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Characterizing the input-output photon-number distribution of an unknown optical quantum channel is
a worthwhile task for many applications in quantum information processing. Ideally, this would require
deterministic photon-number sources and photon-number-resolving detectors, but these technologies are
still work in progress. In this work, we propose a general method to rigorously bound the input-output
photon-number distribution of an unknown optical channel using standard optical devices such as coherent
light sources and non-photon-number-resolving detectors and homodyne detectors. To demonstrate the
broad utility of our method, we consider the security analysis of practical quantum key distribution systems
based on calibrated single-photon detectors and an experimental proposal to implement time-correlated
single-photon counting technology using homodyne detectors instead of single-photon detectors.
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I. INTRODUCTION

Quantum photonics is the art of using low-light optical
signals to exchange and process information in the quan-
tum regime [1,2]. Today, photonic systems represent one of
the most promising platforms to implement quantum tech-
nology, with already several well-established applications
ranging from quantum cryptography [3,4] and communica-
tions [5], to sensing and metrology [6–8], lithography [9],
and imaging [10].

In the most general setting, one considers the prepara-
tion, transmission, and detection of optical signals. Here,
the photonic channel of interest accepts an N -mode input
state and returns an M -mode output state, which is then
measured by a series of photon-counting devices. More
formally, let q( �m|�n) be the probability of obtaining �m =
(m1, m2, . . . , mM ) photons across the M output modes
given �n = (n1, n2, . . . , nN ) photons are injected into the
channel (see Fig. 1). Here, we note q(�m|�n) can be char-
acterized independently of the channel’s dynamics. That
is, the knowledge of the channel is not needed to estimate
q(�m|�n), i.e., we can treat the channel as a black box with
N inputs and M outputs and sample accordingly. To keep

*emilien.lavie@u.nus.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

the characterization as general as possible, we also allow
cases in which the channel is not photon-number preserv-
ing. This can happen when the channel experiences loss
and/or suffers from background noise. Correspondingly, if
the channel is known to be photon-number preserving, then
we have

∑N
i=1 ni = ∑M

j =1 mj .
In practice, the input-output photon-number distribution

is central to a multitude of information-processing tasks.
A good example is boson sampling—a type of nonuniver-
sal quantum computation [11,12]. Here, a linear optical
interferometer with N inputs and N outputs is consid-
ered, where the input is injected with a fixed number
of single photons and the output measured with photon-
counting devices. In Ref. [11], it was shown that q(�m|�n)

evaluates directly the permanents of submatrices of the
interferometer’s matrix. On the other hand, solving such
matrix permanents with a classical computer is known to
be computationally hard.

Another example is quantum key distribution (QKD),
particularly those using discrete variable encoding [13,14].
For such a communication system (connected by a quan-
tum channel with one input and one output), the estimation
of single-photon statistics is essential for protocol security.
Take for instance q(1|1), which quantifies how often the
untrusted channel behaves as a true single-photon chan-
nel. Having this information strengthens the QKD security
analysis by allowing one to assume that (1) the adversary
forwards exactly one photon to the receiver and (2) the
trusted detector noise and untrusted channel noise are sep-
arated. The former is especially powerful as it enables the
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FIG. 1. Typical scheme for estimating the input-output
photon-number distribution q( �m|�n) of a photonic channel. Each
of the N input modes of the photonic channel is connected to
a light source that supplies the input photons and each of the
M output modes is connected to a detector that gives an out-
come related to the number of photons leaving the photonic
channel. Note that the sources and detectors considered here
may include some form of active modulation devices, such as
intensity modulators.

security analysis of practical QKD under the assumption
of a qubit channel (it also applies generally to any qudit
channel of interest and hence to high-dimensional QKD as
well [15–17]).

As a final example, we consider time-correlated single-
photon counting (TCSPC) [18,19], an optical waveform
measurement technique that is widely used in fundamen-
tal physics research (e.g., ranging [20,21], imaging [22,
23], light-source characterization, and life sciences’ exper-
iments (e.g., fluorescence-lifetime imaging microscopy
[24]). In this setting, the input and output optical modes of
the channel are temporal modes corresponding to different
time intervals. Here, we have

∑N
i=1 ni = 1 and

∑M
j =1 mj ≤

1 since only one photon is deployed in a single trial. In
recent years, to improve the efficiency and speed of optical
waveform measurement, the idea of using photon-number-
resolving measurements has been proposed as well
[25,26].

The input-output photon-number distribution can be
easily estimated if one injects fixed photon-number states
|n1〉|n2〉 . . . |nN 〉 into the channel and measure the output
using photon-counting devices (which counts the num-
ber of photons in each output mode). However, this
would require deterministic photon-number sources and
photon-number-resolving detectors (PNRDs), which at the
moment are still in development [1,2]. The more realis-
tic options are probabilistic photon-number sources (e.g.,
coherent lasers) and non-photon-number-resolving detec-
tors (e.g., threshold detectors and homodyne detectors);
these optical devices are not only highly reliable and cost
effective but also widely available.

To this end, it is natural to ask if one can use
these standard optical devices to estimate the input-output
photon-number distribution of an unknown photonic
channel.

It is worthwhile to mention that the problem we
are interested in can be seen as a special case of
coherent-state quantum process tomography (CSQPT),
which uses coherent states (probe states) and homo-
dyne measurement to reconstruct the process matrix of
an unknown optical channel [27–30]. Indeed, by looking
at only the diagonal components of the process matrix,
one can recover the photon-number distribution of the
unknown channel. Since we are only interested in the
photon-number distribution, the implementation can be
significantly simplified, i.e., the probe states and local
oscillators can come from independent laser sources, as
we show later. Note that in the case of CSQPT, the rela-
tive phase between the probe states and the local oscillator
has to be calibrated (needed to fully recover the under-
lying process matrix), which may be an issue in long-
distance quantum-communication protocols such as QKD
[31,32].

The problem of estimating the photon-number distribu-
tion of an unknown optical channel is not new and has
been studied before in the field of QKD using thresh-
old detectors. On the input side, decoy-state method has
been proposed, which uses phase-randomized light pulses
with different intensities to estimate single-photon statis-
tics [33–35]. The method essentially entails solving a
system of linear equations constrained by the different
expected detection rates of the protocol. As such, there are
two approaches towards solving the problem, namely one
can do it analytically via Gaussian elimination [36,37] or
numerically with linear programming [38,39]. The same
principle can also be applied to threshold detectors to esti-
mate the output photon-number distribution of the channel
[40]. In this approach, called detector-decoy method, one
randomly varies the detection efficiency with a variable
optical attenuator or intensity modulator to generate a sys-
tem of linear equations; likewise, these are constrained
by the different detection rates effected by the variation
of detection efficiency. Given that both decoy-state and
detector-decoy methods are based on the same concept,
it is thus natural to consider the combination of these
two approaches. This direction was recently pursued by
the authors of Ref. [41], who used the direct combination
of decoy-state and detector-decoy methods to character-
ize multiphoton quantum-interference patterns. Alterna-
tively, the authors of Ref. [42] used a source modulation
along with PNRDs to characterize multiphoton quantum
interference.

Here, based on the above ideas, we provide a system-
atic approach to analyze optical communication systems
using a linear estimation of the photon-number statistics,
extending the decoy-state, detector-decoy, and homodyne-
based linear estimation methods. Our theoretical contri-
butions are threefold: (1) the extension of Ref. [41] to
homodyne detectors, (2) the security analysis of prac-
tical QKD systems based on calibrated single-photon
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detectors, and (3) an experimental proposal to implement
TCSPC technology using homodyne detectors instead of
single-photon detectors. Concerning the latter, there are
two practical advantages in using homodyne detectors: (1)
these detectors are typically much more cost effective than
single-photon detectors and (2) no active intensity mod-
ulation is required to achieve the same effect as detector
decoy. More generally, our extended approach with homo-
dyne detectors provides a simpler and more cost-effective
implementation path for applications that requires only the
knowledge of q(�m|�n) instead of single-shot information
(see the examples above). We also present two differ-
ent methods to estimate the desired input-output photon-
number probabilities: one based on Gaussian elimination
and the other based on linear programming.

