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A variational theory is presented for beam loading in microwave cavities. The beam-field interaction is
formulated as a dynamical interaction whose stationarity according to Hamilton’s principle will naturally
lead to steady-state solutions that indicate how a cavity’s resonant frequency, Q, and optimal coupling
coefficient will detune as a result of the beam loading. A driven cavity Lagrangian is derived from first
principles, including the effects of cavity-wall losses, input power, and beam interaction. The general
formulation is applied to a typical klystron input cavity to predict the appropriate detuning parameters
required to maximize the gain (or modulation depth) in the average Lorentz factor boost, 〈�γ 〉. Numerical
examples are presented, showing agreement with the general detuning trends previously observed in the lit-
erature. The developed formulation carries several advantages for the analysis and design of beam-loaded
cavity structures. It provides a self-consistent model for the dynamical (nonlinear) beam-field interaction,
a procedure for maximizing gain under beam-loading conditions, and a useful set of parameters to guide
cavity-shape optimization during the design of beam-loaded systems. Enhanced clarity of the physical pic-
ture underlying the problem seems to be gained using this approach, allowing straightforward inclusion
or exclusion of different field configurations in the calculation and expressing the final results in terms
of measurable quantities. Two field configurations are discussed for the klystron input cavity, using finite
magnetic confinement or no confinement at all. Formulating the problem in a language that is directly
accessible to the powerful techniques found in Hamiltonian dynamics and canonical transformations
may potentially carry an additional advantage in terms of analytical computational gains, under suitable
conditions.
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I. INTRODUCTION

Beam loading of microwave cavities is an impor-
tant phenomenon that is often seen in high-power vac-
uum tubes when a cavity’s electromagnetic field interacts
dynamically with an accelerated beam of electrons. As
the beam gets accelerated or decelerated by the Lorentz
forces imposed by the cavity’s field, it acts back on the
cavity, modifying its field. This dynamical interaction set-
tles into a steady state that exhibits observable shifts in
both the cavity’s resonant frequency and its quality factor
(Q). Particle accelerators, satellites, and radar systems that
employ high-power vacuum electronics are example appli-
cations where such a phenomenon is observed and must be
addressed for proper system design [1,2]. For example, the
detuning experienced when the beam is turned on in a par-
ticle accelerator may cause a mismatch for a klystron input
cavity and a reduction in gain, as the coupling coefficient
and resonant frequency no longer correspond to their
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original design values. Another typical example can be
seen in high-power signaling applications, where a detun-
ing in the rf cavity may lead to the emission of undesirable
intermodulation distortion (IMD) products that must be
suppressed [1–4].

The literature on the theory of beam loading for
azimuthally symmetric cavities spans more than seven
decades and includes a number of key studies; e.g.,
Refs. [2–6]. Branch’s classical treatment [6] has had a
strong analytical influence on many of the more recent
efforts to investigate and develop beam-loading theory
[2,3]. The effect of beam loading is conventionally mod-
eled in terms of circuit theory as a shunt admittance,
YB = GB + iBB, that loads that rf cavity (representing the
beam’s influence), where GB denotes the beam-loading
conductance and BB denotes the beam-loading suscep-
tance. When the beam is turned on (“hot” operation), the
“cold” frequency fcold and quality factor Qcold are decreased
according to the following approximation [2]:

Qhot = Qcold

1 + (GB/G)
, (1)
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fhot − fcold

fcold
= �f

fcold
= −1

2Qcold

BB

G
, (2)

where G is the cavity’s original (cold) shunt conductance.
To estimate GB/G and BB/G in cavity gaps, Branch’s

original treatment [6] covered a premise where operation
assumed certain idealized conditions, such as setting the
axial magnetic flux for beam confinement to extreme val-
ues (Bz set to zero or infinity) and ignoring space-charge
effects (ballistic analysis) [6]. Subsequent studies have
attempted to develop the theory further and to include
more realistic conditions using particle-in-cell (PIC) sim-
ulations, such as the effect of a finite Bz flux strength
[2,3] and the effect of ac space charge [2,4], compared to
ballistic analysis. These studies have concluded that, for
operation at moderate perveance levels (typically less than
3 μPerv [4]), a first approximation that assumes infinite
magnetic flux and uses ballistic beam-loading predictions
would deviate only weakly from those that include finite
axial magnetic flux [3] or ac space-charge effects [2,4].
Deviation due to the latter effect is particularly small
(less than 1% in �f ) for common operation condition
(below 3 μPerv). Furthermore, one of the striking obser-
vations found through PIC simulations in Ref. [2] was that
beam loading is mainly influenced by perveance (not by
beam current or voltage varying separately) and that �f
generally tends to vary almost linearly with perveance.

Methods of analysis that were used in these studies [2–6]
have typically followed a combination of circuit analy-
sis and Fourier field integrals to describe the beam-field
interaction within a gap, where the maximum amplitude of
the rf field was treated as a fixed quantity and the load-
ing effect was modeled by the lumped admittance YB. In
this paper we follow a different formulation, motivated by
how the dynamical interaction between the rf field and the
beam seem to be naturally well suited for variational anal-
ysis. We use a time-harmonic variational formulation to
determine the stationary operating point upon which this
dynamical interaction will settle, indicating the detuned
frequency and Q values for the cavity. We then apply the
analysis to a typical klystron input cavity and discuss the
effect of detuning on maximizing gain. For brevity, we
present two cases in detail (ignoring space-charge effects):
one for an unconfined beam and one for a beam with
finite axial confinement (focusing magnetic flux, Bz). The
beam-loading trends predicted by this analysis are shown,
through numerical examples, to agree with the general
trends previously reported in the literature. The devel-
oped theory characterizes a given cavity structure under
given beam-loading conditions by two detuning parame-
ters. These parameters can help us optimize cavity shapes
and maximize gain under beam loading.

As will be shown in the following sections, the physics
underlying beam-loading phenomena and the addition or
removal of different field configurations become relatively

straightforward and systematic under the presented for-
mulation. Another advantage of the presented formulation
is how it develops a theoretical framework that connects
directly to the powerful analytical tools found in Hamil-
tonian dynamics and canonical transformations [7–12].
Indeed, by leveraging advanced canonical transformations
and Lie perturbation techniques under certain conditions,
one can potentially render the system computations fully
or partially analytic without having to explicitly solve the
equations of motion [7,10–12].

The paper is organized as follows. We start in Sec. II by
discussing the field representation for the structure under
consideration and by defining key parameters and rela-
tions in a form suitable for our variational formulation. In
Sec. III we proceed to formulate the Lagrangian for a gen-
eral beam-loaded cavity with a single port. We apply the
developed theory to the important class of cavities exem-
plified by a klystron input cavity in Sec. IV, where we
extract the two detuning parameters, denoted X̄ and Ȳ, and
discuss gain maximization. The theory is then applied to
numerical examples in Sec. V. We conclude in Sec. VI and
give additional derivations in Appendices A, B, and C.

II. PRELIMINARY DEFINITIONS AND
FORMULAE

In this section we establish the basic representation of
the problem, define parameters, and derive formulae in
a form that will be useful for direct application in the
Lagrangian formulation developed in Sec. III.

A. Field representations for cavity and port

Consider a single-port cavity of an arbitrary, simply-
connected shape, as shown in Fig. 1. The domain of
solution is the cavity’s volume, V ⊂ R

3, which is enclosed
by a surface ∂V. The latter is made out of a good conduc-
tor and is geometrically closed, except for a small port that
couples the cavity to a feeding transmission line.

For time-harmonic fields with e−iωt time dependence,
Maxwell’s curl equations, ∇ × H = −εωE + J and ∇ ×
E = iωμH, will lead to the driven wave equation

∇2E + k2E = −iωμJ + ∇(∇ · E) = −iωμJ, (3)

where ω is the operating (observed) angular frequency,
k = ω

√
εμ is the wave number, E is the electric field

strength, H is the magnetic field strength, J is a cur-
rent density present inside the cavity volume, ε is the
permittivity, μ is the permeability, and with boldface
fonts representing vectors. In writing Maxwell’s equations
and Eq. (3) we have assumed that the medium may
be approximated as linear, isotropic, and homogeneous,
with ∇ · E ∼= 0. The finite conductivity (σ ) of the cav-
ity walls is characterized by the surface impedance η =
(1 − i)ξ , where ξ = 1/(σδs) is the surface resistance and

044040-2



VARIATIONAL BEAM-LOADING THEORY PHYS. REV. APPLIED 16, 044040 (2021)

−z 

Reference plane
at z = z

p

Waveguide E standing
wave

Cavity

V

E+

E–

n

0

Port
at z = 0

z

V

J

FIG. 1. Illustration of a single-port cavity with an arbitrary
shape. The port connects to a feeding transmission line (e.g.,
waveguide) and the walls are highly conductive. A current den-
sity J may exist inside the cavity. The surface normal vector
points outwards and the port’s reference plane, z = zp , is chosen
for convenience at the E-field standing wave’s minimum (dip)
nearest to the cavity walls.

δs = √
2/ωμσ is the skin depth [13–15]. The impedance

boundary condition on the walls and the complex power
flow into the conductor’s skin can be written, respectively,
as

n̂ × E = (1 − i)ξH (on ∂V), (4)

1
2

∫
∂V

da(E × H)·n̂ = η

2

∫
∂V

daH·H=1 − i
2

ξ

∫
∂V

daH 2,

(5)

where da denotes an element of surface area and n̂ is the
outward-pointing unit normal vector of the surface.

As an idealized setup, if we momentarily take the same
cavity with J = 0, perfectly conducting walls and no port,
then solving the undriven wave equation (∇2E + k2E = 0)
within the cavity’s volume and imposing the perfect
boundary conditions will give us the cavity’s eigenmodes
(ej , hj ) and the corresponding eigenvalues ωj (resonant
frequencies). Here, the subscript j is a positive integer
index and the eigenmodes satisfy the curl equations

∇ × ej = iωj μhj , (6)

∇ × hj = −iωj εej . (7)

It is well known that, within the solution space for the
fields that can exist inside the cavity, one can always
expand any field as a linear combination of the eigen-
modes (ej , hj ) [13,14,16], such as H = ∑

j αj hj , where
αj = |αj |eiφαj are the eigenspectrum complex amplitudes,
with a similar expansion for E.

