
PHYSICAL REVIEW APPLIED 16, 054003 (2021)

Wave Analysis and Homogenization of a Spatiotemporally Modulated Wire
Medium

Michael Kreiczer and Yakir Hadad *

School of Electrical Engineering, Tel Aviv University, 69978 Ramat-Aviv, Israel

 (Received 7 June 2021; revised 29 September 2021; accepted 8 October 2021; published 2 November 2021)

We develop a homogenization theory for a spatiotemporally modulated wire medium. We first solve
for the modal waves that are supported by this composite medium, and we show peculiar properties such
as extraordinary waves that propagate at frequencies below the cutoff frequency of the corresponding
stationary medium. We explain how these unique solutions give rise to an extreme Fresnel drag that exists
already with weak and slow spatiotemporal modulation. Next we derive the effective material permittivity
that corresponds to each of the first few supported modes, and write the average fields and Poynting
vector. Nonlocality, nonreciprocity, and anisotropy due to the spatiotemporal modulation are three inherent
properties of this medium, and are clearly seen in the effective material parameters. Lastly, we validate
that homogenization and spatiotemporal variation are not necessarily interchangeable operations. Indeed,
in certain parameter regimes the homogenization should be performed directly on the spatiotemporally
modulated composite medium, rather than the stationary medium being homogenized first and then the
effect of the space-time modulation being introduced phenomenologically.
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I. INTRODUCTION

The study of electromagnetic wave dynamics in time-
varying media goes back several decades [1,2]. Recently,
there has been renewed interest in research in this direc-
tion, especially in the context of new developments toward
the next generation of metamaterials [3–16], includ-
ing devices that outperform physical linear-time-invariant
(LTI) bounds [17–21]. Such progress is accompanied by
new technological abilities that make the actual realization
of engineered time-varying media plausible.

Most recent studies on time-varying media have
explored wave phenomena and potential applications
where the time modulation was considered by assuming
certain, given, time-varying effective constitutive relations,
such as effective permittivity, permeability, and conduc-
tivity. However, such a medium will typically be imple-
mented as a metamaterial. This raises the question of the
correct modeling of such a composite medium, and specif-
ically, the connections between its microstructure time-
varying properties and its macroscopic effective medium
characteristics. In this paper, we address these issues for
the specific case of a spatiotemporally modulated, capaci-
tively loaded, infinite wire medium (see Fig. 1).

Despite its apparent simplicity that allows relatively-
easy-to-follow analytical modeling, the wire medium, even
in its simplest two-dimensional lattice form, gives rise
to various peculiar properties, such as strong anisotropy,
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effective plasmalike dispersion, and strong nonlocality
[22–38]. Therefore, it is a particularly interesting platform
to use to explore wave phenomena and homogenization
when one is considering the time modulation already at the
microscopic meta-atom level.

In this work our goal is twofold. First, taking into
account the complete interaction between spatiotempo-
rally modulated loaded wires (meta-atoms), we explore
the various wave phenomena that can be supported by
this medium. Particularly, we study (i) nonreciprocal and
anisotropic propagation due to the spatiotemporal modu-
lation, (ii) the existence of extraordinary waves that prop-
agate at frequencies that are below the so-called plasma
frequency of the stationary wire medium (i.e., in the
absence of modulation), even with a negligible modulation
index, and thus that are akin to the whistler mode in mag-
netized plasma [39], and consequently (iii) the emergence
of Fresnel drag [40] already with weak and slow modula-
tion. Second, we aim to derive effective medium properties
when the meta-atoms are time modulated. In particular we
explore the effect of taking into account the time modula-
tion already in the homogenization process, as opposed to
first homogenizing the stationary medium and later intro-
ducing the time modulation into the effective properties.
Put differently, we try to address the effect of the spatiotem-
poral modulation on the homogenization. Related to that
is the issue of dispersion in the presence of time modu-
lation; this was recently tackled in several studies, such
as Refs. [41,42]. Here we study the specific wire-medium
case using a quasi-frequency-domain approach, and take
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FIG. 1. (a) Capacitively loaded wire. (b) The wire medium
on a rectangular lattice with unit-cell dimensions a along x
and b along y. In this work we focus on waves that propagate
transversely to the wires with �q = qxx̂ + qy ŷ.

the complete interwire interaction that comprises the com-
posite medium, as discussed below. We pay particular
attention to the wave dynamics near the plasma frequency,
where, because of the sensitivity of the zero-crossing point
of the effective transverse permittivity of the stationary
wire medium, interesting phenomena occur as soon as we
introduce weak spatiotemporal modulation.

The paper is organized as follow. For completeness,
in Sec. II, we begin with a brief review of stationary
capacitively loaded wire media. Then, in Sec. III we intro-
duce spatiotemporal modulation to the capacitive loads and
provide a through mathematical formulation to solve the
modal problem. In Sec. IV, focusing on a narrow frequency
range near the plasma frequency of the corresponding sta-
tionary lattice, we derive analytical expressions for the
dispersion relations of the first lowest-order modes sup-
ported in the lattice, and study the wave dynamics in
this parameter domain. In Sec. V, we derive the effective
medium parameters of several supported modes; in addi-
tion, we derive expressions for the averaged electric and
magnetic fields, and the corresponding Poynting vector
in this case. In Sec. VI we explore numerically the exci-
tation dynamics of a finite, spatiotemporally modulated,
wire-medium sample. Finally, in Sec. VII, we compare the
wave phenomena in the time-modulated wire medium and
the wave phenomena predicted when the time modulation
is introduced into the effective medium properties of the
stationary wire medium (i.e., after homogenization).

II. STATIONARY CAPACITIVELY LOADED WIRE
MEDIUM

In the following sections we analyze wave phenom-
ena in spatiotemporally modulated loaded-wire media.
Unavoidably, we frequently refer to the derivation and the
main results for the corresponding stationary case. There-
fore, to make the paper self-contained, in this section
we briefly review a stationary capacitively loaded wire
medium. We mainly follow the analysis in Ref. [38] for

general wire loading, and stress the more-relevant aspects
for the spatiotemporal problem to follow.

Assume that a ẑ-polarized electromagnetic wave is prop-
agating inside an infinite loaded wire medium as shown
in Fig. 1. We assume that the wires are surrounded by a
vacuum with permittivity ε0 and permeability μ0. The lat-
tice points are given by �Rm,l = max̂ + lbŷ, where a and b
are the unit-cell dimensions and m and l denote the unit-
cell indices. The induced current in each of the wires is
given by �I = α �Eloc, where �Eloc is the local electric field
(namely, the electric field at the wire location but in the
absence of the wire itself) and α is the wire’s susceptibility.
If the wires are periodically loaded by lumped impedance
ZL with periodicity � � λ, the inverse susceptibility is
given by [38]

α−1 (ω) = α−1
0 (ω)+ ZL

�
, (1)

where α−1
0 (ω) = (ηk/4)H (2)

0 (kr0). For serial loading of
lumped capacitors ZL/� = 1/jωC̃0 and C̃0 = C0�. Here
η = 120π	 and k = ω/c are the free-space impedance
and wave number, respectively, ω is the radial frequency, c
is the speed of light in a vacuum, r0 is the wire radius, and
H (2)

0 denotes the zero-order Hankel function of the second
kind. There are additional, more-accurate ways to describe
the periodic wire loading [43,44]; however, since we con-
sider mainly the fundamental physical effects, we limit
this work to the relatively simple and intuitive approx-
imation in Eq. (1), which has been demonstrated to be
effective and sufficiently accurate through full-wave simu-
lations and experiments in various studies [45,46]. In light
of the lattice periodicity, the Floquet-Bloch wave solution
as follows:

Im,l = I0e−j (qxam+qy bl), (2)

where qx and qy stand for the transverse (with respect to
z) components of the wave number in the wire medium.
Throughout this paper we assume for simplicity that qz =
0, which is in accord with our initial assumption that
the electric field is polarized solely along z. Under the
assumptions above, the wave-number dispersion is found
by solving

Eloc
z (I0) = α−1(ω)I0, (3)

where Eloc
z denotes the local field acting on the wire (See

Appendix A) at m = l = 0. Following Ref. [38] it is given
by

Eloc
z = −I0

ηk
2

⎛
⎝S0 +

∑
m �=0

Sme−jqxam

⎞
⎠ , (4)
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with

S0 =
∞∑

l=1

H (2)
0 (kR0l) cos qybl (5a)

Sm = 1
2

∞∑
l=−∞

H (2)
0 (kRml) e−j qy bl, (5b)

where Rml =
√
(ma)2 + (lb)2. The infinite slowly converg-

ing series in Eqs. (5a) and (5b) may be converted into
fast converging series using for example, Poisson summa-
tion [38,47]. For a dense grid, ka, kb � 1, the dispersion
relation may be approximated by

ωL̃w − 1

ωC̃0
= kη

ab(k2 − q2)
, (6)

where q2 = q2
x + q2

y and

L̃w = η

2c

(
1
π

ln
b

2πr0
+

∞∑
l=1

coth(πal/b)− 1
π l

+ a
6b

)
,

(7)

which denotes the per-unit-length intrinsic wire induc-
tance. For the dense-grid case, the dispersion equation
depends only on q =

√
q2

x + q2
y . Then, an equation for the

effective permittivity along the longitudinal (with respect
to z) axis is obtained as εz = q2/k2. This yields

εz (ω) = ε0

(
1 − k2

p(k)

k2

)
, (8)

with

k2
p(k) = ηk

ab(ωL̃w − 1/ωC̃0)
(9)

and k = ω/c. Here and henceforth, kp is the plasma
frequency. Nevertheless, unlike unloaded wire media,
for which effectively C̃0 → ∞ and consequently k2

p =
(η/c)/abL̃w = (1/C̃bL̃w)/c2, where C̃b = abε0 is fre-
quency independent, when the wires are loaded the behav-
ior is not that of a typical plasma since kp depends on
k. In the following, C̃b is the per-unit-length background
capacitance.

