and QAOA under a single schedule-optimization frame-
work. An attempt was made by Yang et al. [19] using the
framework of the Pontryagin maximum principle (PMP) of
optimal control theory [20] (see also Refs. [21–23]). Yang
et al. concluded that a strict QAOA-type discrete switching
schedule is favorable to the continuous schedule of QA,
and analyzed both the setting of a closed system under-
going purely unitary dynamics, and the setting of an open
system subject to decoherence. However, this conclusion
was later argued to be overly restrictive by Brady et al.
[24], who showed that in general a “bang-anneal-bang”
(hybrid continuous-discrete) path is optimal, in essence
establishing a compromise between QA and QAOA.

The results of Brady et al. were obtained in the closed-
system setting of purely unitary dynamics. Their results
would suggest that quantum computers should be built so
as to simultaneously support discrete and continuous pro-
tocols. Here we re-examine these results, first, by redoing
the analysis rigorously within the framework of the Pon-
tryagin maximum principle, and second, by embedding the
analysis within the framework of open quantum systems.

The usefulness of the latter cannot be overstated, since it
describes the realistic setting of noisy quantum comput-
ers coupled to a decohering environment. We find that
while the Brady et al. conclusion largely holds up under
scrutiny in the closed-system setting (up to some techni-
cal caveats), the situation is different in the open-system
setting. Namely, the finite “banglike” initial and final seg-
ments of the “bang-anneal-bang” path shrink to points in
the open-system case, or disappear entirely, depending on
assumptions made about the environment. The more com-
mon scenario is disappearance, i.e., “bang-anneal-bang”
essentially reduces to “anneal.” Thus, our work offers—in
the context of optimization—a case for the development
of analog quantum annealers over discrete gate-based
quantum computers.

We proceed to first provide the general background for
the problem, after which we outline the structure of the rest
of the paper.

II. BACKGROUND

The closed-system setting involves a system evolving
unitarily in a d-dimensional Hilbert space H subject to the
Schrödinger equation:

d
dt
|ψ(t)〉 = −iH(t)|ψ(t)〉, |ψ(0)〉 = |ψ0〉 . (1)

The protoypical quantum-annealing problem concerns
finding the optimal schedule s(t) ∈ [0, 1] for the time-
dependent Hamiltonian given by [25]

H(t) = s(t)B+ [1− s(t)]C , t ∈ I (2a)

= C+ s(t)(B− C). (2b)

The control interval is I = [0, tf ]. Often the Hermitian
operator C is an Ising-type Hamiltonian of the form∑n

i=1 hiσ
z
i +

∑n
i<j Jij σ

z
i σ

z
j (where hi and Jij are local lon-

gitudinal fields and couplings, respectively, and σ z
i is the

Pauli matrix acting on the ith qubit), and the Hermitian
operator B is a transverse field of the form

∑n
i=1 σ

x
i [2].

For our purposes it only matters that [B, C] �= 0.
The initial state |ψ0〉 is assumed to be the ground state

of B, and in both QA and QAOA the target state is the
ground state of C. A relaxation of this, which we consider
as the objective in the present work, is to minimize the
expectation value of C at a given final time tf , i.e.,

J := 〈ψ(tf )|C|ψ(tf )〉. (3)

Minimizing J is equivalent to minimizing the energy of
the C Hamiltonian, and if the global minimum is found
then this corresponds to finding the ground state of C (i.e.,

054023-2



OPTIMAL CONTROL FOR QUANTUM OPTIMIZATION... PHYS. REV. APPLIED 16, 054023 (2021)

solving the optimization problem defined by {hi, Jij } when
C is in Ising form).

It is known in quantum control theory (see, e.g., Ref.
[26]) that if L̂ is the Lie algebra generated by B and C and
eL̂ the corresponding Lie group, assumed to be compact,
the set of states reachable from |ψ0〉 with free final time tf
is

R := {X |ψ0〉 |X ∈ eL̂}, (4)

so that the absolute minimum of the cost J is

Jmin = min
|ψ〉∈R

〈ψ |C|ψ〉. (5)

If the dynamical Lie algebra L̂ is the whole su(d) then any
state in the Hilbert space can be reached (starting from any
other state), in particular the ground state of C, in which
case the system is said to be controllable [27]. However,
requiring full controllability may be overly restrictive, as
we need only to reach a particular state. The following is
a simple generalization that provides a sufficient condition
for reaching the ground state.

Proposition 1. Suppose [B, P0] = [C, P0] = 0 where P0 is
an orthogonal projector. The Hilbert space decomposes
according to the block structure H = Ran(P0)⊕ Ker(P0).
The Lie algebra generated by B and C, L̂, must have
the same block structure. Suppose that, according to this
structure, L̂ = su(d0)⊕ L̂1 with unspecified L̂1 and d0 =
dim[Ran(P0)]; then, if the initial state belongs to Ran(P0),
any state in Ran(P0) can be reached (in finite time).

The proof is self-evident, since the full controllability
result [27] is now applicable in Ran(P0). This general-
ization can be applied, for example, in case both B and
C commute with a third operator, say M , and one knows
to which sector of M the ground state of C belongs; see
Appendix A for an example. In any case, it is clear that
something must be assumed in order to guarantee the
reachability of the ground state of C. Clearly, a necessary
condition is [B, C] �= 0, but even when [B, C] �= 0 it is easy
to come up with examples where the ground state of C
cannot be reached; see Appendix A. In the following, we
tacitly assume that conditions are such that the ground state
of C can be reached.

Brady et al. [24] used optimal control methods to
prove that for the cost as defined in Eq. (3), the opti-
mal schedule is one where at the beginning and end of
the control interval s ≡ 0 and s ≡ 1, respectively [28].
From a quantum-annealing perspective this might appear
as a counterintuitive result, since it means that rather than
the usual “forward” formulation of quantum annealing
[29,30], where one interpolates smoothly from H(0) = B
to H(tf ) = C, the optimal protocol starts from the system

being in the ground state of B but the initial Hamilto-
nian is C, and the final Hamiltonian is not C but rather
B. The result, however, can be understood by noting that
in the adiabatic approach, one interpolates so slowly from
H(0) = B to H(tf ) = C that the system always remains in
the ground state. Instead, in optimal control, we optimize
over the set of possible states obtained by applying either
C or B to the initial state, in a continuous fashion. In this
sense, applying B at the beginning is a waste of time as
it does not change the initial state. Applying C at the end,
when the system is supposed to be close to the ground state
of C, is similarly wasteful. This relaxation of the approach
of strict adiabaticity is in line with other alternatives, such
as shortcuts to adiabaticity [31,32] and diabatic quantum
annealing [33].

More precisely, Ref. [24] showed, provided that a cer-
tain condition holds (see below), that the optimal control
function starts (ends) with s ≡ 0 (s ≡ 1) in an interval
of positive measure after t = 0 (before tf ). Elsewhere the
optimal control s(t) is “singular,” except for possible inter-
ruptions by a sequence of “bang” controls, where s ≡ 0
or s ≡ 1. In control theory a “singular” interval or arc, is
an interval of time where the PMP control Hamiltonian
in Eq. (10) below does not depend on the control s. The
remaining “nonsingular” arcs give rise to the “bang” con-
trols. In the numerical simulations of Ref. [24], the control
appeared to be continuous (even smooth) on such singular
arcs. Hence the term “anneal” was used in lieu of “sin-
gular,” with the intention of stressing the continuous (or
possibly even smooth) nature of the control on the sin-
gular arcs. They suggestively called the resulting optimal
control a “bang-anneal-bang” protocol. At present, a rig-
orous proof that the control function is continuous (let
alone smooth) on singular arcs is lacking, and there is
some risk of confusion in interpreting the singular arcs as
always being continuous, or even differentiable as is typ-
ically assumed in QA and adiabatic quantum computing
[6,29]. Nonetheless, while keeping these caveats in mind,
we adopt the same (numerically supported) terminology as
Ref. [24], and use “continuous (or anneal) = singular” as
well as “bang = nonsingular” interchangeably.

Here, we consider the open-system version of the same
optimal control problem. We reformulate the problem in
terms of the density matrix ρ, whose dynamics is described
by the following, rather general master equation [34]:

ρ̇ = Lρ, ρ(0) = ρ0, (6)

where the Liouvillian L depends linearly on the control s
(and the controlled operators B, C). Note that the Liouvil-
lian is not explicitly time-dependent (i.e., ∂tL = 0, ∀t ∈ I)
and depends on time only through the switching schedule
s(t). This is a requirement that will play a crucial role in
our ability to apply the Pontryagin principle in the form
we need, as we discuss in more detail below. Furthermore,

054023-3



LORENZO CAMPOS VENUTI, D’ALESSANDRO, and LIDAR PHYS. REV. APPLIED 16, 054023 (2021)

to be physically meaningful, L must preserve hermiticity,
i.e., [L(X )]† = L(X †), ∀X . Instead of Eq. (3), the cost J
takes the form

J := Tr
[
Cρ(tf )

] = 〈C, ρ(tf )〉, (7)

where we use the Hilbert-Schmidt scalar product 〈X , Y〉 :=
Tr(X †Y) for operators X , Y. We see that a description and
treatment of the optimal control problem in the setting of
the density matrix is not only more general but also more
elegant since the cost J is linear in the state rather than
quadratic, as in Eq. (3). Moreover, we obtain the closed-
system result as a special case. Unlike Ref. [24], which
used a mixture of the PMP and a variational (Lagrange
multiplier type of) argument, we use only the PMP, which
significantly simplifies the proof.

The rest of this paper is organized as follows. In Sec.
III, we apply general results from optimal control theory
and the necessary conditions of the PMP to the problem
of minimizing J [Eq. (7)] for a given final time tf and
the general dynamical system of the form of Eq. (6). In
Sec. IV we specialize to the case of closed systems, which
are described by the von Neumann equation. In particu-
lar, we confirm but also sharpen the results of Ref. [24].
We also analyze in depth the optimal control problem of
a single spin 1/2, and prove that the optimal schedule is
of the bang-bang type. In Sec. V we consider the case of
open systems. This includes both the most general case of
a reduced description of quantum system obtained by trac-
ing out the environment it is coupled to, and the case where
the open quantum system is described by adiabatic mas-
ter equations, both non-Markovian and Markovian. In Sec.
VI we derive a “switching equation,” which allows us to
provide a general characterization of the switches between
nonsingular and singular arcs, and derive conditions for
the presence or absence of singular arcs. We also give a
heuristic derivation of the shortening of the length of the
arcs between two switches with increasing system size. We
conclude in Sec. VII. In a series of appendices we provide
additional background on optimal control theory and tech-
nical details and proofs of various results from the main
text.

III. STATEMENT OF THE PONTRYAGIN
MAXIMUM PRINCIPLE

We state the PMP as it applies to our problem of interest
(see Appendices B and C):

Theorem 1. Assume that ρ∗ and s∗ are, respectively, an
optimal state and control pair for the problem defined by
Eqs. (6) and (7) for a fixed final time tf [35]. Then there
exists a nonzero n× n Hermitian time-dependent matrix

p = p(t) called the co-state that satisfies [36]

ṗ = −L†p , (8)

with the final condition

p(tf ) = −C. (9)

Furthermore, define the PMP control Hamiltonian func-
tion

H (p , ρ, s) := 〈p ,Lρ〉. (10)

We then have the maximum principle:

H
[
p(t), ρ∗(t), s∗(t)

] = max
v∈[0,1]

H
[
p(t), ρ∗(t), v

]
, (11)

and there exists a real constant λ such that

H
[
p(t), ρ∗(t), s∗(t)

] ≡ λ. (12)

A few remarks are in order.

(a) The PMP control Hamiltonian function (10) is, of
course, different from the Hamiltonian operator (2) gener-
ating the dynamics.

(b) Since p and ρ are Hermitian and L is Hermiticity
preserving [[L (X )]† = L

(
X †

) ∀X ], “expectation values”
of the form 〈p ,Lρ〉 are real, and hence so is the PMP
control Hamiltonian (10).

(c) The condition ∂tL = 0 ∀t ∈ I must be satisfied and
is implicit in Eq. (6). In other words, L may not depend
explicitly on time. Without this condition Eq. (12) does not
hold with a constant λ.

(d) It is worth highlighting that at the final time the
co-state becomes the (negative of the) target Hamiltonian
[Eq. (9)], a fact we use repeatedly in our applications of
Theorem 1 below.