It follows from Rayleigh’s principle [13,17,18] that the
eigenvalues of such a system are stationary points of the
Rayleigh quotient, which happens to represent the same
system. If we are operating near the ith mode, that mode’s
eigenfunctions (ei, hi) will have the highest contribution
(amplitude) in the eigenspectrum, compared to all other
eigenmodes with j �= i. If the operating field happens to
coincide exactly with the ith eigenmode, then the ampli-
tudes αj for other modes (j �= i) in the expansion will be
identically zero. This logic can be now extended to the
case of perturbing our cavity from its idealized picture
(undriven and lossless) back to its realizable setup, where
the walls are made of good (but finite) conductivity, a beam
current density J may exist inside the volume V and a
port may exist at the walls. Assuming that the ith mode
(typically the dominant mode) was the mode of operation
before perturbation and that the perturbation is typically
small, it is reasonable to consider that the added features
have disturbed the cavity slightly, shifting the apparent
resonant frequency ω off its spectral point ωi, and pro-
jecting the field distribution into the set of all possible
eigenmodes, as in the sum

∑
j αj hj . Since it is expected

that |αi| will now be less that 1 but still much larger than
the other expansion factors (|αi| 	 |αj �=i|), one can choose
to truncate the expansion at any number of terms in the
neighborhood of the ith (driven) mode. For the analysis of
a beam-loaded cavity that is typically tuned to a specific
resonant frequency with a high Q factor, we assume it suf-
ficient to use a single term (the ith mode) representation
to approximate the field. For example, the field H, which
we shall later use as the main variational variable in the
formulation adopted in Sec. III, can be written as

H ∼= αihi. (8)

Consequently, the perturbation in the cavity, manifested
through the frequency shift �ω/ωi = (ω − ωi)/ωi when
the cavity is loaded, is now being interpreted to be caused
by an adjustment to the complex amplitude of the ith
mode that was perturbed by some function, f (x, y, z),
which happened to be proportional to the eigenmode itself.
In variational language this can be expressed as, e.g.,
δH = εhi ⇒ H ≡ hi ± εhi = (1 ± ε)hi = αihi, where ε is
a small paramater. In Sec. III we solve the corresponding
variational problem to find the stationary value of αi for
the beam-loaded cavity.

In passing, it is worth noting that a perturbation of this
type, affecting the complex amplitude of the eigenfunction
in a single-mode expansion, may appear at first as a trivial
way to proceed in the analysis since the amplitude may
seem as a simple scalar that would not affect the shape of
the eigenfunction or the wave equation itself. This would
have been true, indeed, had the wave equation remained
undriven or had the Lagrangian, L, of the system (as will
be discussed in Sec. III) remained homogeneous in E2 or

044040-3



ADHAM NAJI and SAMI TANTAWI PHYS. REV. APPLIED 16, 044040 (2021)

H2 [13,18]. This is, however, not the case, since the port
coupling and the beam current that act to perturb the cavity,
as a driven system, have different functional forms that will
not change linearly with the rest of the terms in L as we
tune αi. This subtle point is of central importance for the
variational formulation developed in Secs. III and IV.

The transmission line connected to the port is typically
a waveguide operating above cutoff to facilitate rf power
transfer into the cavity. Input power, Pin, is provided by
an external source and is incident upon the port along the
+ẑ direction, whereas any emitted power from the cav-
ity, Pe, flows in the n̂ = −ẑ direction, as shown in Fig. 1.
The fields propagating along the waveguide are taken to be
proportional to the guide’s dominant eigenmode (ep , hp),
and we can express the incident fields due to input power
(denoted E+, H+) and the cavity’s emitted fields (denoted
Ee, He) as

(Ee, He) = ae(ep , hp), (9)

(E+, H+) = a+(ep , −hp), (10)

where a+ = |a+|eiφ+
and ae = |ae|eiφem are complex

amplitudes. The propagating field functions (ep , hp) are
real functions for the waveguide above cutoff.

Since an incident wave (E+, H+) will generally reflect
at the port, giving rise to (E−, H−), a standing wave will
form inside the guide. For convenience we choose the
arbitrary port plane to be where the incident and reflected
electric fields interfere destructively closest to the cavity
walls, giving a dip in the electric field’s standing wave (see
Fig. 1). In practice, the typical port size is electrically small
and the incident wave undergoes almost a total reflection,
giving a point of minimum electric field and maximum
magnetic field (approximately Ep → 0 and Hp → 2H+)
close to the cavity’s wall (approximately zp → 0). When
the cavity is emitting a field (Ee, He), we can now see that
the total field observed at z = zp will be simply written as
(Ee, He + 2H+).

B. Parameter definitions and connecting formulae

For the (ei, hi) mode at resonance, ω = ωi, the standoff
between electric and magnetic fields within the ideal cav-
ity, as implied by Poynting’s theorem [14–16], will result
in equal electric and magnetic stored energies, ui. Let us
denote the phases of the complex functions ei and hi by φe
and φh, respectively. As seen in the following sections, it
will be convenient for our formulation to take φh = 0 as a
reference value, which implies that φe = π/2. Since for an
ideal cavity there is no power flux out of the cavity’s sur-
face, we must have a vanishing integral

∮
∂V da n̂ · (ei × hi).

Using divergence theorem, the vector identity ∇ · (ei ×
hi) = (∇ × ei) · hi − (∇ × hi) · ei, Eqs. (6) and (7) we

define ui for the ideal cavity as

0 = 1
2

∫
V

dV∇·(ei × hi) = iωi

2

∫
V

dV(μh2
i + εe2

i )

⇒ 1
2

∫
V

dVμh2
i = −1

2

∫
V

dVεe2
i ≡ ui, (11)

where dV denotes the element of volume and the notation
h2

i , for example, means hi · hi (this should not be con-
fused with the magnitude |hi|2, which generally carries no
phases).

Any added dissipation due to imperfect walls in practice
will change the cavity’s Q factor and perturb its reso-
nant frequency, ω �= ωi, as the observed fields (E, H) and
their stored energy Ui deviate slightly from their values
for the ideal eigenmode (ei, hi) [13,16]. With the help
of Eqs. (6)–(8) and Eq. (11), the intrinsic quality factor
Qi = ωiUi/Pli , where Pli is the power lost to the walls, may
be written as (see Appendix A)

Qi ∼= ωi
μ

∫
V dV h2

i

ξ
∫
∂V da h2

i
= −ωi

ε
∫

V dV e2
i

ξ
∫
∂V da h2

i
= ωi

ui

pi
, (12)

where we have defined the scaled quantities as
Ui = |αi|2ui, Pli = |αi|2pi. (13)

In a similar fashion, as we equip the cavity with a port,
the external quality factor Qe = ωiUi/Pe, where Pe is the
power emitted from the cavity through the exiting field
(Ee, He) defined in Eq. (9), is written as (see Appendix A)

Qe ∼= −ωie−2i�φα2
i

∫
V dV εe2

i

a2
e

∫
p da (ep × hp) · n̂

= ωie−2i�φα2
i

∫
V dV μh2

i

a2
e

∫
p da (ep × hp) · n̂

,

(14)

where the sign
∫

p denotes integration over the cross section
of the port, �φ = φH − φem and the phase of H is denoted
φH , which is equal to φαi + φh = φαi since we have set
φh = 0 as a reference. For an electrically small port with a
port plane that is close enough to the cavity’s walls (zp →
0), one can approximate the phase φem of the emitted field
as φem → φαi , �φ → 0. Indeed, this is expected, since the
magnetic field H inside the cavity, with phase equal to φαi ,
will act to impress an equivalent current moment across the
port, which will drive the emitted fields through the guide
with phase φem → φαi . Equation (14) is now reduced to

Qe = ωiα
2
i

∫
V dV μh2

i

a2
e

∫
p da (ep × hp) · n̂

= −ωiα
2
i

∫
V dVεe2

i

a2
e

∫
p da (ep × hp) · n̂

.

(15)

The coupling coefficient, βc, and total quality factor, Qt,
are defined and related to Qi and Qe by

βc = Qi

Qe
,

1
Qt

= 1
Qi

+ 1
Qe

, Qe = Qt
1 + βc

βc
. (16)
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The power input through the port, Pin, is given by (see
Appendix A)

Pin = −1
2

∫
p

daE+×H+∗·n̂ = e−2iφ+ a+2α2
i

a2
e

ωiui

Qe
. (17)

From the above definitions, one can also extract the fol-
lowing relations, which will be needed in Sec. III:

|a+|
|ae| = 1

|αi|

√
PinQe

ωiui
= eiφαi

αi

√
PinQe

ωiui
. (18)

∫
p

dVEe × H+ · n̂ = −a+ae

∫
p

da ep×hp · n̂

= −2
a+α2

i ωiui

aeQe
= −2αieiφ+

√
Pinωiui

Qe
, (19)

ξ

∫
∂V

da h2
i = ωi

Qi
μ

∫
V

dV h2
i , (20)

1
2

∫
p

da Ee × He · n̂ = a2
e

2

∫
p

da ep × hp · n̂ = α2
i ωiui

Qe
.

(21)

III. A VARIATIONAL FORMULATION FOR THE
BEAM-LOADED CAVITY

A. Method’s Outline

For the cavity setup described in the preceding section,
we now proceed to write a suitable Lagrangian, L, that
will capture the system dynamics [9,19]. We follow an
approach similar to Schwinger’s [13] in deriving a vari-
ational formulation for a set of time-harmonic fields,
which must meet Maxwell’s equations and the bound-
ary conditions in hand. For time-harmonic fields with
an action integral I = ∫ t2

t1
Ldt and a system Lagrangian

L = ∫
V dvL̃(x, y, z, E, H), where L̃ is the Lagrangian den-

sity, we can see that the action’s stationary property for
a field variation such as δE or δH will lead to the sta-
tionarity of the Lagrangian; δL = 0 [13]. For the problem
in hand, one would expect L to generally include terms
related to energy density contributions from the field’s
stored energy, wall losses, beam-field interaction, and
power flow through the port. Once suitably constructed,
L’s stationarity will then automatically settle on the cor-
rect solutions that meet the system’s equations of motions,
which are, for an electromagnetic field, identically equal
to Maxwell equations and the imposed boundary condi-
tions [13,19].

