
PHYSICAL REVIEW APPLIED 16, 024051 (2021)
Editors’ Suggestion

Experimental Quantum Generative Adversarial Networks for Image Generation

He-Liang Huang,1,2,3,4,§ Yuxuan Du ,5,§ Ming Gong,1,2,3 Youwei Zhao,1,2,3 Yulin Wu,1,2,3

Chaoyue Wang,5 Shaowei Li,1,2,3 Futian Liang ,1,2,3 Jin Lin,1,2,3 Yu Xu,1,2,3 Rui Yang,1,2,3

Tongliang Liu,5 Min-Hsiu Hsieh,6 Hui Deng,1,2,3 Hao Rong,1,2,3 Cheng-Zhi Peng,1,2,3

Chao-Yang Lu,1,2,3 Yu-Ao Chen,1,2,3 Dacheng Tao,5,* Xiaobo Zhu ,1,2,3,† and Jian-Wei Pan1,2,3,‡

1
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics,

University of Science and Technology of China, Hefei 230026, China
2
Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of

Science and Technology of China, Shanghai 201315, China
3
Shanghai Research Center for Quantum Sciences, Shanghai 201315, China

4
Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China

5
School of Computer Science, Faculty of Engineering, University of Sydney, Australia

6
Hon Hai Research Institute, Taipei 114, Taiwan

 (Received 20 October 2020; revised 3 August 2021; accepted 6 August 2021; published 27 August 2021)

Quantum machine learning is expected to be one of the first practical applications of near-term quan-
tum devices. Pioneer theoretical works suggest that quantum generative adversarial networks (GANs) may
exhibit a potential exponential advantage over classical GANs, thus attracting widespread attention. How-
ever, it remains elusive whether quantum GANs implemented on near-term quantum devices can actually
solve real-world learning tasks. Here, we devise a flexible quantum GAN scheme to narrow this knowledge
gap. In principle, this scheme has the ability to complete image generation with high-dimensional fea-
tures and could harness quantum superposition to train multiple examples in parallel. We experimentally
achieve the learning and generating of real-world handwritten digit images on a superconducting quan-
tum processor. Moreover, we utilize a gray-scale bar dataset to exhibit competitive performance between
quantum GANs and the classical GANs based on multilayer perceptron and convolutional neural network
architectures, respectively, benchmarked by the Fréchet distance score. Our work provides guidance for
developing advanced quantum generative models on near-term quantum devices and opens up an avenue
for exploring quantum advantages in various GAN-related learning tasks.

DOI: 10.1103/PhysRevApplied.16.024051

State-of-the-art quantum computing systems are now
stepping into the era of noisy intermediate-scale quan-
tum (NISQ) technology [1–4], which promises to address
challenges in quantum computing and to deliver useful
applications in specific scientific domains in the near term.
The overlap between quantum information and machine
learning has emerged as one of the most encouraging
applications for quantum computing, namely, quantum
machine learning [5]. Both theoretical and experimen-
tal evidences suggested that quantum computing may
significantly improve machine-learning performance well

*dacheng.tao@sydney.edu.au
†xbzhu16@ustc.edu.cn
‡pan@ustc.edu.cn
§These two authors contributed equally.

beyond that achievable with their classical counterparts
[5–14].

Generative adversarial networks (GANs) are at the fore-
front of the generative learning and have been widely
used for image processing, video processing, and molecule
development [15]. Although GANs have achieved wide
success, the huge computational overhead makes them
approach the limits of Moore’s law. For example, BigGAN
with 158 million parameters is trained to generate 512 ×
512 pixel images using 14 million examples and 512 TPU
for 2 days [16]. Recently, theoretical works show that
quantum generative models may exhibit an exponential
advantage over classical counterparts [17–19], arousing
widespread research interest in theories and experiments
of quantum GANs [17,20–24]. Previous experiments of
quantum GANs on digital quantum computers, hurdled by
algorithm development and accessible quantum resources,
mainly focus on the single-qubit quantum-state generation
and quantum-state loading [21,22], e.g., finding a quantum

2331-7019/21/16(2)/024051(20) 024051-1 © 2021 American Physical Society

https://orcid.org/0000-0002-5997-7882
https://orcid.org/0000-0001-9843-0559
https://orcid.org/0000-0001-5974-9452
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.16.024051&domain=pdf&date_stamp=2021-08-27
http://dx.doi.org/10.1103/PhysRevApplied.16.024051

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

Discriminator

Fake

Real

Real images Sample image

Latent
space

D

G
2

G
T-1

G
T

G
1

G

Patch Batch

Generator

(a)

(b) (c) (d)

U(θ
1
)

U(θ
2
)

U(θ
3
)

U(θ
4
)

z

z

z

U(θ
1
)

U(θ
2
)

U(θ
3
)

U(θ
4
)

z

z

z
...

...

...

...

...

one layer

0

0

0

U(α
z
)

Feature
register

Ancillary
register

R
Y
(α

z
)

R
Y
(α

z
)

R
Y
(α

z
)

R
Y
(α

z
)

0
Ф

0
0

Ancillary
register

Ф

ФPQC PQC

Latent
space

PQC Quantum generator Quantum discriminator

FIG. 1. The resource-efficient quantum GAN scheme. (a) The proposed quantum GAN scheme contains a quantum generator G and
a discriminator D, which can either be classical or quantum. The mechanism of quantum patch GAN is as follows. First, the latent
state |z〉 sampled from the latent space is input into quantum generator G formed by T subgenerators (highlighted in the pink region),
where each Gt is built by a PQC UGt(θ t). Next, the generated image is acquired by measuring the generated states {UGt(θ t)|z〉}T

t=1
along the computation basis. Subsequently, the patched generated image and the real image are input into the classical discriminator
D (highlighted in the pink region) in sequence. Finally, a classical optimizer uses the classified results as the output of D to update
trainable parameters for G and D. This completes one iteration. The mechanism of quantum batch GAN is almost identical to the
quantum patch GAN, except for three modifications: (1) we set T = 1 and introduce the quantum index register into G (highlighted
in blue region); (2) the generated state UG(θ)|z〉 directly operates with quantum discriminator D implemented by PQC (highlighted
in the blue region), where the output is acquired by a simple measurement; and (3) the real image is encoded into the quantum state
to operate with D. (b) The implementation of PQC used in the quantum generator and quantum discriminator. (c) The machinery of
quantum generators employed in quantum patch and batch GANs. For quantum batch GAN, an index register with extra operations
should be involved when the batch size is larger than one. (d) The quantum discriminator employed in the quantum batch GAN. To
attain nonlinear property, two generated states are fed into the quantum discriminator simultaneously.

channel to approximate a given single-qubit quantum state
[21]. Such a task can be regarded as the approximation
of a low-dimensional distribution with an explicit formu-
lation. However, the explicit formula implies that these
studies cannot be treated as general generative tasks,
since the data space structure is exactly known. A cru-
cial question that remains to be addressed in quantum
GAN is whether current quantum devices have the capac-
ity for real-world generative learning, which is directly

related to its practical application on near-term quantum
devices.

Here we develop a resource-efficient quantum GAN
scheme to answer the above question. Our proposal prin-
cipally supports to use limited quantum resources to
accomplish large-scale generative learning tasks. Besides,
the proposed scheme has the potential to train mul-
tiple examples in parallel given sufficient quantum
resources. We experimentally implement the scheme on

024051-2

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

(a) (b)
Real data

Quantum GAN
experimental results

Quantum GAN
simulation results

FIG. 2. Handwritten digit image generation. (a),(b) Experimental results for the handwritten digit “0” and “1,” respectively. From top
to bottom, the first row illustrates real data examples, the second and third rows show the examples generated by quantum patch GAN
trained using a superconducting processor and noiseless numerical simulator, respectively. The number of parameters for quantum
generator is set to 100, and the total number of iterations is about 350.

a superconducting quantum processor to accomplish the
generative task of real-world handwritten digit image [25],
a commonly used data in the machine-learning commu-
nity. Moreover, we show that quantum GAN has the
potential advantage of reducing training parameters, and
can achieve comparable performance with some typical
classical GANs.

Following the routine of GANs [15,17], our proposal
exploits a two-player minimax game between a generator
G and a discriminator D. Given a latent vector z sampled
from a certain distribution, G aims to output the gen-
erated data G(z) ∼ Pg[G(z)] with Pg[G(z)] ≈ Pdata(x) to
fool D. Meanwhile, D tries to distinguish the true example
x ∼ Pdata(x) from G(z). Unlike classical GANs, the gener-
ator or discriminator in quantum GANs is constructed by
quantum circuits. More precisely, denote that the deployed
quantum device has N qubits with O[poly(N)] circuit
depth, and the feature dimension of the training example is
M . We devise two flexible strategies, i.e., the patch strat-
egy and batch strategy, that enable our quantum GANs to
adequately exploit the supplied resources under the setting
N < �log M� and N > �log M�, respectively. The design
of quantum patch GAN aims to use insufficient quantum
resources to generative high-dimensional features, while
the quantum batch GAN can be used for parallel training
given sufficient resources. In this way, our proposal could
flexibly adapt and maximally utilize accessible quantum
resources.

The quantum patch GAN with N < �log M� consists
of the quantum generator and the classical discriminator.
A potential benefit of the quantum generator is that it
may possess stronger expressive power to fit data distribu-
tions compared with classical generators. This is supported
by complexity theory with P ⊆ BQP [26], and theoretical
evidences showing that certain distributions generated by
quantum circuits can not be efficiently simulated by classi-
cal circuits unless the polynomial hierarchy collapses [27–
29]. Figure 1 illustrates the implementation of quantum
patch GAN, where the patch strategy is applied to manip-
ulate large M with small N . Specifically, the quantum
generator G is composed of a set of subgenerators {Gt}T

t=1,

where each Gt refers to a parameterized quantum circuit
(PQC) UGt(θ t). The aim of Gt is to output a state |Gt(z)〉
with |Gt(z)〉 = UGt(θ t)|z〉 that represents a specific portion
of the high-dimensional feature vectors. All subgenerators
that scale with T ∼ O(�log M�/N) can either be effectively
built on distributed quantum devices to train in parallel
or on a single quantum device to train in sequence. The
generated example x̃ is obtained by measuring T states
{|Gt(z)〉}T

t=1 along the computation basis. Given x̃ and x,
the loss function L employed to optimize the trainable
parameters θ and γ for G and D yields

min
θ

max
γ

L{Dγ [Gθ (z)], Dγ (x)}, (1)

where L{Dγ [Gθ (z)], Dγ (x)} = Ex∼Pdata(x)[log Dγ (x)]
+ Ez∼P(z)(log{1 − Dγ [Gθ (z)]}), Pdata(x) refers to the dis-
tribution of training dataset, and P(z) is the probability
distribution of the latent variable z. The concept of patch-
ing enables our quantum GAN to complete image genera-
tion task with a large M using limited quantum resources.
Although the usage of multiple subgenerators differs from
the classical case, we can easily prove that quantum patch
GAN can converge to Nash equilibrium in the optimal case
(see Appendix).