Additionally, we highlight that our work is focused on
providing interval estimates on the photon-number statis-
tics instead of point estimation. Indeed, our approach is
essentially motivated by how parameters are estimated
in QKD: there, it is imperative to provide reliable upper
and lower bounds on parameters such as bit error rates
and detection rates, which characterize the amount of key
information leaked to the unknown channel. Therefore,
the methods that we describe later include a guarantee on
the statistical distance to the true value, unlike other esti-
mation techniques such as maximum-likelihood [43] and
least-squares estimation [44].

The paper is organized as follows. In Sec. II, we intro-
duce a general channel model and the optical device mod-
els used in the estimation. Then in Sec. III, we present two
methods for bounding the desired photon-number prob-
abilities. Finally, in Sec. IV we show how our method
can be used to analyze the security of practical QKD
with calibrated detectors and TCSPC using homodyne
detectors.

II. CHANNEL MODELING

In the following, we keep our analysis to a single-
mode photonic channel (i.e., a channel with one input
mode and one output mode); the generalization to multi-
mode channels is straightforward. The starting point of our
approach is the measurement function, {f (x, y)}x,y , which
characterizes the observed statistics depending on two des-
ignated control parameters x and y owned, respectively,
by Alice (transmitter side) and Bob (receiver side). Here,
the parameters are quantities used to test the unknown
photonic channel. In the case of active schemes, they
are random optical modulations operated by the users. In
the case of passive schemes (e.g., passive decoy states
[45–49] or homodyne detection as presented later in
this paper), they are random variables whose outcomes
are correlated to the behavior of the unknown chan-
nel.

In the most general setting, the measurement function is
modeled by

f (x, y) =
∞∑

n,m=0

pn(x)︸ ︷︷ ︸
transmitter

q(m|n)
︸ ︷︷ ︸
channel

rm(y)
︸ ︷︷ ︸
receiver

, (1)

where pn(x) is the input photon-number distribution (repre-
senting correlations between a n-photon state transmission
event and Alice’s parameter x), q(m|n) is the probability
of the channel emitting m photons given it has received n
photons, and rm(y) is the measurement response represent-
ing the correlation between a m-photon reception event and
Bob’s parameter y.

As mentioned above, our goal is to estimate certain
elements of the unknown channel’s input-output photon-
number distribution, q(m|n). To that end, we suppose the
input photon-number distribution pn(x), the measurement
response rm(y), and the measurement function f (x, y) are
fully characterized for any x and y. That is, we assume
the user has complete knowledge of the underlying optical
devices and has made enough measurements to accurately
infer f (x, y).

Similar to standard decoy-state method implementa-
tions, we use a phase-randomized coherent-wave laser to
generate photon-number states at the channel’s input. In
this case, the light field entering the channel is described
by a Poisson distribution of photon-number states

ρμ =
∑

n≥0

μne−μ

n!
|n〉〈n|, (2)

where μ is the mean photon number of the field. The ran-
dom input x is achieved by modulating the mean photon
number with an intensity modulator. As such, the proba-
bility model of the source is fully characterized by x and
given by

pn(x) = xn

n!
e−x. (3)

For the measurement model, we can use either a thresh-
old detector or a homodyne detector. In the former case,
the detector only fires if some photons are detected. As
such, there are only two possible outcomes, detection and
no detection. Here, we consider only the no detection
outcome since the detection outcome is simply the comple-
ment event. Following Ref. [40], the response of a practical
threshold detector can be modeled using

rm(y = ν) = (1 − pDC)(1 − ν ηdet)
m, (4)

where pDC is the probability of dark count, ηdet is the
single-photon efficiency of the detector, and ν is the trans-
mission efficiency of the intensity modulator (placed in
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front of the detector) controlled by input y. We note
that this model is general and applies to most of today’s
standard single-photon detection techniques, e.g., single-
photon avalanche diodes (SPADs) and superconducting
nanowire single-photon detectors (SNSPDs); see Ref. [50]
for an overview of single-photon technology. This model
is simple and might be inaccurate under specific operat-
ing conditions like fast repetition rate under which other
effects like after pulses might appear. However, it is easy
to replace the simple model used in Eq. (4) by a more
refined model like the one suggested in Ref. [51] to account
for such effects. For simplicity in this paper, we stick to
the simple model to avoid unnecessary complication in the
understanding of the underlying method.

In the case of homodyne detection, it does not count the
number of photons in the incoming light field but rather
gives an outcome whose probability density function is
correlated to the number of photons [52]. This relation
becomes more apparent when the local oscillator is phase
randomized and the response of the detector when given m
photons is given by [43,44]

rm(y) =
m∑

k=0

(
m
k

)
ηdet

k
(
1 − ηdet

)m−k

√
π2kk!

H 2
k (y)e−y2

, (5)

where y is a real number and {Hk(y)}k are Hermite poly-
nomials [53,54].

To estimate the desired photon-number distribution,
several statistical methods can be employed, e.g., those
based on linear estimation [55,56], least-squares estima-
tion [44], and maximum likelihood [43].

Here, two observations are in order. Firstly, unlike
threshold detectors, one can obtain any number of dis-
crete outcomes by binning y—in practice, an analog-to-
digital converter (ADC) is used. Secondly, notice that
no additional intensity modulation is required here. This
is because the response density function of a homodyne
detector is sensitive to the range of y and hence one can
optimize the binning function (i.e., the ADC) to assign
different weights to different input photon-number states.
Essentially, this is the same as the detector-decoy method,
which assigns different detection probabilities to different
photon-number states via the variation of the detection
efficiency. Again here, the model we use in Eq. (5) is
relatively simple and could be refined to include addi-
tional imperfection of realistic detectors like electronic
noise [57].

III. METHODS

In most quantum-information-processing tasks, one is
only interested in elements of q(�m|�n) that are small in the
input photon number and output photon number. Addition-
ally, the possible values for the controlled parameters x
and y are limited to fixed sets x ∈ X := {x0, x1, . . . , xn0}

and y ∈ Y := {y0, y1, . . . , ym0}. We consider a practically
relevant finite subset of q(m|n) by focusing on n ∈ N0 :=
{0, 1, . . . , n0} and m ∈ M0 := {0, 1, . . . , m0}. Our objec-
tive is to derive upper and lower bounds on a specific
element or a linear combination of different elements from
the set {q(m|n)}n∈N0,m∈M0 . As mentioned, this problem
is essentially a linear optimization problem with con-
straints given by positivity, normalization, and the mea-
surement distribution. More specifically, for positivity one
has q(m|n) ≥ 0 for any n and m, for subnormalization∑m0

m=0 q(m|n) ≤ 1 for any n, and for measurement distri-
bution

f (x, y) ≥
n0∑

n=0

m0∑

m=0

pn(x)q(m|n)rm(y), (6)

for any x and y. In addition, one could also exploit the
knowledge of characterized functions pn(x) and rm(y) to
construct linear constraints like

0 ≤ f (x, y) −
n0∑

n=0

m0∑

m=0

pn(x)q(m|n)rm(y) ≤ h(x, y), (7)

where h(x, y) is some positive function depending on the
optical devices used in the application. We provide some
examples later in Sec. IV and more technical details in
Appendix A. In the following, we present two methods to
estimate the desired input-output photon-number statistics.