Since the E and H fields are linked by any of Maxwell’s
curl equations, we may also construct L to be solved
simultaneously with one of those curl equations, effec-
tively rendering the Lagrangian variation a function of

one field variation only (either δE or δH) [13]. This
approach is useful for practical situations, such as the cav-
ity problem under consideration, since the ideal boundary
condition at the surface ∂V is a Dirichlet condition [20]
that may be written as n̂ × E = 0 or n̂ × δH = 0, forc-
ing a surface integral of the type

∫
∂V da δH · n̂ × E to

vanish automatically whenever it appears following the
variation of L [13]. In our cavity, where the walls are
highly conductive, it is convenient to work in terms of
the magnetic field H as the basic variable in L, while the
electric field is written in terms of H via Maxwell’s curl
equation,

E = i
ωε

(∇ × H − J). (22)

The stationarity of L in the absence of the port, beam, and
other losses (undriven) would naturally lead to the wave
equation, which the eigenmodes (ei, hi) satisfy. Adding the
effect of the wall losses will then perturb the fields by
effectively allowing them to expand in volume into the
skin-depth layer of the walls. Under such perturbation,
the frequency and Q factor are slightly reduced due to
the skin-depth effect, while the magnetic field (or surface
current) tangent to the walls is approximately unchanged
[15,16], which is equivalent to the variational condition
n̂ × δH = 0 on ∂V, [13]. Indeed, adding the wall losses
to the undriven Lagrangian formulation then forcing the
Lagrangian to be stationary will be seen to lead to the
expected shift in frequency and Q as predicted by classical
treatments, e.g., Ref. [16]. Adding the beam current den-
sity and the port will further equip the Lagrangian (driven)
to include the necessary nonlinear interaction between
the fields and the beam, and allow the calculations to be
written in terms of the port’s input reflection coefficient.
The latter is useful to monitor the shift in frequency and
incurred impedance mismatch due to the beam loading,
at the stationary point of the Lagrangian. As discussed in
Sec. II A for the adopted single-mode analysis, the field
variation δH, and therefore the perturbed complex ampli-
tude αi, will hold the information we seek concerning the
effect of beam loading on the rf cavity’s field, when it is
at a stationary point (local minimum) of the Lagrangian
in the neighborhood of the eigenmode (ei, hi). In the pre-
sented formulation, we have the advantage of working
directly in terms of measurable parameters, such as the
input power Pin, coupling coefficient βc, and frequency
shift �ω.

B. Cavity Lagrangian formulation

In conjunction with Eq. (22), we choose the follow-
ing Lagrangian construction for the cavity setup under
consideration (see Fig. 1)
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L = 1
2

∫
V

dV
(
εE2 + μH 2) + i

2ω

∫
p

da (Ee × He) · n̂

+ 1 + i
2ω

ξ

∫
∂V

da H2 + 2i
ω

∫
p

da
(
Ee × H+) · n̂.

(23)

Note that in this formulation of the Lagrangian, the term
εE2 appears added to the term μH 2, in contrast to the
typical form of the Lagrangian that has the stored elec-
trical energy subtracted from the stored magnetic energy.
The apparent change of sign in the current formulation is
due to the fact that E and H are time-harmonic phasors
and that here E2 denotes E · E (not E · E∗, which carries
no phase), with a similar meaning for H 2, as mentioned
in Sec. II B. This Lagrangian form, which uses the fields
themselves rather than the corresponding potential func-
tions, was first adopted by Schwinger [13] to allow one to
write a Lagrangian for a dissipative system. Indeed, a quick
consistency test using an arbitrary variation δH can reveal
(see Appendix B) that we are able to automatically recover,
from the stationarity of this L, Maxwell’s equation for
∇ × E as well as the correct boundary conditions on the
walls, Eq. (4), and on the port’s plane, where the tangen-
tial components must match those propagating through the
guide (E|p = Ee, H|p = He + 2H+).

Another consistency test (see Appendix C) can be done
using the undriven L while writing H according to the
perturbative approximation given in Eq. (8), namely H ∼=
αihi, and taking into account the cavity’s wall losses. This
immediately shows that the real frequency shift (call it
�ωi = ω′

i − ωi) due to the finite conductivity of the cav-
ity walls is in agreement with estimates from classical
treatments (e.g., Ref. [16]), and is given by

(
ω′

i

ωi
− ωi

ω′
i

)
= − 1

Qi
. (24)

This can be simplified for high-Qi cavities as

− 1
Qi

=
(

ω′
i

ωi
− ωi

ω′
i

)
∼= 2�ωi

ω′
i

, (25)

⇒ ω′
i
∼= ωi

(
1 − 1

2Qi

)
, (26)

which shows, as expected [16], that the resonant fre-
quency correction for the eigenmode is small for high-Q
cavities.

It will be convenient to generally introduce a parameter,
δω, defined as

δω ≡
(

ω

ωi
− ωi

ω

)
, (27)

to represent the relative shift in a frequency ω compared
to the resonant frequency ωi. In the above case, for the
undriven cavity with finite-conductivity walls, it is easy to
see that δω will be equal to −1/Qi.

The inclusion of the beam and the port terms in Eq. (23)
will further shift the frequency beyond the shift measured
due to the finite conductivity of the cavity walls. There-
fore, we can choose our frequency reference in practice
to be that of the cavity with realistic finite-conductivity
walls, ω′

i, as given by Eq. (25). Using primes in the
notation, we can extend this to the general definition of
δω as well. In this “primed” regime, all frequency shifts
are measured relative to the undriven cavity with finite-
conductivity walls. It is easy to show that δ′

ω in this regime
is given by

δ′
ω = δω + 1

Qi
, δ′

ω ≡
(

ω

ω′
i
− ω′

i

ω

)
∼= 2�ω′

ω
. (28)

We now substitute the perturbative modal representa-
tion, Eqs. (6)–(8), and the parameter definitions derived
in Sec. II to obtain the inhomogeneous L for the driven
cavity, including the field-beam interaction, whose sta-
tionarity will lead to the correct dynamical law of αi.
Starting with Eq. (23), then substituting from Eq. (11) and
Eqs. (18)–(21), and using Eq. (22) to work in terms of the
main variable H, one can see (after some manipulation)
that

L = 1
2

∫
V

dV
(
εE2 + μH 2) + 1 + i

2ω
ξ

∫
∂V

da H 2 + i
2ω

∫
p

da (Ee × He) · n̂ + 2i
ω

∫
p

da
(
Ee × H+) · n̂

=
∫

V
dV

−1
2ω2ε

(αi∇ × hi − J)2 + α2
i

2

∫
V

dVμh2
i + (1 + i)α2

i

2ω

ωi

Qi

∫
V

dVμh2
i + i

ωi

ω

α2
i ui

Qe
− i

4αi

ω
eiφ+

√
Pinωiui

Qe

= α2
i ui

[
1 −

(ωi

ω

)2
]

− 1
2εω2

∫
V

dV J 2 − i
αiωi

ω2

∫
V

dV ei · J + α2
i
(1 + i)

ω
pi + i

α2
i

ω
piβc − i

4αi

ω
eiφ+√

Pinβcpi, (29)
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whose stationarity in αi requires

δL = 0 = 2iαipi [−Qiδω − (1 + i) − iβc] − ωi

ω

∫
V

dV ei · J − 4eiφ+√
Pinpiβc, (30)

leading us to the dynamical law of αi that we seek

αi =
2eiφ+√

Pinβc/pi + 1
2pi

ωi
ω

∫
V dV ei · J

(1 + βc) − i(1 + δωQi)
. (31)

The important result given by Eq. (31) can be recast, for
a high-Qi cavity, in terms of the primed frequency regime
and Qt by making use of Eqs. (26), (28), and (16), to yield

αi ∼=
2eiφ+√

Pinβc/pi + 1
2pi

ω′
i

ω

∫
V dV ei · J

(1 + βc)[1 − iδ′
ωQt]

. (32)

Let us define the port’s steady-state reflection coefficient at
the port’s plane by

� = Eref

Einc
= E− + Ee

E+

∣∣∣∣
p

∼= ae − a+

a+

= ae

a+ − 1 = e−iφ+
αi

√
piβc

Pin
− 1. (33)

A quick consistency test of the αi law in Eq. (32) may now
be executed by considering an unloaded cavity (J = 0),
which would lead to a reflection coefficient given by

� = e−iφ+
αi

√
piβc

Pin
−1 = 2

√
Pinβc/pi

(1 + βc)[1 − iδ′
ωQt]

√
piβc

Pin
−1

= (βc − 1) + iδ′
ωQt(1 + βc)

(1 + βc) − iδ′
ωQt(1 + βc)

= − (1 − βc) − iδ′
ωQi

(1 + βc) − iδ′
ωQi

.

(34)

Setting Eq. (34) equal to zero (critical matching) will,
indeed, lead to the expected values of βc = 1 and δ′

ω
∼=

2�ω′/ω′
i = −1/Qi for the unloaded cavity.

We now proceed to calculate the integral term,
∫

V dVei ·
J, in Eqs. (31) and (32). A current density J that repre-
sents a traveling charge density is generally related to the
charge density ρ and the relative velocity vector, β = v/c,
by J = ρcβ, where c is the speed of light and v is vec-
tor velocity. Describing a collection of charged particles
as a point-charge sum (also known as a Klimontovich

sum [21]),

ρ =
∑

j

qj δ(x − xj )δ(y − yj )δ(z − zj ), (35)

where qj is the j th particle charge in Coulomb and δ(·)
denotes Dirac’s δ function, leads to writing

J = c
∑

j

qj β j δ(x − xj )δ(y − yj )δ(z − zj ). (36)

For the current harmonic field treatment, it can be shown
through Fourier analysis that the harmonic current com-
ponent J , at the same frequency ω as the (E, H) fields, is
related to the time-domain representation J by

J = J(ω) = 2
T

∫ T

0
dt J eiωt

= 2c
T

∑
j

qj

∫ T

0
dtβ j δ(x−xj )δ(y−yj )δ(z−zj )eiωt, (37)

where T = 2π/ω is the period.
In anticipation of the typical application of this anal-

ysis to axisymmetric structures, such as reentrant cavity
gaps and beam tubes, it is convenient and customary to
work in terms of the axial dimension z as the independent
variable (instead of t). From the properties of Dirac’s δ

function for the j th particle’s axial displacement, and since
|vz,j | = vz,j here, we notice that δ(z − zj ) = δ(vz,j �tj ) =
(1/vz,j )δ(�tj ) = (1/cβz,j )δ(t − tj ). Equation (37) can
now be rewritten as

J = 2
T

∑
j

qj

∫ T

0
dt

β j

βz,j
δ(x−xj )δ(y−yj )δ(t−tj )eiωt, (38)

where βz is the z component of the vector β.
We can now utilize Eq. (38) in the integral

∫
V dVei · J,

and drop the mode subscript i in ei for simplicity, to write
∫

V
dVe · J = 2

T

∑
j

qj

∫ T

0

∫
V

dtdV e · β j

βz,j

× δ(x−xj )δ(y−yj )δ(t−tj )eiωt

= 2
T

∑
j

qj

∫ zf

zi

dz ej · β j

βz,j
eiωtj , (39)

where zi, zf are the particle’s initial and final axial posi-
tions in the interaction zone. The electric field ej =
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ej (xj , yj , tj ) in Eq. (39) is now evaluated at the transverse
position (xj , yj ) and time tj , which the j th particle will
have when it reaches the distance z down the axis. As the
j th particle follows its own trajectory (which will be later
described by the equations of motion), the time tj will play
a key role in describing the phase of the rf field that will
be encountered by the particle upon its entry to the zone of
interaction with the field (the cavity’s gap). This phase can
be described in terms of the time variable tj or, as will be
seen in the next section, in terms of a rf field phase variable,
φj , seen by the particle.