To evaluate performance of the quantum patch GAN,
we implement it on a superconducting quantum proces-
sor to accomplish the real-world handwritten digit image
generation for “0” and “1.” Specifically, the supercon-
ducting quantum processor has 12 transmon qubits on a
one-dimensional (1D) chain, and up to six adjacent qubits
are chosen in the entire experiment. The average fidelities
of single-qubit gates and controlled-Z gate are approxi-
mately 0.9994 and 0.985, respectively. In addition, two
training datasets are collected from the optical recognition
of a handwritten digit dataset [25]. Each training example
is an 8 × 8 pixel image with M = 64. In the experimental
settings for quantum patch GAN, we set T = 4, N = 5, and
the total number of trainable parameters is 100. As shown
in Fig. 2, the experimental quantum GAN output similar
quality images to the simulated quantum GAN, suggesting

024051-3

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

(b)

(a)

Experimental dataReal data
FD score for Quantum Batch GAN and Classical GAN with CNN Generator

F
D

 s
co

re

Experimental dataReal data

FD score for quantum patch GAN and classical GAN with MLP generator

FD score for quantum patch GAN and classical GAN with CNN generator

F
D

 s
co

re
F

D
 s

co
re

Number of iteration Number of iteration Number of iteration

Number of iteration Number of iteration Number of iteration

Number of iteration Number of iteration Number of iteration

FIG. 3. Gray-scale bar image generation. (a) Experiment results of quantum patch GAN for a 2 × 2 image dataset. The left panel
illustrates real examples and generated examples. The right panel, highlighted in the yellow region, shows boxplots that illustrate
the FD scores achieved by different generative models. A lower FD score equates to better performance of the generative model.
Specifically, we set the number of trainable parameters for G as Np = 9, the number of iterations as 350, sample 1000 generated
examples to evaluate the FD score after every 50 iterations, and repeat each setting 5 times to collect statistical results. The label
“para_�” refers to the FD score of the classical GAN employing the generator with � trainable parameter. The labels “Q_exp” and
“Q_sim” refers to FD scores of quantum GANs built using a quantum processor and noiseless numerical simulator, respectively. The
labels “Min_Clc” and “Min_Exp” represents the achieved best FD scores for classical and quantum GANs, respectively. The left FD
score plot compares the performance between classical and quantum GAN where � approximates to Np , i.e. � = 10, and the results
show that quantum GAN have a better performance than GAN MLP and GAN CNN with a similar number of parameters. The middle
and right FD score plots show the required value �, i.e. � = 18(18) and � = 60(57) for GAN MLP (GAN CNN), which enables the
classical GANs to achieve the comparable and even better performance over quantum GANs. The performance is evaluated by the
average score (middle line of the shaded box) and the minimal FD score. (b) Experiment results of quantum batch GAN for the 2 × 2
image dataset. The three plots indicate that the quantum batch GAN could achieve a similar performance to the quantum patch GAN.

that our proposal is insensitive to noise at our current noise
levels and for this system size.

Recall that the aim of GANs, as a kind of genera-
tive model, is to explore the probability distribution of
observed samples. To accurately evaluate the well-trained
generative models, we intend to use quantitative metrics
to measure the distance between real and generated dis-
tributions. However, the handwritten digit dataset is not
a good choice to achieve this goal, hampered by its lim-
ited size and the implicit distribution. With this regard,

we construct a synthetic dataset, as so-called the gray-
scale bar image dataset. Note that all images in this
dataset are composed of simple pattern and sampled from
an explicit distribution. Figure 3 exhibits some examples
of gray-scale bar images. Utilizing the specific distri-
bution, we can easily acquire an unlimited number of
data samples for both training and test. Next, we use
the Fréchet distance (FD) score [30,31] to directly mea-
sure the Fréchet distance (i.e., 2-Wasserstein distance)
between real and generated distributions. Such quantitative

024051-4

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

metrics could help us to comprehensively evaluate differ-
ent GANs.

In the experiment, we collect a training dataset with
Ne = 1000 examples for the 2 × 2 gray-scale bar image
dataset. Experimental parameter settings for quantum
patch GAN are T = 1, N = 3, and the number of trainable
parameters for the quantum generator is Np = 9. To bench-
mark the performance of the quantum patch GAN, two
typical classical GANs, i.e., the classical GAN model with
multilayer perceptron neural network architecture (GAN
MLP) and the classical GAN model with convolutional
neural network architecture (GAN CNN), are employed as
references. Particularly, we vary the number of generator’s
parameters in these two classical GANs, and compare their
performance with the quantum patch GAN. The number of
parameters of the classical discriminator used in the GAN
MLP, GAN CNN and quantum patch GAN is set as 96.
Figure 3(a) shows our experimental results. The employed
two classical GANs request more training parameters than
the quantum patch GAN to achieve similar FD scores.
This result implies that quantum GAN has the potential
advantage of reducing training parameters. Note that in
our experiments, grid search is applied to find the optimal
hyperparameters (e.g., learning rate) for classical GANs,
while we did not search for these hyperparameters for
quantum GAN.

The quantum batch GAN with N > �log M� consists of
both a quantum generator and discriminator (see Fig. 1).
As with the quantum patch GAN, the quantum gen-
erator and discriminator play a minimax game accom-
panied by the loss function L in Eq. (1). The major
difference to the first proposal is the way in which
quantum resources are optimally utilized under the set-
ting N > �log(M)�. Specifically, we separate N qubits
into the feature register RF and the index register RI ,
i.e., RF with NF qubits encodes the feature informa-
tion, while RI with NI qubits records a batch of gen-
erated and real examples. The training examples with
batch size Ne are encoded as (1/

√
Ne)

∑
i |i〉I |xi〉F by

using amplitude encoding method. The attached index
register “I” enables us to simultaneously manipulate Ne
examples to effectively acquire the gradient informa-
tion, which dominates the computational cost to train
GAN. Recall that classical GAN uses the mini-batch gra-
dient descent [32] to update trainable parameters, i.e.,
at the kth iteration, the updating rule is γ k = γ k−1 −
ηD

∑
i∈Bk

∇γL{Gθ (xi), Dγ [G(zi)]}, where Bk ⊂ [NE] col-
lects the indexes of a mini-batch examples. Empirical
studies have shown that increasing the batch size |Bk| con-
tributes to improve performance of classical GAN, albeit
at the expense of computational cost [16,33]. In contrast
to classical GAN, we show that the optimization term∑

i∈Bk
∇L{Gθ (xi), Dγ [G(zi)]} can be efficiently calculated

in quantum GAN since we can naturally train Ne exam-
ples simultaneously by using the quantum superposition

(see Appendix for details). This result implies a potential
advantage of quantum batch GAN for efficiently pro-
cessing big data. Moreover, since quantum batch GAN
employs the quantum discriminator for binary classifi-
cation, theoretically, measuring one qubit is enough to
distinguish between “real” and “fake” images. Thus, the
number of measurements required for quantum batch GAN
is quite small.

We also use the quantum batch GAN to accomplish the
gray-scale bar image generation task to validate its gener-
ative capability. The experimental parameter settings are
T = 1, N = 3, |Bk| = 1 (or NI = 0), and total number of
trainable parameters for the quantum generator is Np = 9.
We employ the quantum discriminator model proposed in
Ref. [34] as our quantum discriminator [see Fig. 1(d)]. The
total number of trainable parameters for the quantum dis-
criminator is 12. Figure 3(b) shows that quantum batch
GAN can achieve similar FD scores to the quantum patch
GAN, thereby empirically showing that quantum batch
GAN can be used to tackle image generation problems. We
remark that the slightly degraded performance of the quan-
tum batch GAN compared with the quantum patch GAN is
mainly caused by the limited number of training parame-
ters used in its quantum discriminator, i.e., 12 versus 96 in
these two settings.

In conclusion, our experimental results provide the fol-
lowing key insights. First, we narrow the gap between
quantum and classical generative learning, our experiment
shows that near-term quantum devices have the ability
to achieve useful applications, such as real-world digit
images generation. Second, our results provide a positive
signal to utilize quantum GANs to attain potential merits
such as reducing the number of training parameters and
improving the computation efficiency in the NISQ setting.
Last, the comparison between numerical and experimen-
tal results indicates that quantum GAN is resilient to a
certain level of noise sources contained in the deployed
quantum device. Noise resilience is of great importance for
the realization of variational quantum algorithms on NISQ
chips [35,36].

When applying our proposal to deal with large-scale
problems, some efforts may be made to sustain its train-
ability and avoid barren plateaus [37]. It remains unknown
whether the optimization of a minimax loss in Eq. (1)
encounters barren plateaus. Namely, how the varied loss
functions and optimization methods affect the trainabil-
ity of quantum GANs. A deep understanding of this topic
enables us to devise more powerful and efficient quan-
tum GANs. Celebrated by the versatility of our proposal,
a probable approach to avoid barren plateaus is design-
ing barren-plateaus-immune ansatz [38–41] instead of the
hardware-efficient ansatz to implement the quantum gen-
erator or discriminator. In addition, the adaptivity of the
proposed quantum patch GAN enlightens a feasible way
to conquer barren plateaus and noise. Through tailoring

024051-5

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

the large-size problems into multiple small-size problems,
the trainability of quantum patch GAN may be warranted.
In light of these discussions, an intrigued research direc-
tion is experimentally exploring the trainability of quantum
GANs on large-scale datasets.

We would like to point out that although quantum GANs
can partially adapt to the imperfection of quantum sys-
tems, a fundamental principle to enhance the performance
of quantum GANs is continuously promoting the quality of
quantum processors, e.g., a larger number of qubits, a more
diverse connectivity, lower system noise, and longer deco-
herence time. For this purpose, we will delve to implement
quantum GANs on more advanced quantum computers to
accomplish complex real-world generation tasks to seek
their potential advantages.

ACKNOWLEDGMENTS

The authors thank the Laboratory of Microfabrication,
University of Science and Technology of China, Institute
of Physics CAS, and National Center for Nanoscience
and Technology for supporting the sample fabrication.
The authors also thank QuantumCTek Co., Ltd., for sup-
porting the fabrication and the maintenance of room-
temperature electronics. We thank Johannes Majer for
helpful discussion. Funding: This research is supported
by the National Key Research and Development Program
of China (Grant No. 2017YFA0304300), NSFC (Grants
No. 11574380 and No. 11905217), the Chinese Academy
of Science and its Strategic Priority Research Program
(Grant No. XDB28000000), the Science and Technology
Committee of Shanghai Municipality, Shanghai Munic-
ipal Science and Technology Major Project (Grant No.
2019SHZDZX01), and Anhui Initiative in Quantum Infor-
mation Technologies. H.-L.H. acknowledges support from
the Youth Talent Lifting Project (Grant No. 2020-JCJQ-
QT-030), National Natural Science Foundation of China
(Grant No. 11905294), China Postdoctoral Science Foun-
dation, and the Open Research Fund from State Key Lab-
oratory of High Performance Computing of China (Grant
No. 201901-01).

APPENDIX A: PRELIMINARIES

Here we briefly introduce the essential backgrounds
used in this paper to facilitate both physics and computer
science communities. See Refs. [42,43] for more elaborate
descriptions. In particular, we define necessary notations
and exemplify a typical deep neural network, i.e., a fully
connected neural network, in the first two subsections.
We then present a classical GAN and illustrate its work-
ing mechanism. Afterwards, we provide the definition of
boxplot, which is employed to analyze the performance
of the generated data. Ultimately, we recap the parameter
quantum circuits, as the building block of quantum GAN.