(e) As discussed after Theorem 8 in Appendix B, if the
optimal trajectory is such that the constraint of the final
time tf is “active,” i.e., a small perturbation tf + δ allows
us to decrease the cost, then λ > 0 in Eq. (12). This is a
significant point that will be further discussed in the next
section.

(f) Given that the PMP is formulated in terms of real-
valued quantities in the optimal control literature (see
Appendix B), one must first transform the relevant equa-
tions into real-valued ones. This can easily be done since
the space of n× n Hermitian matrices is isomorphic to the
space of n2 real variables via coordinatization. We discuss
this in Appendix C.

(g) Since p(t) and ρ(t) are the solutions of differen-
tial equations, they are continuous functions of time. This
implies that expressions of the form 〈p ,Kρ〉 with the
superoperator K independent of time (both explicitly and
implicitly), are continuous functions of t, a fact which we
repeatedly and implicitly use below.
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IV. THE CLOSED-SYSTEM CASE

We first consider the closed-system case. Let us define
the superoperator

KX := −i [X , •] . (13)

Note that KX is linear with respect to X . For Hermitian X ,
KX is anti-Hermitian (see Appendix D):

K†
X = −KX † = −KX . (14)

The von Neumann equation corresponding to Eq. (1) is

ρ̇ = KCρ + s(t) (KBρ −KCρ) , ρ(0) = ρ0, (15)

where henceforth we denote the initial and final condi-
tions of operators X by X (0) := X0 and X (tf ) := Xf ,
respectively. In other words, one has Eq. (6) with

L = KC + s(t)KB−C. (16)

Since in this case L† = −L, Eq. (8) tells us that the co-
state matrix p satisfies the same equation as ρ:

ṗ = KCp + s(t)KB−Cp , (17)

but with the final condition (9). The PMP control Hamilto-
nian reads

H = 〈p ,KCρ〉 + s(t)〈p ,KB−Cρ〉. (18)

A. The “bang-anneal-bang” protocol is optimal

Applying Theorem 1 to the anti-Hermitian superopera-
tor L of Eq. (16), we obtain the following extension of the
result of Ref. [24] to the density matrix setting.

Theorem 2. (i) Assume s∗ ∈ [0, 1] is the optimal control in
an interval [0, tf ] minimizing the cost (7) for Eq. (15). Then
there exists a nonzero Hermitian matrix solution of Eq.
(17) with terminal condition (9) such that s∗ ≡ 0 on inter-
vals where 〈p ,KB−Cρ〉 < 0, and s∗ ≡ 1 on intervals where
〈p ,KB−Cρ〉 > 0. On all other intervals 〈p ,KB−Cρ〉 ≡ 0
(these are called singular arcs).

(ii) Assume furthermore that the constraint on the final
time tf is active (so that λ > 0). Then s∗(t) = 1 for t ∈
(tf − ε, tf ] for some ε > 0. Moreover, if the initial con-
dition ρ0 commutes with the driver Hamiltonian B, i.e.,
KBρ0 = 0, one also has s∗(t) = 0 for t ∈ [0, ε′) for some
ε′ > 0.

Before proving this theorem we offer a few remarks.

(a) Part (i) implies that the optimal control is, in
general, an alternation of “bang” (nonsingular) arcs

and “anneal” (singular) arcs where 〈p ,KBρ〉 = 〈p ,KCρ〉.
Using the PMP, this is an immediate consequence of the
fact that the control enters linearly in the equation and it
is coupled to the superoperator KB−C. The latter is what is
“special” about the quantum-annealing problem.

(b) Part (ii) implies that under the assumption of an
active time constraint and for a particular initial condition,
the optimal control starts and ends with nonsingular arcs.
In particular, it starts with an arc s ≡ 0 and ends with an
arc s ≡ 1.

(c) In practice, whether there are additional nonsingu-
lar arcs in the middle is problem dependent, and there is
numerical evidence that such optimal scenarios do indeed
exist [24], but such nonsingular arcs do not exist in the
single-qubit example discussed in Sec. IV C.

(d) Assuming that KBρ0 = 0 one can prove λ ≥ 0 (see
also Appendix B, Proposition 1), but the condition λ > 0
is more subtle and it must be assumed independently. We
return to this point in the next subsection.

Proof: Part (i): Eq. (18) states that the PMP control
Hamiltonian H depends on the control only via the
term s(t)〈p ,KB−Cρ〉. If 〈p ,KB−Cρ〉 < 0, then to maxi-
mize this term as per Eq. (11) subject to the constraint
that s(t) ∈ [0, 1], clearly we must set s∗ ≡ 0. Likewise, if
〈p ,KB−Cρ〉 > 0, then to maximize this term subject to the
same constraint requires s∗ ≡ 1. This is the case of nonsin-
gular arcs. Conversely, if 〈p ,KB−Cρ〉 ≡ 0 (a singular arc),
then we cannot conclude anything about the control from
the PMP.

Part (ii): To investigate the form of the control at
the end of the control interval [0, tf ], consider Eq.
(12) with λ > 0. Using Eq. (9) we have 〈pf ,KCρf 〉 =
〈K†

Cpf , ρf 〉 = 〈KCC, ρf 〉 = 0. This means that H(tf ) =
s(tf )〈pf ,KBρf 〉 = λ > 0, which in turn, since s ∈ [0, 1],
implies that 〈pf ,KBρf 〉 > 0. By continuity there must
exist an interval (tf − ε, tf ] (for some ε > 0) such that
〈p(t),KB−Cρ(t)〉 > 0 for t ∈ (tf − ε, tf ], and in this inter-
val we must have s∗(t) = 1 by (i).

The argument for the initial time is similar but instead
of Eq. (9) it uses the extra assumption KBρ0 = 0. Let
us evaluate the control Hamiltonian at t = 0. Because
of the assumption KBρ0 = 0 we have H(t = 0) = [1−
s(0)]〈p0,KCρ0〉 = λ > 0. Since s ∈ [0, 1] this implies
that 〈p0,KCρ0〉 > 0 and 〈p0,K−Cρ0〉 < 0. By continu-
ity there must exist an ε′ > 0 such that, for t ∈ [0, ε′),
〈p(t),KB−Cρ(t)〉 < 0 and in this interval we must have
s∗(t) = 0 by (i). �

B. The active constraint assumption and a sharpening
of the results of Ref. [24]

The condition λ > 0 (that is, an active constraint on the
final time tf ) requires some extra discussion. It is a known
fact in the geometric theory of quantum control systems,
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and it follows as an application of general results on con-
trol systems on Lie groups (see, e.g., Ref. [27, Th. 7.2]),
that there exists a critical time tc such that, the set of states
reachable at time t, coincides for every t ≥ tc. In other
words, the reachable set does not grow past a certain time
tc. Therefore, for every tf ≥ tc the time constraint is never
active. The minimum time tmin to reach the ground state
of C is ≤ tc. If the final time tf is greater than or equal
to tmin, then again the time constraint can never be active.
In order to avoid this situation, it was claimed in Ref.
[24] that having tf < tmin, is sufficient for having λ > 0
in Eq. (12). Their argument only uses [ρ0, B] = 0. How-
ever, in Sec. IV C below we give an example satisfying
this assumption for which λ = 0 for arbitrarily small tf .
Thus, the assumption tf < tmin is certainly necessary for
λ > 0 but is in fact not sufficient. Rather, λ > 0 is a fea-
ture of the optimal trajectory rather than of the problem
itself. This can be explained more easily geometrically, as
we now do.

The optimal cost at time tf is the minimum of a con-
tinuous function on the reachable set of states Rtf (see
Appendix B). It is also known, under conditions that apply
in our case, that the reachable set Rtf varies continuously
with tf [37]. We can map the space of Hermitian matrices
ρ diffeomorphically to R

n2
(see Appendix C) and con-

sider its reachable set there. Since the cost function (7)
is linear on this set, the minimum occurs on the bound-
ary. Therefore, the optimal trajectory is a curve starting
from the initial condition ρ0 and ending on the bound-
ary of Rtf . At the endpoint, the trajectory will have a
tangent vector, which indicates its future direction. Now
λ > 0 if, going (infinitesimally) in that direction com-
bined with an increase in the size of the reachable set
Rtf +ε for some small ε, will result in a reduced cost, and
this is what we mean by the time constraint being active.
If tf is such that the reachable set does not increase at
tf , for instance, if tf ≥ tc, then clearly this is not possi-
ble and we must have λ = 0. However, it is also possi-
ble that the reachable set increases but not in a way to
(strictly) decrease the cost, in particular, the portion of
the boundary where we landed might not move at all, or
it might move but not in a direction that decreases the
cost. This geometric discussion is illustrated with figures
in Appendix E.

The phenomenon that the optimal cost does not decrease
with an increasing final time tf may occur even though tf
is arbitrarily small. Let us denote by Jmin(tf ) the minimum
cost (7) as a function of tf . The example we provide below
(Sec. IV C) shows that, even assuming [ρ0, B] = 0, we
can have Jmin(tf ) = Jmin(0) for tf ∈ [0, ε) and some ε > 0,
that is, the cost cannot be lowered for some time, inde-
pendently of the control. However, under the additional
assumption that ρ0 is the nondegenerate ground state of B
this does not happen, and we have the following theorem,
which we prove in Appendix F:

Theorem 3. Assume that ρ0 in Eq. (6) is the nondegener-
ate ground state of B. Then there exists an ε > 0 such that,
for every tf ∈ (0, ε), Jmin(tf ) < Jmin(0) = Tr(Cρ0).

In other words, if we start from the nondegenerate
ground state of B we can always decrease the cost for
sufficiently small tf . Note that this, however, does not
prove that λ > 0. As explained above, the condition λ >
0 is a condition about the optimal trajectory, and it is
an open problem to find sufficient conditions such that
every optimal trajectory satisfies the λ > 0 requirement for
sufficiently small tf .

C. Example: optimal control of a spin-1/2 particle

We now give an example showing that without the
assumption that ρ0 is the nondegenerate ground state of
B, the cost (7) cannot be lowered even for arbitrarily small
tf ’s.

Consider a spin-1/2 particle (qubit) in a magnetic field.
The model is given by Eq. (15) with C = (1/2)σ z and B =
(1/2)σ x. As an orthonormal, Hermitian operator basis we
choose Fi = (1/

√
2)σi, where we denote the standard Pauli

matrices σ x ≡ σ1 etc., i.e.,

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

.

(19)

They satisfy the su(2) commutation relations

[σ1, σ2] = 2iσ3, [σ3, σ1] = 2iσ2, [σ2, σ3] = 2iσ1.
(20)

We parametrize the density matrix as ρ = (1/2) (1+ v · σ ),
where v ∈ R

3 is the Bloch vector (‖v‖ ≤ 1) and σ =
(σ1, σ2, σ3)

T. The Bloch vector satisfies Eq. (15) where,
using Kij = Tr[FiK(Fj )] (see Appendix C), we have

KB =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , KC =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ . (21)

Equivalently, the dynamics are given by the Bloch
equation

v̇ =M(s)v, (22a)

M(s) =
⎛

⎝
0 −(1− s) 0

1− s 0 −s
0 s 0

⎞

⎠ . (22b)

Geometrically, KC is the infinitesimal generator of a
counterclockwise rotation about the v3 axis, while KB is
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FIG. 1. Single-qubit case. Optimal trajectory on the Bloch
sphere with initial condition v0 = (−1, 0, 0)T. Here tf = 0.95π
so the ground state of C, corresponding to the point (0, 0,−1), is
not reached exactly.

the infinitesimal generator of a counterclockwise rotation
about the v1 axis. For s ∈ (0, 1), M(s) = (1− s)KC +
sKB generates a counterclockwise rotation about an inter-
mediate axis in the (v1, v3) plane. The cost (7) in this case
becomes J = (1/2)v3, i.e., it corresponds to the minimiza-
tion of the v3 component. Furthermore, let us assume for
simplicity that the initial state ρ0 is pure (‖v‖ = 1). There
are only two such states compatible with the condition
[B, ρ0] = 0 (equivalently, KBv0 = 0): the σ1 eigenstates,
i.e., v0 = (±1, 0, 0)T.