The equation of motion for the j th particle due to the
experienced electric Lorentz force gives

dγj

dt
= ec

mc2 Re
(
Ej e−iωtj

)
, (40)

where ec is the electron charge, m is the electron rest
mass, and γ is Lorentz’s relativistic factor. The quantity
mc2/ec is denoted V0, which is approximately 0.511 MV.
Let us now introduce a convenient complex function, γ c

j ≡
γj + iγ̆j , whose real part is the usual Lorentz relativis-
tic factor and imaginary part is yet undetermined. Using
Eq. (40) and the fact that Re

(
Ee−iωt

) = Re
(
E∗e+iωt

)
, we

may now write an extended version of Eq. (40) as

dγ c
j

dt
= c

V0
E∗

j · β j eiωtj = c
V0

α∗
i e∗

j · β j eiωtj , (41)

which implies that

dγ c
j

dz
= −α∗

i

V0
ej · β j

βz,j
eiωtj . (42)

Using Eqs. (42) in (39) gives the useful relation

∫
V

dVe · J = −2V0

Tαi
e2iφαi

∑
j

qj

∫ zf

zi

dγ c
j

dz
dz

= −2V0

Tαi
e2iφαi

∑
j

qj �γ c
j , (43)

which is substituted back into αi’s law, Eq. (32), to yield

αi ∼=
2eiφ+√

Pinβc/pi − 1
pi

ω′
i

ω

V0
Tα∗

i

∑
j qj �γ c

j

(1 + βc)[1 − iδ′
ωQt]

. (44)

Equation (44) constitutes the sought dynamical law gov-
erning αi, now written in terms of the particles’ γ c

j func-
tions, alongside the other system parameters, and in a form
that is ready for computation. In words, Eq. (44) gives
the steady state’s complex amplitude αi corresponding to a
given cavity-beam setup that has a frequency shift param-
eter δω and coupling coefficient value βc. Up to this point

the discussion has been general and the developed theory
is applicable to an arbitrary cavity. The calculation of the
sum involving �γ c in Eq. (44) may be further simplified
for computation by considering a specific configuration, as
discussed in the next section.

IV. APPLICATION OF THE THEORY TO A
KLYSTRON INPUT CAVITY

A. Cavity parameters X̄ , Ȳ for the characterization of
beam-loading effects

We apply the theory developed in the preceding sections
to an important class of systems that is exemplified by a
klystron input cavity. In such a system, the cavity will typ-
ically have an azimuthally symmetric reentrant shape, with
axis z that aligns with the beam pipe, as illustrated in Fig. 2.
The gap approximately defines the zone where the cavity’s
rf field and the beam will interact. Away from the interac-
tion zone, the beam pipe’s elongations and small apertures
at the start and end sections of the pipe (typically leading
to other drift tubes or adjacent cavities) will not have any
significant coupling effect on the cavity’s fields, since it
is assumed that any evanescent rf fields would have died
off away from the gap. As such, the beam-cavity interac-
tion may still be modeled by the single-port cavity theory
developed in Sec. III. Given a dc beam voltage Vb, the
electrons exiting the electron gun will have an initial γ0
value of γ0 = 1 + Vb/V0, [22]. Moreover, since we have
the freedom to normalize ui, let us normalize it such that
the postnormalization value of pi is equal to the beam’s dc
power; namely, pb = VbIb = pi = ωiui/Qi, where Ib is the
beam current. Under such conditions, |αi| can be treated
as a small parameter from the beam’s perspective, and

Electron
gun

P
in
 

Port

CavityBeam pipe

Feeding
guide

rf E field

rf E field

g (gap)

2r
p

L

2r
b

z

Electron beam

FIG. 2. Simplified drawing of the geometry of a klystron input
cavity. The typical reentrant cavity shape forms a gap (here
ungridded) where the electric field interacts with the beam. The
electron gun is represented as a conceptual block.
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the field interaction with the traveling particle is viewed
as a perturbation problem in which the field’s nonzero
magnitude |αi| tends to perturb the trajectory of the par-
ticle (compared to its unperturbed trajectory when the rf
fields are absent). This will be convenient in the following
perturbation calculations.

Substituting the normalized values of ui and (γ0 − 1) =
Vb/V0 into Eq. (44) gives

αi ∼=
2eiφ+√

Pinβc/pb − 1
IbTα∗

i (γ0−1)

ω′
i

ω

∑
j qj �γ c

j

(1 + βc)[1 − iδ′
ωQt]

. (45)

Replacing the cumbersome Klimontovich sum of point-
like particles by an approximate macroparticle distribution
(over sufficiently small bins in phase space) will simplify
the calculation. To this end, the charges qj can be repre-
sented as qj = qTWj , where qT = IbT is the total charge
crossing in the time period T and Wj = Wj (rj (z), tj (z); z)
is a spatial weighting function that determines the equiva-
lent charge representation for the j th macroparticle. Note
that the index j is now used to refer to the macroparticles
and not the original pointlike particles. Equation (45) can
now be written in terms of Wj as

αi ∼=
2eiφ+√

Pinβc/pb − 1
α∗

i (γ0−1)

ω′
i

ω

∑
j Wj �γ c

j

(1 + βc)[1 − iδ′
ωQt]

. (46)

For the azimuthally symmetric case in hand, the natural
division for the macroparticles will be radially (over r)
and longitudinally (over t or temporal phase). For n radial
bins of equal charge, which we shall call “beamlets,” and
assuming that the initial charge density is uniform in the
beam pipe, every beamlet will be located within a radial
slice from radius aj to radius aj +1, with j = 0, 1, . . . , n,
a0 = 0 and an = rb, where rb is the beam radius. To get
the same charge per beamlet, one must choose the beam-
let radii such that they give the same volume; a2

j +1 − a2
j =

r2
b/n. This gives the solution aj = rb

√
j /n. The midpoint

radius of each beamlet is chosen to be the center-of-mass
of charge-density distribution between aj and aj +1, which
gives a2

j +1 − r2
j = r2

j − a2
j . This leads to the beamlet radii

rj = rb

√
2j + 1

2n
(j = 0, 1, . . . , n − 1). (47)

Since the charge is distributed over all times (phases)
within a period T = 2π/ω, a longitudinal division into
m time bins (tk = k�t = kT/m) or m phase bins (φk =
k2π/m) is considered, where k is a running index, k =
0, 1, . . . , m. The macrocharge summing term

∑
j Wj �γ c

j in
(46) may now be written as an averaging process, denoted
〈�γ c〉j ,k, over the beamlets and phases, with the under-
standing that the index j now runs over the beamlet radii of

the macroparticles, while the index k runs over their phase
bins;

∑
j

Wj �γ c
j ≡ 1

mn

m−1∑
k=0

n−1∑
j =0

�γ c(rj , φk) ≡ 〈�γ c〉j ,k. (48)

Under this representation, Eq. (46) is written as

αi ∼=
2eiφ+√

Pinβc/pb − 1
α∗

i (γ0−1)

ω′
i

ω
〈�γ c〉j ,k

(1 + βc)[1 − iδ′
ωQt]

, (49)

where the term 〈�γ c〉j ,k may now be computed from
Hamilton’s equations of motion.

Looking back at the expression for dγ c/dz for the
macroparticle’s j th beamlet and kth phase in light of
Eq. (42), we see that it is given explicitly by

dγ c
j ,k

dz
= −|αi|

V0
e(rj , tk) · β(rj , tk)

βz(rj , tk)
ei(ωt+φk)e−iφαi , (50)

where tk ≡ t + φk/ω. Recall that ui was normalized in
a way that makes |αi| a small perturbation parameter,
describing how the rf field would disturb the particle trajec-
tory as it travels through the gap. Using perturbation theory
to characterize the behavior of γ c, we expand the phase
variables r(z), t(z) and the functions γc, β, which appear in
Eq. (50), as power series in the small parameter |αi|. If we
momentarily drop the subscripts i, j , k, for clarity during
this calculation, we can write the expansions up to second
order in |αi| as

γ c = γ c
0 + |α|γ c

1 + |α|2γ c
2 + O(|α|3), (51)

β = β0 + |α|β1 + |α|2β2 + O(|α|3), (52)

r = r0 + |α|r1 + |α|2r2 + O(|α|3), (53)

t = t0 + |α|t1 + |α|2t2 + O(|α|3), (54)

where the first terms represent the unperturbed problem
when αi = 0 (no rf fields). Substituting the expansions into
Eq. (50) and equating terms of similar powers on both
sides, while using the initial condition γ c

0 = γ0 and the
notation �γ c ≡ γ c − γ0, it can be shown that

γ c
0 = γ0, (55)

dγ c
1

dz
= − 1

V0
e(r0, t0) · β(r0, t0)

βz(r0, t0)
ei(ωt+φk)e−iφα , (56)

d�γ c
1

dz
= − 1

V0
e(r0, t0) · β(r0, t0)

βz(r0, t0)
ei(ωt+φk)e−iφα , (57)

�γ c = |α|�γ c
1 + |α|2�γ c

2 + O(|α|3), (58)

where r0, t0, β0 represent the trajectories of the unperturbed
problem. Consequently, the average of Eq. (57) over the