1. Notations

We unify some basic notations used throughout the
whole paper. We denote the set {1, 2, . . . , n} as [n]. Given
a vector v ∈ R

n, vi or v(i) represents the ith entry of v
with i ∈ [n] and ‖v‖ refers to the �2 norm of v with ‖v‖ =√∑n

i=1 v2
i . The notation ei always refers to the ith unit

basis vector. We use Dirac notation that is broadly used
in quantum computation to write the computational basis
ei and e

i as |i〉 and 〈i|. A pure quantum state |ψ〉 is repre-
sented by a unit vector, i.e., 〈ψ |ψ〉 = 1. A mixed state of
a quantum system ρ is denoted as ρ = ∑

i pi|φi〉〈φi| with∑
i pi = 1 and Tr(ρ) = 1. The symbol “◦” is used to repre-

sent the composition of functions, i.e., f ◦ g(x) = f (g(x)).
The observable x sampled from the certain distribution
p(x) is denoted as x ∼ P(x). Given two sets A and B, A
minus B is written as A \ B. We employ the floor function
that takes real number x and outputs the greatest integer
x′ := �x� with x′ ≤ x. Likewise, we employ the ceiling
function that takes real number x and outputs the least
integer x′ := �x� with x′ ≥ x.

2. Fully connected neural network

Fully connected neural network (FCNN), as the bio-
logically inspired computational model, is the workhorses
of deep learning [43]. Various advanced deep learning
models are devised by combing FCNN with additional
techniques, e.g., convolutional layer [44], residue connec-
tions [45], and attention mechanisms [46]. FCNN and its
variations have achieved state-of-the-art performance over
other computation models in many machine-learning tasks.

The basic architecture of FCNN is shown in the left
panel of Fig. 4, which includes an input layer, L hidden
layers with L ≥ 1, and an output layer. The node in each
layer is called “neuron.” A typical feature of FCNN is that
a neuron at lth layer is only allowed to connect to a neuron
at the (l + 1)th layer. Denote that the number of neurons
and the output of the lth layer as nl and x(l), respectively.
Mathematically, the output of the lth layer can be treated
as a vector x(l) ∈ R

nl and each neuron represents an entry
of x(l). Let the connected edge between the lth layer and
the (l + 1) layer be �(i). The connected edge refers to a
weight matrix �(l) ∈ R

nl×nl+1 . The calculation rule for the
j th neuron at the l + 1th layer x(l+1)(j) is demonstrated in
the right panel of Fig. 4. In particular, we have x(l+1)(j) :=
gl(x(l)) = f [�(l)(j , :)x(l)], where f (·) refers to the acti-
vation function. Example activation functions include the
sigmoid function with f (x) = (1 + ex) and the rectified
linear unit (ReLU) function with f (x) = max(x, 0) [43].
Since the output of the lth layer is used as an input for the
l + 1th layer, an L-layer FCNN model is given by

x(out) = gL ◦ · · · ◦ gi ◦ · · · ◦ g1(x(in)), (A1)

024051-6

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

where x(in) and x(out) refer to the input and output vec-
tor, and gl with l ∈ [L] is parameterized by {�(l)}L

l=1. In
the training process, the weight matrices {�(l)}L

l=1 are opti-
mized to minimize a predefined loss function L�(x(out), y)
that measures the difference between the output x(out) and
the expected result y.

In deep learning, the most effective method to optimize
trainable weight matrix � with � = [�(1), . . . , �(L)] is
gradient descent [47]. From the perspective of how many
training examples are used to compute the gradient, we can
mainly divide various gradient descent methods into three
categories, i.e., stochastic gradient descent, batch gradi-
ent descent, and mini-batch gradient descent [48]. For the
sake of simplicity, we explain the mechanism of these three
methods in the binary classification task. Suppose that the
given dataset D consists of M training examples with
D = {(xi, yi)}M

i=1 and yi ∈ {0, 1}. Let L be the loss func-
tion to be optimized and η be the learning rate. The batch
gradient descent computes the gradient of the loss function
of the whole dataset at each iteration, i.e., the optimization
at kth iteration step is

�k = �k−1 − η
1
M

M∑

i=1

∇�L(xi, yi). (A2)

The stochastic gradient descent (SGD), in contrast to batch
gradient descent, performs a parameter update by using a
single training example that is randomly sampled from the
dataset D. The mathematical representation is

�k = �k−1 − η∇�L(xi, yi) with xi ∈ D. (A3)

Mini-batch gradient descent employs M ′ training examples
that are randomly sampled from D with M ′ � M to update
parameters at each iteration. In particular, we have

�k = �k−1 − η
1

M ′

M ′
∑

i=1

∇�L(xi, yi) with {xi}M ′
i=1 ⊂ D.

(A4)

Celebrated by its flexibility and performance guarantees,
the mini-batch gradient descent method is prevalently
employed in deep learning compared with the other two
methods [48].

With the aim to achieve better convergence guaran-
tee, advanced mini-batch gradient descent methods are
highly desirable. Recall that vanilla mini-batch gradient
descent defined in Eq. (A4) usually encounters kinds of
difficulties, e.g., how to choose a proper learning rate, and
how to set learning rate schedules that adjust the learning
rate during training. To remedy the weakness of vanilla
mini-batch gradient descent, various improved mini-batch-
gradient-descent optimization algorithms have been pro-
posed, i.e., momentum methods [49], Adam [50], Adagrad
[51], to name a few. Since Adam can be employed to
train quantum batch GAN, we briefly introduce its working
mechanism. Specifically, Adam is a method that computes
adaptive learning rates for each parameter. At kth iteration,
let gk be gk = (1/M ′)

∑M ′
i=1 ∇�L(xi, yi). Define mk and

vk as mk = β1mk−1 + (1 − β1)gt and vk = β2vk−1 + (1 −
β2)g2

t , where β1 and β2 are constants with default settings

Input layer Hidden layers Output layer

FIG. 4. An example of FCNN. The left panel illustrates the basic structure of FCNN that consists of an input layer, one hidden layer,
and an output layer. In the green region, the number of neurons for the input layer and the first hidden layer is 2 and 5, respectively.
The right panel shows the calculation rule of a single neuron. The neuron, highlighted by the gray region, is calculated by f (〈θ , x〉),
where θ represents the weight, x refers to the outputs of the green neurons, and f (·) is the predefined activation function.

024051-7

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

β1 = 0.9 and β2 = 0.999. The update rule of Adam is

�k+1 = �k − η
√

[vk/(1 − βk
2)] + ε

mk

1 − βk
1

, (A5)

where ε is the predefined tolerate rate with default setting
ε = 10−8.

3. Generative adversarial network

Generative model takes a training dataset D with limited
examples that are sampled from distribution Pdata and aims
to estimate Pdata [43]. GAN, proposed by Goodfellow in
2014 [15], is one of the most powerful generative models.
Here we briefly review the theory of GAN and explain how
to use FCNN to implement GAN.

The fundamental mechanism of GAN and its variations
[52–58] can be summarized as follows. GAN sets up a
two-player game, where the first player is called the gener-
ator G and the second player is called the discriminator
D. The generator G creates data that pretends to come
from Pdata to fool the discriminator D, while D tries to
distinguish the fake generated data from the real train-
ing data. Both G and D are typically implemented by
deep neural networks, e.g., fully connected neural net-
work and convolution neural network [44,59]. From the
mathematical perspective, G and D corresponds to two dif-
ferentiable functions. The input and output of G are a latent
variables z and an observed variable x′, respectively, i.e.,
G : G(z, θ) → x′ with θ being trainable parameters for G.
The employed latent variable z ensures GAN to be a struc-
tured probabilistic model [43]. In addition, the input and
output of D are the given example (can either be the gener-
ated data x’ or the real data x) and the binary classification
result (real or fake), respectively. Mathmatically, we have
D : D(x, γ) → (0, 1)with γ being trainable parameters for
D. If the distribution P[G(z)] learned by G equals to the
real data distribution, i.e., P[G(z)] = P(x), then the prob-
ability that discriminator predicts all inputs as real inputs
is 50%. This unique solution that D can never discriminate
between the generated data and the real data is called Nash
equilibrium [15].

The training process of GANs involves both finding the
parameters of a discriminator γ to maximize the classifi-
cation accuracy, and finding the parameters of a generator
θ to maximally confuse the discriminator. The two-player
game set up for GAN is evaluated by a loss function
L{Dγ [Gθ (z)], Dγ (x)} that depends on both the generator
and the discriminator. For example, by labeling the true
data as 1 and the fake data as 0, the training procedure of
original GAN can be treated as

min
θ

max
γ

L{Dγ [Gθ (z)], Dγ (x)} := Ex∼Pdata(x)[log Dγ (x)]

+ Ez∼P(z)(log{1 − Dγ [Gθ (z)]}), (A6)

where Pdata(x) refers to the distribution of training dataset,
and P(z) is the probability distribution of the latent vari-
able z. During training, the parameters of two models are
updated iteratively using gradient descent methods [60],
e.g., the vanilla mini-batch gradient descent and Adam
introduced in Appendix A 2. When parameters θ of G are
updated, parameters γ of D are keeping fixed.

To overcome the training hardness, e.g., the optimized
parameters generally converge to the saddle points, var-
ious GANs are proposed to attain better generative per-
formance. The improved performance is guaranteed by
introducing stronger neural network models for G and
D [61], powerful loss functions [52] and advanced opti-
mization methods, e.g., batch normalization and spectral
normalization [62,63].

4. Box plot

Boxplot, as a popular statistical tool, is made up of five
components to give a robust summary of the distribution
of a dataset [64]. As shown in Fig. 5, the five components
are the median, the upper hinge, the lower hinge, the upper
extreme, and the lower extreme. Denote the first quantile
as Q1, the second quantile as Q2, and the third quantile
as Q3 [65]. The upper (or lower) hinge represents the Q3
and Q1, respectively. The median of the boxplot refers to
the Q2. Let interquantile range (IQR) be Q3 − Q1. The
upper and lower extreme are defined as Q3 + 1.5IQR and
Q1 − 1.5IQR, respectively. The data point, which is out of
the region between the upper and lower extreme, is treated
as the outlier.

5. Parameterized quantum circuit

PQC is a special type of quantum circuit model that can
be efficiently implemented on near-term quantum devices

Outlier

Upper extreme

Upper hinge

Box

Median

Lower hinge

Lower extreme

Q3+1.5IQR

Q1-1.5IQR

Q1

Q3

Q2

FIG. 5. An example of the boxplot. The gray circle refers to
the outlier of the given data. The orange line represents the
median of the given data. The two thick gray lines correspond
to the upper extreme and lower extreme, respectively. The upper
edge and lower edge of the gray box stand for the upper hinge
and the lower hinge, respectively. The distance from the upper
extreme to the upper hinge (or from the lower extreme to the
lower hinge) equals to 1.5IQR.

024051-8

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

FIG. 6. The implementation of MPQC. (a) A general framework of MPQC. The trainable unitary Ul(θ) with l ∈ [L] refers to the
lth layer of MPQC. The arrangement of quantum gates in each layer is identical. (b) A paradigm for the trainable unitary Ul(θ) and
UE . For Ul(θ), the trainable qubit gates US are rotation single-qubit gates along the Z and Y axis. The trainable parameter refers to the
rotation angle. For UE , the fixed two qubits gates, i.e., CZ gates, are applied onto the adjacent qubits.