III. WIRE MEDIA WITH SPATIOTEMPORALLY
MODULATED CAPACITIVE LOADING

Our first goal is to study wave propagation in spatiotem-
porally modulated wire media (see illustration in Fig. 2).
To that end, we generalize the conventional approach for

stationary LTI wire media described above. Our analysis
is based on the concept of harmonic balance that can be
regarded as a quasi-frequency-domain technique. In this
sense, our method is less general than, for example, that
in Ref. [48], which suggests, in principle, a direct time-
domain approach to that problem. However, since we focus
on the particular case of small time-harmonic capacitance
perturbation, we find this method, as discussed below, to
be more direct and therefore a better fit for this problem.

A. The response of a single wire

Consider the periodically loaded and time-modulated
wire in Fig. 2a. Assume that the loading capacitance on
each of the wires is modulated as

C (t) = C0 + δC cos (	t − ϕ) , m = δC
C0

� 1. (10)

Here and henceforth, 	 denotes the modulation frequency,
m denotes the modulation depth, and ϕ is an additional
phase term that will enable the effective spatiotemporal
modulation by enforcing certain phase differences between
the wires. In the absence of time modulation, the time-
domain counterpart of Eq. (3) is given by Êloc (t) =
α̂−1(t) ∗ Î (t), where “wide-hat” X̂ (t) represents the time-
domain, inverse-Fourier-transform counterpart of X (ω),
where X stands for either Eloc, α−1, or I . This time-domain
perspective enables us to naturally introduce the effect of
the time modulation on the capacitors (see Appendix B):

Êloc (t) = α̂−1
0 (t) ∗ Î (t)+ 1

C̃ (t)

∫ t

−∞
I (τ ) dτ , (11)

with C̃(t) = C(t)�. By using 1/(1 + x) ≈ 1 − x for x �
1, by inserting Eq. (10) in Eq. (11), and by transformation

( )

D

z(a) (b)

FIG. 2. (a) The time-modulated loaded wire. L0 increases
the self-inductance of the wire, and C(t) introduces the time-
modulated capacitance. These lumped elements are periodically
loaded on the wire with periodicity �, thus creating the effective
wire time-modulated susceptibility. (b) The wire medium. Each
wire is modulated with the same temporal frequency	 but with a
different phase that is determined by the modulation wave vector
�ζ . The propagation occurs with fundamental wave vector �q0.
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to the frequency domain, we get

Eloc (ω) =
(
α−1

0 (ω)+ 1

jωC̃0

)
I (ω)

− m
2

(
e−j ϕ

j (ω −	) C̃0
I (ω −	)

+ ej ϕ

j (ω +	) C̃0
I (ω +	)

)
. (12)

Consider now a particular nominal frequency ω0, which
may be, for instance, the excitation frequency of a
monochromatic impinging wave or the excitation fre-
quency of a localized source within the bulk. Then, in light
of the harmonic time modulation, the local field has the
following frequency dependence:

Eloc (ω) =
∞∑

n=−∞
Eloc

n δ (ω − ωn) , (13)

where ωn = ω0 + n	 and where δ (·) denotes Dirac’s δ.
Then, for the current we have

I (ω) =
∞∑

n=−∞
Inδ (ω − ωn) , (14)

where Eloc
n and In denote the nth-harmonic amplitude of the

local field and the induced current, respectively. By plug-
ging Eqs. (13) and (14) into Eq. (12) and by balancing the
coefficients of equal harmonics, we find

Eloc
n =

(
α−1

0 (ωn)+ 1

jωnC̃0

)
In

− m
2

(
e−j ϕ

jωn−1C̃0
In−1 + ej ϕ

jωn+1C̃0
In+1

)
. (15)

B. The time-modulated lattice

Our goal is to analyze a spatiotemporally modulated
wire medium (as illustrated in Fig. 2b). While the tempo-
ral modulation is introduced by the modulation-frequency
parameter, 	, the space modulation is introduced by our
setting of the phase ϕ in Eq. (10) for each of the wires. To
that end, we introduce the vector �ζ = x̂ζ cos ξ + ŷζ sin ξ
in the x-y plane, which represents the direction and mag-
nitude at which the capacitor’s phase ϕ is accumulated.
Thus, to achieve the effect of synthetic motion, we choose
the phase of the capacitance of the wire with indices (m, l)
to be ϕm,l = �ζ · �Rm,l = maζ cos ξ + blζ sin ξ . By control-
ling the phase-modulation direction, we obtain spatial
dispersion as shown below. Spatial dispersion by a spa-
tiotemporally modulated metasurface was demonstrated in
Refs. [49,50]. It is also an inherent property of infinite

stationary wire media when propagation occurs at least
partially along the wires, and hence is also a fundamen-
tal property when finite wires or semi-infinite wires are
used, because of the termination effect that excites wave
spectra in various directions of propagation [31–37]. Sub-
stantial spatial dispersion may also be achieved by different
means; for example, Boyd et al. [51] used dielectric rods
with different diameters instead of a constant loaded wire.
As opposed to these examples, in our case the spatial dis-
persion is obtained for propagation with wave vectors that
are completely perpendicular to the wires, with infinite
and physically uniform wires. It is obtained, and can be
controlled, solely by the spatiotemporal modulation.

From Floquet-Bloch theorem, the current in the wire
indexed m, l takes the form

Im,l =
∞∑

n=−∞
Ane−j �qn· �Rm,lδ (ω − ωn), (16)

where n represents the temporal harmonic number, and the
corresponding wave vector is given by (see Appendix C
for the derivation)

�qn = �q0 + n�ζ , (17)

with �q0 = x̂q0,x + ŷq0,y = x̂q0 cos θ0 + ŷq0 sin θ0. Note that
�q0 represents the corresponding wave vector at the nomi-
nal frequency ω0, and therefore θ0 denotes the direction
of propagation, with respect to the x axis, along the x-y
plane. We can now use the expression for the local field,
and derive the dispersion relation and the equations for
the eigenmodes. We follow the approach applied for a
stationary medium in Sec. II, and perform the necessary
modifications due to the spatiotemporal modulation of the
medium. Assuming an infinite lattice, with currents given
by Eq. (16), the local field on the (m, l) = (0, 0) wire reads

Eloc =
∞∑

n=−∞
Eloc

n δ (ω − ωn)

= −
∞∑

n=−∞

∑
m,l�=0,0

AnGnmle−j �qn· �Rm,lδ (ω − ωn), (18)

where Gnml = (ηkn/4)H
(2)
0 (knRml), where Rml =√

(ma)2 + (lb)2 and kn = ωn/c, denoting the two-
dimensional Green’s function at the nth harmonic for a
source located at �Rml and observer at �R00. By applying
Eq. (18) with Eq. (12) and balancing between equal har-
monics at the two sides of the resulting equation, we
find a recursive relation between the different temporal
harmonics of the induced current in the (m, l) = (0, 0)
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wire:

anAn−1 + bnAn + cnAn+1 = 0, (19)

where

an = m
2

1

ωn−1C̃0
, (20a)

bn = ηkn

2

[
1
π

ln
b

2πr0
+ 1

bβ(0)n,x

sinβ(0)n,x a

cosβ(0)n,x − cos qn,xa

+
∑
l�=0

(
1

bβ(l)n,x

sinβ(l)n,xa

cosβ(l)n,x − cos qn,xa
− 1

2π |l|

)
− 1

ωnC̃0

⎤
⎦,

(20b)

cn = m
2

1

ωn+1C̃0
, (20c)

with β(l)n,x = −j
√[

qn,y + (2π l/b)
]2 − k2

n , Re
{√·} > 0.