044040-9



ADHAM NAJI and SAMI TANTAWI PHYS. REV. APPLIED 16, 044040 (2021)

phases φk of the field will vanish, implying that only the
second order and higher terms will contribute to the aver-
age of �γ c. Restoring the subscript notation i, j , k, this
observation may be now written as

〈�γ c〉k,j = |αi|2〈�γ c
2 〉 + O(|αi|3), (59)

giving the dynamic law of αi in Eq. (49), up to second order
in |αi|2, as

αi ∼=
2eiφ+√

Pinβc/pb − 1
α∗

i (γ0−1)

ω′
i

ω
|αi|2〈�γ c

2 〉
(1 + βc)[1 − iδ′

ωQt]

=
2eiφ+√

Pinβc/pb − αi
(γ0−1)

ω′
i

ω
〈�γ c

2 〉
(1 + βc)[1 − iδ′

ωQt]
. (60)

Solving Eq. (60) for αi and writing 〈�γ c
2 〉/(γ0 − 1) explic-

itly as a complex quantity,

〈�γ c
2 〉

γ0 − 1
= X̄ − iȲ, (61)

gives us the final result

αi = 2eiφ+√
Pinβc/pb

(1 + βc)(1 − δ′
ωQt) + ωi

ω
(X̄ − iȲ)

. (62)

The significance of the result in Eq. (62) stems from the
fact that the two parameters X̄ and Ȳ are independent from
|αi| and only dependent on the rf field distribution (cavity
shape) and the beam’s initial conditions (γ0). The param-
eters X̄ and Ȳ can thus concisely characterize any cavity
setup and how it would detune under beam loading.

Equation (62) gives the value of αi corresponding to a
given cavity-beam system that is running with a frequency-
shift parameter δω and a coupling coefficient value βc.
We can now use this result to suggest a way to pretune
(precompensate) the cavity in a preemptive manner before
loading it with the beam, so that it is tuned back to the nom-
inal (ω′

i) resonant frequency and critical coupling when the
beam is turned on. Specifically, the reflection coefficient �

corresponding to the complex amplitude given in Eq. (62)
can be calculated by substituting Eq. (62) into Eq. (33),
which yields (after some manipulation)

� = −
(

1 − βc + ω′
i

ω
X̄

)
− i

(
δ′
ωQi + ω′

i
ω

Ȳ
)

(
1 + βc + ω′

i
ω

X̄
)

− i
(
δ′
ωQi + ω′

i
ω

Ȳ
) . (63)

Requiring � to vanish will immediately lead to δ′
ω and βc

values given by

βc = 1 + ω′
i

ω
X̄ , (64)

δ′
ωQi = −ω′

i

ω
Ȳ. (65)

Using Eq. (28) to deduce that ω′
i/ω = (1 − δ′

ω/2) and sub-
stituting in Eqs. (64) and (65) finally gives, up to second
order in 1/Qi,

δ′
ω

∼= − Ȳ
Qi

− Ȳ2

2Q2
i

, (66)

βc ∼= 1 +
(

1 + Ȳ
2Qi

+ Ȳ2

4Q2
i

)
X̄ . (67)

To the lowest order (assuming high-Q cavities) and using
practical terminology by calling ω′

i ≡ ωcold and ω ≡ ωhot,
the final result takes the simple form

δ′
ω

∼= − Ȳ
Qi

⇒ ωhot ∼= ωcold

(
1 − Ȳ

2Qi

)
, (68)

βc = 1 + X̄ . (69)

Equations (68) and (69) are useful for prescribing the fre-
quency shift and coupling coefficient values that would
give optimal efficiency (no reflection) in practice, for a
given pair of cavity’s characterizing parameters, X̄ and Ȳ.
A pretuning procedure that maximizes gain based on these
results is discussed in Sec. IV B.

Calculating X̄ and Ȳ for a given system is done using
Eqs. (61) and (59), which imply that

X̄ = Re
[ 〈�γ c〉
|αi|2(γ0 − 1)

]
, Ȳ = −Im

[ 〈�γ c〉
|αi|2(γ0 − 1)

]
,

(70)

where 〈�γ c〉 is computed, for a given system, by solving
the equations of motion. This is demonstrated numerically
in Secs. IV C and V. This highlights that the physical
processes underlying the detuning of beam-loaded cav-
ities are essentially dynamic and nonlinear. The current
formulation also enables us to calculate 〈�γ c〉 under cer-
tain conditions without having to solve the equations of
motion explicitly, by utilizing canonical transformations
and infinitesimal generating functions (e.g., Lie transfor-
mations), which can calculate the value of 〈�γ c〉 ana-
lytically (e.g., Refs. [7,8,11,12]). As such, the variational
formulation allows us to potentially leverage the powerful
tools of Hamiltonian dynamics to efficiently solve beam-
loading problems. This will be the subject of a subsequent
article by the authors.

We note that the detuning parameters X̄ , Ȳ introduced in
this theory, although computed differently, can be modeled
as the conventional normalized beam-loading conductance
GB/G and susceptance BB/G, respectively. Indeed, in light
of Eqs. (1), (2), (68), and (69), and given that under
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beam-loaded critical coupling we must have Qe = Qi,hot =
Qi,cold/(1 + GB/G), a simple algebraic manipulation can
show that

Ȳ = BB/G, (71)

X̄ = GB/G, (72)

�Q
Qi,cold

= −X̄
1 + X̄

. (73)

One can also calculate the equivalent beam quality factor
Qbeam, defined by 1/Qi,hot = 1/Qi,cold + 1/Qbeam [2]. Then
it is easy to deduce that

Qbeam = Qcold

X̄
. (74)

Equations (71) and (72) show that the parameters X̄ , Ȳ
are directly equivalent to a circuit model of a normal-
ized admittance that shunts the cavity to represent the
beam-loading effect, as would be expected. The way these
parameters are calculated in the present theory [namely,
Eqs. (62) and (70)], however, is different from how they
are calculated in previous theories, e.g., Ref. [6].

B. Maximizing gain under beam loading via cavity
pretuning and shape optimization

For a given beam-loaded cavity (described by X̄ and
Ȳ), the law in Eq. (62) is a statement about the complex
amplitude αi that the driven cavity field will settle upon
in the steady state whilst operating at a given shifted fre-
quency (described by δ′

ω) and a given coupling coefficient
(described by βc). If the cavity is unloaded, then X̄ = Ȳ =
0 and Eq. (63) would imply that optimal operation hap-
pens when βc = 1 and δ′

ω = 0 ⇒ ω = ω′
i (same frequency

as the cavity’s original resonant frequency with wall losses
included, as expected). If the cavity is loaded, then gener-
ally X̄ , Ȳ are nonzero and Eq. (63) will imply that optimal
operation happens at a lower frequency, δ′

ω
∼= −Ȳ/Qi ⇒

ω ∼= ω′
i[1 − Ȳ/(2Qi)], and higher coupling value, βc =

1 + X̄ , as given by Eqs. (68) and (69).
Consequently, if we pretune the cavity to a frequency

that is upshifted to ω′
i[1 + Ȳ/(2Qi)] and to an overcoupled

port with βc = 1 + X̄ , we effectively allow beam tuning
to happen in a predetermined way, shifting the frequency
down to its original design value ω′

i while guaranteeing
that it will be simultaneously matched for maximum power
gain. Assuming that the frequency detuning is relatively
small, the up or down shifting will result in the same
dynamical behavior around the stationary point (sweet
spot) of αi, and hence one pretuning step may be sufficient
(in contrast to iterative tuning steps). These theoretical pre-
dictions confirm the empirical observations known in the
practice of cavity detuning under beam-loading conditions.

In addition to predicting the required values for frequency
upshifting and port overcoupling for a given cavity, the
present theory can further inform the designer by having
the following corollaries:

(1) A high-Q beam-loaded cavity will have maximum
gain in the average Lorentz boost 〈�γ 〉 when its pretuning
is done to meet the detuning conditions δ′

ω = −Ȳ/Qi and
βc = 1 + X̄ .Indeed, this can be proved by noticing from
Eqs. (59) and (70) that for high-Q cavities we can simply
write

〈�γ 〉 ∼= 4Pinβc(γ0 − 1)X̄
pb

[
(1 + βc + X̄ )2 + (δ′

ωQi + Ȳ)2
] . (75)

For any given set of X̄ , Ȳ parameters, considering
〈�γ 〉 as a function of δ′

ω and βc and requiring that
both ∂〈�γ 〉/∂δ′

ω and ∂〈�γ 〉/∂βc vanish, confirms that
(δ′

ω, βc) = (−Ȳ/Qi, 1 + X̄ ) represents a critical point of
the function 〈�γ 〉. Calculating the terms of the Hessian
matrix for second-order partial derivatives of 〈�γ 〉 in δ′

ω

and βc, as well as its determinant, D, at that critical point
for (δ′

ω, βc) shows that

∂2〈�γ 〉
∂δ′2

ω

< 0,
∂2〈�γ 〉
∂βc2 < 0,

∂2〈�γ 〉
∂δ′

ω∂βc
= 0, (76)

⇒ D = ∂2〈�γ 〉
∂δ′2

ω

∂2〈�γ 〉
∂β2

c
− ∂2〈�γ 〉

∂δ′
ω∂βc

> 0, (77)

which confirms that 〈�γ 〉 has maximum gain at the criti-
cal point. Substituting these values into Eq. (75) gives the
maximum 〈�γ 〉 that can be offered by pretuning, as

〈�γ 〉max = Pin(γ0 − 1)

pb

X̄
1 + X̄

. (78)

If we do not take detuning into account, the value taken
by 〈�γ 〉 is obtained by substituting δ′

ω = 0 and βc = 1
in Eq. (75). When compared to 〈�γ 〉max, this will give a
reduction ratio R as

1
Gmax

= R = 〈�γ 〉none

〈�γ 〉max
= 4(1 + X̄ )

(2 + X̄ )2 + Ȳ2
, (79)

where Gmax is introduced to denote the maximum addi-
tional gain that our pretuning can achieve in a given system
with X̄ , Ȳ parameters. Requiring R to be ≥ 1 leads to
0 ≥ X̄ 2 + Ȳ2, which is impossible to satisfy since X̄ , Ȳ
are real parameters. Therefore, we always have R < 1 for
any choice of cavity (any X̄ , Ȳ parameters), as expected in
practice.