[66]. The basic components of PQC are quantum fixed two
qubits gates, e.g., controlled-Z (CZ) gates, and trainable
single qubit gates, e.g., the rotation gates RY(θ) along y
axis. A PQC is used to implement a unitary transformation
operator U(θ) with O[poly(N)] parameterized quantum
gates, where N is the number of input qubits and θ is
trainable parameters. The parameters θ are updated by a
classical optimizer to minimize the loss function Lθ that
evaluates the dissimilarity between the output of PQCs and
the target result.

One typical PQC is multilayer parameterized quantum
circuit (MPQC), which has a wide range of applications
in quantum machine learning [21,67–69]. The trainable
unitary operator U(θ), represented by MPQC, is com-
posed of L layers and each layer has an identical arrange-
ment of quantum gates. Figure 6(a) illustrates the general
framework of MPQC. Mathematically, we have U(θ) :=∏L

l=1[UEUl(θ)] with L ∼ O[poly(N)], where Ul(θ) is the
lth trainable layer and UE is the entanglement layer. In
particular, we have Ul(θ) = ⊗N

i=1[US(θ
(i,l))], where θ (i,l)

represents the (i, j)th entry of θ ∈ RN×L, US is the train-
able unitary with US ∈ SU(2), e.g., the rotation single qubit
gates RX , RY, and RZ. The entangle layer UE consists of
fixed two qubits gates, e.g., CNOT and CZ, where the control
and target qubits can be randomly arranged. We exemplify
the implementation of Ul and UE in Fig. 6(b).

APPENDIX B: AN OVERVIEW OF OUR
QUANTUM GAN

Quantum patch GAN. The three core components of
quantum patch GAN are the quantum generator, classical
discriminator, and optimization rule. Here we briefly intro-
duce the primary mechanism of these three elements, with
the details presented in the SM(C).

The employed quantum generator consists of T sub-
generators {Gt}T

t=1, and each subgenerator is assigned to
generated a specific portion of the feature vector. We

exemplify the implementation of the subgenerator Gt at
the kth iteration, since the identical methods are applied
to all quantum subgenerators. Suppose that the available
quantum device has N qubits, we first divide it into two
parts, where the first NG qubits aim to generate a feature
vector of length 2NG , and the remaining NA qubits aim
to conduct the nonlinear mapping, which is an essential
operation in deep learning. We then prepare the input state
|z(k)〉, where the mathematical form of the input state is
|z(k)〉 = [

⊗N
i=1 RY(α

(k)
z)]|0〉⊗N , where RY refers to the rota-

tion single-qubit gate along the y axis and α(k)z is sampled
from the uniform distribution, e.g., α(k)z ∼ unif(0,π). Note
that at each iteration, the same latent state |z(k)〉 is input
into all subgenerators. We then input |z(k)〉 into Gt, namely,
a trainable unitary U(θ (k)t). Figure 7(a) shows the imple-
mentation of U(θ (k)t). The generated quantum state of Gt
is

|�(k)
t (z)〉 = U(θ (k)t)|z(k)〉. (B1)

We finally partially measure the generated state |�(k)
t (z)〉

to obtain the classical generated result. In particular, the
j th entry with j ∈ [2NGt] is

P(k)t (j) = 〈�(k)
t (z)[|j 〉〈j | ⊗ (|0〉〈0|)⊗NA]�(k)

t (z)〉. (B2)

Overall, the generated image x̃(k) at the kth training iter-
ation is produced by combining T measured distributions,
with x̃(k) = [P(k)1 , P(k)2 , . . . , P(k)T] ∈ R

M .
The employed discriminator is implemented with a clas-

sical deep neural network, i.e., the fully connected neural
network [43]. The implementation method exactly follows
the classical GAN [15]. The input of the discriminator can
either be a generated image x̃ or a real image x sampled
from D. The output of the discriminator D(x) or D(x̃) is in
the range between 0 (label “False”) and 1 (label “True”).

Quantum GAN training is analogous to classical GAN
training. A loss function L is employed to iteratively

024051-9

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

Repeat L times

(a)

0

0

0

0

0

0

R
Y
(α

z
(k))

0

R
Y
(α

z
(k))

R
Y
(α

z
(k))

R
Y
(α

z
(k))

R
Y
(α

z
(k))

R
Y
(α

z
(k))

R
Y
(α

z
(k))

U(θ
l,1

(k))

U(α
z
)

U(θ
l,2

(k))

U(θ
l,3

(k))

U(θ
l,4

(k))

U(θ
l,5

(k))

U(θ
l,6

(k))

U(θ
l,7

(k))

Z

Z

Z

Z

Z

U
G
(θ)

Ancillary
for G

Feature
register

(b)

Repeat L times

0

0

0

0

0

0

0

0

Ancillary
for G

Ancillary
for D

Feature
register

Index
register

U(α
z
)

U
G
(θ (k))

U
D
(γ (k))

FIG. 7. Quantum GAN. (a) The implemen-
tation of Gt for t quantum patch GAN. The
subgenerator Gt, or equivalently, the train-
able unitary UG(θ t), is constructed by PQC
and highlighted by the blue region with a
dashed outline. Let UG(θ t) := ∏L

l=1[UEUl(θ t)],
where Ul(θ t) := ⊗N

i=1[US(θ
(i,l)
t)] is the lth train-

able layer, US(θ
(i,l)
t) is the trainable uni-

tary with US ∈ SU(2), and UE is the entan-
glement layer with UE := ⊗2i+1≤N

i=1 CZ(2i, 2i +
1)

⊗2i≤N
i=1 CZ(2i − 1, 2i). For example, we set

US(θ) = RY(θ), L = 3, and N = 3 to accomplish
the gray-scale bar image generation in case m =
2, where the employed qubits are highlighted by
the blue line and the used quantum gates are high-
lighted by yellow region. (b) The main architec-
ture of the quantum batch GAN. A pretrained uni-
tary U(αz), the quantum generator UG(θ

(k)), and
the quantum discriminator UD(γ

(k)) are applied
to the input state |0〉⊗N in sequence. We adopt
the same rules used in (a) to build UG(θ

(k)) and
UD(γ

(k)).

optimize the quantum generator G and the classical dis-
criminator D during K iterations. The mathematical form
of the loss function is

L(θ , γ) = 1
M ′

M ′
∑

i=1

(
log[Dγ (x(i))]

+ log{1 − Dγ [Gθ (z(i))]}
)

, (B3)

where x(i) ∈ D, z(i) ∼ P(z), M ′ is the size of mini-
batch, and θ and γ are trainable parameters for
G and D, respectively. The objectives of the gener-
ator and the discriminator are to minimize and max-
imize the loss function (classification accuracy), i.e.,
maxγ minθ L(θ , γ). The updating rule for G is θ (k+1) =
θ (k) − ηG ∗ ∂θL(θ (k), γ (k))/∂θ (k). Similarly, the updating
rule for D is γ (k+1) = γ (k) + ηD ∗ ∂γL(θ (k), γ (k))/∂γ (k),
where ηG (ηD) refers to the learning rate of G and D.

Quantum batch GAN. Following the same routine as
the quantum patch GAN, the quantum batch GAN is com-
posed of a quantum generator, quantum discriminator, and
an optimization rule. In particular, the same loss function is
employed to optimize θ and γ . We briefly explain the main
differences to the quantum patch GAN, with the details
provided in the SM(E).

The main architecture of quantum batch GAN is illus-
trated in Fig. 7(b). Both G and D are constructed using
PQCs. In the training procedure, we first adopt a per-
tained oracle to generate the latent state |z(k)〉, i.e., |z(k)〉 =
2−NI

∑
i |i〉I |z(k)i 〉F . Note that NF qubits, as in the first pro-

posal does, are decomposed into two parts, where the first
NG qubits are used to generate feature vectors and the
remaining NA are used to introduce nonlinearity. We then
apply the quantum generator UG(θ

(k)) with UG(θ
(k)) ∈

C
2NF ×2NF to the latent state, where the generated state

is [I2N ⊗ UG(θ
(k))]|z〉. We then apply the discriminator

UD(γ
(k)) ∈ C

2NF ×2NF to the generated state, i.e.,

|�(k)
t (z)〉 = {I2N ⊗ [UD(γ

(k))UG(θ
(k))]}|z(k)〉. (B4)

Finally, we employ a positive operator value measure-
ments (POVMs) to obtain the output of the discrim-
inator D[G(z)], i.e., D[G(z)] = Tr[|�(k)

t (z)〉〈�(k)
t (z)|]

with = I2N−1 ⊗ |0〉〈0|. Similarly, we have D(x) =
〈�(k)

t (x)||�(k)
t (x)〉 with |�(k)

t (x)〉 = [I2N ⊗ UD(γ
(k))]

|x(k)〉.

024051-10

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

APPENDIX C: THE IMPLEMENTATION OF
QUANTUM PATCH GAN

The quantum patch GAN under the setting N < �log M�
is composed of a quantum generator, a classical discrimi-
nator, and a classical optimizer. Here we separately explain
the implementation of these three components.

1. Quantum generator

Recall that the same construction rule is applied to all
T subgenerators. Here we mainly exemplify tth subgener-
ator Gt. Quantum subgenerator Gt, analogous to classical
generator, receives the input latent state |z〉 and outputs the
generated result Gt(z). We first introduce the preparation
of the latent state |z〉. We then describe the construction
rule of the computation model UG(θ) used in Gt. We last
illustrate how to transform the generated quantum state to
the generated example Gt(z).

Input latent state. As explained in the main text,
the latent state is prepared by applying a set of rota-
tion single-qubit gates US[αz(i)] to the input state |0〉⊗N

with αz ∈ R
N and US[αz(i)] ∈ {RX , RY, RZ}, i.e., |z〉 =

{⊗N
i=1 US[αz(i)]}|0〉⊗N . The exploitation of the latent vari-

able input state |z〉, analogous to classical GAN, ensures
quantum GAN to be a probabilistic generative model [47].
In the training procedure, the same |z〉 is employed to
input into all T subgenerators. Such an operation guaran-
tees that quantum patch GAN is capable of converging to
Nash equilibrium, as classical GAN claimed. The technical
proof is shown in Appendix D.

Computation model UGt(θ). The computation model
UGt(θ) aims to map the input state |z〉 to a specific quan-
tum state that well approximates the target data. Two key
elements of our computation model are MPQC formulated
in Appendix A and the nonlinear transformation. The moti-
vation to use MPQC comes from two aspects. First, the
structure of MPQC can be flexibly modified to adapt the
limitations of quantum hardware, e.g., the restricted cir-
cuit depth and the allowable number of quantum gates
[1]. Second, MPQC possesses a strong expressive power
over classical circuit, which may contribute to quantum
GANs to estimate the real data distribution [70]. The adop-
tion of the nonlinear transformation intends to close the
gap between the intrinsic mechanism of quantum com-
putation and the required setting for generative models.
Specifically, generative model essentially tries to learn a
nonlinear map that transforms the distribution P(z) to the
target data distribution Pdata(x). The intrinsic property of
quantum computation implies that the trainable unitary,
e.g., MPQC, can only linearly transform the input state to
the output state. Consequently, a nonlinear transformation
strategy is demanded for the quantum generator.