For a dense grid, as in Sec. II, we approximate bn in
Eq. (20b):

bn = ωnL̃ − 1

ωnC̃0
− ηkn

ab(k2
n − q2

n)
, (21)

with

q2
n =
(
�q0 + n�ζ

)2
= q2

0 + 2nζq0 cos γ + n2ζ 2. (22)

Here (�x)2 = �x · �x and γ = θ0 − ξ . In Eq. (21), C̃0 = C0�

as before and

L̃ = L̃w + L̃0, with L̃0 = L0

�
, (23)

where L0 is an inductance that may be connected in
series with the loading capacitor C(t). Effectively it sim-
ply increases the intrinsic wire inductance. As in the case
of stationary wire medium with a dense grid, also here
the approximation for bn in Eq. (21) depends only on
q2

n, whereas the exact expression for bn in Eq. (20b) also
depends on qn,x.

As opposed to the stationary-loaded-wire-medium case,
where the effective longitudinal permitivity may be ana-
lytically expressed using Eq. (8) with Eq. (9), for the
spatiotemporally modulated case, the interaction between
the different temporal-frequency harmonics should be
included. To that end, Eq. (19) is used. The latter can
be represented using a tridiagonal matrix of infinite
rank. We assume that for large-enough N , the currents

A−(N+1), AN+1 are negligible. In this case the infinite
matrix can be approximated by a finite square matrix:

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . 0 0

. . . b−2 c−2 0 0
0 a−1 b−1 c−1 0 0
0 0 a0 b0 c0 0 0

0 0 a1 b1 c1 0

0 0 a2 b2
. . .

0 0
. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

For nontrivial wave solutions, we look for the dispersion
relation �q0(ω) that nullifies the determinant,

|AN | = 0. (25)

In the following we explore the wave dynamics in the
bulk as obtained from this dispersion relation for a par-
ticularly interesting case near the plasma frequency of the
corresponding stationary wire medium.?pag ?>

IV. NEAR THE PLASMA FREQUENCY OF THE
STATIONARY MEDIUM

In the following we explore the wave dynamics of the
spatiotemporally modulated medium with parameters that
are near the plasma frequency of the corresponding station-
ary medium; namely, with ω = ω0 + δω, where ω0 is the
frequency that nullifies εz(ω) in Eq. (8). Thus,?pag ?>

ω0 =
√

1

L̃

(
1

C̃0
+ 1

C̃b

)
=
√

1

L̃C̃0

√
1 + ψ , (26)

where Cb is defined after Eq. (9), and?pag ?>

ψ = C̃b

C̃0
. (27)

In the following we also use k0 = ω0/c.?pag ?>

A. Analytical approximation for the lower-order
solutions with weak modulation

We assume weak modulation, m � 1, and as a result
the dominant harmonics besides the fundamental one will
be n = ±1. This assumption excludes the possibility that
higher-order harmonics will be strongly excited in this case
due to the presence of some resonance mechanism at some
other frequency. Under this assumption, the infinite-rank
matrix A is replaced by a tridiagonal 3 × 3 matrix A1 [N =
1 in Eq. (25)]. The dispersion relation in this case is found
by nullifying its determinant, i.e.,

a0c−1

b−1
+ a1c0

b1
= b0. (28)

By plugging in the expressions for an and cn that are given
in Eq. (20a), with the dense-grid approximation Eq. (21),

054003-5



MICHAEL KREICZER and YAKIR HADAD PHYS. REV. APPLIED 16, 054003 (2021)

together with Eq. (27), and with q1 and q−1 given in
Eq. (17), the nontrivial-solution requirement in Eq. (28)
turns into a sixth-order polynomial equation for q0:

m2ψ2

4

(
1

X−1(ω, q0)
+ 1

X1(ω, q0)

)
= X0(ω, q0), (29a)

with

Xn(ω, q0) = k2
n(

k0
)2 (1 + ψ)− ψ − k2

n

k2
n − q2

n
. (29b)

We denote the nth root of Eq. (29a) by q(n)0 , where n =
1, . . . , 6. Two of the six solutions of this polynomial
equation will represent a perturbation over the two solu-
tions of the corresponding stationary wire medium. Since
we focus here on the dispersion near the plasma frequency
of the corresponding stationary medium (i.e., in the vicin-
ity of ω0), it is reasonable to assume that two of the
solutions satisfy q(1)0 , q(2)0 � k0. In that case, on the left-
hand-side of Eq. (29a) we use ω = ω0 and q0 = 0, and
thus X1, X−1 ∼ 1. Since m � 1, the plasma frequency of
the spatiotemporally modulated medium (namely, the fre-

quency at which q(1)0 and q(2)0 experience the transition from
being purely imaginary to purely real) shifts by δω̂ with
respect to ω0 of the stationary medium, where

δω̂

ω0 ≈
(

1
X1(ω0, 0)

+ 1
X−1(ω0, 0)

)
m2ψ2

8 (1 + ψ)
. (30)

The first two solutions, q(1)0 and q(2)0 , for the fundamen-
tal modes up to the shift in δω̂ are obtained by solving
X0(ω, q0) = 0 and are given by

q(1,2)
0 = ±k0

(
1 + δω

ω0 − δω̂

ω0

)

×
√

1 − 1[
1 + (δω/ω0)− (δω̂/ω0)

]2
(1 +ψ) −ψ

.

(31)

We can see that under the dense-grid approximation, solu-
tions No. 1 and No. 2 are isotropic, independent of the
relative angle γ between the spatiotemporal-modulation
axis and the direction of wave propagation.

To find the other four roots of Eq. (29a) we assume that these solutions are not small compared with k0 near ω0. As a
result, the right-hand side of Eq. (29a) X0(ω

0, q0) ∼ 1. On the other hand, in light of the small factor m2 on the left-hand
side, the only way to balance the two sides is if either X1 or X−1 is nearly vanishing. Therefore, the remaining four roots
are approximated by solving X1(ω, q0) = 0 and X−1(ω, q0) = 0. Each of the equations yields two solutions:

q(3,4)
0 = −ζ cos γ ± k1

√√√√−
(
ζ

k1

)2

sin2γ + 1 − 1

[k2
1/
(
k0
)2] (1 + ψ)− ψ

, (32a)

q(5,6)
0 = ζ cos γ ± k−1

√√√√−
(
ζ

k−1

)2

sin2γ + 1 − 1

[k2
−1/
(
k0
)2] (1 + ψ)− ψ

. (32b)

If imaginary, the square roots in Eqs. (31) and (32) should
be chosen to guarantee physical solutions; namely, the
wave must decay at infinity. In Fig. 3 we show the dis-
persion of the six solutions as obtained by the analytical
approximated relations in Eqs. (31) and (32); the disper-
sion is shown for the following structure parameters: a =
0.07λ0, b = 0.1λ0, r0 = 0.0001λ0, and θ0 = 0. As opposed
to the structural parameters, the modulation parameters
differ between four typical cases as summarized in Table I.
The complex dispersion diagrams, real and imaginary q0,
are shown as a function of δω, which is the detuning fre-
quency from ω0—the plasma frequency of the stationary
lattice. In all four cases the lines are color-coded, blue
for q(1,2)

0 —the perturbation on the solution of the station-
ary medium—and green and red for the new solutions due

to the spatiotemporal modulation, q(3,4)
0 and q(5,6)

0 , respec-
tively. The colored lines in Fig. 3 are obtained by our using
the approximated solutions that are given in Eqs. (31),
(32a), and (32b) to show the analytical approximation
validity. As a comparison in the plots we also draw by
black circles the numerical solution of Eq. (29a).

The good agreement between the analytical approxima-
tions and the numerical calculations allow us to use our
analytical results for synthesis. For example, an interesting
characteristic for the roots of q(3)0 , q(4)0 , q(5)0 , and q(6)0 is that
we can create a different response for different angles γ
and in particular reach effective Fresnel drag dispersion
accompanied with strong anisotropy for waves propagat-
ing in the wire-medium bulk by using slow spatiotemporal
modulation.
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FIG. 3. Dispersion relations as obtained by solutions No.
1–No. 6 in Eqs. (31) and (32). The fundamental wave number
q0 of each of the solutions is shown as a function of the fre-
quency δω/ω0 for the four parameter cases that are tabulated in
Table I: (a) case I, (b) case II, (c) case III, and (d) case IV. Con-
tinuous lines represent the analytical results and circles represent
the numerical results.