(2) For a given system (known X̄ and Ȳ), it follows that
the maximum gain obtained in 〈�γ 〉 by using the correct
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FIG. 3. Maximum detuning gain, Gmax, as a function of beam-
loaded cavity parameters X̄ and Ȳ.

pretuning in frequency and coupling coefficient is given by

Gmax = (2 + X̄ )2 + Ȳ2

4(1 + X̄ )
. (80)

Maximizing Gmax can therefore be considered as a design
goal during cavity-shape optimization, where X̄ and Ȳ are
adjusted as design parameters. Figure 3 shows a plot for
Gmax versus X̄ and Ȳ, highlighting the nonlinear behavior.
In Sec. V four numerical examples are presented, demon-
strating how cavities of different shapes and beam-loading
conditions can vary considerably in how much they boost
Gmax upon detuning.

(3) The gain in Eq. (80) has a critical point at X̄ =
−1 +

√
1 + Ȳ2 that should be avoided if encountered dur-

ing design of the cavity’s shape, as it represents a minimal
value for Gmax.

(4) If we only pretune the system in the coupling coeffi-
cient we will achieve a suboptimal gain given by

Gc = 1
2

+ 1
2

√
1 + [

Ȳ/(1 + X̄ )
]2. (81)

This can be readily derived by putting δ′
ω = 0 and finding

the maximum of Eq. (75) in terms of βc.

C. Calculation of 〈�γ c〉 through the Hamiltonian and
the equations of motion

The discussion in Sec. IV A has indicated, using pertur-
bation theory for a klystron input cavity with an initially-
uniform beam distribution, that 〈�γ c〉 can be approx-
imated by its second-order term average, 〈�γ c〉k,j ≈
|αi|2〈�γ c

2 〉, which then allows us to compute the correct

detuning parameters (X̄ and Ȳ) for the beam-loaded cavity.
In this section, we calculate 〈�γ c〉 by solving the equa-
tions of motion for γ c and averaging its value over a finite
(and relatively small) number of macroparticle beamlets
and phase bins, as discussed in Sec. IV A. We start by
deriving the Lagrangian, L, and Hamiltonian, H, functions
for the field and particle-field interaction, while taking z as
the independent variable and working in cylindrical spa-
cial coordinates (r, θ , z). Taking a Minkowski space with
a metric signature (+, −, −, −), a four-vector for posi-
tion dxμ = (cdt, dr, rdθ , dz) and a four-vector for potential
Aμ = (�/c, Ar, Aθ , Az), where � is the scalar potential and
A is the vector potential, we can write the action in terms
of the integral of relativistic invariants as

I = −
∫ final

initial
mc ds −

∫ final

initial
ec Aμdxμ ≡

∫ zf

zi

dz L, (82)

where ds = √
dxμdxμ = √

c2dt2 − dr2 − r2dθ2 − dz2 and
the integration domain is from an initial phase-space state
to a final one.

Isolating dz leads to ds = dz
√

(cṫ)2 − ṙ2 − (rθ̇ )2 − 1,
where here the dot denotes the total derivative in z (e.g.,
ṙ = dr/dz). If we isolate dt, we arrive at the relation

ds = cdt
√

1 − β2
r − β2

θ − β2
z = cdt/γ . Equating these two

expressions for ds, we obtain the useful relation

ṫ
γ

= 1
c

√
(cṫ)2 − ṙ2 − (rθ̇ )2 − 1. (83)

Similarly, the term Aμdxμ = �dt − Ardr − rAθdθ − Azdz
can be reduced by isolating dz to obtain Aμdxμ = dz(�ṫ −
Arṙ − Aθ rθ̇ − Az). Equation (82) thus becomes

I = −mc
∫ zf

zi

dz
[√

(cṫ)2 − ṙ2 − (rθ̇ )2 − 1

+ ec

mc
(
�ṫ − Arṙ − Aθ rθ̇ − Az

)]
. (84)

We scale the different quantities in Eq. (84) to simplify
practical computation, by measuring them using Table I.
The footnotes of Table I also include connecting formu-
lae, before and after scaling, for mechanical and canonical
momenta that will be shortly discussed. Denoting scaled
quantities with an overbar, Eq. (84) now becomes

Ī = −mc
∫ zf

zi

λdz̄
[√

¯̇t2 − ¯̇r2 − (r̄ ¯̇θ)2 − 1

+
(
�̄¯̇t − Ār ¯̇r − Āθ r̄ ¯̇θ − Āz

)]
. (85)
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TABLE I. Scaling of different quantities in the action integral. The first row lists the quantities being scaled. The second row shows
the corresponding measuring units needed to effect the scaling. Subscripts i here indicate any of the components r, θ , z.

Distance vi βi γ t f ṫ ṙ Ai � Ei Hi Bi Energy P a
i Ṗi p b

r pt pθ L I

λ c 1 1
λ

c
c
λ

1
c

1
mc
ec

mc2

ec

mc2

ecλ

mc
ecλμ0

mc
ecλ

mc2 mc
mc
λ

mc mc2 mcλ mc mcλ

aPi denotes mechanical momenta. Note that before scaling: pr = Pr + ecAr, pt = −Energy − ec�, and pθ /r = Pθ + ecAθ .
bpi denotes canonical momenta. Note that after scaling: p̄r = P̄r + Ār, p̄t = − ¯Energy − �̄, and p̄θ /r = P̄θ + Āθ .

The scaled Lagrangian L̄ can thus be deduced as

L̄ = L̄(r̄, θ̄ , t̄, ¯̇r, ¯̇θ , ¯̇t; z̄)

= −
√

¯̇t2−¯̇r2−(r̄ ¯̇θ)2 − 1 − �̄¯̇t + Ār ¯̇r + Āθ r̄ ¯̇θ + Āz.
(86)

Using L̄ we can now define canonical momenta. To avoid
confusion with symbols p and P for power, in the fol-
lowing equations we use the symbols P for mechanical
momenta and p for canonical momenta. The canonical
momenta are

p̄r = ∂L̄

∂ ¯̇r =
¯̇r√

¯̇t2 − ¯̇r2 − (r̄ ¯̇θ)2 − 1
+ Ār, (87)

p̄t = ∂L̄

∂ ¯̇t
= −¯̇t√

¯̇t2 − ¯̇r2 − (r̄ ¯̇θ)2 − 1
− �̄, (88)

p̄θ

r̄
= ∂L̄

∂ ¯̇θ
= r̄ ¯̇θ√

¯̇t2 − ¯̇r2 − (r̄ ¯̇θ)2 − 1
+ Āθ , (89)

Note that, after scaling, relation (83) becomes

¯̇t
γ̄

=
√

¯̇t2 − ¯̇r2 − (r̄ ¯̇θ)2 − 1, (90)

which can be combined with Eqs. (87)–(89) to give the
following useful relation, relating the generalized veloci-
ties (¯̇r, ¯̇t, r̄ ¯̇θ), the potential fields, γ̄ and canonical momenta
(p̄r, p̄θ , p̄t) as

¯̇t
γ̄

=
√

¯̇t2 − ¯̇r2 − (r̄ ¯̇θ)2 − 1

= 1√
(p̄t + �̄)2−(p̄r − Ār)2−(p̄θ /r̄ − Āθ )2−1

. (91)

Considering our phase-space canonical variables to be
q̄ = (r̄, θ̄ , t̄), p̄ = (p̄r, p̄θ , p̄t), we may now use Legen-
dre transformation [8,9], H̄ = ∑

i
¯̇qip̄i − L̄, to find the

Hamiltonian as

H̄ = −
√

(p̄t + �̄)2−(p̄r − Ār)2−(p̄θ /r̄ − Āθ )2−1 − Āz.
(92)

One of the benefits of the Hamiltonian formalism is its
ability to easily reveal symmetries and conserved quan-
tities in the dynamical system, allowing us to identify
cyclic (ignorable) variables and to exploit this knowledge
to reduce the computational burden as much as possible
[7,9]. Indeed, for the problem in hand we take advan-
tage of the symmetry in θ to reduce the number of the
equations of motion to be solved from six to four or
five equations, as shown below. The conservation of the
azimuthal canonical momentum pθ underlies this fact (also
known as Busch’s theorem in Ref. [22]). Different field
configurations (terms) can be included into or removed
from Eq. (92) in a straightforward manner, before solving
for the equations of motion. For brevity, we demonstrate
this through two cases with different field configurations
(ignoring space-charge effects).

In the first case (case I ) no focusing magnetic field
is present (no confinement), where we take pθ = 0,
Aθ = 0, � = 0, with assumed initial conditions Pr0 =
Pθ0 = 0, γ0 = 1 + Vb/V0. In the second case (case II ) a
finite magnetic field is allowed (axial confinement), where
we take � = 0 with the same initial conditions for the first
case. It is noted that the strength of Bz in practical klystron
applications is usually around 1.5 times Brillouin’s mag-
netic flux [1–3]. For case II, it is assumed that Bz is
uniform in the radial direction. It is also assumed to be zero
(Bz, Aθ = 0) at the electron gun’s position, after which it
ramps up linearly in the axial direction to reach its fixed
amplitude after a distance z = l0 from the gun and stays
uniform along the axis thereafter. In this model, l0 is cho-
sen to be (L − g)/6, where L is the beam pipe length and
g is the gap width (see Fig. 2).

By substituting Eq. (92) into the canonical equations of
motion, q̇i = ∂h/∂pi, ṗi = −∂h/∂qi, where here i indi-
cates the components r, θ or t, we arrive at the explicit
equations of motions for each case, which can be solved
numerically. After some algebraic manipulation, we can
cast the final equations of motion conveniently in terms of
γ , Pr, Pθ , the fields Er, Ez, Bz and the variables r, t, z for
practical computation, as given below. In addition to the
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equations of motion, we also include the equation for the
imaginary quantity γ̆ defined in Sec. IV A, since both γ

and γ̆ are needed in Eq. (70) for the deduction of X̄ and
Ȳ. As expected, it is noted that in both cases, pθ is con-
served (ṗθ = 0). It is also noted that, since � = 0, we have
γ̄ ≡ −p̄t.