Linear programming method: Let q(m∗|n∗) be the quan-
tity of interest to which an upper bound is desired, then the
linear programming (LP) problem is

maximise q(m∗|n∗)

subject to 0 ≤ q(m|n) ≤ 1, ∀ n ≤ nc, m ≤ mc

mc∑

m=0

q(m|n) ≤ 1, ∀n ≤ nc

nc∑

n=0

mc∑

m=0

pn(x)q(m|n)rm(y)

≤ f (x, y), ∀ x, y
nc∑

n=0

mc∑

m=0

pn(x)q(m|n)rm(y)

≥ f (x, y) − h(x, y), ∀ x, y.

(8)

Evidently, the idea behind LP is to use the various con-
straints on q(m|n) or some linear combination of them to
provide bounds for the possible values of q(m|n). Also,
since the optimization is numerical, it is useful to first
narrow down to a set of m and n of interest, which can
be done via the truncation of both m and n up till some
suitable choice of mc ≥ m0 and nc ≥ n0. Notably, LP is
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performed by first defining a feasible region where the
set of input-output distribution {q(m|n)}m≤mc,n≤nc satisfies
the constraints. One can then maximize (respectively, min-
imize) the desired probability q(m∗|n∗) over the feasible
region to obtain the upper (respectively, lower) bound on
q(m∗|n∗).

Analytical method: The basic idea of the second method
is to leverage the complete knowledge of the character-
ized devices to estimate q(m∗|n∗) without using any cutoff
condition n ≤ nc or m ≤ mc. To that end, we consider a
linear combination of the measurement function [see Eq.
(1)] over a finite set of evaluation points in X and Y . This
gives us a real-valued quantity �, which is defined as

� :=
n0∑

i=0

m0∑

j =0

αiβj f (xi, yj )

=
∑

n,m≥ 0

q(m|n)

n0∑

i=0

αipn(xi)

m0∑

j =0

βj rm(yj ), (9)

where coefficients {αi}n0
i=0 and {βj }m0

j =0 are real numbers.
Also, we write

un :=
n0∑

i=0

αipn(xi), vm :=
m0∑

j =0

βj rm(yj ), (10)

to capture the summation over all the considered evalua-
tion points.

Here, we want to get � as close as possible to q(m∗|n∗).
To do that, we set un = δn,n∗ and vm = δm,m∗ for all val-
ues of n ∈ N0 and m ∈ M0, where δa,b is the Kronecker
δ function, and solve for αi and βj . In essence, this step
requires solving two systems of linear equations, namely
one for the source device,
⎡

⎢
⎢
⎣

p0(x0) p0(x1) . . . p0(xn0)

p1(x0) p1(x1) . . . p1(xn0)
...

...
. . .

...
pn0(x0) pn0(x1) . . . pn0(xn0)

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Input photon-number distribution

⎡

⎢
⎢
⎣

α0
α1
...

αn0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

δ0,n∗
δ1,n∗

...
δn0,n∗

⎤

⎥
⎥
⎦ ,

(11)

and one for the measurement device,
⎡

⎢
⎢
⎣

r0(y0) . . . r0(ym0)

r1(y0) . . . r1(ym0)
...

. . .
...

rm0(y0) . . . rm0(ym0)

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
Detection response function

⎡

⎢
⎢
⎣

β0
β1
...

βm0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

δ0,m∗
δ1,m∗

...
δm0,m∗

⎤

⎥
⎥
⎦ . (12)

Notice that this step does not require the knowledge of
f (xi, yj ) and hence can be seen as part of the calibration
process prior to characterizing the channel.

Solving Eqs. (11) and (12) hence gives

� = q(m∗|n∗) +
∑

n≥n0+1

q(m∗|n)un +
∑

m≥m0+1

q(m|n∗)vm

+
∑

n≥n0+1

∑

m≥m0+1

q(m|n)unvm. (13)

As one can see, � is now expressed in terms of the desired
quantity, q(m∗|n∗), and some other irrelevant terms that
emanate from higher photon-number contributions, i.e.,
those from n ≥ n0 + 1 and m ≥ m0 + 1. In Appendix A,
we show that these terms can be rigorously bounded by
using known information of the optical devices. This in
turn provides upper and lower bounds on q(m∗|n∗). More
concretely, the idea is to establish bounds on un and vm
using the characterized input photon-number distribution
and detection-response function. Therefore, these bounds
are specific to the types of light sources and detectors used
in the setup; in Appendix A, we provide standard bounds
for common optical devices such as phase-randomized
lasers, threshold detectors, and homodyne detectors with
phase-randomized local oscillators. We also note that these
bounds can be made arbitrarily tight by selecting large
enough n0 and m0 values. Indeed, a key condition is to
ensure that the derived bounds on the extra terms in Eq.
(13) are small when compared to q(m∗|n∗); and this can be
achieved by using bigger values of n0 and m0.

This linear method is conceptually similar to early
papers in homodyne tomography using pattern functions
to recompute photon-number statistics [55,56]. They con-
sidered the use of pattern functions Mn(x) such that

pn =
∫ +∞

−∞
Mn(x)f (x)dx. (14)

Indeed, there is an obvious similarity with our method
when using only one input mode:

� =
n0∑

i=0

αif (xi), (15)

and � is a good approximation of pn up to some deviation
we can bound. Our computation in Eq. (15) can be seen
as a discretized version of Eq. (14). The main benefit is
that it can be generalized easily beyond homodyne tomog-
raphy, for instance using threshold detectors or other light
sources, and as such may provide a unified understanding
of photon-number probability estimation.

IV. APPLICATIONS

We present here two applications to illustrate the util-
ity of our framework. In the first application, we consider
the security of practical prepare-and-measure QKD with
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realistic photon sources and single-photon detectors. More
specifically, we show how to rigorously bound the single-
photon channel security of the protocol. In the second
application, we show how to use our framework to enable
TCSPC with homodyne detection instead of single-photon
detection.

A. Prepare-and-measure QKD with single-photon
channel security

As a first application of our method, we analyze the
asymptotic security analysis of discrete-variable QKD pro-
tocols based on practical optical devices such as lasers
and threshold detectors. Here, we consider the celebrated
Bennett-Brassard 1984 (BB84) protocol [13] and the six-
state protocol [58,59]. These two protocols are formulated
as qubit protocols, i.e., the preparation, evolution and mea-
surement can be described in a Hilbert space of dimension
2 [14].

In practice, however, most QKD systems use weak
coherent laser sources and threshold detectors [14] to
implement qubit states and measurements. This is because,
as mentioned above, deterministic single-photon sources
and PNRDs are not yet available and weak coherent laser
sources and threshold detectors are the closest one can get
to achieving qubit states and measurements in practice (at
least with regards to cost and practicality). However, one
critical drawback is that there are some fundamental differ-
ences between the qubit models (assumed in the protocol)
and these optical devices. Some of these differences are
irreconcilable and hence cannot be applied to qubit pro-
tocols, while some may lead to implementation loopholes
such as photon-number splitting attacks [60,61].

Fortunately, for most qubit protocols (including BB84),
the gap between theory and practice can be mitigated using
innovative techniques such as the decoy-state method [33–
35] and squashing [62–65]. In the case of the former,
assuming that the prepared optical signals are diagonal
in the photon-number basis, Eve’s attacks can be cate-
gorized according to the emitted photon numbers. This
allows us to focus on the single-photon component of
emitted optical signal and hence view the states prepared
by Alice as qubits. On the other hand, squashing models
provide an elegant method to map the actual full (infinite-
dimensional) mode measurement onto a finite-dimensional
Hilbert space followed by the ideal measurement. In the
case of the BB84 protocol, a squashing model exists and
hence one could assume qubit models for Bob’s measure-
ments in practice.