Now, if the initial state is v0 = (1, 0, 0)T, i.e., the excited
state of B, then for sufficiently small t we have v3(t) ≥ 0
independently of the control s ∈ [0, 1] (see Appendix D).
Therefore, an optimal control in [0, tf ] for tf small will
be s ≡ 0 (which will keep the value of v3 at zero). The
value of the minimum cost Jmin(tf ) is equal to J (0) for
any arbitrarily small tf . The constraint on the final time
is not active here, even for arbitrarily small tf . As a con-
sequence, in this case we cannot draw the conclusions of
Theorem 2 following from the assumption λ > 0. On the
other hand, for v0 = (−1, 0, 0)T, which corresponds to the
(nondegenerate) ground state, with sufficiently small tf we
can lower the cost according to Theorem 3. We prove in
Appendix H that the optimal control in this case is a simple
bang-bang protocol.

Theorem 4. The optimal control for the system of one
spin-1/2 particle considered above, starting from the
ground state and minimizing the cost Tr(σ3ρ) in time
tf < π , is the sequence s∗ ≡ 0 for time (tf /2) followed by
s∗ ≡ 1 for time (tf /2) (see Fig. 1).

Here tc = π , i.e., if tf ≥ π one trivially finds the ground
state exactly (by a π/2 rotation from the −1 eigenstate of
σ x to the −1 eigenstate of σ y , followed by another π/2
rotation to the −1 eigenstate of σ z) and one cannot do
better by increasing tf . This optimal bang-bang schedule
result for a single spin 1/2 joins previous such results for
systems as diverse as pairs of one-dimensional quasicon-
densates [38] or “gmon” qubits [39], as well as braiding of
Majorana zero modes [40].

V. THE OPEN-SYSTEM CASE

In this section we generalize the results for closed sys-
tems to the open-system setting. We consider two different
approaches: an approximation-free treatment of a system
+ environment where both are finite dimensional, and a
master-equation approach subject to a Markovian approx-
imation, which applies for infinite-dimensional environ-
ments [41–45]. We show that under a number of additional
assumptions, we can (partially) recover the results from
the closed-system setting, but that the bangs characteriz-
ing the latter are not a particularly robust feature in the
open-system setting.

A. Optimal control for the Liouville-von Neumann
equation

One approach for extending the closed-system results of
the previous section to open systems is to consider the full
dynamics of a jointly evolving system + environment. In
this case ρ in Eq. (6) is the density matrix of the system and
the environment, with an initial condition, which is usually
taken to be of the factorized form ρ(0) := ρ0 ⊗ ρE , where
now ρ0 refers to the initial state of the system only. The
Liouville-von Neumann equation is [extending Eq. (15)]

ρ̇ = KHtotρ , ρ(0) = ρ0 ⊗ ρE , (23)

where K is defined in Eq. (13), with the total Hamiltonian

Htot = HS ⊗ 1E + HI + 1S ⊗ HE . (24)

Here HI is the interaction between the system and envi-
ronment, HE generates the dynamics of the environment,
while the system Hamiltonian, as before, contains the
controllable part:

HS(t) = C+ s(t) (B− C) . (25)

Finally the cost is given by

J = Tr[(C⊗ 1E) ρ]. (26)

Theorem 1 holds with L = KHtot and the PMP control
Hamiltonian has the form

H = 〈p ,KHS⊗1Eρ〉 + 〈p ,KHIρ〉 + 〈p ,K1S⊗HEρ〉. (27)
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The treatment of Sec. IV applies, mutatis mutandis. In
particular, condition (9) is replaced by

p(tf ) = −C⊗ 1E . (28)

Remarkably, no additional modifications of the statement
of the PMP Theorem 1 are needed. Moreover, it is clear
from Eqs. (25) and (28) that once again the control enters
H only via the term s(t)〈p ,K(B−C)⊗1Eρ〉, so that the proof
of part (i) of Theorem 2 applies without any change. This
shows the following.

Corollary 1. In the general open-system setting of Eq. (23)
with the cost (26), the optimal control s(t) is an alterna-
tion of bang arcs where s ≡ 0 (when 〈p ,K(B−C)⊗1ρ〉 < 0)
or s ≡ 1 (when 〈p ,K(B−C)⊗1ρ〉 > 0), and singular arcs
where 〈p ,KC⊗1ρ〉 ≡ 〈p ,KB⊗1ρ〉.

Let us consider the generalization of part (ii) of Theorem
2, which addresses the characterization of the control func-
tion at the beginning and at the end. We first consider the
final arc. We have the following.

Theorem 5. Assume s∗ ∈ [0, 1] is the optimal control in
an interval [0, tf ] minimizing the cost (26) for Eq. (23).
Assume furthermore that [HI , C⊗ 1E] = 0 and that the
final time constraint is active, i.e., λ > 0. Then s∗(t) = 1
for t ∈ (tf − ε, tf ] for some ε > 0.

Note that the assumption [HI , C⊗ 1E] = 0 implies that
the choice of control s ≡ 0 leaves the cost J = 〈C⊗ 1, ρ〉
unchanged since in this case Htot commutes with C⊗ 1E .

Proof: Let us compute the PMP Hamiltonian at t = tf .
Note first that it follows from Eq. (28) that

〈pf ,KC⊗1Eρf 〉 = 〈K†
C⊗1E

pf , ρf 〉
= 〈KC⊗1E C⊗ 1E , ρf 〉 = 0. (29)

The other two terms of the PMP control Hamilto-
nian Eq. (27) also vanish at t = tf : using the same
calculation as in Eq. (29) the second term vanishes
because of the assumption [HI , C⊗ 1E] = 0, and the third
term does as well because [1S ⊗ HE , C⊗ 1E] = 0. So
we obtain H = s(tf )〈pf ,KB⊗1Eρf 〉 = λ > 0. This implies
that 〈pf ,KB⊗1Eρf 〉 > 0 and by continuity there must
exist an interval (tf − ε, tf ] for some ε > 0 such that
〈p(t),K(B−C)⊗1Eρ(t)〉 > 0 for t ∈ (tf − ε, tf ]. Finally we
must have s∗ ≡ 1 in this interval by Corollary 1. �

Regarding the arc at the beginning we have instead the
following.

Theorem 6. Assume s ∈ [0, 1] is the optimal control in
an interval [0, tf ] minimizing the cost Eq. (26) for Eq.

(23). Assume that [ρE , HE] = 0 and that [HI , ρ0 ⊗ ρE] =
0. Assume furthermore that [B, ρ0] = 0 and that the final
time constraint is active λ > 0. Then the control satisfies
s∗(t) = 0 for t ∈ [0, ε) for some ε > 0.

Note that the assumption [HI , ρ0 ⊗ ρE] = 0 implies that
the interaction alone does not modify the initial state of the
system.

Proof: We abbreviate the proof since it is very
similar to the ones we presented above in more
detail. Using the assumption [HI , ρ0 ⊗ ρE] = 0 and
[B, ρ0] = 0, evaluating H(t = 0) we obtain H(0) =
[1− s(0)] 〈p(0),KC⊗1Eρ(0)〉 = λ > 0. This implies that
〈p(0),KC⊗1Eρ(0)〉 > 0 or equivalently that 〈p(0),K−C⊗1E
ρ(0)〉 < 0. By continuity this in turn implies that
there exist an interval [0, ε) for some ε > 0 such that
〈p(t),K(B−C)⊗1Eρ(t)〉 < 0 for t ∈ [0, ε). Finally we must
have s∗ ≡ 0 in this interval by Corollary 1. �

We comment on the implications of the additional
assumptions used in these theorems in Sec. VII.

B. Optimal control for quantum master-equation
dynamics

The treatment of the open-system case in the previous
subsection did not involve any approximations. On the
other hand, we tacitly assumed that the environment is
finite dimensional. This was helpful since all the results on
optimal control, which we have elaborated upon in Sec. IV
and used so far, are classically stated and proved for finite-
dimensional systems. Extending such results, in particular,
concerning the PMP and the topology and continuity of
the reachable sets for infinite-dimensional systems, is pos-
sible and is a current area of research in control theory (see,
e.g., Refs. [20,46]), although the results in this area become
considerably more technical. An alternative we discuss in
this subsection is to replace the Liouville-von Neumann
Eq. (23) with an approximate quantum master equation.
This can be viewed as an investigation of the result of Sec.
V A when the environment dimension is sent to infinity.

Without loss of generality we write HI =
∑

α Sα ⊗ Eα ,
where Sα = S†

α and Eα = E†
α ∀α. The goal is now to find

a master equation for the dynamics of the system density
matrix in the case of a time-dependent system Hamilto-
nian. After the Born approximation and tracing out the
environment, one arrives at a time-dependent Redfield
master equation [see, e.g., the Schrödinger picture Redfield
master equation (SPRME) derived in Ref. [47]]. From this
point there are multiple ways to proceed, e.g., by introduc-
ing an additional adiabatic approximation or an additional
Markovian approximation, or both. These different paths,
and exactly how they are taken, lead to a plethora of dif-
ferent master equations [47–56]. We next focus on two
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representative cases of master equations derived from first
principles.

1. Adiabatic Redfield master equation

The adiabatic Redfield master equation (ARME) is
derived in Ref. [47]. It results from assuming that tf � τB,
where τB is the environment time scale, and the adiabatic
approximation T exp

[
−i

∫ t
t−r HS(t′)dt′

]
≈ e−irHS(t), drop-

ping a correction of O
[
(r/tf )2

]
. The ARME has the form

of Eq. (6) with a time-dependent Redfield generator L
given by

L = KHS +D, (30a)

Dρ =
∑

αβ

∫ tmax

0
dr Gαβ(r)

[
Sβ(−r)ρ, Sα

]+ h.c., (30b)

where the system Hamiltonian is as in Eq. (25). Gαβ(t) is
the environment correlation function

Gαβ(t) = 〈Eα(t)Eβ(0)〉 = Tr[Eα(t)Eβ(0)ρE] , (31)

where 〈X 〉 denotes the environmental thermal average of
X . When Gαβ(r) decays exponentially, the relative error of
the resulting dynamics due to the adiabatic approximation
above is O

[
(τB/tf )2

]
. Finally,

Sβ(−r) = e−irHS(s)SβeirHS(s). (32)

The parameter tmax can either be set to tf or infinity
on account of the fact that the environment correlation
function decays very rapidly. The ARME is not in Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL) form [57–59],
and hence does not generate a completely positive map.
However, it generates non-Markovian dynamics, hence
has a wider range of applicability than Markovian master
equations, within its range of applicability [51].

Crucially, the generator in Eq. (30) with Eqs. (25), (31)
and (32) depends on time only through the control func-
tion s(t). This implies that the PMP control Hamiltonian
H = 〈p ,Lρ〉 is constant and hence the PMP in the form
of Theorem 1 is directly applicable [60]. However, the
control now enters nonlinearly in D, in particular, in an
exponential through Eq. (32). As a consequence it is not
possible to derive the form of the control on the non-
singular arcs, or even to determine simple equations for
the appearance of singular arcs. One can ask, however,
what remains of the results of the previous subsection. We
do not have an analog of Theorem 6 for the initial arc.
However, if we again make the assumption of Theorem
5 that [Sα , C] = 0 ∀α, then the analog of this theorem for
the final arc holds, even when the environment is infinite

dimensional, and under the approximations used to derive
Eq. (30). However, instead of an arc, we obtain a bang only
at a point.

Theorem 7. Assume s∗ ∈ [0, 1] is the optimal control in an
interval [0, tf ] minimizing the cost Eq. (7) for Eq. (6) with
L given by Eq. (30). Assume further that [Sα , C] = 0 ∀α
and that the final time constraint is active (λ > 0). Then
the optimal control satisfies s∗(tf ) = 1.

Proof: It is convenient to write the Redfield dissipator as

Dρ =
∑

αβ

([
Wαβρ, Sα

]+ [
Sα , ρW†

αβ

])
(33a)

Wαβ(t) =
∫ tmax

0
dr Gαβ(r) Sβ(−r) . (33b)

Using Eq. (33a) one obtains, for the adjoint of D,

D†X =
∑

αβ

(
W†
αβ [X , Sα]+ [Sα , X ] Wαβ

)
(34)

(see Appendix D). From the above expression and the
assumption [Sα , C] = 0, ∀α we obtain D†C = 0. Using
pf = −C we have 〈pf ,Dρf 〉 = −〈D†C, ρf 〉 = 0. Eval-
uating the PMP control Hamiltonian at the final time
we obtain H(tf ) = s(tf )〈pf ,KBρf 〉 = λ > 0. This implies
that 〈pf ,KBρf 〉 > 0, and so s(tf ) = 1 from the maximum
principle. �

Since, as argued in Sec. VI B, the size of the bang inter-
vals is generically expected to shrink when the total system
size increases, this result can be seen as a generalization
of Theorem 5 when the environment dimension is sent to
infinity and the bang interval at the end shrinks to a point.