Here we introduce one efficient method that enables Gt
to achieve the nonlinear map. The central idea is adding an
ancillary subsystem in Gt and then tracing it out. Similar

ideas have been broadly used in quantum discriminative
models [71–73]. Supposed that Gt is an N qubits system,
we decompose it into the ancillary subsystem A with NA
qubits and the data subsystem with N − NA qubits. We
define the input state |z〉 as the following form, i.e.,

|z〉 =
⎛

⎝
NS⊗

i=1,i∈S

RY[αz(i)]
N−NS⊗

k=1,k∈[N]\S

Ik

⎞

⎠ |0〉⊗N , (C1)

where S is the index set with S ⊂ [N] and |S| = NS,
RY[αz(i)] applies to the ith qubit, identity gate Ik applies to
the kth qubit, and αz(i) refers to the ith entry of the vector
α ∈ R

NS with α being sampled from a predefined distribu-
tion. We denote MPQC as the giant unitary UGt(θ) with
UGt(θ) ∈ C

2N ×2N
. The generated state |�t(z)〉 for Gt after

interacting Ut(θ) with |z〉 is

|�t(z)〉 = UGt(θ)|z〉. (C2)

We then take the partial measurement A on the ancillary
subsystem A of |�(z)〉, i.e., the postmeasurement quantum
state ρt(z) is

ρt(z) = TrA[A|�t(z)〉〈�t(z)|]
Tr[A ⊗ I2N−NA |�t(z)〉〈�t(z)|] . (C3)

An immediate observation is that state ρt(z) is a nonlinear
map for |z〉, since both the nominator and denominator of
Eq. (C3) are the function of the variable |z〉.

Output. The output of Gt, denoted as Gt(z), is obtained
by measuring ρt(z) using a complete set of computation
bases {|j 〉}2(N−NA)−1

j =0 . For image generation, the measured
result P(j) of the computation basis |j 〉 represents the j th
pixel value for the tth subgenerator, i.e.,

P(J = j) = Tr[|j 〉〈j |ρt(z)]. (C4)

Consequently, we have Gt(z)

Gt(z) = [P(J = 0), . . . , P(J = 2(N−NA) − 1)], (C5)

and the output for the generator G(z) is

G(z) = [G1(z), . . . , GT(z)]. (C6)

Remark. Other advanced nonlinear mapping methods
can be seamlessly embedded into our quantum generator.
For example, it is feasible to employ classical activa-
tion function f (·), e.g., sigmoid function, to the generated
result G(z). It is intrigued to explore what kind of non-
linear mapping will lead to a better performance for our
quantum GAN scheme.

024051-11

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

2. Discriminator

The discriminator D is constructed by employing clas-
sical neural networks, i.e., FCNN. The input of the dis-
criminator is the training data x or generated data G(z).
The output of D is a scalar in the range between 0 and 1,
i.e., D(x), D[G(z)] ∈ [0, 1]. Recall that we label the train-
ing data as 1 (True) and the generated data as 0 (False). The
output of the discriminator can be treated as the confidence
about the input data to be true or false. The ReLU mapping
is employed to build FCNN. We customize the depth of the
hidden layers and the number of neurons in each layer for
different tasks.

3. Loss function and optimization rule

We modify the loss function defined in Eq. (A6) to train
quantum patch GAN, i.e.,

min
θ

max
γ

L{Dγ [Gθ (z)], Dγ (x)} := Ex∼Pdata(x)[log Dγ (x)]

+ Ez∼P(z)(log{1 − Dγ [Gθ (z)]}), (C7)

where the modified part is setting Gθ (z) = [Gθ ,1(z), . . . ,
Gθ ,T(z)]. In the training process, we optimize the trainable
parameters θ and γ iteratively, which is analogous to clas-
sical GAN. Especially, we leverage a zeroth-order method
[74] and an automatic differentiation package of PyTorch
[75] to optimize trainable parameters for the quantum
generator and classical discriminator, respectively. In par-
ticular, to optimize the classical discriminator D, we fix
parameters θ and use back propagation to update the
parameters γ according to the obtained loss [43]. To opti-
mize the quantum generator G, we keep the parameters γ

fixed and employ the parameter shift rule [74] to com-
pute the gradients of PQC in a way that is compatible
with back propagation. Denote NG and ND be the number
of parameters for G and D, i.e., NG = |θ | and ND = |γ |.
The derivative of the ith parameter θ(i) with i ∈ [NG] can
be computed by evaluating the original expectation twice,
but with shifting θ(i) to θ(i)+ π/2 and θ(i)− π/2. In
particular, we have

∂L(θ , γ)
∂θ(i)

= L[θ(1), . . . , θ(i)+ π/2, . . . , θ(NG), γ] − L[θ(1), . . . , θ(i)− π/2, . . . , θ(NG), γ]
2

. (C8)

The update rule for θ at kth iteration is

θ (k) = θ (k−1) − ηG
∂L(θ (k−1), γ (k−1))

∂θ (k−1) , (C9)

where ηG is the learning rate. Analogous to the classical
GAN, we iteratively update parameters θ and γ in total K
iterations.

APPENDIX D: THE CONVERGENCE
GUARANTEE OF QUANTUM PATCH GAN

Recall that classical GAN employs the following lemma
to prove its convergence.

Lemma 1 (Proposition 1, [15]). For classical GAN, when
G is fixed, the optimal discriminator D is

D∗(x) = Pdata(x)
Pg(x)+ Pdata(x)

.

In favor of Lemma 1, the convergence property of clas-
sical GAN is summarized by the following two lemmas.

Lemma 2 (Theorem 1, [15]). Denote C(G) as C(G) :=
maxD L(G, D), with L(G, D) being loss function. The

global minimum of the virtual training criterion C(G) is
achieved if and only if Pg = Pdata. At that point, C(G)
achieves the value − log 4.

Lemma 3 (Proposition 2,[15]). Denote C(D) as C(D) :=
minG L(G, D), with L(G, D) being loss function. If the gen-
erator G and discriminator D have enough capacity, and
at each iteration of GAN, the discriminator is allowed to
reach its optimum given G, and the generated distribution
Pg is updated so as to improve the criterion C(D) then
Pg(x) converges to Pdata(x).

We now prove that the quantum patch GAN pos-
sesses the identical convergence property as classical GAN
does. Let P(z) be the distribution of the latent vari-
able z. We denote the probability distribution of gener-
ated images as Pg(x) with Pg(x) = Pg[G(z)] and G(z) =
[G1(z), G2(z), . . . , GT(z)].

Theorem 1. In quantum patch GAN, for G fixed, the
optimal discriminator D is

D∗(x) = Pdata(x)
Pg(x)+ Pdata(x)

.

024051-12

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

Proof : Given fixed generator G, we formulate the rela-
tion between Pg(x) and P(z) as follows.

Pg(x) =
∫

{[G1(z),G2(z),...,GT(z)]=x}
P(z)dz =

∫

{G(z)=x}
P(z)dz,

(D1)

We then expand the loss function of quantum patch GAN
and obtain

Ex∼Pdata{log[D(x)]} + Ez∼P(z)(log{1 − D[G(z)]})

=
∫

x
Pdata(x) log[D(x)]dx

+
∫

z
P(z) log{1 − D[G(z)]}dz. (D2)

In conjunction with Eq. (D1) and Eq. (D2), we have

Ex∼Pdata{log[D(x)]} + Ez∼P(z)(log{1 − D[G(z)]})

=
∫

x
Pdata(x) log[D(x)]dx

+
∫

z
P(z) log{1 − D[G(z)]}dz

=
∫

x
Pdata(x) log[D(x)]dx

+
∫

{G(z)=x}
P(z) log{1 − D[G(z)]}dzdx

=
∫

x
Pdata(x) log[D(x)]dx

+
∫

x
log[1 − D(x)]dx

∫

{G(z)=x}
P(z)dz

=
∫

x
Pdata(x) log[D(x)] + Pg(x) log[1 − D(x)]dx

(D3)

Since both Pg(x) and Pdata(x) are fixed, the minimum of
the above equation is

D∗(x) = Pdata(x)
Pg(x)+ Pdata(x)

.

�

An immediate observation of Theorem 1 is as follows.

Corollary 1. For quantum GAN, the global minimum is
achieved if and only if Pg = Pdata. If the generator G and
discriminator D have enough capacity, and the discrimi-
nator can reach its optimum given G at each iteration, and
the generated distribution Pg is updated so as to improve
the criterion C(D) then Pg(x) converges to Pdata(x).

Proof : The same optimal discriminator (as indicated by
Lemma 1 and Theorem 1), loss function, and updating rule
imply that the convergence results obtained by classical
GAN are also satisfied to quantum patch GAN. �

APPENDIX E: THE IMPLEMENTATION OF
QUANTUM BATCH GAN

The proposed quantum batch GAN under the setting
N > �log M� employs a quantum generator and discrim-
inator to play a minimax game. Given an N -qubit quantum
system, we divide N qubits into the index register RI with
NI qubits and the feature register RF with NF qubits, i.e.,
N = NI + NF . The feature register RF can be further par-
titioned into three parts, i.e., ND qubits are used to generate
fake examples, NAG qubits are used to conduct nonlin-
ear operations for G, and NAD qubits are used to conduct
nonlinear operations for D with NF = ND + NAG + NAD .
Such a decomposition enables us to effectively acquire
the mini-batch gradient information by simple measure-
ments. Considering that the mechanism of the quantum
batch GAN is in the same vein with the quantum patch
GAN, here we mainly concentrate on the distinguished
techniques used in the quantum batch GAN.

Input state. To capture the mini-batch gradient informa-
tion, we employ two oracles Uz and Ux to encode different
latent vectors and classical training examples into quantum
states, respectively. Following the same notations used in
the main text, we denote the mini-batch size as |Bk| = 2NI .
For Uz, we have Uz : |0〉⊗NI

I |0〉⊗NF
F → 2−NI

∑
i |i〉I |z(i)〉F .

With a slight abuse of notation, z(i) refers to ith latent

vector and |z(i)〉 = |z̄(i)〉|0〉⊗NAD , where |z̄(i)〉 ∈ C
2

NI +NAG

follows the same form defined in Eq. (C1). Similarly,
for Ux, we have Ux : |0〉I |0〉F → 2−NI

∑
i |i〉I |x(i)〉F . For

a dataset of 2NI inputs with M features, the complex-
ity of encoding a full data set by the quantum system
using amplitude encoding method is O{2NI M/[NI log(M)]}
[76–80]. Thus, for data encoding, the runtime of state
preparation for quantum machine learning using ampli-
tude encoding is basically consistent with that of classic
machine learning, since the encoding complexity of clas-
sic machine learning is at least O(2NI M). However, the
number of qubits required for quantum machine learning
is NI log(M), while classical quantum machine learning
requires at least O(2NI M) bits.

An accurate construction of Uz and Ux requires numer-
ous multicontrolled quantum gates, which is inhospitable
to near-term quantum devices. To overcome this issue,
an effective way is to employ the pertained oracles that
approximate Uz and Ux to accomplish the learning tasks.
Such a pretraining method have been broadly investigated
[19,22,67,81,82].