Therefore, using the decoy-state method together with a
squashing model, one can derive statistical bounds on the
single-photon error rates of the BB84 protocol and hence
compute its secret key rate. However, this approach is quite
restrictive and does not apply readily to other qubit proto-
cols. For instance, it has been shown that squashing does

not immediately apply to the six-state protocol [63,66]; on
the other hand, it has been shown that by relaxing cer-
tain statistical constraints, it is possible to define squashing
maps for a wide range of finite-dimensional protocols [65].

By contrast, our method allows us to analyze any qubit
(more generally, any higher dimension) protocol [15–17]
without using a squashing model. Assuming that Alice and
Bob prepare and receive a single photon defined across two
orthogonal optical modes, the states and measurements
can be described by qubit states and qubit measurements,
respectively. Our method allows us to bound the proba-
bility of Bob receiving a single photon (just before the
measurement) when Alice prepares and sends a single
photon as well as the corresponding error rate in each basis.

Roughly speaking, our method provides three practical
advantages over existing methods. Firstly, since we con-
sider only secret key contributions from events in which
Alice prepares a single photon and Bob receives a single
photon, we can directly use any security proof technique
for qubit models without applying any squashing model.
As such, our method can be applied to most practical
QKD systems under the condition that these systems ran-
domly vary their detection efficiency as specified by the
detector-decoy method. Secondly, since squashing models
typically require mapping double-detection events to ran-
dom outcomes [63,66], applying a squashing model would
likely introduce some additional errors from the detector
background noise. On top of that, squashing also does
not differentiate between clicks due to true single-photon
detections and empty detections, which may also introduce
additional errors. Hence, our method, which can rigorously
bound the true channel error rates, could give an enhanced
bound on the secret key rate especially in the high-loss
regime where the dark-count rate is not negligible. Finally,
as mentioned, our method allows us to analyze the security
of the protocol based on single-photon channel security.
To appreciate this feature better, we comparatively note
that when using the decoy-state method combined with a
squashing model, one actually evaluates the security of the
channel together with the detector noise, which is normally
trusted. In this case, the single-photon error rates include
the trusted detector noise. By contrast, our method allows
the rigorous separation of channel noise and detector noise
and thus provides a concise method to derive lower bounds
on the secret key rate in the calibrated detector setting; in
fact, the security of QKD with calibrated devices is known
to be an open problem [14].

We now demonstrate how our method can be applied
to the security analyses of practical QKD systems. We
emphasize that our method can be used for most discrete-
variable protocols, but as concrete examples, we apply
only our method to the BB84 and six-state protocol. To that
end, we introduce some notations that we use in this sub-
section only. We denote the basis choice of Alice and Bob
by x and y, respectively. x and y are randomly chosen from
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the set X and Y , respectively, where X = Y = {X , Z} for
BB84 and X = Y = {X , Y, Z} for the six-state protocol.
The symbol value encoded by Alice is denoted by a ∈ A
and Bob’s detection pattern is denoted by b ∈ B. For both
the BB84 and six-state protocol, a ∈ {0, 1} and b = b0b1
is a two-bit string where bi indicates whether the detec-
tor in mode i clicks (we have bi = 0 when the detector
in mode i does not click and bi = 1 when the detector
clicks). Based on b, Bob would then map the observed
click pattern into the decoded symbol or he could choose
to discard inconclusive events (such as no-click or double-
click events). Finally, we denote Alice’s intensity setting
by μ and Bob’s detection efficiency by η (composed of
η0 for detector 0 and η1 for detector 1), which are chosen
randomly in each round. We now focus our attention on
the case where |A| = 2, i.e., the protocol uses binary sym-
bols. The generalization to a higher-dimensional protocol
is straightforward.

In a typical discrete-variable protocol, Alice would ran-
domly choose a basis x and bit value a. She would then
choose an intensity setting μ and then prepare a phase-
randomised coherent state in the corresponding mode.
For phase-randomized coherent source, the emitted photon
number n would follow a Poisson distribution with mean
μ. Similarly, Bob randomly chooses a basis choice y as
well as detection efficiency setting η and he obtains the
outcome b. In the parameter estimation step, Alice and Bob
can estimate the following conditional probabilities (for all
possible combination of parameters):

f {xyab}(μ, η) = Pr(b|x, y, a, μ, η). (16)

This function can be expanded as

f {xyab}(μ, η) =
∑

n≥0

pn(μ)
∑

k,l≥0

q{xya}(kl|n)r{b0}
k (η0)r

{b1}
l (η1)

︸ ︷︷ ︸

Y{xyab}
n

,

(17)

where pn(μ) is the probability of the source emitting n pho-
tons [defined in Eq. (3)] while q{xya}(kl|n) is the probability
of k photons arriving in mode 0 and l photons arriving
in mode 1 given that the source emitted n photons, Alice
chooses the basis x and bit value a and Bob chooses mea-
surement basis y. r{b0}

k (η0) denotes the probability of the
detector in mode 0 clicking (b0 = 1) or not (b0 = 0), given
that k photons arrived in that mode and r{b1}

l (η1) is defined
similarly. Note that the probability of a threshold detector
not clicking is given in Eq. (4).

As such, Eq. (17) represents the conditional probabil-
ity as a product of different system elements (transmitter,
channel and receiver) in the form given in Eq. (1). The
parameters x, y, a, and b are considered as fixed param-
eters when estimating the input-output photon-number

distribution. Here, we remark that these parameters serve
only as a means for Alice and Bob to organize their
measurement data, i.e., they categorize the input-output
photon-number distributions according to x, y, a, and b. Of
note, the input-output photon-number distributions have
to be independent of these parameters: this is needed to
ensure that the single-photon channel behavior is basis
independent. In other words, Eve’s attacks on the quan-
tum channel have to be independent of Alice’s and Bob’s
basis choices [62]. In addition to this, we also need that the
input-output photon-number distributions are independent
of μ and η. In practice, these conditions can be reason-
ably enforced by using phase-randomized coherent lasers
and photon-counting detectors, which is the case in our
consideration.

Notice that the n-photon yield, which is denoted by
Y{xyab}

n here, is the usual quantity of interest in decoy-state
QKD [34]. More precisely, in Ref. [34], the authors con-
sidered events in which Alice and Bob choose the same
basis, i.e., x = y, and the cases in which Bob observes at
least one click. They also average the yield over Alice’s
bit value a. Hence, the n-photon yield is the probability of
observing a click given that Alice’s laser emits n photons.
Clearly this would depend on both the channel and the
trusted detectors, which are located in Bob’s lab. In con-
trast, our method bounds the probability of k and l photons
arriving at Bob’s measurement device given that n pho-
tons are prepared by Alice. This would depend only on the
behavior of the channel and not on the detectors.

To analyze the security of the BB84 and six-state proto-
col, the quantity of interest is q{xya}(kl|n) when n = 1 and
k + l = 1, i.e., the probability of the channel outputting a
single photon given that a single photon enters the channel.
In this case, the conventional security proofs [67,68] that
rely on the qubit models can be directly applied without
the need for a squashing model [62,63,65]. For all val-
ues of x, y, a, it is possible to use either method of Sec.
III to deduce {q{xya}(10|1), q{xya}(01|1)} once f {xyab}(μ, η)

is obtained from the parameter estimation step of the pro-
tocol. The single-photon error rates are just functions of
{q{xya}(10|1), q{xya}(01|1)}; for example, the single-photon
error rate given that Alice and Bob have chosen the same
basis (i.e., x = y) is given by

ex=y =
∑

a Pr(a)q{xya}(a, a ⊕ 1|1)
(

1 − r{0}
a (η0)r

{0}
a⊕1(η1)

)

px=y
det

,

(18)

where the qubit detection probability is

px=y
det =

∑

a

∑

k+l=1

Pr(a)q{xya}(k, l|1)
(

1 − r{0}
k (η0)r

{0}
l (η1)

)
.