The implications of the additional assumptions used in
Theorem 7 are discussed in Sec. VII.

2. Markovian, completely positive master equations

The most significant drawback of the ARME is the
violation of complete positivity, which means that the den-
sity matrix can develop unphysical, negative eigenvalues.
Hence we also consider Markovian, completely positive
master equations. There are a variety of such master equa-
tions derived from first principles under different assump-
tions. However, in most cases the generator L is explicitly
time dependent [e.g., the coarse-grained master equation
(CGME) [51, Eq. (22)], the master equation of Ref. [52,
Eq. (21)], the nonadiabatic master equation (NAME) [53,
Eq. (16)], and the universal Lindblad equation (ULE) [54,
Eq. (27)] ] and hence we cannot apply Theorem 1.

In this subsection we give an example of a Markovian
master equation derived from first principles, where, like
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in the ARME case, the generator L depends on time only
through the schedule s(t). In this case the PMP can be
applied in the simplified form described in Theorem 1.

Consider the “geometric-arithmetic master equation”
(GAME) [55, Eq. (46)], which is claimed there to have
a higher degree of accuracy than all the previous Marko-
vian master equations. In the adiabatic limit it has the
Schrödinger picture form

L = KHS +D, (35a)

Dρ =
∑

j

{
[Lα(s)ρ, L†

α(s)]+ [Lα(s), ρL†
α(s)]

}
, (35b)

where Lα(s) = Sα ◦
√
γ (s), the circle denotes the Hadamard

(elementwise) product, γ is the spectral density matrix
[Fourier transform of the environment correlation func-
tion (31)] whose elements γnm := γ [ωnm(s)] depend on the
instantaneous Bohr frequencies ωnm(s) = En(s)− Em(s),
where HS(s)|n(s)〉 = En(s)|n(s)〉, and the dependence on
time is only through the schedule s(t) [61]. The adjoint
dissipator is now

D†X =
∑

α

{
(Sα ◦ √γ )†

[
X , Sα ◦ √γ

]

+ [(Sα ◦ √γ )†, X ]Sα ◦ √γ
}
. (36)

Unfortunately, since [Sα , C] = 0 �⇒ [Sα ◦ √γ , C] = 0, this
means that even if [Sα , C] = 0, we do not obtain D†C = 0
as in the ARME case, and hence the proof of Theorem 7
does not carry through [62].

While these arguments are not a proof that in general
Markovian dynamics do not admit s(tf ) = 1 as an optimal
control solution, we conjecture that in fact, they do not. It
thus appears that the “counterintuitive” appearance of the
driver Hamiltonian at the end of the control interval is not
a feature of the optimal schedule in the Markovian limit of
open quantum systems. We revisit this point in Sec. VII.

VI. SWITCHING OPERATOR AND ANALYSIS OF
THE OPTIMAL CONTROL

In order to study the qualitative behavior of the optimal
control law, in particular, its switching properties and the
existence and nature of the singular arcs, it is convenient
to introduce one more operator, besides the state ρ and
the co-state p , which we call the switching operator. The
switching operator determines the behavior of the optimal
control, i.e., the points where there is a switch between
s = 0 and s = 1, and where there is a singular arc. For clar-
ity we focus on the closed-system case of Sec. IV but our
definitions and treatment naturally extend with a change of
notation to the open-system case of Sec. V A.

A. Switching equation

The switching operator S is the Hermitian operator
defined as

S := i [p , ρ] . (37)

In the closed-system case the Liouvillian has the form L =
KH , with the system Hamiltonian of Eq. (2). One has the
following property:

KH ([X , Y]) = [KH (X ), Y]+ [X ,KH (Y)] (38)

valid for any operators X , Y, H . Now, differentiating Eq.
(37), we obtain

Ṡ = i [ṗ , ρ]+ i [p , ρ̇] , (39a)

= i [KH p , ρ]+ i [p ,KHρ] , (39b)

= iKH ([p , ρ]) = KH S , (39c)

where in the third equality we used Eq. (38). Thus, S sat-
isfies the same equation as ρ and p . To understand why
S determines the optimal control switching times, let us
define

xC := 〈p ,KCρ〉 = −i Tr (p [C, ρ]) , (40a)

= −i Tr (C [ρ, p]) = Tr (CS) = 〈C, S〉, (40b)

and similarly

xB := 〈p ,KBρ〉 = 〈B, S〉, (41)

so that the PMP control Hamiltonian Eq. (18) can be
written in a form closely resembling the Hamiltonian (2b):

H = xC + s (xB − xC) . (42)

The quantity xB − xC = 〈B− C, S〉, that is, the orthogo-
nal component of S along B− C, regulates the switches
of the candidate optimal control. By the same PMP argu-
ment we use repeatedly in our proofs, when xB − xC < 0
we have s ≡ 0, and when xB − xC > 0 we have s ≡ 1.
The switch occurs when xB − xC = 0, while a singular
arc occurs when xB − xC ≡ 0 for an interval of positive
measure.

The initial condition S0 of the switching operator deter-
mines the optimal control candidate s uniquely. This ini-
tial condition is not completely arbitrary. In particular,
under the assumptions of Theorem 2 the following holds.
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FIG. 2. Switching diagram for optimal control candidates.
Starting from the point (λ, 0) the dynamics stay on the line xC =
λ. In principle, even negative values of xB can be attained, but
eventually the point (λ, λ)must be reached, followed by an alter-
nation of vertical and horizontal lines (where, in principle, one
can also extend to negative values of xC) through (λ, λ)with time
intervals where the dynamics do not move from (λ, λ), represent-
ing the singular arcs. In the last interval, the dynamics follow a
horizontal line (with s ≡ 1) reaching the point (xC, xB) = (0, λ).

Since s(0) = 0, we have xC(0) = 〈C, S0〉 = λ. Further-
more, since [B, ρ0] = 0, we have

xB(0) = 〈B, S0〉 = i Tr(B[p0, ρ0]),

= i Tr (p0[ρ0, B]) = 0. (43)

At the final time tf , since s(tf ) = 1, we have from Eq. (42)
xB(tf ) = λ, while using Eq. (9) we have

xC(tf ) = 〈C, Sf 〉=i Tr
(
C[pf , ρf ]

)

= i Tr
(
ρf [C, pf ]

) = 0. (44)

Thus, at t = 0 we have xB(0) = 0 and in the initial arc
s ≡ 0 and xC ≡ λ by Eq. (42). The next arc can be either
nonsingular with s ≡ 1 (xB > xC) or a singular arc with
xB ≡ xC. Either way, at the switching point we must have
xB = λ, hence we reach the point (xC, xB) = (λ, λ) at the
end of the first arc. When (xC, xB) = (λ, λ) there is either a
switch to an arc with s ≡ 1, or a return to s ≡ 0, or a singu-
lar arc where (xC, xB) ≡ (λ, λ). On this arc s is unspecified,
but nonetheless certain equations need to be satisfied and
they can be used to obtain information on the dynamics
on such singular arcs (see Appendix G). Note that every
switching event, whether from a bang arc to a singular arc
or v.v.., or from a bang arc to another bang arc, happens at
(xC, xB) = (λ, λ). When s ≡ 1, from Eq. (42) we have that
xB is constant, while xC is allowed to change. Therefore,
the optimal control can be described schematically as in
Fig. 2 in the (xC, xB) plane.

In the case where the final time is not active, i.e., when
we do not have the guarantee λ > 0 in Eq. (42), the

above reasoning can still be applied to conclude xB(0) = 0
and xC(tf ) = 0. Furthermore, if λ = 0, from Eq. (42), we
obtain [1− s(0)]xC(0) = 0 and s(tf )xB(tf ) = 0, in addi-
tion to the maximization condition Eq. (11).

B. Shortening of nonsingular arcs

1. Dependence on n

Here we give a heuristic argument that explains why
the terminal arcs (s ≡ 0 and s ≡ 1) for the optimal con-
trol become shorter as the number n of spins (or qubits)
increases. In fact the heuristic holds also for intermediate
arcs taking place anywhere along the optimal trajectory.

Consider a bang arc where s(t) = 0 for t ∈ [t0, t1].
Equation (39) for the switching operator in this region is
Ṡ = KCS with the initial condition S(t0) = S0 for some S0.
The solution in this interval is S(t) = e−i(t−t0)CS0ei(t−t0)C.
The coordinate xC equals λ in the interval: xC = λ =
〈C, S(t)〉 = 〈C, S0〉. The switching happens when xB = λ,
i.e., at the first solution t1 of 〈B, S(t1)〉 = 〈C, S0〉. More
explicitly, the interval of the bang arc�t := t1 − t0 is given
by the first solution of

xB(�t) := Tr
(
Be−i�tCS0ei�tC) = Tr (CS0) . (45)

Using the spectral resolution C =∑
k Ek�k (with eigen-

values Ek and eigenprojectors �k), the left-hand side of
Eq. (45) can be written as

xB(�t) =
∑

kl

Mkle−i�tωkl , (46)

with amplitudes Mkl := Tr (B�kS0�l) and Bohr frequen-
cies ωkl = Ek − El. The function xB(�t) is a real trigono-
metric polynomial with O(d2) terms (where d is the
Hilbert-space dimension) starting from Tr(BS0) at �t = 0,
and reaching λ > 0 at �t. Now, as the number of qubits n
increases, both d = 2n and the frequencies increase. Both
of these facts contribute to making xB(t) oscillate faster.
As a consequence, the solution �t of Eq. (45) tends to
decrease with n. The same considerations hold for the case
of an s ≡ 1 arc with B and C interchanged. See Appendix
I for additional comments. Note that this heuristic applies
both to the initial and final bang arcs, as well as to possible
intermediate bang arcs if they are present.

2. Dependence on tf
It was concluded in Ref. [24, Sec. S3] that “these bangs

should become smaller and smaller as tf is increased.
Eventually in the true tf →∞ adiabatic limit, these bangs
disappear recovering the standard form expected for quan-
tum adiabatic computing.” However, there is in fact no
guarantee that the optimal control coincides with the adia-
batic path even in this limit, since the adiabatic theorem
provides a sufficient, but not a necessary condition for
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convergence to the minimum of the cost function. Indeed,
it is easy to construct a counterexample, as we now do.
First note that, as we have seen, when tf < tc, the optimal
schedule always starts with a bang s ≡ 0 and ends with a
bang s ≡ 1 (provided the initial state commutes with B).
We do not address the question of uniqueness of this opti-
mal schedule, which we leave for future work. However,
when tf > tc, the optimal schedule is certainly not unique,
as one has the possibility of “wasting time” by adding a
bang s ≡ 0 at the end (thus applying C there), or by adding
a bang s ≡ 1 at the beginning (thus applying B there), or
both. The resulting schedules do not resemble the smooth
adiabatic schedule interpolating slowly from s(0) = 1 to
s(tf ) = 0.

VII. SUMMARY AND DISCUSSION

The quest to discover the optimal schedule for quantum-
optimization algorithms such as quantum annealing (QA)
and the quantum approximate optimization algorithm
(QAOA) naturally leads to the use of optimal control the-
ory via Pontryagin’s principle. Previous work concluded
that QAOA is optimal [19], but a more careful analysis
showed that in fact a hybrid bang-anneal-bang protocol
is generally optimal for closed systems when not enough
time is allowed for the desired state to be reached perfectly
[24]. Here we confirm this result using a density matrix
approach, which both generalizes the analysis to mixed
states and simplifies it since it makes the cost function lin-
ear in the state. We also show that the assumption that tf is
smaller than the critical time tc needed to reach the ground
state of C exactly, is necessary but not sufficient for the
result of Ref. [24], by giving a counterexample to the latter.

We introduce a switching operator and find its equation
of motion, which characterizes the points at which the
optimal schedule switches between the two different types
of bang arcs and the anneal arc. In Theorem 4 we give
the explicit optimal schedule for the example of a single
spin-1/2 particle, which consists of two bangs of equal
duration.