TABLE I. Four parameter cases used in the numerical calcula-
tions in Sec. IV.

m = δC/C0 	/ω0 ζ/k0 L̃0/L̃w ξ ψ

Case I 0.1 0.15 0.1 4.3 −π/3 0.27
Case II 0.35 0.2 1.0 4.0 0 0.2
Case III 0.06 0.25 1.2 7.6 π/20 1.07
Case IV 0.25 0.3 1.0 9.3 −π 1.47

B. Effective Fresnel drag with weak and slow
spatiotemporal modulation

The spatiotemporal modulation enables us to achieve
dispersion that shares similarities with the dispersion of
waves in a moving medium. However, typically this effect
at the fundamental harmonic frequency is rather weak and
requires time modulation much faster then the guided sig-
nal frequency [40]. This is not the case, however, when
we spatiotemporally modulate the loaded wire medium.
In this section we show that it is the interplay between
the spatiotemporal modulation and the cutoff of the sta-
tionary mode, q(1,2)

0 , below ω0—the plasma frequency of
the corresponding stationary medium—that enables us to
obtain effective Fresnel drag with no actual motion and
using slow and weak modulation at the fundamental fre-
quency of one of the higher-order modes (e.g., q(3,4)

0 ). To
see this effect, we use Eqs. (31), (32a), and (32b) to extract
the relation between δω and the transverse wave-number
components q0x = q0 cos θ0 and q0y = q0 sin θ0 for a given
set of medium and modulation parameters. By solving
Eq. (31) for δω, we obtain

δω

ω0

(1,2)

= δω̂

ω0 + q2
0/2
(
k0
)2

(
1 + ψ

{
1 − [q2

0/
(
k0
)2]
}) , (33)

whereas by solving Eqs. (32a) and (32b) for δω, we get

δω

ω0

±1

= 1 + {1 − [ψ/(1 + ψ)]} [q2
±1/
(
k0
)2] − [1 ± (	/ω0)

]2

4
[
1 ± (	/ω0)

]2 − 2
{

1 + [q2
±1/
(
k0
)2]
} , (34)

where +1 (−1) corresponds to solutions No. 3 and No. 4
(No. 5 and No. 6) in Eq. (32), and q±1 is given by Eq. (22).
In the latter we note that q2

0 = q2
x + q2

y , γ = θ0 − ξ , where
ξ is the direction of the modulation and tan θ0 = qy/qx.
These dispersion relations are shown in Fig. 4 for the
parameters of case III in Table I. In Fig. 4(a) with ξ = 0,
a color map that shows δω/ω0 as a function of the trans-
verse wave vector (qx, qy) is presented, showing that the

fundamental solutions are propagating only at positive fre-
quencies [to be more precise, (δω/ω0)(1,2) = (δω̂/ω0) ≈
0]. However, the ±1 solutions [see Eq. (34)], with strongly
asymmetric dispersion, are propagating at negative fre-
quencies, as shown in Figs. 4(b) and 4(c). As a result,
in the spatiotemporally modulated wire medium, effective
motion may be exhibited at the fundamental propagating
harmonic and with slow modulation. This behavior may
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FIG. 4. Dispersion diagrams for the fundamental solutions No.
1 and No. 2 and higher-order solutions No. 3–No. 6 for the
parameters for case III in Table I. (a) With ξ = 0 the dispersion
for the fundamental solutions q(1,2)

0 is centered at the origin of the
qx-qy plane; however, its cutoff frequency is δω/ω0 ≈ 0. (b) In
contrast, the higher-order solutions q(3,4)

0 are propagating already
at negative frequencies. These solutions are essentially nonre-
ciprocal in light of their asymmetric dispersion. (c) is as (b) but
for the additional solutions q(5,6)

0 . (d)–(f) are as (a)–(c) but with
ξ = π/4.

be controlled by adjustments of the direction of modula-
tion, as shown in Fig. 4(d) for the fundamental solution,
and in Figs. 4(e) and 4(f) for the ±1 harmonic, this time
with spatiotemporal modulation along the tilted, ξ = π/4
direction.

V. HOMOGENIZATION

A. Effective modal permittivity

Using the wave-number dispersion of the modal solu-
tions given in Eqs. (31) and (32), one can define effective
permittivity for each of the modal solutions found above.
To that end we first write the free-space wave number as

k2 = (k0)2
(

1 + δω

ω0

)2

. (35)

Then the homogenized effective permittivity of the modal
solution No. i is given by

εr:i =
(

q(i)0

)2
/k2. (36)

This effective relative permittivity connects the free-space
wave number with the guided-mode wave number, at the
fundamental harmonic, of each of the modal solutions. It
is important to stress that each of these modes, with q(i)0 ,
consists of infinite space-time harmonics as dictated by
Eq. (16). Once εr:i is known, q(i)0 can be calculated. Then,
using Eq. (17), the wave number of each of the infinite
harmonics that forms the i modal solution is immediately
found. Specifically, for the first six fundamental modal
solutions in the spatiotemporally modulated wire medium
we have

εr:1 = εr:2 =
(

1 + (δω/ω0)− (δω̂/ω0)

1 + (δω/ω0)

)2
(

1 − 1[
1 + (δω/ω0)− (δω̂/ω0)

]2
(1 + ψ)− ψ

)
, (37a)

εr:3,4 = 1[
1 + (δω/ω0)

]2

⎡
⎣− ζ

k0 cos γ ± k1

k0

√√√√−
(
ζ

k1

)2

sin2γ + 1 − 1

[k2
1/
(
k0
)2] (1 + ψ)− ψ

⎤
⎦

2

, (37b)

εr:5,6 = 1[
1 + (δω/ω0)

]2

⎡
⎣ ζ

k0 cos γ ± k−1

k0

√√√√−
(
ζ

k−1

)2

sin2γ + 1 − 1

[k2
−1/
(
k0
)2] (1 + ψ)− ψ

⎤
⎦

2

. (37c)

As evident from Eq. (37a), clearly the effective permittivi-
ties that correspond to the first two modal solutions exhibit
a reciprocal behavior and are independent of the direc-
tion of propagation, and moreover they become positive
only above δω/ω0 ≈ 0. This is what we expect from the
stationary wire medium as given in Eq. (8). This is rea-
sonable since these two solutions in the spatiotemporally
modulated wire medium are essentially a weak pertur-
bation over the solutions of the conventional stationary

wire medium. Note, however, that from comparison of
the terms in Eq. (8) and (37a), it is clear that the modu-
lation parameters affect to some extent the values of the
permittivity, albeit not its general properties. Moreover,
while Eq. (37a) exhibits a reciprocal, stationary-medium-
like, behavior, there are additional higher-order harmonics
[see Eq. (17)] that break the reciprocity. As opposed to
εr:1,2, the additional effective permittivities (i.e., εr:3 etc.)
demonstrate a substantial nonreciprocity already at the
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fundamental harmonic. Even more important is the fact
that these solutions are propagating already with nega-
tive frequencies δω/ω0 < 0 in the region where the first
two solutions are evanescent. This implies, as we dis-
cussed in the previous section in the context of Fresnel
drag, that a substantial nonreciprocity can be observed
in the spatiotemporally modulated wire medium already
with weak-modulation and slow-modulation parameters.
We also stress that these modes are propagating below
the plasma frequency for any modulation depth m, even if
extremely small. Therefore, these modes share similarities
with the extraordinary whistler mode in magnetoplasma
that also propagates below the plasma frequency with any
magnetic biasing [39]. This behavior is shown in Fig. 5,
which shows for the parameters that are given in case II
in Table I a plot of the effective permittivity for the first
six fundamental modal solutions as a function of δω/ω0

and for two main situations: in Figs. 5(a) and 5(b), real and
imaginary parts, where the propagation is parallel to the
modulation axis, �q0||�ζ , and in Figs. 5(c) and 5(d) where
�q0 ⊥ �ζ . The effective permittivity for the stationary (LTI)
medium is shown as black circles, while the solutions
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FIG. 5. Effective permittivity of a spatiotemporally modulated
wire medium. Parameters for case II in Table I. (a) Effec-
tive permittivity of the modal solutions when the propagation
is collinear with the modulation. Circles represent no modula-
tion (stationary wire media). Fundamental modal solutions No.
1,2 (continuous blue lines) are nearly identical to these of the
stationary medium, and are reciprocal. The higher-order solu-
tions No. 3,4 and No. 5,6 exhibit deviation with respect to the
stationary-medium solutions and substantial nonreciprocally. (b)
is as (a) but for propagation normal to the direction of modula-
tion. The solutions are reciprocal in this case, and thus the strong
anisotropy due to the spatiotemporal modulation clearly emerges
from comparison of (a),(b). LTV, linear time variant.

for the spatiotemporally modulated lattice are shown as
colored lines.