Computation model UG(θ). The quantum generator
G is built by MPQC UG(θ) associated with the nonlin-
ear mappings. As illustrated in the main text, UG(θ) ∈

024051-13

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

C
2

ND+NAG ×2
ND+NAG operates only with the feature register

RF . In particular, to generate fake data, we first apply
I2NI ⊗ UG(θ)⊗ I

2
NAD

to the input state, i.e., |�(z)〉 =
2−NI

∑
i |i〉I UG ⊗ I

2
NAD
(θ)|z(i)〉. We then take a partial

measurement AG as defined in Eq. (C3), e.g., AG =
(|0〉〈0|)⊗NAG , to introduce the nonlinearity. The generated
state |G(z)〉 corresponding to |Bk| fake examples is

|G(z)〉 := 2−NI
∑

i

|i〉I |G(z(i))〉F

= I2NI ⊗AG ⊗ I
2

ND+NAD
|�(z)〉

√
Tr[I2NI ⊗AG ⊗ I

2
ND+NAD

|�(z)〉〈�(z)|]
.

(E1)

In the training procedure, we directly apply the quantum
discriminator to operate with the generated state |G(z)〉.
In the image generation stage, we employ POVM to mea-
sure the state |G(z)〉, i.e., the ith image G(z(i)) with i ∈ Bk
is G(z(i)) = [P(J = 0|I = i), . . . , P(J = 2ND − 1|I = i)]
with P(J = j |I = i) = Tr[|i〉I |j 〉F〈i|I 〈j |F |G(z)〉〈G(z)|].

Computation model UD(γ). Quantum discriminator D,
implemented by MPQC UD(γ) associated with the non-
linear operations, aims to output a scalar that represents
the averaged classification accuracy. Given a state |x〉 that
represents |Bk| real examples, we first apply I

2
NI +NAG

⊗
UD(γ) to the state |x〉, i.e., |�(x)〉 = 2−NI

∑
i |i〉I I2

NAG
⊗

UD(γ)|x(i)〉F . We then use a partial measurement AD ,
e.g., AD = (|0〉〈0|)⊗NAD , to introduce the nonlinearity.
The generated state |D(x)〉 corresponding to the classifi-
cation result for |Bk| examples is

|D(x)〉 := 2−NI
∑

i

|i〉I |D(x(i))〉F

= I
2

N−NAD
⊗AD |�(x)〉

√
Tr[I

2
N−NAD

⊗AD |�(x)〉〈�(x)|]
. (E2)

Similarly, given the state |G(z)〉 in Eq. (E1) that
represents |Bk| fake examples, we adopt the same
method to obtain the state |D[G(z)]〉 with |D[G(z)]〉 =
2−NI

∑
i |i〉I |D[G(z(i))]〉F . For each example x(i) or G(z(i)),

the classification accuracy D(x(i)) or D[G(z(i))] is
obtained by applying POVM o = I

2
ND+NAD

on |D(x(i))〉
or |D[G(z(i))]〉, i.e., D(x(i)) = Tr[o|D(x(i))〉〈D(x(i))|] or
D[G(z(i))] = Tr{o|D[G(z(i))]〉〈D[G(z(i))]|}. As formu-
lated in Eq. (E2), the averaged classification accu-
racy 2−NI D(x) is acquired by applying POVM o =
I2N−1 |0〉〈0| to |D(x)〉, i.e., 2−NI D(x) = Tr[o|D(x)〉
〈D(x)|]. Likewise, the averaged classification accuracy
for the generated examples 2−NI D[G(z)] is acquired
by applying o to |D[G(z)]〉, i.e., 2−NI D[G(z)] =
Tr{o|D[G(z)]〉〈D[G(z)]|}. In conjunction with Eq. (A4)

and Eq. (C7), the mini-batch gradient information can be
effectively acquired by taking o on two states |D[G(z)]〉
and |D(x)〉.

Remark. (1) It is noteworthy that, by introducing NI
additional qubits to encode 2NI inputs as a superposition
state, quantum batch GAN could obtain the batch gradi-
ent descent of all the 2NI inputs in one training process.
This shows that quantum batch GAN has the potential to
efficiently process big data.

(2) Analogous to binary classification task, we need to
measure output state to acquire the information about if
the input is “fake” or “real.” Since quantum batch GAN
employ the quantum discriminator, theoretically, measur-
ing one qubit is enough to distinguish between “real”
and “fake” images, and then obtain the gradient infor-
mation. Therefore, the number of measurements required
for quantum batch GAN during training procedure is quite
small, and theoretically will not increase with the size of
the system. For example, the statistical error of 10 000
measurements on a qubit is about 0.01, which is basi-
cally enough for the training procedure in most cases.
In addition, as discussed in Ref. [83], a finite number of
measurements could lead to unbiased estimators for the
gradient, which effectively avoids the saddle points and
possesses the convergence guarantees.

APPENDIX F: EXPERIMENT DETAILS

In this section, we first specify the parameter settings of
the exploited superconducting quantum processor. We next
provide the experiment details for the handwritten digit
image generation task. We last demonstrate the experiment
details for the gray-scale bar image generation.

1. Superconducting quantum processor

In all experiments, the six qubits (see Fig. 8) are cho-
sen from a 12-qubit superconducting quantum processor.
The processor has qubits lying on a 1D chain, and the
qubits are capacitively coupled to their nearest neighbors
(the coupling strength is about 12 MHz). Each qubit has a
microwave drive line (XY), a fast flux-bias line (Z) and a
readout resonator. All readout resonators are coupled to a
common transmission line for state readout. The single-
qubit rotation gates are implemented by driving the XY
control lines, and the average gate fidelity of single-qubit
gates is about 0.9994. The controlled-Z (CZ) gate is imple-
mented by driving the Z line using the “fast adiabatic”
method, whose average gate fidelity is about 0.985. Dur-
ing the experiments, we calibrate only qubit readouts every
hour but did not calibrate the quantum gate operations,
even over 4 days of training. Thus, the optimization of our
quantum GAN scheme is very robust to noise. The perfor-
mances of the six qubits we choose in our experiment are
listed in Table I.

024051-14

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

XY ZZ XY Z XY XY ZZ XY

R4

Q4 Q5

R5R2

Q2 Q3

R3

Transmission line

Readout

Qubits

Control XY Z

R6

Q6

R1

Q1

FIG. 8. Experiment setup. There are 12
qubits in total in our superconducting quantum
processor, from which we choose six adja-
cent qubits labeled with Q1 to Q6 to per-
form the experiment. Each qubit couples to
a corresponding resonator for state readout.
For each qubit, individual capacitively coupled
microwave control lines (XY) and inductively
coupled bias lines (Z) enable full control of
qubit operations.

2. Handwritten digit image generation

Here, we provide the hyperparameter settings of quan-
tum patch GAN in handwritten digits “0” and “1” image
generation tasks. In particular, we set NS = N = 5 defined
in Eq. (C1) to generate latent states. The number of sub-
generators and layers for each UGt are set as T = 4 and
L = 5, respectively. To compress the depth of the quan-
tum circuits, we set all trainable single-qubit gates as RY.
Equivalently, the total number of trainable parameters for
quantum generator G is in total T × L × N = 100. The
number of measurements to readout the quantum state is
set as 3000. Moreover, the employed discriminator used
for quantum patch GAN is implemented by FCNN with
two hidden layers, and the number of hidden neurons for
the first and second hidden layer is 64 and 16, respec-
tively. In the training procedure, we set the learning rates as
ηG = 0.05 and ηD = 0.001 for quantum patch GAN. The
number of measurements to estimate the partial derivation
in Eq. (C8) is set as 3000.

a. Some discussion about the setting about the number
of measurements

Here we devise a numerical simulation to indicate that,
for the handwritten image generation task that using quan-
tum patch GAN with five qubits, K = 3000 shots mea-
surement is a good hyperparameter to achieve the desired
generative performance under a reasonable running time.
Specifically, we employ the quantum generator used in

quantum patch GAN to accomplish the discrete Gaus-
sian distribution approximation task. Formally, the discrete
Gaussian distribution π(x;μ, σ) is defined as

π(x;μ, σ) = exp
(

− (x − μ)2

2σ 2

)

/Z, (F1)

where x ∈ [0, 31] and Z are the normalization factor. The
discrete Gaussian π(x;μ, σ) can be effectively represented
by the quantum state using five qubits. Let the target
quantum state expressed by five qubits be |π〉, where the
outcome measured by the computation basis |k〉 with k ∈
[0, 31] is exp{−[(k − μ)2/2σ 2]}/Z.

We now exploit quantum generator used in quan-
tum patch GAN approximate the target state |π〉, or
equivalently, to learn the discrete Gaussian distribution
π(x;μ, σ). Denote the generated state of the employed
quantum generator as |ψ(θ)〉,

|ψ(θ)〉 =
L∏

i=1

Ui(θ)|0〉⊗5, (F2)

where Ui(θ) refers to PQC. The probability distribution
formulated by |ψ(θ)〉 is denoted as qθ , i.e., q(X = k) =
|〈k|ψ(θ)〉|2. In the training procedure, we continuously
update θ to minimize the maximum mean discrepancy

TABLE I. Performance of qubits. ω10 is idle points of qubits. T1 and T∗
2 are the energy relaxation time and dephasing time, respec-

tively. f00 (f11) is the possibility of correctly readout of qubit state in |0〉 (|1〉) after successfully initialized in |0〉 (|1〉) state. X /2 gate
fidelity and CZ gate fidelity are single- and two-qubit gate fidelities obtained via performing randomized benchmarking.

Qubit Q1 Q2 Q3 Q4 Q5 Q6 Average

ω10/2π (GHz) 4.210 5.006 4.141 5.046 4.226 5.132 . . .
T1 (μs) 37.2 34.5 35.1 30.1 39.4 36.3 35.4
T∗

2 (μs) 2.6 4.8 1.5 8.6 2.4 5.4 4.2
f00 0.947 0.955 0.959 0.982 0.962 0.981 0.964
f11 0.873 0.913 0.889 0.919 0.904 0.93 0.905
X /2 gate fidelity 0.9993 0.9993 0.9992 0.9995 0.9993 0.9996 0.9994
CZ gate fidelity 0.987 0.985 0.986 0.972 0.994 0.985

024051-15

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

0 5 10 15

Generated distribution Training loss

20 30 0

L
os

s

0.00.00

0.05

Pr
ob

ab
ili

ty

0.10

0.20

0.15

0.1

0.2

0.3

0.4

0.5

0.6
Target
K = 3000&Ir = 0.01

Target N = 5
K = 3000&Ir = 0.01

100 200 300 400 500 600 700 800
Iteration

25

FIG. 9. The simulation results for approximating discrete Gaussian distribution with finite measurements K = 3000. The left
panel shows the performance of approximated discrete Gaussian. The label “target” refers to the target Gaussian distribution to be
approximated. The label “LR” refers to learning rate. Similarly, the right panel illustrates the corresponding training loss.

(MMD) L between two distributions q(x) and p(x), i.e.,

L[q(x), p(y)] = Ex∼q(x),y∼p(y)[K(x, y)]

− 2Ex∼q(x),y∼π(y)[K(x, y)]

+ Ex∼π(x),y∼π(y)[K(x, y)], (F3)

where K(x, y) = (1/c)
∑c

i=1 exp[−|x − y|2/(2σ 2
i)] and

c ∈ N is a hyperparameter. At each iteration, we first read-
out the probability distribution qθ and compute the gradient
∂L/∂θ . The hyperparameter setting is as follows. The
total number of iterations is set as T = 800. The learn-
ing rate is set as LR = 0.01. The circuit depth L is set as
L = 5. Figure 9 illustrates the simulation results. As shown
in upper panel, with setting K = 3000, the approximated
Gaussian distribution can well match the target distribu-
tion. Moreover, the lower panel shows that, for the setting
and (highlighted by red color), the training loss is contin-
uously decreasing with the increased number of iterations.
Celebrated by such a simulation result, we conclude that
K = 3000 is sufficient to acquire optimization information,
which ensures the performance of quantum patch GAN.