Using the density matrix formulation we extend the the-
ory to the open-system setting, both for the exact reduced
system dynamics in the case of a finite-dimensional envi-
ronment, and under the approximation of dynamics gov-
erned by a master equation due to coupling to an infinite-
dimensional environment. We prove that in the first setting,
depending on additional assumptions concerning the initial
states of the system and the environment and their inter-
action, either an anneal-bang (Theorem 5) or bang-anneal
(Theorem 6) schedule is optimal.

In the second setting (infinite-dimensional environment)
we consider both an adiabatic Redfield equation account-
ing for non-Markovian dynamics but without a complete
positivity guarantee, and a completely positive Markovian
master equation. In the former (Redfield) case we can

prove only that the optimal schedule terminates with the
driver Hamiltonian, i.e., s(tf ) = 1 (Theorem 7). One could
interpret this result as a manifestation of the phenomenon
of the shortening of the nonsingular arcs as the total system
(i.e., the subsystem plus its environment) size increases.
Indeed, in the Redfield case the environment Hilbert-space
dimension is infinite, which is consistent with the bang arc
having shrunk down to a point. In the fully Markovian
case, even this last remnant of the bang-arc is not recov-
ered, as we find no evidence of natural conditions under
which s(tf ) = 1 holds.

Let us now comment on the differences between these
theorems and their closed-system counterpart, part (ii) of
Theorem 2. Regarding Theorem 5 concerning the final
arc, the main change is the addition of the assumption
that the interaction Hamiltonian commutes with the cost
function, i.e., [HI , C⊗ 1E] = 0. Writing the interaction
in the general form HI =

∑
α Sα ⊗ Eα , where Sα and Eα

are system and environment operators, respectively, the
assumption is equivalent to [Sα , C] = 0 ∀α, which is the
same assumption as in Theorem 7. Thus C must belong
to the commutant of the algebra generated by the set {Sα},
i.e., C ∈ Alg{Sα}′ [63]. For example, if Sα =

∑n
i=1 σ

α
i for

a system of n qubits, where α ∈ {x, y, z}, i.e., the collective
decoherence case [64,65], then, if C is at most a two-body
interaction, it follows that it must be of the Heisenberg
interaction form: C =∑

ij Jij σ i · σ j , where Jij are con-
stants [66]. Or, for a classical target Hamiltonian arising
in optimization such as the Ising-type Hamiltonian men-
tioned in Sec. II, this means that the interaction must be
of the pure-dephasing type, i.e., Sα ∝ σ z (or products of
σ z over different qubits). This is a realistic model, e.g., for
superconducting qubits undergoing flux noise [67].

Regarding Theorem 6 concerning the initial arc, the
main change is the addition of the two assumptions that (i)
the environment Hamiltonian commutes with the environ-
ment’s initial state ([HE , ρE] = 0), and (ii) the interaction
Hamiltonian commutes with the joint system-environment
initial state ([HI , ρ0 ⊗ ρE] = 0). The first of these is natu-
ral and is known as the stationary environment assumption
[43]. It is satisfied, e.g., if the environment is in thermal
equilibrium, i.e., in the Gibbs state: ρE ∝ e−βHE , where β
is the inverse temperature. The second assumption means
that ρ0 ∈ Alg{Sα}′ and ρE ∈ Alg{Eα}′. This assumption
is the least natural of the ones we have encountered so
far. For example, it is clearly violated in the standard
quantum-annealing setting where ρ0 is the ground state of
a transverse field −∑

i σ
x
i and Sα ∝ σ z. Even the condi-

tion ρE ∈ Alg{Eα}′ is not very natural. For example, for a
bosonic environment one typically has Eα as the position
operator of an oscillator, while HE might be the num-
ber operator, in which case the Gibbs state ρE would not
commute with Eα .

We note that while the conditions given in Theorem
6 are sufficient, we do not know if they are necessary,
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which we thus leave as an open problem. We conjec-
ture that the initial bang does not appear as a feature of
optimal schedules for open systems coupled to an infinite-
dimensional environment. This state of affairs would be
reminiscent of the existence of an arrow of time for open
systems, which breaks the symmetry between the initial
and final times (see, e.g., Ref. [47] for a similar effect in
the pure QA setting). On the other hand, given the nat-
uralness of the sufficient conditions under which a final
bang arc (Theorem 5) or a schedule terminating with the
driver Hamiltonian (Theorem 7) are optimal, such sched-
ules may find utility in the design of quantum algorithms
for optimization problems in the setting of open quantum
systems. This is true, in particular, for systems that are well
described by the adiabatic Redfield master equation, e.g.,
superconducting flux qubits used for quantum annealing
[68–71].

However, the conditions under which the adiabatic Red-
field master equations hold need not apply in general, e.g.,
for Hamiltonians that arise naturally in systems such as
Rydberg atoms or transmons, which have been used to
demonstrate QAOA [10,72]. Particularly for quantum opti-
cal systems such as Rydberg atoms, the Markovian limit
may be more appropriate, and we do not find evidence of
the optimality of an initial or final bang arc in this limit, or
even the optimality of s(tf ) = 1.

While our analysis does not strictly rule out bang-type
schedules for open systems coupled to infinite-dimensional
environments, we conjecture that they are indeed not a fea-
ture of optimal schedules in this case, primarily due to
the shortening of arcs in the open-system setting. If this
could be confirmed, it would mean that after all, contin-
uous annealing-type schedules are optimal for optimiza-
tion purposes when using open quantum systems, which
would have implications for all NISQ-era optimization
algorithms.

Finally, we remark that throughout this work we use
a simplified form of the PMP as described in Theorem
1. A more general PMP for time-dependent dynamics
is described in Ref. [73]. The main difference is that
H ≡ λ [Eq. (12)] is no longer valid in the given form.
This equation is, in fact, a special case of another one,
which contains the derivative of the dynamics with respect
to t, and this term vanishes when the dynamics are not
explicitly time dependent, as in our case, where we con-
sider adiabatic time-dependent master equations. The time
dependence of the dynamics in typical quantum master
equations [47–56] is, however, different from the one of
models usually encountered in classical control theory, and
therefore further study is required before the PMP can be
applied to a broader class of quantum master equations.

VIII. CONCLUSIONS

Optimization is one of the key areas where a quantum
speedup has long been an eagerly anticipated outcome.

Several promising heuristic approaches have been pro-
posed toward this end, including the analog QA algorithm
and the digital QAOA. While a result identifying the gen-
eral conditions for a quantum speedup under either QA
or QAOA appears to be out of reach, in this work we
undertake a rigorous analysis that unifies these algorithms
under the framework of quantum optimal control theory,
and find conditions describing the optimal path from the
initial to the target Hamiltonian. Previously it was shown
that the optimal path is of the “bang-anneal-bang” type,
meaning that the path should start and end with QAOA-
like segments, but in between it should resemble QA.
This analysis is limited to the setting of closed quantum
systems, which is an idealization describing quantum com-
puters that are not subjected to any noise or decoherence.
Our analysis extends to open quantum systems, i.e., a real-
istic description of quantum computers that interact with
a noisy environment. We demonstrate that the conclusions
derived for closed quantum systems are modified in such a
way that the initial and final “bang” segments either shrink
to a point or disappear entirely. This means that the optimal
solution in the open-system setting more closely resem-
bles QA. Our result has implications for the use of actual
devices, which are by necessity noisy in the NISQ era and
likely beyond, and suggest that in this practical sense the
optimal schedules for quantum optimization are likely to
be continuous.
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APPENDIX A: EXAMPLES OF REACHABILITY
AND UNREACHABILITY OF THE GROUND

STATE OF C

Here we provide two examples, one where Proposition 1
guarantees reachability of the ground state of C despite the
algebra generated by B and C being smaller than the full
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su(d), another illustrating that [B, C] �= 0 is not a sufficient
condition.

1. First example

Let B = σ z ⊗ 1, C = σ x ⊗ σ x + σ y ⊗ σ y + σ z ⊗ σ z.
Both B and C commute with M = σ z ⊗ 1+ 1⊗ σ z. We
know that the ground state of C is a singlet (1/

√
2)(|↓↑〉 −

|↑↓〉) with total spin zero and hence belongs to the sector
M = 0. This statement follows from a theorem of Marshall
[74,75] and holds for general antiferromagnetic Heisen-
berg models defined on a bipartite lattice. In particular,
it does not require knowledge of the ground state. The
projector P0 is given by

P0 = |↓↑〉〈↓↑| + |↑↓〉〈↑↓|. (A1)

In Ran(P0) one has

P0BP0 = σ z, (A2a)

P0CP0 = −1+ 2σ x. (A2b)

Therefore, in Ran(P0), B and C generate the full su(2) alge-
bra and any state in Ran(P0) can be reached starting from
any state in Ran(P0), in particular, the ground state of C.

2. Second example

It is straightforward to find examples where the ground
state of C cannot be reached even when [B, C] �= 0. Con-
sider, e.g., B = σ x ⊗ 1 and C = σ z ⊗ 1+ 1⊗ σ z. In this
case the Lie algebra generated by B and C is su(2)⊗
u(1) �= su(4) and only the first qubit can be fully steered
anywhere on the Bloch sphere. As a consequence, the
ground state |↓↓〉 of C cannot be reached unless one starts
with a state of the form ρ0 = ρ̃ ⊗ |↓〉〈↓|, with ρ̃ being an
arbitrary single-qubit state.

APPENDIX B: GENERAL RESULTS ON OPTIMAL
CONTROL: THE PONTRYAGIN MAXIMUM

PRINCIPLE

We review here standard results in optimal control the-
ory emphasizing a geometric viewpoint and the results
needed for the applications in the main body of the paper.

1. Setup

In optimal control theory (see, e.g., Ref. [73]) one
considers a general control system

ẋ = f (x, s) , x(0) = x0, (B1)

with x ∈ R
N [76], the control s with values from a com-

pact subset S ⊆ R
M , f a smooth map R

N ×R
M → R

N

that does not depend explicitly on time. The terminal cost
(of Mayer type [77])

J := φ [
x(tf )

]
, (B2)

is to be minimized at the terminal (final) time tf , where φ
is a smooth function. In particular, and this is the case that
interests us, one can fix tf so that J depends only on the
final state x(tf ).

The geometric approach to the necessary condition of
optimal control (see, e.g., Ref. [78]) is based on the con-
cept of a reachable set (or attainable set) for Eq. (B1) with
values of the control in S, which we denote by Rt. The set
Rt is the set of values for the state x that can be reached
(from x0) at time exactly t for control functions with values
in the set S. With this definition, the minimum of the cost
J in Eq. (B2) is the minimum of the function φ over Rtf .
One also defines the reachable set R≤tf := ∪0≤t≤tf Rt, and
if Rt is nondecreasing with t, Rtf = R≤tf . This is the case
for Eq. (15) if one assumes, as we do, that ρ0 commutes
with B (in this case the system can remain in the state ρ0
for an arbitrary length of time with the choice s ≡ 1). If the
set of admissible controls S̃ is compact (as assumed in the
main text) and under general conditions on the map f in
Eq. (B1), which are also satisfied in our cases, Filippov’s
theorem (see, e.g., Ref. [78, Th. 10.1]) states that the reach-
able sets are compact and this implies the existence of the
minimum of the function φ and therefore of the optimal
control [79]. The introduction of the concept of a reach-
able set effectively reduces the optimal control problem to
a static optimization problem for the function φ, where the
set of possible dynamics is described by the reachable set
Rt, that roughly separates the minimization problem from
the analysis of the dynamics.

2. The Pontryagin maximum principle

The basic necessary conditions of optimality are given
by the Pontryagin maximum principle, which we restate
below in a more general formulation than in the main text,
but in a context relevant for the problem of interest to us,
i.e., a fixed final time and a free final state. Assume that
s∗ = s∗(t) is the optimal control function and x∗ = x∗(t)
the optimal trajectory. We refer to (x∗, s∗) as an optimal
pair. We have the following.