In Fig. 5 high anisotropy is evident due to the directional
preference dictated by the spatiotemporal-modulation vec-
tor �ζ . In addition, the two fundamental solutions No.
1 and No. 2 are essentially identical to the two coun-
terpropagating solutions of the corresponding stationary
(LTI) medium (shown in black circles), and as such they
propagate only with δω > 0. In contrast, the higher order
solutions may be highly nonreciprocal, except for the case
where the propagation is transverse to the modulation
vector [Figs. 5(c) and 5(d)]. As an example, see the coun-
terpropagating solutions No. 3 and No. 4 in Fig. 5(a) that
are associated with different effective permittivities. More-
over, it is seen that the spatiotemporal modulation yields a
magnetized plasmalike extraordinary wave propagation in
the sense that propagation becomes allowed with any mod-
ulation index below the so-called plasma-frequency ω0.
As opposed to Fig. 5, which uses ψ = 0.2 � 1, in Fig. 6
we show similar results but with larger capacitive load-
ing, soψ = 1.07 ∼ 1. Here the effect of the spatiotemporal
modulation becomes stronger, as evident from a compar-
ison between Figs. 5 and 6. Also here, the fundamental
solutions No. 1 and No. 2 exhibit permittivity that is essen-
tially identical to that of the corresponding unmodulated
lattice. However, as opposed to Fig. 5, here the extraordi-
nary modes that are supported below the plasma frequency
are much-more dispersive, and the nonreciprocity becomes
more dominant, as can be seen by comparing the coun-
terpropagating solution pairs No. 3,4 and No. 5,6. We
demonstrate and discuss in Sec. VII that as opposed to
the effective permittivities that are shown in Fig. 6 for the
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FIG. 6. Effective permittivity of the modal solutions for case
III in Table I. As in Fig. 5 except that that ψ ∼ 1 implies a much-
stronger effect by the modulation as evident from comparison
with Fig. 5. LTV, linear time variant.
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parameters in case III, the effective permittivities shown in
Fig. 5 for the parameters in case II can be adequately repro-
duced in a model in which the spatiotemporal modulation
is introduced after the homogenization.

B. Averaged field equations and Poynting vector

For each of the modal solutions, with q0 = q(i)0 , we write
the governing electrodynamic equations for the averaged
fields. We begin by calculating the average fields in the unit
cell at the origin. To that end, we use the expression for the
currents in Eq. (2). For the fundamental harmonic of each
of the modal solutions, the electric field can be written in
the same way as in Eq. (4), but with the modification for
the entire unit cell, except on the wire itself:

�E (�r) = − ẑηk
4

∑
m,l

H (2)
0

(
k
∣∣ �Rml − �r∣∣) I0e−j (qxam+qy bl)

= − ẑηkI0

2

∞∑
m=−∞

Sm (�r) e−j qxam, (38)

with

Sm (�r) = 1
2

∞∑
l=−∞

H (2)
0

(
k
∣∣ �Rml − �r∣∣) e−j qy bl

= −1
b

∞∑
l=−∞

ejy[qy+(2π l/b)]e−ja|m−(x/a)|βx,l

βx,l
. (39)

The last summation in Eq. (39) is obtained with the aid of
Poisson summation. This summation is rapidly converg-
ing and can be expressed in closed form using a geometric
series. This finally leads to an expression for the electric
field, with separation between the first propagating har-
monic and the remaining Floquet harmonics, which are all
evanescent in the dense-grid approximation, and as long as
the modulation frequency is low enough so that the array
can be considered as dense also at the highest temporal
harmonic ωn, which cannot be ignored (see Appendix D):

�E (�r) ≈ − ẑηkI0

2b

⎡
⎢⎢⎢⎢⎢⎣

(1+jyqy)√
k2−q2

y

(
1 + 1−j (a+x)

√
k2−q2

y+j qxa

ja
√

k2−q2
y−j qxa

+ 1−j (a−x)
√

k2−q2
y−j qxa

ja
√

k2−q2
y+j qxa

)

−2
∑∞

l=1
ejy(2π l/b)(1+j qy y)
(2π l/b+qy)

⎛
⎝ e−|x|(2π l/b)

(
1 − qy |x|)+ e−2π l[(a+x)/b](1−qy a+j qxa−qy x)

1−e−2π l(a/b)(1−qy a+j qxa)

+ e−2π l[(a−x)/b](1−qy a+j qxa+qy x)
1−e−2π l(a/b)(1−qy a−j qxa)

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎦

. (40)

To simplify the calculation of the average fields inside the unit cell, since the wire is assumed to be thin r0 � a, b we
ignore the fact that the field inside the perfect-electric-conductor wire is zero. This simplification enables us to perform
integration inside the unit cell without complicated boundaries. This assumption is supported by the fact that

2π
∫ r0

0 Ewrdr
ab

= 2π
ηkI0

4ab

∫ r0

0
H (2)

0 (kr) rdr ∼ O
(

r2
0

ab
ln kr0

)
, (41)

which implies that the resulting error by this approximation is O(r2
0/ab). The average field is then calculated by

〈 �E〉 ≈ 1
ab

∫ (a/2)

−(a/2)

∫ (b/2)

−(b/2)
�E (�r) dxdy. (42)

Thus,

〈 �E〉 ≈ − ẑηkI0

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
jab
(

k2−q2
0

) − 1

b
√

k2−q2
y

−2
∑∞

l=1
qy b(−1)l

2lπa[(2π l/b)+qy]

⎛
⎜⎜⎜⎜⎜⎜⎝

−qy b+2lπ+e−lπ(a/b)(qy alπ+qy b−2lπ)
2l2π2

+
(

2e−(2π l(a/b)+qy a−j qxa) sinh(a/2)[(2π l/b)+qy]
b[(2π l/b)+qy]

)

×
( 1

1−e−2π l(a/b)(1−qy a+j qxa)
+ 1

1−e−2π l(a/b)(1−qy a−j qxa)

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)
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For a dense array, the infinite summation in Eq. (43) can
be ignored, and thus the average field may be simplified as

〈 �E〉 ≈ −ẑηkI0

⎛
⎝ 1

jab
(
k2 − q2

0

) − 1

2b
√

k2 − q2
y

⎞
⎠ . (44)

The result in Eq. (44) is in good agreement with Ref. [22]
(see Appendix E). Following Ref. [30], we can write the
relation between the macroscopic (averaged) fields:

�∇ × �Emacro = −jωμ0 �H macro, (45a)

�∇ × �H macro = I
ab

ẑ + jωε0 �Emacro. (45b)

Therefore, the macroscopic magnetic field

�H macro = − 1
jkη

�∇ × �Emacro = − 1
jkη

j �q0 × 〈 �E〉 . (46)

The average Poynting vector reads [30]

Savg = 1
2

Re
(

�Emacro × �H ∗
macro + ϕwI∗

ab
ẑ
)

. (47)

Since in our case the currents are independent of z, ϕw = 0,
and we may write

Savg = 1
2

Re
( �Emacro × �H ∗

macro
) = q0

2kη
|〈E〉|2. (48)

VI. EXCITATION OF A FINITE SAMPLE

In the previous sections we explored analytically the
modal solutions that are supported in an infinite spa-
tiotemporally modulated wire medium. These solutions
expand, partly, the spectra of waves that are expected to
be observed on the excitation of a finite lattice. In this
section we study numerically the excitation problem of a
finite lattice of infinite wires. These simulations model the
practical problem of a wire medium that is located between
the plates of a parallel-plate waveguide with electrically
small spacing between the plates so that only a TEM mode
may be supported. Specifically, we aim to verify the analyt-
ical derivations of the infinite lattice that were performed
in the previous sections, and moreover, we strive to bring
additional physical insights concerning the wave dynam-
ics in the presence of a plane wave or localized source.
We emphasize that the numerical results in this section
are limited in two aspects. First, they are fully numeri-
cal, while a complete semianalytical formalism of the full
Green’s function is still absent, but is currently under-
going exploration by our group. Second, our numerical
simulations are concerned with a finite lattice of infinite
wires, which models effectively the practical problem of

spatiotemporally modulated wires inside a parallel-plate
waveguide. We emphasize, however, that our current sim-
ulation approach is inadequate to analyze the propagation
inside a spatiotemporally modulated lattice of finite (or
semi-infinite) wires. Studying the finite-wire problem is
of practical significance and this problem will exhibit sub-
stantial nonlocality by the termination of the wires, and not
only by the spatiotemporal modulation [31–37]. However,
it requires an ad hoc numerical approach that is capable of
taking into account the time variation, and simultaneously
be reasonable in terms of the computational resources that
are needed to consider an electrically large sample that
consists of deep-subwavelength elements. We stress that
due to the spatiotemporal modulation, using the struc-
tural periodicity is, in general, impossible unless specific
conditions for the spatial-modulation periodicity and the
structural periodicity are met. These, of course, are not sat-
isfied in general, and thus Floquet boundary conditions,
which are commonly used to computationally relax the
analysis of periodic structure calculations, cannot be used
for our system.