3. Gray-scale bar image generation

a. The gray-scale bar image dataset

Here, we first address the motivation of constructing the
gray-scale bar dataset, and discuss the requirements that
need to be considered for constructing such a dataset. The
gray-scale bar image dataset is used to explore how the
performance of quantum patch GAN and quantum batch
GAN. To evaluate the performance of two quantum GANs,
the employed dataset should satisfy the following two
requirements:

1. Given a dataset, the preparation of quantum state
that corresponds to the classical input, is required to be
efficient, which cost only shallow or constant circuit depth.

2. The employed dataset D should be sampled from a
continuous distribution, i.e., D ∼ Pdata(x).

Requirement 1 origins from the practical limitation. Con-
sidering that the noise of quantum system is exponentially
increased in terms of the circuit depth, it is unfavorable
that encoding classical input into quantum states affects our
analysis results. Equivalently, an efficient method to pre-
pare quantum input facilitates us to eliminate the effects
of the encoding issue, and enables us to better explore
how the performance of quantum batch GAN. Require-
ment 2 ensures that the employed dataset is sufficiently
“complicated” to learn.

The construction rules for the gray-scale bar dataset are
as follows. Denote the training dataset as D = {xi}Ne

i=1 with
D ∼ Pdata(x), where Ne is the number of examples and
xi ∈ R

M refers to the ith example with feature dimension
M . Denote the pixel value at the ith row and j th col-
umn as xij , a valid gray-scale bar image x ∈ R

m×m with
M = m2 satisfies xi0 ∼ unif(0.4, 0.6), xi1 = 1 − xi0, and
xij = 0, ∀i ∈ [m] and ∀j ∈ [m] \ {0, 1}. In our experiment,
we collect a training dataset with Ne = 1000 examples for
the case m = 2.

The gray-scale bar dataset cleverly meets the two
requirements nominated above, which motivates us to use
it to investigate the performance of quantum GAN. On the
one hand, we can effectively encode the training data into
quantum state by using one circuit depth that is composed
of RY gates. For example, for the 2 × 2 pixels setting,
the image x = [0.45, 0, 0.55, 0], the corresponding quan-
tum state can be generated by applying RY(γ1)⊗ RY(γ2)

to the initial state |00〉, where γ1 = 2 ∗ arccos(
√

0.45) and
γ2 = 0. On the other hand, since the data distribution of
gray-scale bar images is continuos, we can better evalu-
ate if quantum GAN learns the real data distribution from
finite training examples.

024051-16

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

(a)

Softm
ax

Input layer Hidden layer Output layer

.

.

.

ReLU

ReLU

ReLU

(b)

.
.

.

Hidden layerInput layer Output layer

FIG. 10. Architectures of the employed two types of classical GANs. (a) The generator of GAN MLP, a classical GAN model with
multilayer perceptron generator. (b) The generator of GAN CNN, a classical GAN model with convolutional generator.

In our experiments, to evaluate the FD score, we sam-
ple 1000 generated examples after every 50 iterations, and
usually we calculate the FD score of the generated exam-
ples after the training is completely over. In order to flex-
ibly monitor the training procedure, we set a constraint to
the gray-scale bar dataset that xi0 ∼ unif(0.4, 0.6). Instead
of calculating FD score after training, we can check if
the generated image satisfies such a constraint to roughly
evaluate the performance of quantum generator at each
iteration during the training procedure.

b. Experimental details

In the main text, we first apply the quantum patch GAN
to generate 2 × 2 gray-scale bar images. Specifically, the
hyperparameters setting for quantum patch GAN is N = 3,
NS = N and L = 3. In addition, we fix all US to be RY, and
the learning rates are set as ηG = 0.05 and ηD = 0.001. The
number of measurements to readout the quantum state is
set as 3000. The total number of trainable parameters for
the quantum generator is 9 with T = 1.

We then apply the quantum batch GAN to generate gray-
scale bar images. The hyperparameter setting is identical
to the quantum patch GAN, expect for the construction
of discriminator. In particular, any quantum discrimina-
tive model based on the amplitude-encoding method can
be employed as the discriminator of quantum batch GAN.
Here we utilize the quantum discriminator model proposed
by Ref. [34] as our quantum discriminator. The total num-
ber of trainable parameters for the quantum discriminator
is 12. Experiments demonstrate that the quantum batch
GAN achieved reasonable generation performance, even
though the quantum discriminator employed much fewer
parameters than other configurations (the classical discrim-
inator used in the classical GAN MLP, classical GAN CNN
and quantum patch GAN has 96 parameters).

To better justify the capability and performance of both
the quantum patch GAN and quantum batch GAN, we
implement two types of classical GANs as reference.
Firstly, we built multilayer perceptron (MLP) generators
with one hidden layer. As shown in Fig. 10(a), the input

layer of MLP consists of one or two neurons, and noise
sampled from the standard Gaussian distribution are feed
as inputs. ReLU activations are added in the hidden layer
to perform nonlinear transformation. In the output layer,
the activation function, Softmax, is employed. It is mainly
because that the Softmax activation share the same func-
tion with normalization constraint of the quantum genera-
tor, i.e., enforcing the sum of generator outputs to be equal
to 1. The exploited discriminator D has the identical con-
figuration with quantum patch GAN. Moreover, following
the implementation of the original GAN, the adversarial
training process are formulated as

min
D

Ex∼Pdata [log D(x)] + Ez∼P(z)(log{1 − D[G(z)]}),
max

G
Ez∼Pp (z){log D[G(z)]}.

(F4)

In the generator of GAN CNN [Fig. 10(b)], the con-
volutional kernels with shape “(1 × 2)” and “(2 × 1)” are
applied to the input noise and hidden features, respectively.
Giving a sampled noised as input, the CNN generator can
directly output a 2 × 2 gray-scale bar image. Similar to
the MLP generator, nonlinear activations are added in the
hidden and output layer. For both GAN MLP and GAN
CNN, the SGD [48] is utilized to the classical generator
and discriminator alternately.

To comprehensively explore the capability of classical
GANs, grid search is performed to find the optimal hyper-
parameters for each classical GAN model. Specifically, we
start searching the learning rate from 10−4, and gradually
increase it to 5 × 10−3 by 10−4 each step. For the coeffi-
cients of optimizers, such as Nesterov momentum of SGD,
we start searching from 0.5, and increase them to 1 by 0.1
each step. To ensure classical GANs could achieve reason-
able results, we train each parameter combination 10 times,
and save five models with higher FD scores.

024051-17

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

[1] John Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio
Boixo, Fernando GSL Brandao, David A. Buell, et al.,
Quantum supremacy using a programmable superconduct-
ing processor, Nature 574, 505 (2019).

[3] He-Liang Huang, Dachao Wu, Daojin Fan, and Xiaobo
Zhu, Superconducting quantum computing: A review, Sci.
China Inf. Sci. 63, 180501 (2020).

[4] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng
Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing
Ding, Yi Hu, et al., Quantum computational advantage
using photons, Science 370, 1460 (2020).

[5] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick
Rebentrost, Nathan Wiebe, and Seth Lloyd, Quantum
machine learning, Nature 549, 195 (2017).

[6] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost,
Quantum principal component analysis, Nat. Phys. 10, 631
(2014).

[7] Seth Lloyd, Silvano Garnerone, and Paolo Zanardi, Quan-
tum algorithms for topological and geometric analysis of
data, Nat. Commun. 7, 1 (2016).

[8] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd,
Quantum Support Vector Machine for Big Data Classifi-
cation, Phys. Rev. Lett. 113, 130503 (2014).

[9] Vedran Dunjko and Hans J. Briegel, Machine learning &
artificial intelligence in the quantum domain: A review of
recent progress, Rep. Prog. Phys. 81, 074001 (2018).

[10] X.-D. Cai, Dian Wu, Z.-E. Su, M.-C. Chen, X.-L. Wang,
Li Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, Entanglement-
Based Machine Learning on a Quantum Computer, Phys.
Rev. Lett. 114, 110504 (2015).

[11] He-Liang Huang, Xi-Lin Wang, Peter P. Rohde, Yi-Han
Luo, You-Wei Zhao, Chang Liu, Li Li, Nai-Le Liu, Chao-
Yang Lu, and Jian-Wei Pan, Demonstration of topologi-
cal data analysis on a quantum processor, Optica 5, 193
(2018).

[12] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme,
Aram W. Harrow, Abhinav Kandala, Jerry M. Chow,
and Jay M. Gambetta, Supervised learning with quantum-
enhanced feature spaces, Nature 567, 209 (2019).

[13] Junhua Liu, Kwan Hui Lim, Kristin L. Wood, Wei Huang,
Chu Guo, and He-Liang Huang, Hybrid quantum-classical
convolutional neural networks, Sci. China Phys. Mech.
Astron. 64, 290311 (2021).

[14] Iris Cong, Soonwon Choi, and Mikhail D. Lukin, Quantum
convolutional neural networks, Nat. Phys. 15, 1273 (2019).

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio, in Advances in Neural Information
Processing Systems (NeurIPS, Montreal, Canada, 2014), p.
2672.

[16] Andrew Brock, Jeff Donahue, and Karen Simonyan, in
International Conference on Learning Representations
(ICLR, New Orleans, LA, USA, 2019).

[17] Seth Lloyd and Christian Weedbrook, Quantum Generative
Adversarial Learning, Phys. Rev. Lett. 121, 040502 (2018).

[18] X. Gao, Z.-Y. Zhang, and L.-M. Duan, A quantum machine
learning algorithm based on generative models, Sci. Adv.
4, eaat9004 (2018).

[19] Jonathan Romero and Alán Aspuru-Guzik, Variational
quantum generators: Generative adversarial quantum
machine learning for continuous distributions, Adv. Quan-
tum Technol. 4, 2000003 (2021).

[20] Pierre-Luc Dallaire-Demers and Nathan Killoran, Quantum
generative adversarial networks, Phys. Rev. A 98, 012324
(2018).

[21] Ling Hu, Shu-Hao Wu, Weizhou Cai, Yuwei Ma, Xiang-
hao Mu, Yuan Xu, Haiyan Wang, Yipu Song, Dong-Ling
Deng, Chang-Ling Zou, et al., Quantum generative adver-
sarial learning in a superconducting quantum circuit, Sci.
Adv. 5, eaav2761 (2019).

[22] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner,
Quantum generative adversarial networks for learning and
loading random distributions, npj Quantum Inf. 5, 1 (2019).

[23] Bobak Toussi Kiani, Giacomo De Palma, Milad Mar-
vian, Zi-Wen Liu, and Seth Lloyd, Quantum earth mover’s
distance: A new approach to learning quantum data,
ArXiv:2101.03037 (2021).

[24] Shouvanik Chakrabarti, Yiming Huang, Tongyang Li,
Soheil Feizi, and Xiaodi Wu, in Proceedings of the 33rd
International Conference on Neural Information Process-
ing Systems (NeurIPS, Montreal, Canada, 2019), p. 6781.

[25] Dheeru Dua and Casey Graff, UCI machine learning repos-
itory (2017), http://archive.ics.uci.edu/ml.