Theorem 8. Assume that (x∗, s∗) is an optimal pair. Then
there exists a nonzero vector of functions p = p(t) ∈ R

n

called the co-state that satisfies the terminal problem

ṗT = −pT ∂f
∂x

[
x∗(t), s∗(t)

]
, pT (

tf
) = −∂φ

∂x
[
x∗(tf )

]
,

(B3)
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with f defined in Eq. (B1) and φ defined in Eq. (B2).
Furthermore, define the Hamiltonian function

H (p , x, s) := pTf (x, s) . (B4)

Then we have (maximum principle):

H
(
p , x∗, s∗

) = max
v∈S̃

H
(
p , x∗, v

)
, (B5)

(where S̃ is the set of admissible controls) and

H
[
p(t), x∗(t), s∗(t)

] ≡ λ, (B6)

for a constant λ.

The constant λ describes the dependence of the optimal
cost on the terminal time tf . To see this, given the optimal
control s∗ defined in [0, tf ], calculate the variation of the
cost with this control at t = tf ,

d
dt

∣
∣
∣
∣
t=tf

φ[x(t)] = ∂φ

∂x
[x(tf )] f

[
x(tf ), s(tf )

]

= −pT (
tf

)
f

[
x(tf ), s(tf )

]

= −λ, (B7)

where we use Eqs. (B1), (B3), and (B6). In particular, λ >
0 indicates that it is possible to lower the cost by increasing
the time or, in other words, the constraint t = tf is active.
If λ = 0 the constraint on the final time is not active. If
λ < 0, the above calculation shows that the cost is actually
increasing with t at t = tf .

If there exists a value s0 in the admissible control set
S̃ such that f (x0, s0) = 0 in Eq. (B1), we can show that
we must have λ ≥ 0. The argument is as follows. Assume
λ < 0 in Eq. (B7). Since φ[x(t)] is increasing in t, there
exists an ε > 0 such that φ[x(tf − ε)] < φ[x(tf )] = J .
Now construct the following control function:

s1(t) =
{

s0 t ∈ [0, ε],
s∗(t− ε) t ∈ (ε, tf ],

(B8)

i.e., s1 leaves the cost unchanged in the first interval of
time [0, ε] and then follows the optimal schedule shifted
by ε. Let us denote by φ1(t) the cost function at time t
obtained with control s1. Then, by construction, φ1(tf ) =
φ[x(tf − ε)] < φ[x(tf )], which contradicts the fact that s∗
is optimal. Therefore, λ cannot be negative. Summarizing,
we have the following.

Proposition 1. Assume there exists a value s0 ∈ S̃ such
that f (x0, s0) = 0 in Eq. (B1). Then λ ≥ 0 in Eq. (B6), and
λ > 0 if and only if the constraint on the final time tf is
active.

For the problem of interest in the main body of the paper
the above assumption on the existence of the value s0 ∈ S̃
is valid in Theorems 2 and 6, since we assume that the
initial condition commutes with the Hamiltonian B (i.e.,
we can choose s0 = 1). Furthermore, we note, concern-
ing reachable sets, that (i) because of the existence of
such a value s0 ∈ S̃, we have R≤t = Rt; (ii) from stan-
dard result in control theory, (e.g., Ref. [37, Th. 1] and
references therein) we know that for the bilinear class of
models [such as Eq. (15)], the sets R≤t = Rt are compact
and continuous with t with respect to the Hausdorff metric.

Since the optimal cost J is the minimum of the contin-
uous function φ = φ(x) on Rtf , it depends continuously
on tf , and since Rtf is nondecreasing with tf , the opti-
mal cost is nonincreasing with tf . That the constraint on
the final time is active means that the cost is actually
strictly decreasing. Notice, in particular, that the function
φ = Tr(Cρ) giving the cost in Eq. (7) is linear in the state
(ρ); hence the minimum is necessarily achieved on the
boundary of the reachable set [80]. Therefore, λ > 0 in
Eq. (B6) implies that at the optimal final point, the bound-
ary of the reachable set Rtf “moves” in such a way so as
to make the cost decrease.

APPENDIX C: COORDINATIZATION IN TERMS
OF AN ORTHONORMAL REAL MATRIX BASIS

The application to quantum systems of the PMP, which
is typically formulated over real vector spaces as in
Appendix B, has to account for the fact that in the quan-
tum case the equations are complex valued. To show how
this can be done we start with some basic preliminaries.

We denote the Hilbert-Schmidt scalar product between
operators A and B acting on an n-dimensional Hilbert space
H by 〈A, B〉 := Tr(A†B). For superoperators L, we denote
the Hilbert-Schmidt adjoint of L by L†, which is defined
via

〈L†(A), B〉 := 〈A,L(B)〉 ∀A, B. (C1)

We now choose an orthonormal basis {Fj } for the real
vector space of Hermitian n× n matrices with Hilbert-
Schmidt inner product 〈A, B〉 = Tr(AB). Let us “coordi-
natize” X =∑

j Xj Fj in this basis, where henceforth we
use the notation X = {Xj } for the vector of real-valued
coordinates of the operator X . Then,

〈A, B〉 =
∑

jk

Aj Bk Tr(Fj Fk) =
∑

jk

Aj Bkδjk,

= ATB, (C2)

so that in these coordinates the inner product 〈A, B〉 corre-
sponds to the standard inner product in R

n2
. In particular,

the Hermitian density operator ρ =∑
i ρ iFi, is now rep-

resented by a real, n2-dimensional vector ρ [81]. Since
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the Liouvillian is Hermitian preserving, i.e., [L (X )]† =
L

(
X †

) ∀X , after coordinatization the operator L can be
seen as an operator R

n2 �→ R
n2

. Indeed, denoting the cor-
responding matrix by L in the chosen basis, i.e., Lij =
Tr

[
FiL

(
Fj

)]
, one has

L∗
ij = Tr

{
[FiL

(
Fj

)
]†} = Tr

([
L

(
Fj

)]† F†
i

)

= Tr
[
L

(
Fj

)
Fi

] = Lij , (C3)

i.e., the matrix L is real and defines an operator R
n2 �→

R
n2

. Accordingly, Eq. (6) is transformed into a real-valued
equation:

ρ̇ = Lρ, ρ(0) = ρ0. (C4)

The cost (7) takes the form

J = CTρ(tf ). (C5)

We are now ready to state the PMP in the standard set-
ting of real-valued functions, in the form needed for our
purposes.

Theorem 9. Assume (ρ∗, s∗) is an optimal pair for the
problem defined by Eqs. (C4) and (C5) for a fixed final time
tf [82]. Then there exists a co-state vector p that satisfies
[83]

ṗT = −pTL, p(tf ) = −C. (C6)

Furthermore, define the PMP control Hamiltonian func-
tion

H (p, ρ, s) = pTLρ. (C7)

We then have the maximum principle:

H
[
p(t), ρ∗(t), s∗(t)

] = max
v∈[0,1]

H
[
p(t), ρ∗(t), v

]
, (C8)

and there exists a real non-negative constant λ such that

H
[
p(t), ρ∗(t), s∗(t)

] = λ. (C9)

Theorem 1 is readily obtained applying coordinatization
in reverse. To see that Eq. (C6) corresponds to Eq. (8),
let us write Eq. (C6) explicitly as ṗ i = −

∑
j Ljip j . Next,

since L is real we have Lji = 〈Fj ,LFi〉 = 〈Fj ,LFi〉∗ =

〈LFi, Fj 〉 = 〈Fi,L†Fj 〉. Thus

ṗ =
∑

i

ṗ iFi = −
∑

ij

Ljip j Fi, (C10a)

= −
∑

ij

〈Fi,L†Fj 〉p j Fi, (C10b)

= −
∑

i

〈Fi,L†p〉Fi = −L†p . (C10c)

Finally, the correspondence between Eqs. (C7) and (10) is
a direct consequence of Eq. (C2): 〈p ,Lρ〉 = pTLρ.

APPENDIX D: PROOF OF VARIOUS FORMULAS

1. Proof of Eq. (14)

The proof is, for arbitrary operators A, B, X :

〈A,K†
X (B)〉 = 〈KX (A), B〉, (D1a)

= 〈−i[X , A], B〉 = i Tr([X , A]†B), (D1b)

= i Tr(A†X †B− A†BX †), (D1c)

= i Tr(A†[X †, B]) = i〈A, [X †, B]〉, (D1d)

= 〈A,−KX †(B)〉 , (D1e)

where we used 〈X , Y〉 = Tr[X †Y].

2. Proof of Eq. (34)

Let Dρ := [Wρ, V†]+ [W, ρV†]. Then,

〈X ,Dρ〉 = Tr
(
X †[Wρ, V†

α]+ X †[V, ρW†]
)
,

= Tr
[(

V†X †W− X †V†W

+W†X †V−W†VX †)ρ
]
, (D2a)

= Tr
[(

W†XV−W†VX

+ V†XW− XV†W
)†
ρ
]
, (D2b)

= Tr
[(

W†[X , V]+ [V†, X ]W
)†
ρ
]
, (D2c)

= 〈D†X , ρ〉 , (D2d)

which yields Eq. (34) when we replace W by Wαβ , V by
Sα = S†

α , and sum over α,β.

054023-16



OPTIMAL CONTROL FOR QUANTUM OPTIMIZATION... PHYS. REV. APPLIED 16, 054023 (2021)

3. Proof of v3(t) ≥ 0 for sufficiently small t

Let us compute the Dyson series solution of Eq. (22a) to
second order:

v(t) =
[
1+

∫ t

0
dt1 M[s(t1)]

+
∫ t

0
dt1

∫ t1

0
dt2 M[s(t1)]M[s(t2)]+ O(t3)

]
v0.

(D3)

Using Eq. (22b), for the initial condition v0 = (1, 0, 0)T

there is no contribution from the first (and in fact
also the third) order, while the second order contributes
via {M[s(t1)]M[s(t2)]}31 = s(t1)[1− s(t2)] ≥ 0. Hence,
using s(t) ∈ [0, 1], v3(t) =

∫ t
0 dt1

∫ t1
0 dt2 s(t1)[1− s(t2)]+

O(t4) ≥ 0 for sufficiently small t. In contrast, for the initial
condition v0 = (−1, 0, 0)T we have v3(t) ≤ 0 by the same
argument.

APPENDIX E: OPTIMAL CONTROL AND THE
GEOMETRY OF THE REACHABLE SET

The cost considered in this work is linear in the state
ρ, which after coordinatization we identify with a point
ρ in R

n2
, that is, J := CTρ. In R

n2
, we also consider the

reachable sets Rt at various times t. It is of interest to
consider the level lines (hyperplanes) CTρ = k for vari-
ous k’s. If k is the minimum cost at the final time tf , the
level line CTρ = k intersects the boundary of the reachable
set Rtf at the point ρ(tf ). In our case, the reachable sets
Rt are always nondecreasing with t. Figure 3(a) describes
the regular situation of an active time constraint (λ > 0 in
the main text). The intersection occurs at a point where
the reachable set is increasing with time. Therefore, an
increase (decrease) of the final time tf results in a decrease
(increase) of the optimal cost. However, in principle, a dif-
ferent situation may occur, which is described in Fig. 3(b).

In this case, the reachable set Rt increases with t but not at
the point where the optimum occurs. In this case the final
time constraint is not active (λ = 0). Notice that by conti-
nuity of the reachable set Rt with t, the point ρ(tf ) where
the optimum is achieved with the final time tf will give the
optimal for tf + ε for sufficiently small ε > 0. The corre-
sponding control will be a zero control, which keeps the
state at the initial value for time ε followed by the same
control applied to reach ρ(tf ).

Since we do not claim uniqueness of the optimal con-
trol, the two situations may occur simultaneously for two
different optimal trajectories. For one of them the final time
constraint is active, while for the other one it is not. Given
the additional structure of our problem, it should be pos-
sible to say more about the geometry of the reachable sets
for the systems of interest here beside what is known from,
for instance, Ref. [37]. However, this is beyond the scope
of this work.

APPENDIX F: PROOF OF THEOREM 3

Proof: Let us denote by J̃ (tf ) the cost function obtained
with control s̃ := s̃(t). By definition, the optimal con-
trol satisfies Jmin(tf ) ≤ J̃ (tf ). Hence, to prove Jmin(tf ) <
Jmin(0) = 〈C, ρ0〉, it suffices to show that there exists a con-
trol s̃ for Eq. (6) such that the corresponding cost J̃ (tf )
satisfies J̃ (tf ) < Jmin(0). This is the proof strategy we
employ here.