In Fig. 7 we explore the scattering of an impinging
plane wave at a finite lattice of infinite wires. In Fig. 7(a)
the simulated structure is illustrated. A z-polarized plane
wave propagates toward the positive x axis and impinges
on a finite lattice of spatiotemporally modulated wires.
The array consists of Nx × Ny wires, where Nx = 201 and
Ny = 141, where the unit-cell parameters are a = 0.07λ0

and b = 0.1λ0, so the entire sample shape is nearly a
square. With these parameters, the array size is about
14λ0 × 14λ0, where λ0 = 2πc/ω0, where ω0 denotes the
“plasma frequency” of the corresponding stationary lattice
as defined above. The remaining parameters are as given
in cases III and IV in Table I, and are used in the simu-
lations for the dispersion diagrams of the infinite lattice.
For each wire in the finite lattice we write a self-consistent
equation that relates the local field at the wire location,
in the absence of the wire itself, to the induced current
in the wire. The local field is connected to the current
with use of the effective susceptibility expression that we
develop for time-modulated wires in Appendix B. The loop
is closed by our calculating the local field using the sum-
mation of the external exiting field plus the contribution at
each frequency harmonic calculated by a two-dimensional
Green’s function in free space, evaluated at the proper fre-
quency. This procedure yields a square linear system of
rank (Nx × Ny × N ), where 2N + 1 = 3 is the number of
temporal harmonics that we consider. Because of its size,
solving this system is computationally expensive and is
achieved with use of a Dell Precision workstation with 512
GB RAM. In Fig. 7(b), simulation results for case III at
δω = −0.15ω0 are shown. At this frequency the station-
ary lattice will not support any guided bulk wave. Only
surface-plasmon-like waves are expected to be excited
at the interface between the wire-medium bulk and the
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(a)

(b)

(c)

Lossy layer

FIG. 7. (a) Illustration of the structure. A z-polarized plane
wave propagates along the x axis and impinges on a finite lat-
tice of spatiotemporally modulated wires. The array size is Nx =
201, Ny = 141 wires, with unit-cell parameters a = 0.07λ0 and
b = 0.1λ0, so the overall sample shape is nearly a square. The
remaining parameters are as given in cases III and IV in Table I,
and are used in the simulations for the dispersion diagrams of
the infinite lattice. (b) For case III, at δω = −0.15ω0. The left
panel shows a color map of the real part of the excited current
wave, normalized by its maximal value. The strongly excited
fundamental (stationary) solution is decaying rapidly, and the
higher-order solutions are propagating. The right panel shows the
discrete Fourier transform (implemented by FFT) carried over
the field along y = 0 reveals the excited spatial-frequency con-
tent, which nicely agrees with the dispersion calculations for the
wave numbers of the wave that propagates along x. (c) As in (b)
but for case IV in Table I.

surrounding vacuum. The left panel in Fig. 7(b) shown a
color map of the real part of the excited current wave is
shown. The current distribution is normalized by the max-
imal current amplitude detected on the sample. This panel
shows the strong excitation of the evanescent dominant
solution (stationarylike with q(1,2)

0 ), which rapidly decays
to zero, whereas the higher-order solutions, due to the spa-
tiotemporal modulation, are clearly propagating. At the
top and bottom of the panel, surface-plasmon-like prop-
agation occurs at the interface between the wire media

and the vacuum. These trapped modes are excited due
to the sharp corners of the finite sample. To validate the
analytical derivations that were performed for the infi-
nite lattice in previous sections, in the right panel in
Fig. 7(b), we show the discrete Fourier transform (imple-
mented by MATLAB FFT) that is carried over the field
along y = 0. This panel reveals the excited spatial fre-
quency content, with dominant peaks at q/k0 = −0.53
and 2.42 and minor peaks at q/k0 = −1.83 and −0.02.
This is in agreement with the dispersion-based calcula-
tions that predict the following modal wave numbers under
the same conditions for the infinite lattice. Specifically, at
δω = −0.15ω0 the expected wave numbers for propaga-
tion along the x axis are q(1,2)

0 /k0 = ±0.99j (evanescent
fundamental solutions), q(3)0 /k

0 = −0.61, q(5)0 /k
0 = 2.39

(propagating toward the positive x axis), and q(4)0 /k
0 =

−1.76, q(4)0 /k
0 = −0.02 (propagating toward the negative

x axis). The latter are exited only due to the reflection
at the right side of the sample. The existing deviations
between the FFT calculation and the theoretical predic-
tions are caused by a too-short sampling imterval that
limits the spectral resolution. To minimize the effect of
multiple reflections inside the finite sample, we intro-
duce lossy layers of wires at its perimeter. Specifically,
we use Nloss,y = 30 lossy layers at the top and bottom
sides of the sample and Nloss,x = 40 lossy layers at the
right side of the sample. The lossy layers are implemented
by the introduction of a serial resistor loading on each
of the wires, in addition to the time-modulated capac-
itance and the tuning fixed inductance. On each layer
the resistance is tapered with a square profile that goes
from 0 to 5η along the Nloss,x/y layers of absorber. For
example, Rloss = 5η[1 − (n − Nloss,x/y)

2/N 2
loss,x/y], where

n = 1, . . . , Nloss,x/y , where n = 1 is the index of the inner-
most lossy layer and n = Nloss,x/y denotes the outermost
lossy layer. Thus, the absorber overall thickness is about
2λ0 at each side. Fig. 7(c) is as Fig. 7(b) but for case
IV. The right panel shows dominant peaks by FFT at
q/k0 = 1.83 and −0.06 and minor peaks at q/k0 = 0.29
and −1.83, compared with q(1,2)

0 = ±1.84j (evanescent),
q(3)0 /k

0 = 1.73, q(5)0 /k
0 = −0.15 (propagating toward pos-

itive x), and q(4)0 /k
0 = 0.23, q(4)0 /k

0 = −1.85 (propagating
toward negative x). The agreement here is despite the
analytical approximations that were used to derive the dis-
persion relations in Eq. (32) being expected to be less
accurate with the parameters in case IV in Table I, as
discussed regarding Fig. 3.

As opposed to the results shown in Fig. 7, where the
excitation is due to an impinging plane wave, in Fig. 8
we show some simulation results for excitation by a local-
ized two-dimensional point source; namely, an infinite
current line source with uniform amplitude and phase. The
source is located near the origin at (xs, ys) = (a/2, b/2).
The other parameters and array dimensions are as assumed
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(a)

(b) (c)
x10− 3

( , )

Lossy layer

FIG. 8. (a) Illustration of the structure. A current line source,
with uniform amplitude and phase, oscillates at δω = −0.15ω0

and is located near the origin, along the z axis. The current line
excites a finite array with Nx = 201, Ny = 141 denoting the num-
ber of wires along x and y, as in Fig. 7. The remaining parameters
are as given in cases III and IV in Table I, and are used in the
simulations for the dispersion diagrams of the infinite lattice. (b)
For case III, the excited current wave at the source frequency is
shown, revealing substantial Fresnel drag, remarkably, already at
the fundamental excitation harmonic with low modulation index
and frequency. (c) As in (b) but for case IV in Table I.

in the context of Fig. 7. The structure is illustrated in
Fig. 8(a). Figures 8(b) and 8(c) we show the excited
current waves for the parameters in cases III and IV in
Table I, respectively. The calculation is performed by the
same method as used before for the plane-wave case, but
with a different field source (here the external field is
simply considered as that of an infinite current wire at
δω = −0.15ω0). Figures 8(b) and 8(c) show the current
normalized with respect to the maximal excited-current
amplitude. In Figs. 8(b) and 8(c) a substantial Fresnel drag
is evident, as can be concluded from the highly anisotropic
wave picture already at the fundamental source harmonic.

VII. ARE HOMOGENIZATION AND
SPATIOTEMPORAL MODULATION

INTERCHANGEABLE OPERATIONS?

In the previous sections we homogenized and derived
the effective permittivity of the various modal solutions
that are supported by the spatiotemporally modulated wire
medium. However, we could also first homogenize the sta-
tionary wire medium, leading to its famous plasmalike

behavior, and then introduce the spatiotemporal modula-
tion on the effective properties of the homogenized mate-
rial. Evidently, the latter approach is expected to be less
accurate since it does not take into account the micro-
scopic properties of the modulation; however, it is surely
easier to perform. In this section we compare the two
approaches. Specifically, near the resonance frequency, the
effective permittivity of a stationary wire medium takes the
plasmalike form

εr = 1 − ω2
p

ω2 . (49)

The spatiotemporal modulation of the structure may now
be introduced in the effective permittivity parameter ωp .

To be able to perform a fair comparison, it is essen-
tial to define the analog of the capacitance modulation
discussed in the previous sections. Clearly, in the homoge-
nized model, the only quantity we may modulate is ωp , but
then we need to ask for a given capacitance modulation δC
in Eq. (10) what the equivalent measure of modulation in
ωp is.