(19)
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Once the single-photon error rates are determined, the
secret key rate can be easily computed. Here, we present
the bound on the secret key rate while we defer the detailed
security analysis of the six-state protocol to Appendix B.
In the asymptotic limit and under the assumption of col-
lective attacks, the secret key rate K of BB84 and six-state
protocols is given by

K ≥ p0(μ)q(00|0)
[
1 − r{0}

0 (η0)r
{0}
0 (η1)

]

+ p1(μ)px=y=Z
det H(A|E) − Q(μ, η)h2 [E(μ, η)] ,

(20)

where H(A|E) is single-photon conditional entropy given
Eve’s quantum side information; h2(·) denotes the binary
entropy function. Q(μ, η) and E(μ, η) is the observed gain
and quantum bit error rate when Alice and Bob choose
intensity μ and detection efficiency η, respectively. Hence,
the first term is the contribution due to the events in which
Alice prepares vacuum state. Since no quantum informa-
tion is leaked whenever Alice prepares the vacuum state,
all the detected events due to the transmission of vacuum
states are secure. The second term is the single-photon con-
tribution and the third term is the leakage due to error
correction assuming that the error-correcting code satu-
rates the Shannon limit. Using {eX , eY, eZ} as shorthand
for the single-photon error rate in the respective basis, the
single-photon conditional entropy H(A|E) for the BB84
protocol and the six-state protocol is given by

H(A|E) =
{

1 − h2(eX ) (BB84)
1 + h2(eZ) − H(λ) (six-state)

. (21)

Here, λ = (λ0, λ1, λ2, λ3) is a real vector containing the
unique solution to the following simultaneous equations:

λ0 + λ1 = 1 − eZ ,

λ0 + λ2 = 1 − eX ,

λ0 + λ3 = 1 − eY,

λ0 + λ1 + λ2 + λ3 = 1,

(22)

and H(λ) is the corresponding Shannon entropy. There-
fore, by substituting the appropriate H(A|E) to Eq. (20),
we obtain the bound on the secret key rate of the corre-
sponding protocol.

We present the simulated secret key rates in Fig. 2
assuming standard SPAD parameters. Here, we compare
against the asymptotic secret rate based on the standard
decoy-state method [36]. As mentioned above, the key
difference is that our method directly evaluates the single-
photon channel security whereas the standard decoy-state
method would include the detectors’ background noise
(dark counts). Indeed, in Fig. 3, we see that the single-
photon error rate of our method does not include the

Six states with source and detector modulation

FIG. 2. We simulate the achievable secure key rate with two
avalanche photodiode detectors, each one featuring a dark-
count rate of 10−6 and a fixed channel error rate of 5% in
all bases (depolarizing channel). The secure key rate in the
source and detector modulation case is K ≥ p0(μ)q00|0

[
1 −

r(0)

0 (η0)r
(0)

0 (η1)
] + p1(μ)px=y=0

det H(A|E) − Q(μ, η)h2
[
E(μ, η)

]

where H(A|E) is the conditional entropy on Alice’s key bit
given Eve’s side information for a qubit protocol. For BB84,
we have H(A|E) ≥ 1 − h2(eX ), for six states we have H(A|E) ≥
1 − [

H(λ) − h2(eZ)
]
. To recompute the single-photon statistics,

we use three intensity levels: 10−3, 10−2, 0.5 and four effi-
ciency levels per detector: 0.94, 0.96, 0.98, 1. See more details
in Appendix B.

detectors’ dark counts in the channel error rate and hence
our proposed upper bound on the error rate remains close to
the exact value while that based on Ref. [36] is dominated
by the dark-count noise in the high-loss regime.

FIG. 3. We compare the exact channel error rate value used
for the simulation (5% here) to the upper bound provided by
our proposed analytical method and the one proposed in Ref.
[36]. The definition in Ref. [36] is including the noise from the
detector dark counts while our is only considering the noise on
the channel. As a result, the definition of Ref. [36] is increas-
ing while ours is staying close to the exact value in the high-loss
regime, hence a slight improvement in distance for the key rate.
Note that this improvement is only affecting privacy amplifica-
tion, since the noise due to dark counts still has to be corrected in
the error-correction step.
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Original TCSPC with SPD

FIG. 4. The original TCSPC concept is based on the recording
of single-photon detection events and construction of the cor-
responding histogram as shown above. As a result, there is an
implicit postselection of the conclusive outcomes. That is, the
experiment is repeated until the bin with the maximum number
of events reaches a certain level. The histogram is then normal-
ized to derive the probability of having a detection event in a
particular bin t ∈ T given that there was a conclusive outcome
C, i.e., Pr(t|C). Nevertheless, due to the dead time effect, the
recorded probability is not exactly the one aforementioned, but
rather the probability of observing a detection in a bin and not
recording any detection before. When the counting rate is low,
the two probabilities are close though [24].

B. Time-correlated single-photon counting with
homodyne detection

Here we propose TCSPC with homodyne detection
instead of single-photon detection. There are significant
practical benefits in doing so; largely one could reduce
the implementation cost and footprint of TCSPC through
integrated photonics platforms. The basic idea of TCSPC
is to measure the single-photon emission time profile in
the nanosecond time scale, e.g., fluorescence decays of
excited samples [24]. The current method achieves this
via the small time resolution (hundreds of picoseconds) of
single-photon detectors (SPDs; e.g., photomultiplier tubes,
microchannel plates, SPADs) to measure the time differ-
ence between a reference “start” signal and a “stop” signal
triggered by a single-photon emission event [18,19]. As
such, by using a pulsed laser the intensity profile can be
sampled repeatedly and a histogram of photon arrivals
per time bin over the intended time domain can be con-
structed; assuming the probability of multiphoton emission
is negligible. This concept is depicted in Fig. 4.

However, SPDs typically suffer from finite recovery
time (or dead time); consequently, the detector becomes
inactive for a period of time after a first detection event
(hundreds of nanoseconds to dozens of microseconds [50,
69]). As such, any optical signal arriving during this time
window will not be detected and this problem tends to bias
the measurement results towards earlier detection events.

This is a well-known issue called pulse pile up [70]. In
practice, to mitigate this problem, a popular approach is to
keep the multiphoton emissions low and the counting rate
below 2%–5% or lower [70], e.g., by restricting the exci-
tation power. In this case, nothing is detected most of the
time and once in a while a unique photon is detected and
recorded. This common approach of limiting the excitation
power solves the multiphoton emission issue but leads to a
longer acquisition time.

Yet, TCSPC is not making full use of the single-shot
information of a photon being detected or not at a partic-
ular time window; it extracts only the average count rate
for each time window. This suggests that other forms of
detection technology could be used instead, for instance,
homodyne detection. Indeed, this possibility has already
been discussed in Ref. [71]: the authors therein described
a linear method to compute the moments of an unknown
probability distribution using the moments of the out-
come function obtained experimentally. Our proposal with
homodyne detection essentially follows this idea: that
we can recover the photon-number statistics with phase-
randomized homodyne detection. To help fix ideas, in the
following we first briefly describe an ideal version based
on PNRDs. We then provide a proof-of-concept simulation
of the homodyne TCSPC technique.