Specifically, we consider a bang-bang switching sched-
ule s̃ in the interval [0, 2t] and denote the corresponding
cost starting from ρ0 by J̃ (2t). We show that J̃ (2t) < J̃ (0)
for sufficiently small t, which gives

Jmin(2t) ≤ J̃ (2t) < J̃ (0) = Jmin(0) = Tr(Cρ0), (F1)

and this proves the theorem with tf = 2t.
The class of controls we consider is s̃ ≡ 1 [correspond-

ing to KC in Eq. (15)] for an interval of length t, followed

(a) (b)

FIG. 3. (a) Behavior of the optimal cost in the regular case where the reachable set increases with the final time at the optimal point
ρ(tf ). In this case we expect λ > 0. (b) Behavior of the optimal cost in the case where the reachable set increases with the final time
but not at the optimal final point ρ(tf ). In this case we expect λ = 0.
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by s̃ ≡ 0 [corresponding to KB in Eq. (15)] for a second
interval of length t. This gives for J (t) [Eq. (7)]:

J̃ (2t) = Tr
(
Ce−iBte−iCtρ0eiCteiBt) . (F2)

We work in a basis where B is diagonal with eigenvalues
in decreasing order: B = diag(λn, λn−1, . . . , λ1) and λ1 <

λj , for each j = 2, 3, . . . , n (nondegeneracy). In this basis
ρ0 = diag(0, . . . , 0, 1).

In Eq. (F2), the Baker-Campbell-Hausdorff (BCH) for-
mula yields

J̃ (2t) = Tr
{

eiBtCe−iBt

×
[
ρ0 − i[C, ρ0]t− [C, [C, ρ0]]

t2

2
+ O(t3)

]}
.

(F3)

Applying the BCH formula again, this time to eiBtCe−iBt,
we obtain

J̃ (2t) = Tr
[(

C+ i[B, C]t− [B, [B, C]]
t2

2

)

×
(

ρ0 − i[C, ρ0]t− [C, [C, ρ0]]
t2

2

) ]

+ O(t3).

(F4)

Expanding, we obtain

J̃ (2t) = Tr(Cρ0)+ i Tr([B, C]ρ0)t− Tr{[B, [B, C]]ρ0} t
2

2
− i Tr(C[C, ρ0])t+ Tr ([B, C][C, ρ0]) t2

− Tr{C[C, [C, ρ0]]} t
2

2
+ O(t3). (F5)

Several of the terms in the above equation vanish. In
particular,

Tr ([B, C]ρ0) = Tr ([ρ0, B]C) = 0, (F6)

since B and ρ0 commute. Tr{[B, [B, C]]ρ0} = 0 for the
same reason. −i Tr(C[C, ρ0]) = −i Tr(ρ0[C, C]) = 0, and
Tr{C[C, [C, ρ0]]} = Tr ([C, ρ0][C, C]) = 0. Therefore, we
have

J̃ (2t)− Tr(Cρ0) = Tr ([B, C][C, ρ0]) t2 + O(t3). (F7)

Write

B =
(
� 0
0 λ1

)

, C =
(

C1 a
a† c

)

, (F8)

with� = diag(λn, . . . , λ2), C1 an (n− 1)× (n− 1)Her-
mitian matrix, c a real number and a an (n− 1)th dimen-
sional complex vector. With these notations, we have

[B, C] =
(

[�, C1] (�− λ11)a
a†(λ11−�) 0

)

, (F9)

[C, ρ0] =
(

0 a
−a† 0

)

. (F10)

From this we obtain

Tr ([B, C][C, ρ0]) = 2a†(λ11−�)a, (F11)

so that we have, from Eq. (F7):

J̃ (2t)− Tr(Cρ0) = −t2

⎛

⎝
n∑

j=2

(λj − λ1)|aj |2
⎞

⎠+ O(t3),

(F12)

where aj are the components of a. Since λj > λ1 for each
j , we have for sufficiently small t:

J̃ (2t)− Tr(Cρ0) = J̃ (t)− Jmin(0) < 0, (F13)

as required. We assume here that at least one of the com-
ponents of a is nonzero. If that were not the case then
[ρ0, C] = 0 and ρ0 would be fixed not just under B but also
under C. There would then be no dynamics, which is a case
that is naturally excluded. �

APPENDIX G: SINGULAR ARCS

Along singular arcs we have xC ≡ xB, i.e.,

〈B, S〉 ≡ 〈C, S〉. (G1)

Differentiating Eq. (G1), using Eq. (39) we find
〈B,KH S〉 = 〈C,KH S〉. Using H = sB+ (1− s)C and the
antihermiticity of KH we thus obtain

〈K†
H (B), S〉 = 〈K†

H (C), S〉 =⇒ (G2a)

〈(1− s)[C, B]†, S〉 = 〈s[B, C]†, S〉 =⇒ (G2b)

−(1− s)〈[C, B], S〉 = s〈[C, B], S〉 =⇒ (G2c)

〈[C, B], S〉 = 0. (G2d)

Analogously, differentiating Eq. (G2) and using the anti-
hermiticity of KH again, setting D := [C, B], we have
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0 = 〈D, Ṡ〉=〈D,KH (S)〉=〈K†
H (D), S〉, (G3a)

= −(1− s)〈[C, D]†, S〉−s〈[B, D]†, S〉, (G3b)

= (1− s)〈[C, D], S〉+s〈[B, D], S〉 . (G3c)

Conditions (G1)–(G3) have to hold along a singular arc. In
an algorithm to calculate the dynamical Lie algebra for the
controllability of Eq. (15) [26], the matrices B and C are the
matrices of “depth” zero in the calculation via iterated Lie
brackets. The matrix [C, B] is of depth one and the matrices
[[C, B], C] and [[C, B], B] are of depth two. Now, one can
have either (i) 〈[C, D], S〉 �= 〈[B, D], S〉 or (ii) 〈[C, D], S〉 =
〈[B, D], S〉. In case (i) it follows from Eq. (G3) that

s = 〈[C, D], S〉
〈[C, D], S〉 − 〈[B, D], S〉 (G4)

(compare with Ref. [24, Eq. (12)]). This shows the continu-
ity of s in the corresponding open set(s). Case (ii) implies
〈[C, D], S〉 ≡ 〈[B, D], S〉 ≡ 0 (in some closed set). One can
further differentiate one of these equations and obtain an
analog of Eq. (G3) at a higher order, at which point simi-
lar reasoning can be applied. In principle s can be defined
in different intervals by equations such as Eq. (G4) or its
higher-order generalizations. In each interval s is continu-
ous because of the continuity of S. We leave a more general
proof of continuity of s on the entire singular arc as an open
problem. In any case, Eqs. (G2)–(G3) provide information
on the dynamics along singular arc intervals. They are used
in the example discussed in Appendix H.

APPENDIX H: OPTIMAL CONTROL PROTOCOL
FOR THE SPIN- 1

2 MODEL

Here we analyze in detail the optimal control problem
for the spin-(1/2) model treated in Sec. IV C. Our goal
is to give a simple but explicit example to show how the
results developed in this paper can be used to find the opti-
mal control. We use the same notation as in the example
of Sec. IV C. To avoid the situation of an inactive terminal
time constraint described in the example, we assume that
the initial state is the ground state x0 = (−1, 0, 0)T, so that
we can apply Theorem 3.

1. The global minimum is found using two nonsingular
arcs in time tf ≥ π

Recall that C = σ z/2 and B = σ x/2. The global mini-
mum of the cost (7) is Jmin = Tr[Cρf ] = −1/2, achieved
when ρf = (1− σ z)/2, the ground state of C = σ z/2.
Given that our initial condition is ρ0 = (1− σ x)/2 [the
ground state of B, corresponding to v = (−1, 0, 0)T], we
can trivially reach ρf = (1− σ z)/2 by applying two
consecutive bangs (i.e., unitary single-qubit gates): first
e−i(π/2)C [rotation to (1− σ y)/2] with s ≡ 0, then e−i(π/2)B

[rotation to (1− σ z)/2] with s ≡ 1. Each bang lasts for

a time (π/2), therefore the total bang-bang sequence last
for a total time of π . This sequence presents no singular
arcs. For any tf > π the constraint on tf becomes inactive,
i.e., increasing tf cannot further lower the value of Jmin.
Since we assume that the global ground state is not reached
(recall the discussion in Sec. IV B), henceforth we assume
that tf < π . In principle, this setting could still allow for
the appearance of singular arcs. However, we show that
this is not the case.

2. Conditions on the singular arcs for the spin-1/2
model

Let us derive the conditions on the singular arcs in the
present problem, which are a special case of the computa-
tions carried out in Appendix G. Using Eq. (20), we obtain
[C, B] = iσ y/2, [[C, B], C] = −σ x/2, [[C, B], B] = σ z/2.
Using these, Eqs. (40b), (41), and (G1) for the switching
operator S become

2xC = Tr (Sσ z) ≡ Tr
(
Sσ x) = 2xB. (H1)

Condition (G2) becomes

Tr
(
Sσ y) ≡ 0, (H2)

and condition (G3) becomes (1− s)Tr(σ xS)− s Tr(σ zS) ≡
0, which using Eq. (H1) gives

(1− 2s)Tr
(
σ xS

) ≡ 0. (H3)

Thus, either s = 1/2 or Tr(σ xS) ≡ 0. Let assume the latter.
From Eqs. (H1) and (H2) we obtain Tr(σ zS) = Tr(σ yS) ≡
0. Since we can expand S = (1/2)∑3

i=1 Tr(Sσi)σi (S is
traceless since it is defined as a commutator), this would
then imply that S ≡ 0 on a singular interval. However,
since S satisfies the linear equation (39), this would imply
S ≡ 0 on the whole interval [0, tf ] and, in particular,
[p0, ρ0] = [pf , ρf ] = −[C, ρf ] = 0. This would imply that
ρf is a linear combination of eigenprojectors of C, but
since ρf is a pure state it must in fact be equal to a sin-
gle eigenprojector. Moreover, this must be the ground state
of C since J (t) is minimized at t = tf . But, since J (tf ) ≤
J (0), the only possibility is that J = Tr(Cρ) reaches its
global minimum at tf , which contradicts our assump-
tion that tf is smaller than a value that would allow the
global minimum to be reached. Hence we conclude that
Tr(σ xS) �= 0 in Eq. (H3), which yields s ≡ 1/2 on the sin-
gular arcs. However, we see in Proposition 3 that singular
arcs are in fact not possible in this case.

3. Candidate optimal controls with a singular arc

Using conditions (H1) and (H2) along with Eq. (42)
equated to λ, we have that in the time interval of a singular
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arc

S ≡ λ (
σ x + σ z) . (H4)

λ = 0 is impossible because according to the argument at
the end of the previous subsection S ≡ 0 is to be excluded.
Since λ �= 0, we can apply all the conclusions of Theorem
2 and affirm that the optimal control starts with an s ≡ 0
bang arc and ends with an s ≡ 1 bang arc. Therefore, pre-
ceding or following a singular arc we must have s ≡ 0 or
s ≡ 1, respectively. Let us show that after a singular arc
we cannot go to a switching point, i.e., where Eq. (H1)
holds [(λ, λ) in Fig. 2]. (Analogously, changing the sign
of time, we can show that a singular arc cannot be pre-
ceded by a switching point.) Assume that after the singular
arc we have s ≡ 0. The switching operator S = S(t), with
t = 0 at the end of this singular arc, is then the solution
of Eq. (39) with the initial condition (H4), i.e., S(t) =
λe−itσ z/2σ xeitσ z/2 + λσ z. The minimum time needed for it
to return to a switching point is t = 2π . This contradicts
the fact that tf < π and therefore is impossible. Similar
reasoning shows that we cannot go back to a switching
point with s ≡ 1. Therefore, we learn the following fact
about optimal control in the single-qubit case.

Proposition 2. The optimal control has at most one singu-
lar arc and, if it does, the optimal control is the sequence
s ≡ 0, s ≡ (1/2), s ≡ 1.