To that end, we may estimate the behavior for a small
change in ωp and the frequency. Recall that in Sec. IV
we defined the frequency that nullifies the effective per-
mittivity of the loaded, but stationary, wire medium as
ω0 [see Eq. (26)]. In the continuous model that we con-
sider here in Eq. (49), ωp takes the role of ω0. To esti-
mate the small-variation behavior of Eq. (49), we denote
ωp = ω0 + δωp and ω = ω0 + δω. Then, for frequencies
near the plasma frequency, and for small variations in the
plasma frequency, Eq. (49) becomes

εr ≈ 2
(
δω

ω0 − δωp

ω0

)
. (50)

By performing a similar procedure for the effective permit-
tivity of the stationary wire medium that is given in Eq. (8)
and comparing the permittivity near the plasma frequency,
we find that a variation in ωp is related to a variation in C
via

δωp

ω0 = −ψ
2
δC
C0

(51)

when ψ � 1. If ψ � 1, then the simple local plasma
model in Eq. (49) is inadequate to describe the effective
model of the loaded wire medium. Let us now time-
modulate the plasma frequency:

ωp (�r, t) = ω0 + δωp cos (	t − ϕ) , (52)

with ϕ = �ζ · �R and �R = xx̂ + yŷ. We approximate

ω2
p (�r, t) ≈ (ω0)2

(
1 + 2

δωp

ω0 cos (	t − ϕ)

)
. (53)
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We assume a ẑ-polarized electric field as in the original
wire system. We write Faraday’s law in the frequency
domain �∇ × �H (ω) = jωẑε (ω)E (ω) and perform conver-
sion to the time domain (1/jω �→ integration):

�∇ × �H (t) = ẑε0
∂E (t)
∂t

+ ẑε0ω
2
p (t)
∫ t

−∞
E (τ ) dτ . (54)

We can now return to the frequency domain:

�∇ × �H (ω) = j ẑωε0 �E (ω)+ ẑε0
(
ω0)2

×
(
δ (ω)+ δωp

ω0

[
ej ϕδ (ω −	)

+ e−j ϕδ (ω +	)
]) ∗

�E (ω)
jω

, (55)

where ∗ denotes convolution. We derive the equation for
the nth frequency harmonics, and also use the known
identity for plane waves �∇ = −j �q:

− 1
ε0

j �q × �H n =
(
ωn −

(
ω0
)2

ωn

)
ẑj En + ẑ

ω0δωpej ϕEn−1

jωn−1

+ ẑ
ω0δωpe−j ϕEn+1

jωn+1
. (56)

Using in addition Faraday’s equation, we obtain

q2Ez = −jωnμε0
(−j �q)
ε0

× �H . (57)

We now get an equation for the electric field, which can be
written as an infinite tridiagonal matrix. We now focus on
the case of linear phase ϕ = �ζ · �R.

an−1ej ϕEn−1 − bnEn + an+1e−j ϕEn+1 = 0, (58)

with

an = k0

kn

δωp

ω0 , (59a)

bn = kn

k0 − k0

kn
− q2

n

k0kn
. (59b)

By our assuming, as in previous sections, that only the
three fundamental harmonics are dominant, the recursive
relation in Eq. (58) may be truncated, yielding a 3 × 3
homogeneous system for En, with n = −1, 0, 1. Then, to
get a nontrivial solution, we require that its determinant
vanishes, yielding

(
δωp

ω0

)(
a−1

b−1
+ a1

b1

)
= b0, (60)

in a way similar to which Eq. (28) was derived. Later, we
use Eq. (17) and get the dispersion equation for the various
wave solutions supported by the system. For brevity, we
omit the expressions; nevertheless, these solutions are then
used to calculate the effective permittivity of the various
modes, as done in Sec. V. These read

εr:1 = εr:2 =
[
2 + (δω/ω0)− (δω̂/ω0)

] [
(δω/ω0)− (δω̂/ω0)

]
[
1 + (δω/ω0)

]2 , (61a)

εr:3,4 = 1[
1 + (δω/ω0)

]2

⎡
⎣− ζ

k0 cos γ ± k1

k0

√
−
(
ζ

k1

)2

sin2γ + 1 − k0

k1

⎤
⎦

2

, (61b)

εr:5,6 = 1[
1 + (δω/ω0)

]2

⎡
⎣ ζ

k0 cos γ ± k1

k0

√
−
(
ζ

k1

)2

sin2γ + 1 − k0

k1

⎤
⎦

2

. (61c)

For comparison with the effective permittivity that is
obtained by directly our homogenizing the spatiotem-
porally modulated wire medium, we use the transform
δωp/ω

0 = −(ψ/2)(δC/C0) for the cases listed in Table I,
and thus get a new set of four corresponding cases, as listed
in Table II, where here the modulation depth m = δω0/ω

0.
Specifically, we calculate the effective permittivities for the

modal solutions that correspond to cases II and III. These
are shown in Figs. 9 and 10, and should be compared with
the wire-medium counterparts in Figs. 5 and 6. Specifi-
cally, it is seen that the two homogenization approaches
are nearly equivalent, with minor differences for cases with
ψ � 1, as seen, for example, by comparing Figs. 9 and 5.
This behavior changes for cases with larger capacitive
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TABLE II. Four parameter cases used in the numerical exam-
ples for the effective permittivity in a continuous plasma model
with spatiotemporally modulated plasma-frequency. The values
here correspond to these in Table I for the wire medium.

m = δωp/ω
0 	/ω0 ζ/k0 θ0 ξ

Case I 0.014 0.15 0.1 π/3 0
Case II 0.035 0.2 1.0 0 0
Case III 0.03 0.25 1.2 π/5 π/4
Case IV 0.18 0.3 1.0 π 0

loading ψ � 1 as seen, for example, by comparing Fig. 10
and 6. In this case, since the capacitive loading is not negli-
gible, the plasma model in Eq. (49) becomes less accurate
already for the stationary-medium case [38]. Nevertheless,
while the effect of the spatiotemporal modulation on the
fundamental solutions No. 1 and No. 2 is moderate, the
effect on the higher-order solutions, which dominate below
ω0, is substantial, even though the modulation index in this
case, m = 0.03, is small.
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No. 1 No. 2 No. 3
No. 4 No. 5 No. 6

FIG. 9. Effective permittivity of the modal solutions in a spa-
tiotemporally modulated continuous plasmalike model. Results
for case II in Table II. This figure should be compared with Fig. 5,
which is calculated by brute-force homogenization of the spa-
tiotemporally modulated wire medium. (a) Effective permittivity
when the propagation is collinear with the modulation. Circles
represent no modulation (stationary plasma medium). Funda-
mental modal solutions No. 1,2 (continuous blue lines) are nearly
identical to these of the stationary medium, and are reciprocal.
The higher-order solutions No. 3,4 and No. 5,6 exhibit deviation
with respect to the stationary-medium solutions and nonrecipro-
cally. (b) is as (a) but for propagation normal to the direction of
modulation. The solutions are reciprocal in this case, and thus the
strong anisotropy due to the spatiotemporal modulation clearly
emerges from comparison of (a),(b). A comparison with Fig. 5
demonstrates strong similarities between the results of the two
homogenization approaches. LTV, linear time variant.
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FIG. 10. Effective permittivity in a spatiotemporally modu-
lated continuous plasmalike model. As in Fig. 9 but calculated
for case III in Table II. These results should be compared with
those in Fig. 6, exhibiting large differences between the two
homogenization approaches in the case ψ ∼ 1. LTV, linear time
variant.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we develop a homogenization theory for
a spatiotemporally modulated wire medium. Our analysis
takes into account the complete interaction between the
time-modulated wires, in both space and time. The dis-
persion relations that we derive for the modes that are
supported by the lattice demonstrate peculiar wave phe-
nomena, such as guidance below the cutoff frequency (so-
called plasma frequency) of the stationary medium, with
modulation depth as weak as desired. This behavior shares
similarities with the extraordinary mode that is guided in
magnetized plasma, parallel to the magnetization direc-
tion, the so-called whistler mode. Furthermore, in light of
the ability to guide waves below the plasma frequency, we
show that this system provides a means to achieve substan-
tial effective Fresnel drag with weak and slow spatiotem-
poral modulation. In addition to these wave phenomena,
we calculate, analytically, the effective permittivity of the
first low-order solutions, and moreover derive expressions
for the averaged (macroscopic) fields and the Poynting
vector. To verify our dispersion results, and to gain further
physical insight regarding the wave dynamics in the struc-
ture, we also explore numerically the excitation problem
of a finite sample of a spatiotemporally modulated wire
medium under plane-wave and point-source excitation.
Lastly, we compare the two homogenization approaches
for a spatiotemporally modulated wire medium: the first
considers the modulation in the homogenization by tak-
ing into account the microscopic interactions between the
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time-modulated meta-atoms, and second introduces artifi-
cially the modulation into the effective parameters of the
already homogenized, corresponding stationary medium.
We show that under certain conditions these approaches
may provide similar results; however, in the general case
they may substantially deviate. To conclude, we hope
that this work will provide insights regarding the practi-
cal realizations of spatiotemporally modulated and time-
modulated effective media for various possible applica-
tions. This work is a first step in this direction. Subsequent
work should consider, among other things, the practical
problem of spatiotemporally modulated finite wire media,
the interplay between the inherent general nonlocality of
stationary wire media for non-TEM propagation, and the
nonlocality that is caused by the spatiotemporal modula-
tion. In addition, the development of an excitation theory
for spatiotemporally modulated wire media that can predict
the complete spectra that should be expected upon exci-
tation, as well as the excitation amplitude, is also called
for.
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APPENDIX A: EVALUATION OF THE
DISPERSION OF A LTI WIRE MEDIUM