1. TCSPC with perfect photon-number-resolving
detection

It is useful to first consider an intermediate ideal TCSPC
protocol to illustrate the main ideas of our homodyne-
based protocol. Here, we assume a perfect PNRD is used
to measure the photons’ arrival time. By perfect, we mean
that the detector has zero dead time, perfect detection effi-
ciency, and able to tell how many photons are detected
in a given time window. Mathematically, the outcome of
the protocol is described by a sequence of time-ordered
random variables, Y{t} ∈ N, where each random variable
counts the number of photons in the time bin t ∈ T as
shown in Fig. 5. Evidently, this ideal TCSPC protocol
can recover the original TCSPC protocol’s information by
keeping only the events in which Y{t} ≥ 1. We also high-
light that there will be the same number of events recorded
(regardless of the value of Y{t}) in each time bin. As a
result, the probability of recording an event in a certain
time window is Pr(t) = 1/|T |.

In the limit of many repetitions, the data from Y{t} allows
computation of the probability of detection of n photons in
the time bin t:

q{t}
n = Pr(Y{t} = n). (23)

We label C a conclusive event; it is the set of photon-
number values leading to a conclusive outcome, here
all values n ≥ 1. We further denote the probability of a
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TCSPC with perfect photon- 
number-resolving detector

FIG. 5. We consider here an ideal version of TCSPC where
perfect PNRDs are used to record the exact number of incoming
photons in each time bin. We label Y{t} ∈ N the correspond-
ing random variable for each time bin. After enough events
have been recorded, it is possible to estimate the photon-number
probability distribution at each time bin. By keeping only the
single-photon events, it is easy to recover the same TCSPC
information as in Fig. 4.

conclusive event within a time window:

q{t} = Pr(C|t) =
∑

n∈C

q{t}
n . (24)

From this information only, it is possible to recompute the
same probability as in the original version of TCSPC using
the uniformity of T and Bayes’ rule:

Pr(t|C) = Pr(C|t) Pr(t)
∑

t′ Pr(C|t′) Pr(t′)
= q{t}

∑
t′ q{t′} . (25)

2. Homodyne TCSPC

We now replace the perfect PNRD in the ideal version
described above by a homodyne detector that sequentially
measures all the time bins one after the other, up to the
time resolution and speed of the ADC. In this case, the
homodyne detector gives a continuous outcome, which is
also binned depending on the ADC resolution. We label
X the set of bins. Now the sequence of random variables
Y{t} ∈ N is replaced by X {t} ∈ X as drawn in Fig. 6.

In the limit of many repetitions and small bins in X ,
we can recompute the probability density function (PDF)
of every time bin, which is assumed to have the following
structure:

f {t}(x) =
∑

n≥0

q{t}
n An(x), (26)

with An(x) representing the homodyne measurement
response as we define in Sec. II Eq. (5). It is also possible to

TCSPC with homodyne 
detector

FIG. 6. We consider here a practical implementation of
TCSPC using a binned homodyne detector. We label X {t} ∈ X
the corresponding random variable for each time bin. After
enough events have been recorded, it is possible to estimate the
measurement PDF at each time bin. Then from this information,
we show that it is possible to recompute the same photon-number
distribution as in Fig. 5.

consider a binned version for f by using the binned version
of An(x) accordingly. Due to the structure of the detector,
f {t}(x) is even, i.e., f {t}(−x) = f {t}(x), hence we can sim-
ply consider only the positive region, i.e., x ≥ 0. The q{t}

n
in Eq. (26) are defined in Eq. (23) and represent the con-
tribution to the outcome due to n photons on the detector.
From the value of f {t}(x) at each x ∈ X , the direct applica-
tion of Sec. III allows us to recompute a reasonably good
estimation of the weights q{t}

n in front of the An(x) in Eq.
(26) for the low photon-number events. Then recomputing
the probability distribution as in the original TCSPC can
be done with Eq. (25).

We consider a simple physical experimental model to
highlight the feasibility of our homodyne TCSPC. Here,
we consider the intensity profile of a fluorescence decay
after a δ excitation happening at t0 = 50 ns. Following Ref.
[72] and assuming an exponential decay for the intensity
profile, the photon-number distribution is

q{t}
n = exp

[−E(t)
]
E(t)n

n!
, (27)

where E(t) is the energy arriving on the detector for t ≥ t0

E(t) =
∫ t+T

t
αP(u)du = α exp

(
− t − t0

τ

)

×
[
1 − exp

(
− T

τ

)]
, (28)

and T = 5 ns is the time-bin duration, τ = 100 ns is the
decay time, α = 0.9 is a coefficient including the excitation
power and the detector sensitivity. Then, the measurement
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FIG. 7. Simulation of an exponential decay intensity profile
that can be reconstructed using homodyne detection only. The
upper (dashed line) and lower (dotted line) bound on the prob-
ability of one photon emission are very close to the exact value
(solid line) using our method while the bounds on the probabil-
ity of two photon emission are looser due to the inability of the
method to recover very low values. This simulation is using 16
bins evenly spaced in the range [0, 5] for the real outcome given
by the homodyne detector.

PDF is computed according to Eq. (26) and a direct appli-
cation of Sec. III allows us to compute upper and lower
bounds on the single- and two-photon emission probabil-
ities. Here, we use 16 bins evenly spaced over the range
[0, 5] and apply the analytical method presented in Sec.
III to obtain the results shown in Fig. 7. The bounds on
the single-photon emission probability are very close to
the exact value for any time considered in our simulation
while the bounds for the two-photon emission probability
are less tight due to its lower value that cannot be estimated
well via our method. This is due to the finite value of the
extra terms in Eq. (13) as discussed in Sec. III. One way to
tighten this bound would be to consider more bins for the
PDF.

V. CONCLUSION

In this paper, we show the possibility of using realistic
light sources and detectors to recompute relevant informa-
tion about the input-output photon-number distribution of
any unknown channel. We describe a simple linear frame-
work to model characterized sources, detectors, and any
multimode unknown channel. Then, we present two com-
putational methods to derive upper and lower bounds on
the input-output photon-number distribution. Such infor-
mation can be used for various applications in quantum
optics and quantum information processing. To that end,
we highlight two applications: the single-photon channel
security of practical QKD and TCSPC with homodyne
detection. For example, the application to QKD shows that
this framework is a bridge between practical implemen-
tations and theoretical qubit security proofs. Here, it is
useful to mention that even though we present only one

class of qubit protocols and an associated security proof,
other finite-dimensional QKD protocols can also be proven
secure in the same fashion, such as the reference-frame-
independent [73], loss-tolerant [74] and tomography-based
[75,76] protocols. We can also highlight that the single-
photon detectors could possibly be replaced by homodyne
detectors in certain schemes [77]. The TCSPC exam-
ple also suggests that this technology could possibly be
deployed with homodyne detection for more cost-effective
implementations. Therefore, many applications relying on
TCSPC as a module could potentially be upgraded to use
a homodyne TCSPC instead. For instance, we can think
of applications based on time-of-flight measurement [78]
such as ranging [20,21] and low light imaging [22,23].
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APPENDIX A: BOUND DERIVATION

The goal of this section is to show that the estimate
given in Eq. (13) approximates well the quantity of inter-
est q(m∗|n∗). We give practical bounds on the extra terms.
First we describe the general strategy and arguments that
we use regardless of the actual hardware under use, and
then we give the explicit bounds for a laser source, a
threshold detector and a homodyne detector.

We recall a few notations:

f (x, y) =
∑

n,m≥0

pn(x)q(m|n)rm(y), (A1)

� =
n0∑

i=0

m0∑

j =0

αiβj f (xi, yj ) =
∑

n,m≥0

q(m|n)unvm,

(A2)

un =
∑

i

αipn(xi), (A3)

vm =
∑

j

βj rm(yj ). (A4)

Let us define the residuals:

Rn0 =
∑

n≥n0+1

q(m∗|n)un,

Rm0 =
∑

m≥m0+1

q(m|n∗)vm,

Rn0m0 =
∑

n≥n0+1

∑

m≥m0+1

q(m|n)unvm.