For case I, we have the equations

¯̇r = P̄r√
γ̄ 2 − P̄2

r − 1
, (93)

¯̇t = γ̄√
γ̄ 2 − P̄2

r − 1
, (94)

¯̇Pr = ¯̇t Re
[
Ēr(r̄, t̄, z̄)

] − Re
[
B̄θ (r̄, t̄, z̄)

]
, (95)

¯̇γ = ¯̇r Re
[
Ēr(r̄, t̄, z̄)

] + Re
[
Ēz(r̄, t̄, z̄)

]
, (96)

¯̆̇
γ = ¯̇r Im

[
Ēr(r̄, t̄, z̄)

] + Im
[
Ēz(r̄, t̄, z̄)

]
, (97)

and for case II, the more general of the two cases, we have

¯̇r = P̄r√
γ̄ 2 − P̄2

r − P̄2
θ − 1

, (98)

¯̇t = γ̄√
γ̄ 2 − P̄2

r − P̄2
θ − 1

, (99)

¯̇Pr =
P̄θ

[
B̄z(r̄, z̄) + P̄r/r̄

]
√

γ̄ 2 − P̄2
r − P̄2

θ − 1
(100)

+ ¯̇t Re
[
Ēr(r̄, t̄, z̄)

] − Re
[
B̄θ (r̄, t̄, z̄)

]
, (101)

¯̇Pθ = −¯̇r
[

B̄z(r̄, z̄)
2

+ P̄θ

r̄

]
, (102)

¯̇γ = ¯̇r Re
[
Ēr(r̄, t̄, z̄)

] + Re
[
Ēz(r̄, t̄, z̄)

]
, (103)

¯̆̇
γ = ¯̇r Im

[
Ēr(r̄, t̄, z̄)

] + Im
[
Ēz(r̄, t̄, z̄)

]
. (104)

Note that the generalized velocity r̄ ¯̇θ equation is given by

P̄θ /

√
γ̄ 2 − P̄2

r − P̄2
θ − 1 and can be calculated from the

other quantities found in Eqs. (98)–(103), but it does not
enter explicitly or independently into this simultaneous set
of equations for the motion. As expected, if the magnetic
focusing field is removed from case II, P̄θ vanishes and the
equations degenerate to those of case I. This is because in
such a scenario Āθ would be zero everywhere, and since
p̄θ = const = 0 = r̄(P̄θ + Āθ ), with zero initial azimuthal
momentum assumed, then P̄θ will remain zero.

V. NUMERICAL EXAMPLES

In this section we apply the theory developed in Secs. III
and IV to four cavity examples. The theory will predict
the beam-loading effects on frequency and coupling coef-
ficient, providing insight into how the detuning can be
compensated for and how cavity design can be improved
to boost gain in 〈�γ 〉. The first example is for an x-band
cavity, while the second example uses a c-band cavity that
is similar to that used in previous studies [2–4] to allow for
comparison of beam-loading trends. The third and fourth
examples are c-band cavities with the same frequency
and loading conditions as the second example, but with
different shapes to demonstrate how shape can influence
the X̄ , Ȳ parameters and the maximum gain achievable
by pretuning. For demonstration, we opt to calculate the
first example according to the developed equations for
case I (no magnetic confinement) and the other examples
according to the equations for case II (with finite magnetic
confinement).

The first example comprises the cavity shown in Fig. 4,
whose cold resonant frequency is 11.424 GHz. For copper
walls this cavity exhibits Qi = 3778. The cavity has the
dimensions shown in the figure and is driven by a beam
with Vb = 60 kV and Ib = 10 A. Calculating 〈�γ c〉 using
the equations of motion (93)–(97), then using Eqs. (70),
(68), and (69) to extract parameters gives us X̄ = 0.49,
Ȳ = 1.40, a frequency shift of �f = −2.11 MHz, and
new coupling coefficient value of βc = 1.49 for critical
coupling.

If we pretune this cavity during design to operate at a
small upshift of 2.11 MHz and coupling coefficient of 1.49
(instead of 1), then it will be detuned back to the original
frequency when the beam is turned on, and it will then be
critically matched as well. With such pretuning we achieve
a gain of Gmax = 1.37 (equivalent to 1.4 dB) compared to
the untuned case, according to Eq. (80).

For the second example we consider a cavity of a similar
shape, but tuned to the frequency 5.08764 GHz [dimen-
sions are shown in Fig. 5(a)]. This cavity structure, which
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FIG. 4. Geometry and dimensions of the x-band cavity ana-
lyzed in the first example. The figure shows the upper half of
the cavity’s cross section. Electric field streamlines are shown in
gray. Dimensions are in mm.
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FIG. 5. Geometries and dimensions of the c-band cavities ana-
lyzed in the second (a), third (b), and fourth (c) examples. The
figures show the upper halves of the cavity cross sections. The
cavity in (a) is similar to the one studied in Refs. [2–4]. Profiles of
the “mushroom” and “inverted-mushroom” cavities in (b) and (c)
are drawn with piecewise-elliptic functions, with guiding dimen-
sions shown (to-scale). The cavity in (b) gives highest maximum
gain, Gmax, upon pretuning compared to the ones in (a) and (c).
Electric field streamlines are shown in gray. Dimensions are in
mm.

is almost identical to that studied in Refs. [2–4] except for
small fillet rounding around the gap corners, is chosen to
facilitate the comparison of beam-loading trends as pre-
dicted by our theory and those studies. Using copper walls
for this example, the cold quality factor is Qi = 5017.
We analyze this example using the equations of case II,
Eqs. (98)–(104), to measure the effect of perveance, beam
voltage, and beam current on beam loading, in a man-
ner similar to Ref. [2]. It was reported in Ref. [2] that
changing the beam voltage and current separately, while
having the same perveance, will not affect beam loading

TABLE II. Instances of beam loading experienced by the
c-band cavity shown in Fig. 5(a) under fixed perveance of
0.375 μPerv. The columns show the detuning predictions by
the presented theory as well as the frequency shift predictions
reported in Ref. [2]. The latter is shown in parentheses.

Vb (kV) Ib (A) Bz (T) �f (MHz) βc X̄ Ȳ

40 3 1.3 −0.46 (−0.2) 1.22 0.22 0.91
150 21.8 1.3 −0.41 (−1.2) 1.15 0.15 0.81
250 46.9 1.3 −0.36 (−1.4) 1.09 0.09 0.72
350 77.6 2.6 −0.32 (−1.2) 1.07 0.07 0.64
450 113.0 2.6 −0.29 (−1.2) 1.06 0.06 0.58

considerably and the frequency shift will be negligible. If
the voltage is held fixed, however, then the frequency is
reported to decrease almost linearly with the perveance (or
current). These trends seem to agree with the results from
the current analysis, under similar conditions of magnetic
flux confinement. Table II shows the behavior under fixed
perveance, while Table III shows the behavior under fixed
voltage. Calculations from the presented theory and from
Ref. [2] are compared in the two tables. It is noted that,
whilst the two sets of results agree on the trend of behavior,
the present theory seems to predict a shift that is relatively
less acute than that predicted by Ref. [2].

Figure 6 shows the approximately linear behavior of �f
with beam current, at a fixed voltage of 240 kV and 1.3 T
confinement. Our theory predicts a trend where frequency
is shifted by approximately −1 MHz per μPerv. This
should be compared by the prediction of −4.9 MHz/μPerv
in the PIC simulations reported in Ref. [2] and with the
estimation rate of −2 MHz/μPerv given for the L-5782
weather radar klystron, cited in Ref. [2].

Let us consider this cavity at the loading point of Vb =
240 kV Ib = 235.2 A (see Table III), and pretune it to oper-
ate at a small upshift of 2.0 MHz and coupling coefficient
of 1.48, then it will be detuned back to the original fre-
quency when the beam is turned on, and it will then be
critically matched as well. With such pretuning we achieve
a gain of Gmax = 3.61 (equivalent to 5.6 dB) compared to
the untuned case, according to Eq. (80).

Finally, consider the c-band structures shown in
Figs. 5(b) and 5(c), as two cavities that are designed to
operate at the same frequency as the second example above
(5.08764 GHz), but with a different, piecewise-elliptical
profile shapes. Analyzing these two cavities using the same
equations, Eqs. (98)–(104), and under the same beam-
loading point (Vb = 240 kV Ib = 235.2 A) taken for the
previous example, we obtain for the mushroomlike cross-
section [see Fig. 5(b)]: X̄ = 0.75, Ȳ = 6.26, �f = −2.43
MHz, and βc = 1.75, for copper walls with a cold Qi of
6555. For the inverted-mushroom profile [see Fig. 5(c)]
we obtain: X̄ = 0.61, Ȳ = 5.09, �f = −2.01 MHz, and
βc = 1.61, with a cold Qi of 6456. This results in the for-
mer having Gmax = 6.69 (equivalent to 8.3 dB) and the
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TABLE III. Detuning experienced at different instances of beam loading for the c-band cavity shown in Fig. 5(a) and under fixed
beam voltage Vb = 240 kV. The rows show the detuning predictions by the present theory as well as the frequency shift predictions
reported in Ref. [2] (within reading accuracy of curves given in Ref. [2]). The last column gives the approximately linear trends of
detuning for the present theory compared to the PIC simulations in Ref. [2] and the L-5782 weather radar klystron cited in Ref. [2].

Ib (A) 118.0 164.5 187.5 211.4 235.2 Slope

�f (MHz) (MHz) (MHz) (MHz) (MHz) (MHz/μPerv)
(1) This theory −1.0 −1.4 −1.6 −1.8 −2.0 circa −1
(2) L-5782 radar [2] − − − − − circa −2
(3) PIC simulations [2] −3.4 −5.0 −6.4 −7.2 −8.2 circa −4.9
This theory, βc 1.24 1.36 1.38 1.43 1.48
This theory, X̄ 0.24 0.36 0.38 0.43 0.48
This theory, Ȳ 1.95 2.72 3.10 3.50 3.90

latter having Gmax = 5.09 (equivalent to 7.1 dB), according
to Eq. (80). This indicates that the mushroomlike cavity in
Fig. 5(b) has the highest Gmax value of the three cavities
in Fig. 5, giving almost twice the gain ceiling obtained
by using Fig. 5(a); an advantage for using the shape in
Fig. 5(b) in practice. This highlights how the X̄ , Ȳ param-
eters can inform shape optimization to maximize Gmax
during cavity design.