This calculation can be found entirely in textbooks, such
as in Ref. [38]. Nevertheless, for completeness, we briefly
provide it below. The local field at the reference point m =
l = 0,

Eloc
z = −ηkI0

4

∑
m,l�=0,0

H (2)
0 (kRml) e−j (qxam+qy bl)

= −ηkI0

2

⎛
⎝S0 +

∑
m �=0

Sme−j qxam

⎞
⎠ , (A1)

where Sm denotes the summation for fixed m, over the
indices l. For m = 0 we have

S0 =
∞∑

l=1

H (2)
0 (kR0l) cos qybl

= 1

b
√

k2 − q2
y

− 1
2

+ j
π

⎡
⎣ln

bk
4π

+ γ + 1
2

∑
l�=0

(−2π j
bβx,l

− 1
|l|
)⎤
⎦ . (A2)

Here γ = 0.5772 is the Euler constant. For m �= 0 we use
the Poisson summation, which is highly efficient for a

dense grid, and get

Sm = 1
2

∞∑
l=−∞

H (2)
0 (kRml) e−j qy bl

= −1
b

∞∑
l=−∞

e−ja|m|βx,l

βx,l
. (A3)

By substituting Eq. (5b) into Eq. (4), changing the order of
summations, and using

∑
m �=0

e−j (βx,la|m|+qxam) = j sinβx,la
cosβx,la − cos qxa

− 1, (A4)

we can rewrite Eq. (3):

ηk
4

H (2)
0 (kr0)+ 1

jωC̃0

= −ηk
2

[
S0 +

∞∑
l=−∞

1
βx,l

(
j sinβx,la

cosβx,la − cos qxa
− 1
)]

.

(A5)

Note that we assume small losses in the background
medium, so convergence is secured. We assume that the
wire radius is very small compared with the separation
between the wires, and use the approximation for the
Hankel function [52]:

H (2)
0 (kr0) ≈ 1 − j

2
π

(
ln

kr0

2
+ γ

)
. (A6)

This leads to the dispersion relation

j
π

ln
kr0

2
− 2

jkηωC̃0

= 1

b
√

k2 − q2
y

+ j
π

⎡
⎣ln

bk
4π

+ 1
2

∑
l�=0

(−2π j
bβx,l

− 1
|l|
)⎤
⎦

+
∞∑

l=−∞

1
βx,l

(
j sinβx,la

cosβx,la − cos qxa
− 1
)

. (A7)

For a dense grid (ka, kb � 1), with the approximations for
trigonometric functions with small arguments, we get

ln
b

2πr0
+

∞∑
l=1

coth(πal/b)− 1
l

− 2π

ηvk2C̃0

= 2π

ab
[
k2 −

(
q2

x + q2
y

)] − πa
6b

. (A8)
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APPENDIX B: DERIVATION OF EQ. (11)

We begin by transforming the expression for the
frequency-domain susceptibility of a loaded wire, i.e.,
Eq. (1), into the time-domain expression. It easy to see
that α−1 behaves as an impedance to unit length, and Eloc

behaves as an external “voltage” source (obviously with
unit of volts per meter). Therefore, we can consider our
physical model to be equivalent to the simple serial circuit
that is shown in Fig. 11 with stationary impedance α−1

0 per
unit length (involves resistance as well as reactance) and
time-modulated capacitance. The current on the capacitor
reads

I = d
dt

(C̃ (t)EC (t)), (B1)

where EC denotes the “voltage” on the capacitance. Then,
Eq. (11) is straightforward.

APPENDIX C: DERIVATION OF EQ. (17)

The wire medium behaves as an infinite periodic crystal,
and therefore we can use the Floquet-Bloch theorem, with
the expression in Eq. (16). By substituting Eq. (16) into
Eq. (15) and using the explicit expression for the phase of
the capacitors ϕm,l = �ζ · �r = maζ cos ξ + blζ sin ξ , we get
for the m, l wire and for nth mode

Einc
n e−j �qn· �Rml =

(
γ0ωn + 1

jωnC̃0

)
Ane−j �qn· �Rml

− An−1
m
2

1

jωn−1C̃0
e−j (�ζ+�qn−1)· �Rml

− An+1
m
2

1

jωn+1C̃0
e−j (−�ζ+�qn+1)· �Rml . (C1)

Equation (C1) must be valid for all m, l wires. Therefore,
we must require that

−�ζ − �qn−1 = −�qn and �ζ − �qn+1 = −�qn. (C2)

Therefore, we get �qn = �q0 + n�ζ as in Eq. (17).

FIG. 11. The equivalent circuit of a wire illuminated by an
external field.

APPENDIX D: CALCULATING THE FIELD IN
THE UNIT CELL

To evaluate the electric field in the unit cell at the origin,
we use Eq. (38):

�E (�r) = − ẑηkI0

2b

∞∑
m=−∞

×
∞∑

l=−∞

ejy[qy+(2π l/b)]e−ja|m−(x/a)|βx,l e−j qxam

βx,l
.

(D1)

Then we approximate βx,l = −j
√[

qy + (2π l/b)
]2 − k2 ≈

−j
[
(2π l/b)+ qy

]
. This leads to

�E (�r) = − ẑηkI0

2b
×

∞∑
l=−∞

ejy[qy+(2π l/b)]

βx,l

×
(

e−j (a+x)βx,l ej qxa

1 − e−jaβx,l ej qxa
+ e−j |x|βx,l

+ e−j (a−x)βx,l e−j qxa

1 − e−jaβx,l e−j qxa

)
. (D2)

For a dense grid, βx,l may be further approximated:

βx,l ≈
⎧⎨
⎩

√
k2 − q2

y , l = 0,

−j
(

2π |l|
b + qy

)
, l �= 0.

(D3)

We can see that we get βx,l ≈ βx,−l. This eventually leads
to Eq. (40).

APPENDIX E: VERY-DENSE GRID

We compare Eq. (44) with the average over the z
component of the electric field as calculated in Ref. [22]:

〈Ez〉 = (jωL̃ + Zw
)

I + ∂ϕ

∂z
, (E1)

where L̃ is the effective inductance per unit length of the
wire and Zw is the impedance loading on the wire. In our
case, for a perfect-electric-conductor wire with capacitance
load, we have Zw = 1/jωC̃0. Also, since we are focusing
on the case of a propagating wave in a direction normal
to the wires, there is no variation along the z axis and
thus we can nullify the potential derivative ∂ϕ/∂z = 0.
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Then we get

〈Ez〉 = jI

[(
1 + δω

ω0

)
ω0L̃ − 1[

1 + (δω/ω0)
]
ω0C̃0

]

≈ jI
η

abk0

[
1 + (1 + 2ψ)

(
δω

ω0

)]
. (E2)

Equation (E2) is valid for a very-dense grid in a stationary
medium. Now to show that our averaged field in Eq. (44)
is consistent with that, the second term in Eq. (44) should
be ignored for a very-dense grid. Then, using Eq. (31)
for the wave number in the media (with zero perturbation
δC = 0), we get

〈 �E〉 ≈ − ẑηk0I
ab

(
1

j
(
k2

0 − q2
0

)
)

≈ − ẑηk0I
ab

⎛
⎜⎜⎝

1

j
(

k2
0 − (k0

)2[1 + (δω/ω0)
]2 [1 − 1

[1+(δω/ω0)]2
(1+ψ)−ψ

])

⎞
⎟⎟⎠

≈ j
ẑηI
abk0

(
1 + (δω/ω0)

1 + 2(δω/ω0)− 2 (1 + ψ) (δω/ω0)

)

≈ j
ẑηI
abk0

(
1 + (1 + 2ψ)

δω

ω0

)
. (E3)

Identical to Eq. (E2).
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