(A5)
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1. General strategy

The general strategy is to compute upper and lower
bounds on these individual residuals to obtain bounds
on R = Rn0 + Rm0 + Rn0m0 = � − q(m∗|n∗). We highlight
below a few general remarks that are useful for the subse-
quent derivation.

1. The sequences un and vm depend, respectively, on n0
and m0, since it is the number of terms in the summation.
The values of α and β also depend on n0 and m0. Hence
one has to be careful when considering n0 or m0 → +∞.

2. The series un has a finite zeroth moment (
∑

n≥0 un <

+∞) and first moment (
∑

n≥0 nun < +∞). That is
because it is related to the probability distribution of a
source with finite energy.

3. The series vm does not have a finite zeroth moment
in general since it is related to a conditional probability.
However, the sequence is always bounded.

4. ∀n, m ≥ 0 : 0 ≤ q(m|n) ≤ 1.
5. The series q(m|n) has a finite zeroth moment in m

for all n:
∑

m≥0 q(m|n) = 1.
6. The series q(m|n) does not have a finite zeroth

moment in n in general.

a. Bound on Rn0

The best we can do for bounding Rn0 is to bound q(m∗|n)

by +1 or −1 depending on the sign of un. Let us denote

u⊕
n = max(0, un) ≥ 0, (A6)

u�
n = min(0, un) ≤ 0. (A7)

Then the bound is related to the remainder of the conver-
gent series u⊕

n and u�
n :

∑

n≥n0+1

u�
n ≤ Rn0 ≤

∑

n≥n0+1

u⊕
n . (A8)

b. Bound on Rm0

For this one, we need to combine the series q(m|n) and
vm together since the former is convergent in m while the
latter is not. Similarly, let us denote

v⊕
m = max(0, vm) ≥ 0, (A9)

v�
m = min(0, vm) ≤ 0. (A10)

Additionally we assume that the sequence v⊕
m is nonin-

creasing for m ≥ m0 + 1 and similarly, v�
m is nondecreas-

ing for m ≥ m0 + 1. If it is not the case, we assume that we
can find an upper (lower) bound on v⊕

m (v�
m ) that satisfies

this property, and we use it instead. This assumption helps
computation of an upper bound and lower bound on vm by

simply considering the first element:

max
m≥m0+1

vm = v⊕
m0+1, (A11)

min
m≥m0+1

vm = v�
m0+1. (A12)

In that case, we can derive the following bound:

v�
m0+1

∑

m≥m0+1

qm|n∗ ≤ Rm0 ≤ v⊕
m0+1

∑

m≥m0+1

qm|n∗ . (A13)

We can see that this bound depends on our ability to find a
good bound on

q̃ =
∑

m≥m0+1

qm|n∗ = 1 −
m0∑

m=0

qm|n∗ . (A14)

As a first approximation, we can use q̃ ≤ 1. It is possible to
start from this rough estimate to obtain a valid upper and
lower bounds on a few q(m|n∗) in the range m ∈ {0 . . . m0}
and then use this information to update the bound on q̃.
After a few iterations of this procedure, the bounds on Rm0
usually become of the same order of magnitude as those
on Rn0 . Alternatively, it is also possible to analyze some
geometric arithmetic sequence to compute the limit after
many iterations.

c. Bound on Rn0m0

This bound is easy to compute since we do not have
much information anyway. The best we can do is to bound∑

m≥m0+1 qm|n by 1.

|Rn0m0 | ≤
∑

n≥n0+1

|un| ‖v‖∞

≤
∑

n≥n0+1

max(u⊕
n0+1, −u�

n0+1) max(v⊕
m0+1, −v�

m0+1).

(A15)

The reader can notice that the bound on Rn0m0 is roughly
the product of the previous bounds on Rn0 and Rm0 , and
hence it is small in practice, and the main contribution
comes from the residuals related to source only Rn0 and
detector only Rm0 . Similar to the previous cases, it is also
possible to consider quantities like

(
unvm

)⊕ to refine Rn0m0
but the improvement is limited.

2. Phase-randomized laser

We consider here a Poisson distribution for the source
pn(x) = e−x(xn/n!), and n0 + 1 evaluation points 0 ≤ x0 <

x1 < · · · < xn0 ≤ xmax with xmax ≤ n0.
We notice that pn(x) is nonincreasing in n when n is

larger than xmax. It is useful to keep the sign in α other-
wise the bound quickly becomes loose, therefore it is not
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satisfactory to simply bound α by its 1-norm or positive
or negative part. However, due to the simple expression of
pn(x), it is easy to check that un has a constant sign. Indeed,
we find that un ∼

n→+∞ αn0pn(xn0) so for n large enough, the

sign of un is given by the sign of αn0 . For the first few n
before that property is satisfied, it is possible to numeri-
cally check a finite number of values to establish a correct
upper and lower bound. For the rest, we can take

u⊕
n = un and u�

n = 0, if un0+1 ≥ 0, (A16)

u⊕
n = 0 and u�

n = un, if un0+1 < 0. (A17)

In our examples, the sign is always constant and depending
on the parity of n∗ − n0, similar to what Ref. [37] reported
for decoy states with their bounds Xn and Zn alternatively
being lower or upper bound.

3. Threshold detectors

We consider rm(y) = (1 − y)m and m0 + 1 evaluation
points y0 . . . ym0 . We denote ỹj = 1 − yj and assume 0 ≤
ỹ0 < · · · < ỹm0 ≤ ỹmax with ỹmax small enough. In other
words, the yj are in a range [1 − ỹmax; 1].

We first notice that rm(y) is nonincreasing in m for any
y. We also have the following property:

rm+1(y) = (1 − y)rm(y), (A18)

from which we find that vm is decreasing if it is positive and
increasing if it is negative. Similar to the laser case, we find
vm ∼

m→+∞ βm0rm(ym0) where ym0 is the lowest value for y.

Therefore the sign of vm is given by the sign of βm0 for m
large enough, then by monotonicity we find that the sign is
constant for all m.

Therefore similar to the laser case, we take

v⊕
m = vm and v�

m = 0 if vm0+1 ≥ 0, (A19)

v⊕
m = 0 and v�

m = vm if vm0+1 < 0. (A20)

4. Homodyne detectors

We use a homodyne detector at the receiver. The detec-
tion function is as follows [43,44]:

rm(y) = Am(y) =
m∑

k=0

(
m
k

)

ηk(1 − η
)m−k|ak(y)|2, (A21)

which is a binomial mixture of Hermite functions am(y)

defined by the following recursion [44]:

a−1(y) = 0, (A22)

a0(y) = π−(1/4) exp
(

− y2

2

)
, (A23)

am+1(y) =
( 2

m + 1

)(1/2)

yam(y) −
( m

m + 1

)(1/2)

am−1(y).

(A24)

Since the functions Am(y) are even, we can assume with-
out loss of generality that the outcome y is non-negative.
We further assume that y ∈ [0; ymax]. This is motivated by
the finite range of the ADC that will restrict the maximum
observable value for the outcome.

We recall a few useful properties of am(y) [53,54,79]:
√

2mam(y) = yam−1(y) − a′
m−1(y), (A25)

a′
m(y) = yam−1(y) −

√
2mam(y). (A26)

We define two functions for m large enough to ensure 2m −
y2

max > 0:

gm(y) = am(y)2 + a′
m(y)2

2m + 1 − y2 , (A27)

hm(y) = am(y)2 + a′
m(y)2

2m − y2 , (A28)

gm(y) was defined by Szego in Ref. [80] to prove Sonin’s
theorem for Hermite functions. More specifically for our
purpose, gm(y) is nondecreasing in y.