Consider now the initial switching operator S0, which
together with the differential equation, Eq. (39), determines
the control sequence. Since S is traceless, we can write
S0 = r0 · σ , but using Eq. (37) and ρ0 = (1/2)(1− σ x)we
see by expanding p in the Pauli matrix basis that S0 cannot
contain σ x, i.e., we find that S0 has the form

S0 = r0yσ
y + r0zσ

z. (H5)

In the first interval s ≡ 0 and therefore, from Eq. (39):

S(t) = r0zσ
z + r0ye−itσ z/2σ yeitσ z/2, (H6a)

= r0zσ
z + r0y cos(t)σ y − r0y sin(t)σ x. (H6b)

If there is a singular arc and therefore S takes the form
(H4), then we must have t = (π/2) and r0y = −r0z or t =
(3π/2) and r0y = r0z. The second case is to be excluded
since tf < π . After the singular arc we would have s ≡ 1,
which, using Eq. (39) again would give

S(t) = r0zσ
x + r0ze−itσ x/2σ zeitσ x/2, (H7a)

= r0zσ
x + r0z[cos(t)σ z − sin(t)σ y]. (H7b)

Since we have to reach the point (xC, xB) = (0, λ) in Fig.
2, we must have cos (t) = 0, i.e., t = (π/2) or t = (3π/2),

which has to be added to the time used before the last inter-
val. Therefore, the total time is greater than or equal to π ,
which we have excluded.

In conclusion, we have the following.

Proposition 3. No singular arc exists in the optimal
control for the spin-1/2 example with tf < π .

4. Candidate optimal controls without singular arcs

Now we consider the optimal control candidates know-
ing that they must be free of singular arcs, i.e., they can
consist only of bangs. Since S(t) is traceless we again use
the parametrization S(t) = r(t) · σ . We already know [Eq.
(H5)] that

r(0) = r0 = (0, r0y , r0z)
T. (H8)

We know from Eq. (39) that the vector r evolves accord-
ing to Eqs. (22a)–(22b). More explicitly, let X := KB and
Z := KC. When s ≡ 0, H = C and r evolves according to
etZ , and likewise when s ≡ 1 it evolves according to etX ,
where, using Eq. (21):

etX =
⎛

⎝
1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)

⎞

⎠ (H9a)

etZ =
⎛

⎝
cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1

⎞

⎠ . (H9b)

Since we have shown that λ > 0, from Theorem 2, the con-
trol law will start with an s ≡ 0 bang arc and end with
an s ≡ 1 bang arc. The control law is determined by a
sequence of intervals of lengths {τ1, τ2, . . . } where for k
odd (even) τk marks the switch from s ≡ 0 to s ≡ 1 (s ≡ 1
to s ≡ 0), that is Z → X (X → Z). That is,

r(tk) =
{

eτkZ r(tk−1) k odd
eτkX r(tk−1) k even , (H10)

where tk =
∑k

i=1 τi is the total time after k intervals. Note
that, in principle, there is no guarantee that such a switch-
ing sequence is finite, even if the total control interval
is finite; this is known in the control theory literature as
the Fuller phenomenon (see, e.g., Ref. [84]). We see in
Remark 1 below that this does not happen in our case
and we have a finite sequence of intervals of lengths
{τ1, τ2, . . . , τN } with N even (according to Theorem 2).
Given our definitions, tf =

∑N
i=1 τi, where τ1 and τN are

the lengths of the initial (Z) and final (X ) arcs, respec-
tively.
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5. Characterization of the switching times

Note that the vector r = (rx, ry , rz)
T consists of the com-

ponents of S along the Pauli basis, and that rx = xB and
rz = xC [Eq. (H1)]. Recall also that, as argued in Sec.
VI A (see Fig. 2), (xC, xB) = (λ, λ) at every switching
point. Hence rx = rz = λ at every switching point between
nonsingular arcs in our discussion below.

The optimal candidate control law is characterized by
a sequence of intervals of length τ1, τ2, etc. Define the
sequence {�k} recursively from the sequence {τk} via
�0 = 0, �k = τk −�k−1, for k = 1, 2, . . . . Then, the fol-
lowing holds.

Lemma 1. For n = 1, 2, . . . , except for the n correspond-
ing to the last control interval

(−1)n sin (�n) r0y = r0z, (H11)

[cf. Eq. (H5)] and

r (tn) =
[
r0z, cos(�n)r0y , r0z

]T . (H12)

Proof: The proof is by induction on n. For n = 1 we
have �1 = t1 = τ1. At the end of the first arc we must
reach the point (xC, xB) = (λ, λ), which means that r(τ1) =
(r0z, ∗, r0z)

T. Thus, using Eq. (H10) and eτ1Z in Eq. (H9b),
we obtain Eqs. (H11) and (H12).

Now assume Eqs. (H11) and (H12) hold for n− 1. If n
is even we have

r (tn) = eτnX r (tn−1) . (H13)

Next, use Eq. (H9a), and impose r(tn) = (r0z, ∗, r0z)
T,

since (xC, xB) = (λ, λ) at every switching point. Equal-
ity of the z component then gives sin(τn) cos(�n−1)r0y +
cos(τn)r0z = r0z, and using Eq. (H11) with n replaced
by n− 1, we obtain r0z = sin(τn) cos(�n−1)r0y − cos(τn)

sin(�n−1)r0y = sin(τn −�n−1)r0y = sin(�n)r0y . Calculat-
ing the y component of r(tn), we obtain cos(τn) cos(�n−1)

r0y− sin(τn)r0z= cos(τn) cos(�n−1)r0y+ sin(τn) sin(�n−1)

r0y = cos(�n)r0y , using again the inductive assumption
Eq. (H11). A similar calculation with Z replacing X in Eq.
(H13) gives the result when n is odd. �

6. Determination of the optimal control

We now use the formulas in the above lemma to deter-
mine the optimal control. Define μ = arcsin

(
r0z/r0y

)
and

notice that from Eq. (H11) for n = 1 and�1 = τ1 we have
μ = arcsin [− sin (τ1)]. Since 0 < τ1 < π , we have μ =
−τ1 for τ1 ∈ (0,π/2] and μ = −π + τ1 for τ1 ∈ [π/2,π),
and, in particular, μ < 0.

Let us consider first the possibility that 0 < τ1 ≤ (π/2).
We also have τ1 = �1 = −μ. If there is more than one
switch (i.e., τ2 > 0), then we can derive �2 from Eq.

(H11). We have either �2 = π − μ+ 2lπ or �2 = μ+
2lπ for integer l. Recalling that τ2 = τ1 +�2, in the first
case we have τ2 = π − 2μ+ 2lπ , and in the second case
τ2 = 2lπ . The second case is not possible because τ2 must
be in (0,π). The first case is not possible either because
l ≥ 0 would contradict that the total time must be less than
π while l < 0 would give a negative or zero interval τ2.
Therefore, in the case 0 < τ1 ≤ (π/2) there exists only one
switch and the control is simply the sequence of two bangs,
one corresponding to s ≡ 0 followed by one corresponding
to s ≡ 1. Before determining where the switch must occur,
let us consider the case (π/2) < τ1 < π .

Lemma 2. Assume that τ1 ∈ (π/2,π) and define μ =
arcsin

(
r0z/r0y

)
< 0. Then �n = π + μ for n odd and

�n = μ for n even.

Proof: The claim follows by induction from Eq. (H11).
Applying it for n = 1, since �1 = τ1, we have �1 = π +
μ. Now, assume that the claim is true for n even. From
Eq. (H11) applied for n even, we obtain �n = μ+ 2lπ or
�n = π − μ+ 2lπ , for integer l. Since τn = �n−1 +�n,
using the inductive assumption, we obtain in the two cases,
τn = π + 2μ+ 2lπ and τn = 2π + 2lπ , respectively. The
latter case is impossible because it would mean that τn >

π . The first case is only possible with l = 0, because l > 0
would imply τn > 2π while l < 0 would give a negative
time interval. Since we saw above that �n = μ+ 2lπ for
n even, this gives �n = μ for such n.

Let us now prove that �n = π + μ for n > 1 and odd.
Again using Eq. (H11) we obtain either �n = −μ+ 2lπ
or�n = π + μ+ 2lπ . The first case is impossible because
it would mean τn = �n−1 +�n = 2lπ (using the inductive
assumption). The second case would give τn = �n−1 +
�n = π + 2μ+ 2lπ , which is only possible for l = 0.
This gives �n = π + μ. �

Remark 1. One of the consequences of the above lemma
is that the switching sequence is finite, i.e., we do not have
intervals between two switches, which become arbitrar-
ily small and hence the Fuller phenomenon [84] is ruled
out in our case. In particular, if 0 < τ1 < (π/2) there is
only one switch, as we have seen, while if (π/2) < τ1 < π

then we have multiple switches with τk = �k +�k−1 =
π + 2μ, which is a constant independent of k.

In order to learn more about the optimal control,
and rule out the second case of (π/2) < τ1 < π , we
examine the final arc, which is of the form eτN X (s ≡
1). Recall that with the final arc we have to reach
the point (xC, xB) = (0, λ), which imposes that the final
switching operator is of the form r(tN ) = (r0z, ∗, 0)T

[see Eq. (H7b) and the discussion immediately below
it]. Thus, using Eq. (H13) with n = N and Eq. (H9a),
we obtain sin(τN ) cos(�N−1)r0y + cos(tN )r0z = 0. Using
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Eq. (H11) and r0y �= 0, we obtain sin(τN ) cos(�N−1)−
sin(�N−1) cos(τN ) = sin(�N ) = 0, where �N = τN −
�N−1. Therefore, τN = �N−1 + lπ for l integer. Now there
are two cases: Multiple switches or only one switch. In the
case of multiple switches, we are in the situation described
in Lemma 2. We have �N−1 = �1 = π + μ. Therefore,
τN = π + μ+ lπ . The integer l must be zero because if it
is positive we have τN > π and if it is negative, we have
a negative interval τN . Therefore τN = π + μ. However,
tf ≥ τ1 + τN = 2�1 = 2(π + μ) > π , which is impossi-
ble. Therefore, the situation (π/2) < τ1 < π cannot occur.
The only possibility is the situation with 0 < τ1 < (π/2)
with one switch only. In this case, as above we have τ2 =
�1 + lπ = τ1 + lπ with l = 0 since again l < 0 will give
a negative time interval and l positive will give total time
greater than π . So τ2 = τ1 and the optimal control is the
simplest one. This completes the proof of Proposition 4.

APPENDIX I: ADDITIONAL CONSIDERATIONS
REGARDING THE SHORTENING OF THE

INITIAL AND FINAL ARCS

In principle, one can be more quantitative about the
shortening of the arcs discussed in Sec. VI B by repeat-
ing the analysis of Ref. [85] for the quantity xB(�t) [Eq.
(45)]. The latter work provided a detailed analysis of the
return probability F(t) := ∣

∣〈ψ |e−itH |ψ〉∣∣2, where H is a
time-independent Hamiltonian and |ψ〉 an initial state. One
of the results of Ref. [85] was an explicit form for the aver-
age number of zeroes of the equation F(t) = v. Indeed,
F is a particular case of the left-hand side of Eq. (45)
and can be written in that form with B = S0 = |ψ〉〈ψ |,
C = H . Let NxB(v) be the average number of solutions
of the equation xB(t) = v. The number of zeroes N in a
large interval of length T turns out to be proportional to T:
NxB(v) = TDxB(v) where DxB can be computed using the
methods of Ref. [85]. Then �t � T/NxB(λ) = 1/DxB (λ).
Using Ref. [85, Eq. (6)], which applies for the special case
mentioned above, we then obtain

�t(λ) �
√
π

2
1
�E

√
〈xB〉
λ

eλ/〈xB〉, (I1)

where 〈xB〉 := limT→∞(1/T)
∫ T

0 xB(t)dt and�E is the stan-
dard deviation of the energies {Ek} with respect to the
distribution {pk = ‖�k|ψ〉‖4 /

∑
n ‖�n|ψ〉‖4} (recall that

C =∑
k Ek�k is the spectral resolution of C). The deriva-

tion of Eq. (I1) is subtle and is carried out in Ref. [85].
Since it only represents a special case in our context, we
do not pursue it further here, and present Eq. (I1) mainly to
stimulate the interest of the reader and establish a possible
entry point towards a rigorous treatment of the shortening
of the initial and final arcs.

As a final comment, note that when C is a classical Ising
Hamiltonian of the form C = J

∑n
i,j=1 σ

z
i σ

z
j , the energies

are integer multiples of J and highly degenerate (therefore,

the spectrum is commensurate: {Ek} ⊂ {0,±J ,±2J , . . .}).
This implies that the function xB(t) in Eq. (46) is peri-
odic with period not larger than 2π/J (as opposed to being
almost periodic) and this has implications for DxB(λ), but
the general considerations we have outlined still hold.
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