VI. CONCLUSIONS

A variational theory for beam-loaded cavities has been
presented, where the beam-field interaction is formulated
as a dynamical problem. The general theory, which is
applicable to an arbitrary cavity setup, is applied to the
important class of cylindrical structures exemplified by a
klystron input cavity, to extract the laws that govern detun-
ing under beam loading. Two important parameters, X̄ , Ȳ,
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FIG. 6. Frequency shift experienced by the c-band cavity
shown in Fig. 5(a) under fixed beam voltage Vb = 240 kV and
varying perveance (current), as predicted by the presented the-
ory, with sample current values chosen to match those presented
by Ref. [2]. The almost linear trend is in agreement with general
trend reported in Ref. [2], but with a lower slope. See Table III
and text for details.

are extracted to characterize the cavity under beam load-
ing. With the help of these parameters, the cavity detuning
behavior is predicted and a pretuning procedure is pro-
posed to bring the cavity back to nominal resonance and
to maximize gain in 〈�γ 〉. It is shown that the detuning
parameters X̄ , Ȳ can also be used to optimize the cav-
ity’s shape during the design process, further maximizing
the gain achieved by pretuning. The presented theory uses
Hamiltonian formalism to express the underlying physics
and computations in a relatively straightforward manner.
The powerful methods found in Hamiltonian dynamics and
infinitesimal canonical transformations (e.g., Lie transfor-
mations) are now directly accessible for the beam loading
problem.
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APPENDIX A: DERIVATION OF SOME
PRELIMINARY PARAMETERS

For the intrinsic quality factor Qi we can see that
Eq. (12) is arrived at by writing

Qi = ωi
Ui

Pli
= ωi

∫
V dV

(
μ

4 |H|2 + ε
4 |E|2)

Re
[∫

∂V da 1
2 (E × H∗) · n̂

] ,

∼= ωi
|αi|2

∫
V dV

(
μ

4 |hi|2 + ε
4 |ei|2

)
|αi|2Re(1 − i) ξ

2

∫
∂V da h2

i

,

= ωi
μ

∫
V dVh2

i

ξ
∫
∂V da h2

i
= −ωi

ε
∫

V dVe2
i

ξ
∫
∂V da h2

i
= ωi

ui

pi
.
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The relation between the scaled energy terms in Eq. (13) is
readily obtainable by

Ui = 1
2

∫
V

dVμ|H|2 = 1
2
|αi|2

∫
V

dVμh2
i ,

= 1
2

∫
V

dVε|E|2 = e−iπ

2
|αi|2

∫
V

dVεe2
i ,

= −1
2
|αi|2

∫
V

dVεe2
i = |αi|2ui,

and, similarly, Pli = |αi|2pi.
The external quality factor Qe Eq. (14) is reached also

by writing

Qe = ωi
Ue

Pli
= ωi

2

∫
V dV

(
μ|H|2 + ε|E|2)∫

p da (Ee × H∗
e) · n̂

,

= ωi

2
e−2i(φH −φem)

∫
V dV

(
μH 2 − εE2

)
∫

p da (Ee × He) · n̂
,

= −ωie−2i�φ
∫

V dVεE2∫
p da (Ee × He) · n̂

∼=−ωie−2i�φα2
i

∫
V dVεe2

i

a2
e

∫
p da (ep × hp) · n̂

,

= ωie−2i�φ
∫

V dVμH 2∫
p da (Ee × He) · n̂

∼=ωie−2i�φα2
i

∫
V dVμh2

i

a2
e

∫
p da (ep × hp) · n̂

.

The emitted power, Pe, can be written as

Pe = 1
2

∫
p

da Ee×H∗
e · n̂ = |ae|2

2

∫
p
da ep×hp · n̂. (A1)

The term
∫

p da ep×hp · n̂ in Eq. (A1) may be extracted
from Eqs. (15) and (11) as

∫
p

da (ep × hp) · n̂ = −ωiα
2
i

a2
eQe

∫
V

dVεe2
i ,

= 2ωiα
2
i ui

a2
eQe

= 2ωi|αi|2ui

|ae|2Qe
. (A2)

Equation (A2) is now reused to find expressions for the
power input through the port, Pin given in Eq. (17), and
consequently the ratio |a+|/|ae| given in Eq. (18), as
follows:

Pin = −1
2

∫
p

da E+ × H+∗ · n̂ = |a+|2
2

∫
p

da ep × hp · n̂,

= |a+|2|αi|2
|ae|2

ωiui

Qe
= e−2iφ+ a+2α2

i

a2
e

ωiui

Qe
,

|a+|
|ae| = 1

|αi|

√
PinQe

ωiui
= eiφαi

αi

√
PinQe

ωiui
.

APPENDIX B: CONSISTENCY PROOF FOR THE
PROPOSED CAVITY LAGRANGIAN L IN

EQUATION (23)

The cavity’s driven Lagrangian L is given in Eq. (23) as

L = 1
2

∫
V

dV
(
εE2 + μH 2) + i

2ω

∫
p

da (Ee × He) · n̂

+ 1 + i
2ω

ξ

∫
∂V

da H2+2i
ω

∫
p

da
(
Ee × H+) · n̂. (B1)

Consider for a moment the first (volume integral) term
in Eq. (B1), which we shall call L1, and let us now use
Eq. (22) to work in terms of H as the main variable, then
we can write

L1 = 1
2

∫
V

dV
(
εE2 + μH 2) ,

= 1
2

∫
V

dV

[
ε

(∇ × H − J
−iωε

)2

+ μH 2

]
,

δL1 =
∫

V
dV

[ −1
εω2 (∇ × δH) · (∇ × H−J)+μδH·H

]
.

Utilizing the vector identity ∇ · [δH × (∇ × H − J)] =
(∇ × δH) · (∇ × H − J) − δH · ∇ × (∇ × H − J) and
using divergence theorem now gives

δL1 = −1
εω2

∫
V

dVδH · ∇ × (∇ × H − J)+
∫

V
dVμδH·H

+ −1
εω2

∮
∂V

da n̂ · δH × (∇ × H − J),

=
∫

V
dVδH·

(
i
ω

∇×E+μH
)

+ i
ω

∮
∂V

da δH·n̂ × E,

=
∫

V
dVδH·

(
i
ω

∇×E+μH
)

+ i
ω

∫
wall

da δĤ·n̂ × E

+ i
ω

∫
p

da δH|p · n̂ × E
∣∣
p , (B2)

where we have decomposed the surface ∂V into the part
covering the walls and the part covering the port. If we
now add the rest of the terms from Eq. (B1) and force δL to
vanish for an arbitrary δH variation, it is easy to see that the
volume and surface integrals must vanish for arbitrary δH,
forcing their integrands to satisfy the following relations:

∇ × E = iωμH, (B3)

E|p = Ee, H|p = He + 2H+ (on port), (B4)

n̂ × E = (1 − i)ξH (on walls), (B5)

which are exactly Maxwell’s second equation and the
boundary conditions expected at the walls and the port, as
required.
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APPENDIX C: DERIVATION OF FREQUENCY
SHIFT DUE TO CAVITY-WALL LOSSES USING

THE UNDRIVEN LAGRANGIAN L
Consider the undriven Lagrangian, including only the

effect of cavity-wall loss and denoting the corresponding
frequency by ω′

i,

L = 1
2

∫
V

dV
(
εE2 + μH 2) + 1 + i

2ω′
i

ξ

∫
∂V

da H2, (C1)

and let us apply the modal approximation of Eq. (8), as
well as Eq. (22) with J set to zero, to give

L = 1
2

∫
V

dV
(
εE2 + μH 2) + 1 + i

2ω′
i

ξ

∫
∂V

da H2,

= 1
2

∫
V

dV
[
ε
(∇ × H)2

−ω
′2
i ε2

+ μH 2
]

+ 1 + i
2ω′

i
ξ

∫
∂V

da H2,

= 1
2

∫
V

dV
[−α2

i

ω
′2
i ε

(∇×hi)
2+μα2

i h2
i

]
+ 1 + i

2ω′
i

α2
i ξ

∫
∂V

dah2
i ,

= 1
2

∫
V

dVα2
i μh2

i

[
1−

(
ωi

ω′
i

)2
]

+1 + i
2ω′

i
α2

i ξ

∫
∂V

dah2
i ,

(C2)

where in the last step we exploited the relation given in
Eq. (11). If we use Eq. (20) in Eq. (C2) to convert the
surface integral into a volume integral, we can write

L = 1
2

∫
V

dVα2
i μh2

i

[
1 −

(
ωi

ω′
i

)2

+ (1 + i)
Qi

ωi

ω′
i

]
,

= 1
2

∫
V

dVα2
i μh2

i
ωi

ω′
i

[
ω′

i

ωi
− ωi

ω′
i
+ (1 + i)

Qi

]
. (C3)

It is now easy to see that, by invoking the stationarity of
L, Eq. (C3) will, indeed, lead to the expected result (as
given in classical treatments, e.g., Ref. [16]) for the com-
plex frequency shift due to the finite conductivity of the
cavity walls,

(
ω′

i

ωi
− ωi

ω′
i

)
= −1 + i

Qi
, (C4)

which can be simplified for high-Qi cavities as

2�ωi

ω′
i

∼= −1 + i
Qi

. (C5)

Although the shifted frequency in Eq. (C5) is complex in
general and may be written as ω′

i = ω′
i,r + iω′

i,x, with the
imaginary part representing damping effects, it can be read-
ily shown that the same form of Eq. (C5) is found for the

real frequency shift (ωi → ω′
i,r). Indeed, one can write

−1 + i
Qi

∼= 2�ωi

ω′
i

= 2(ω′
i,r − ωi + iω′

i,x)

ω′
i,r + iω′

i,x

= 2(�ωi,r + iω′
i,x)

ω′
i,r + iω′

i,x
,

whose real and imaginary parts can be separated and
solved simultaneously to give

ω′
i,x

∼= −ω′
i,r

1 + 2Qi
, (C6)

2�ωi,r

ω′
i,r

∼=
(

ω′
i,r

ωi
− ωi

ω′
i,r

)
= − 1

Qi
, (C7)

⇒ ω′
i,r

∼= ωi

(
1 − 1

2Qi

)
. (C8)

As expected, the frequency correction for the eigenmode is
small for high-Q cavities [16]. The small imaginary part’s
relative magnitude is of the same order of magnitude as
the frequency correction; O(1/Qi). Note that, for the type
of time-harmonic variational formulation used in Sec. III,
the frequency enters the driven Lagrangian formalism as
the real frequency [13]. Therefore, in Sec. III we use the
notation 2�ωi/ω

′
i, dropping the r subscript in ω′

i for sim-
plicity, with the understanding that we are dealing with real
frequencies.
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