We can show using Eqs. (A25) and (A26) that hm(y) also
satisfies [79]

hm(y) = am−1(y)2 + a′
m−1(y)2

2m − y2 , (A29)

and then gm+1(y) ≤ hm+1(y) ≤ gm(y) ≤ hm(y), and hence
gm(y) is nonincreasing in m. Evidently, we also have
am(y)2 ≤ gm(y).

We define as usual

vm =
m0∑

j =0

βj Am(yj ). (A30)

On the interval of interest, the functions Am(y) are oscillat-
ing between 0 and some local maxima. More precisely, the
plot of |am| has m + 1 “bumps” before quickly decreasing
to zero. When the detector efficiency is lower than 1, the
oscillations are attenuated for the first few local extrema,
and the last bump remains predominant. As a result, the
series vm is also oscillating somehow, and it is difficult to
analyze.
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To simplify the analysis, we use an upper bound defined
as follows for m large enough to ensure 2m + 1 − y2

max >

0:

Gm(y) =
m∑

k=0

(
m
k

)

ηk(1 − η
)m−kgk(y). (A31)

Then it is sufficient to take:

v⊕
m =

m)∑

j =0

max(0, βj )Gm(yj ), (A32)

v�
m =

m)∑

j =0

min(0, βj )Gm(yj ). (A33)

APPENDIX B: SINGLE-PHOTON CHANNEL
SECURITY OF QKD

We consider a binary six-state protocol where the key
basis is given by the Z basis (also denoted basis 0) and the
test bases are given by the X basis and Y basis (denoted,
respectively, 1 and 2). The protocol operates as follows:

1. Preparation: Alice randomly chooses a bit value
a ∈ A = {0, 1} uniformly [Pr(a = 0) = Pr(a = 1) = 1

2 ]
and basis x ∈ X = {0, 1, 2} with probability Pr(x). She
also randomly selects the intensity μ ∈ M with probability
Pr(μ). The set M has three intensity levels, and we assume
that only the rounds where the highest intensity is chosen
can be used to generate raw key bits. The other rounds
are used for channel estimation only. In the simulation, we
use M = {10−3, 10−2, 0.5}. She would then prepare phase-
randomized coherent state with the chosen intensity μ to
imprint her bit choice a in basis x on all photons in the
pulse.

2. Measurement: Bob draws two transmissivity val-
ues η0, η1 ∈ E with probability Pr(η0) and Pr(η1), respec-
tively. We write in short η = (η0, η1) and their indices
j = (j0, j1). The set E has four levels, and we assume that
only the rounds using the highest value for both detec-
tors are used to generate raw key bits. In the simulation
we use E = {0.94, 0.96, 0.98, 1}. Bob also chooses a basis
y ∈ Y = {0, 1, 2} with probability Pr(y). He will then set
his variable attenuation for the first (second) detector to
be η0 (η1) and perform a measurement in basis y. Finally,
he records the measurement outcomes b = b0b1 ∈ B =
{00, 01, 10, 11}.

3. Sifting: After repeating step 1 and 2 for N times,
Alice and Bob use an authenticated classical channel to
announce their basis choices, x and y, and their modulation
settings μ, η. Then, for each tuple (μi, ηj ), they partition
the rounds into subsets Sx,y,μi,ηj according to their basis,
intensity, and transitivity modulation choices.

4. Parameter estimation: For rounds suitable for key
generation, i.e., when μ = max(M ), η0 = η1 = max(E)

and x = y = 0, Bob will disclose a—small—random sub-
set of his measurement outcomes b when b �= 00. For
all other rounds, namely basis mismatch, non-key-basis
match, nonmaximum signal intensity or detector effi-
ciency, inconclusive outcome b = 00, Bob will disclose
all outcome results b. By doing so, they can estimate
the statistics f {xyab}(μ, η) and use Sec. III to compute
q{xya}(10|1), q{xya}(01|1) for all relevant x, y, a and then the
achievable secure key rate the way we describe below. If
the latter is positive, they proceed to step 5, otherwise they
abort the protocol.

5. Postprocessing: For the remaining rounds, Alice
and Bob apply suitable error correction and privacy ampli-
fication procedures to extract the secret key.

The quantities q{xya}(kl|n) when k + l = n = 1 are enough
to characterize the proportion of events that can be ana-
lyzed using conventional single-photon security proof. We
show below how to relate them to the security of the qubit
six-state protocol.

We define the qubit detection probability for a basis
match as

px=y
det =

∑

a∈A

∑

k+l=1

Pr(a)q{xya}(k, l|1)
(

1 − r{0}
k (η0)r

{0}
l (η1)

)
.

(B1)

In other words, a qubit detection happens when there
is only one photon in any arm of the receiver and any
conclusive detection pattern occurs.

Let us assume that the detectors are labeled in a way
that in the absence of noise and x = y, there could be
photons arriving only on detector number a, according to
Alice’s bit. This allows us to define an ideal detection,
hence any other result would be an erroneous detection.
We can define the success rate for the match basis:

px=y
suc = 1

px=y
det

∑

a∈A
Pr(a)q{xya}(a ⊕ 1, a|1)

(
1 − r{0}

a⊕1(η0)r{0}
a (η1)

)
, (B2)

where ⊕ is the addition modulo 2 and the error rate is
defined as px=y

err = 1 − px=y
suc .

For simplicity and to relate to existing notation in the
literature, we denote

px=y=0
err = eZ , (B3)

px=y=1
err = eX , (B4)

px=y=2
err = eY. (B5)

We rephrase the results summarised in Appendix A of
Ref. [14] that is if we denote λ = (λ0, λ1, λ2, λ3) to be the
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unique solution of:

λ0 + λ1 = 1 − eZ ,

λ0 + λ2 = 1 − eX ,

λ0 + λ3 = 1 − eY,

λ0 + λ1 + λ2 + λ3 = 1,

(B6)

and H(λ) = −∑3
i=0 λi log2(λi) the Shannon entropy, then

the conditional entropy on Alice’s bit value given Eve’s
side information is as follows:

H(A|E) ≥ 1 −
[
H(λ) − h2(eZ)

]
. (B7)

We also define the signal detection rate and error rate for
the key basis 0:

Q(μ, η) = 1 −
∑

a∈A
Pr(a)f {x=y=0,a,b=00}(μ, η), (B8)

E(μ, η) = 1 − 1
Q(μ, η)

∑

a∈A
Pr(a)f {x=y=0,a,b=(a⊕1,a)}(μ, η).

(B9)

Eventually, the achievable secure key rate against collec-
tive attacks and without sifting prefactor reads

K ≥ p0(μ)q(00|0)
[
1 − r{0}

0 (η0)r
{0}
0 (η1)

]

+ p1(μ)px=y=0
det

{
1 − [

H(λ) − h2(eZ)
]}

− Q(μ, η)h2
[
E(μ, η)

]
. (B10)

In the asymptotic analysis, we can always consider an
efficient implementation where the maximum intensity μ

and efficiency η are used most of the time. Otherwise, the
framework allows extraction of the key from any—key
state—intensity and efficiency setting. This would be inter-
esting, for example, in combination with a fast passive
decoy-state scheme [45–49] since no extra sifting would
be required.

We simulate an implementation of this protocol with
one common threshold detector: an (In,Ga)As SPAD with
dark-count rate 10−6 and efficiency 100% (the actual finite
efficiency is included in the total loss attributed to the chan-
nel); and a fixed channel error rate of 5% in Fig. 2. We
compare the upper bound on the channel error rate given
by our method and the one given in Ref. [36] in Fig. 3.
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