[26] Ethan Bernstein and Umesh Vazirani, Quantum complexity
theory, SIAM J. Comput. 26, 1411 (1997).

[27] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd,
Classical simulation of commuting quantum computations
implies collapse of the polynomial hierarchy, Proc. R. Soc.
London A 467, 459 (2010).

[28] Scott Aaronson and Alex Arkhipov, in Proceedings of
the Forty-Third Annual ACM Symposium on Theory of
Computing (ACM, New York, 2011), p. 333.

[29] Sergey Bravyi, David Gosset, and Robert Koenig, Quantum
advantage with shallow circuits, Science 362, 308 (2018).

[30] D. C. Dowson and B. V. Landau, The fréchet distance
between multivariate normal distributions, J. Multivar.
Anal. 12, 450 (1982).

[31] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter, in Advances in
Neural Information Processing Systems (NeurIPS, Mon-
treal, Canada, 2017), p. 6626.

[32] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J.
Smola, in Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining (ACM, New York, 2014), p. 661.

[33] Tim Salimans, Han Zhang, Alec Radford, and Dimitris
Metaxas, in International Conference on Learning Repre-
sentations (ICLR, Vancouver Convention Center, Vancou-
ver, BC, Canada, 2018).

[34] Maria Schuld and Nathan Killoran, Quantum Machine
Learning in Feature Hilbert Spaces, Phys. Rev. Lett. 122,
040504 (2019).

[35] Kunal Sharma, Sumeet Khatri, Marco Cerezo, and Patrick
J. Coles, Noise resilience of variational quantum compiling,
New J. Phys. 22, 043006 (2020).

[36] Jarrod R. McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik, The theory of variational hybrid
quantum-classical algorithms, New J. Phys. 18, 023023
(2016).

024051-18

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1007/s11432-020-2881-9
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/ncomms10138
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1103/PhysRevLett.114.110504
https://doi.org/10.1364/OPTICA.5.000193
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1007/s11433-021-1734-3
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.1126/sciadv.aat9004
https://doi.org/10.1002/qute.202000003
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1126/sciadv.aav2761
https://doi.org/10.1038/s41534-018-0113-z
https://arxiv.org/abs/2101.03037
http://archive.ics.uci.edu/ml
https://doi.org/10.1137/S0097539796300921
https://royalsocietypublishing.org/doi/10.1098/rspa.2010.0301
https://doi.org/10.1126/science.aar3106
https://doi.org/10.1016/0047-259X(82)90077-X
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1088/1367-2630/ab784c
https://doi.org/10.1088/1367-2630/18/2/023023

EXPERIMENTAL QUANTUM GAN... PHYS. REV. APPLIED 16, 024051 (2021)

[37] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy,
Ryan Babbush, and Hartmut Neven, Barren plateaus in
quantum neural network training landscapes, Nat. Com-
mun. 9, 1 (2018).

[38] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and
Patrick J. Coles, Cost function dependent barren plateaus in
shallow parametrized quantum circuits, Nat. Commun. 12,
1 (2021).

[39] Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and
Dacheng Tao, Quantum circuit architecture search: Error
mitigation and trainability enhancement for variational
quantum solvers, ArXiv:2010.10217 (2020).

[40] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff,
Andrew T. Sornborger, and Patrick J. Coles, Absence of
barren plateaus in quantum convolutional neural networks,
ArXiv:2011.02966 (2020).

[41] Kaining Zhang, Min-Hsiu Hsieh, Liu Liu, and Dacheng
Tao, Toward trainability of quantum neural networks,
ArXiv:2011.06258 (2020).

[42] Michael A. Nielsen and Isaac L. Chuang, Quantum Com-
putation and Quantum Information (Cambridge University
Press, Cambridge, 2010).

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville,
Deep Learning (MIT Press, Cambridge, 2016).

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, in Advances in Neural Information Processing Systems
(NeurIPS, Montreal, Canada, 2012), p. 1097.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (IEEE, Piscataway, 2016), p. 770.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin, in Advances in Neural Information
Processing Systems (NeurIPS, Montreal, Canada, 2017), p.
5998.

[47] Christopher M. Bishop, Pattern Recognition and Machine
Learning (Springer, Cambridge, 2006).

[48] Sebastian Ruder, An overview of gradient descent opti-
mization algorithms, ArXiv:1609.04747 (2016).

[49] Ning Qian, On the momentum term in gradient
descent learning algorithms, Neural. Netw. 12, 145
(1999).

[50] Diederik P. Kingma and Max Welling, Auto-encoding vari-
ational bayes, ArXiv:1312.6114 (2013).

[51] John Duchi, Elad Hazan, and Yoram Singer, Adaptive
subgradient methods for online learning and stochastic
optimization, J. Mach. Learn. Res. 12, 2121 (2011).

[52] Martin Arjovsky, Soumith Chintala, and Léon Bottou, in
International Conference on Machine Learning (PMLR,
Stockholm Sweden, 2017), p. 214.

[53] Mehdi Mirza and Simon Osindero, Conditional generative
adversarial nets, ArXiv:1411.1784 (2014).

[54] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N. Metaxas,
in Proceedings of the IEEE International Conference on
Computer Vision (IEEE, Venice, Italy, 2017), p. 5907.

[55] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian
Goodfellow, and Brendan Frey, Adversarial autoencoders,
ArXiv:1511.05644 (2015).

[56] Cheng Deng, Erkun Yang, Tongliang Liu, Jie Li, Wei
Liu, and Dacheng Tao, Unsupervised semantic-preserving

adversarial hashing for image search, IEEE Trans. Image
Process. 28, 4032 (2019).

[57] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau,
Zhen Wang, and Stephen Paul Smolley, in Proceedings
of the IEEE International Conference on Computer Vision
(IEEE, Venice, Italy, 2017), p. 2794.

[58] Chaoyue Wang, Chang Xu, Chaohui Wang, and Dacheng
Tao, Perceptual adversarial networks for image-to-image
transformation, IEEE Trans. Image Process. 27, 4066
(2018).

[59] Tara N. Sainath, Oriol Vinyals, Andrew Senior, and Haşim
Sak, in 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP) (IEEE, South
Brisbane, 2015), p. 4580.

[60] Stephen Boyd and Lieven Vandenberghe, Convex Opti-
mization (Cambridge University Press, Cambridge, 2004).

[61] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena, in International Conference on Machine Learn-
ing (PMLR, California, 2019), p. 7354.

[62] Sergey Ioffe and Christian Szegedy, in International Con-
ference on Machine Learning (PMLR, Lille, France, 2015),
p. 448.

[63] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida, Spectral normalization for generative
adversarial networks, ArXiv:1802.05957 (2018).

[64] G. N. Pande and J. Middleton, NUMETA 90 Numerical
Methods in Engineering: Theory and Applications: Numer-
ical Techniques for Engineering Analysis and Design (CRC
Press, Wales, UK, 2014).

[65] Q1 splits off the lowest 25% of data from the highest 75%.
Q3 splits off the highest 25% of data from the lowest 75%.

[66] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mat-
tia Fiorentini, Parameterized quantum circuits as machine
learning models, Quantum Sci. Technol. 4, 043001
(2019).

[67] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo,
Vicente Leyton-Ortega, Yunseong Nam, and Alejandro
Perdomo-Ortiz, A generative modeling approach for bench-
marking and training shallow quantum circuits, npj Quan-
tum Inf. 5, 45 (2019).

[68] Francesco Tacchino, Chiara Macchiavello, Dario Gerace,
and Daniele Bajoni, An artificial neuron implemented on
an actual quantum processor, npj Quantum Inf. 5, 26
(2019).

[69] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng
Tao, Implementable quantum classifier for nonlinear data,
ArXiv:1809.06056 (2018).

[70] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng
Tao, Expressive power of parametrized quantum circuits,
Phys. Rev. Res. 2, 033125 (2020).

[71] Edward Farhi and Hartmut Neven, Classification with
quantum neural networks on near term processors, Quan-
tum Rev. Lett. 1, 10 (2020).

[72] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew
Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green,
and Simone Severini, Hierarchical quantum classifiers, npj
Quantum Inf. 4, 1 (2018).

[73] Kwok Ho Wan, Oscar Dahlsten, Hlér Kristjánsson, Robert
Gardner, and M. S. Kim, Quantum generalisation of
feedforward neural networks, npj Quantum Inf. 3, 36
(2017).

024051-19

https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1038/s41467-021-21728-w
https://arxiv.org/abs/2010.10217
https://arxiv.org/abs/2011.02966
https://arxiv.org/abs/2011.06258
https://arxiv.org/abs/1609.04747
https://doi.org/10.1016/S0893-6080(98)00116-6
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1511.05644
https://doi.org/10.1109/TIP.2019.2903661
https://doi.org/10.1109/TIP.2018.2836316
https://arxiv.org/abs/1802.05957
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1038/s41534-019-0157-8
https://doi.org/10.1038/s41534-019-0140-4
https://arxiv.org/abs/1809.06056
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1038/s41534-017-0051-1
https://doi.org/10.1038/s41534-017-0032-4

HE-LIANG HUANG et al. PHYS. REV. APPLIED 16, 024051 (2021)

[74] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and
Keisuke Fujii, Quantum circuit learning, Phys. Rev. A 98,
032309 (2018).

[75] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer, in
Advances in Neural Information Processing Systems,
Autodiff Workshop (NeurIPS, Montreal, Canada, 2017).

[76] Maria Schuld and Francesco Petruccione, Supervised
Learning with Quantum Computers (Springer, New York,
2018), Vol. 17.

[77] Emanuel Knill, Approximation by quantum circuits,
ArXiv:quant-ph/9508006 (1995).

[78] Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and
Martti M. Salomaa, Quantum Circuits for General Multi-
qubit Gates, Phys. Rev. Lett. 93, 130502 (2004).

[79] Juha J. Vartiainen, Mikko Möttönen, and Martti M. Salo-
maa, Efficient Decomposition of Quantum Gates, Phys.
Rev. Lett. 92, 177902 (2004).

[80] Martin Plesch and Časlav Brukner, Quantum-state prepara-
tion with universal gate decompositions, Phys. Rev. A 83,
032302 (2011).

[81] Jin-Guo Liu and Lei Wang, Differentiable learning of quan-
tum circuit born machines, Phys. Rev. A 98, 062324 (2018).

[82] William Huggins, Piyush Patil, Bradley Mitchell, K. Bir-
gitta Whaley, and E. Miles Stoudenmire, Towards quan-
tum machine learning with tensor networks, Quantum Sci.
Technol. 4, 024001 (2019).

[83] Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria
Schuld, Paul K. Fährmann, Barthélémy Meynard-Piganeau,
and Jens Eisert, Stochastic gradient descent for hybrid
quantum-classical optimization, Quantum 4, 314 (2020).

024051-20

https://doi.org/10.1103/PhysRevA.98.032309
https://arxiv.org/abs/quant-ph/9508006
https://doi.org/10.1103/PhysRevLett.93.130502
https://doi.org/10.1103/PhysRevLett.92.177902
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.1103/PhysRevA.98.062324
https://doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.22331/q-2020-08-31-314

	ACKNOWLEDGMENTS
	A. APPENDIX A: PRELIMINARIES
	1. Notations
	2. Fully connected neural network
	3. Generative adversarial network
	4. Box plot
	5. Parameterized quantum circuit

	B. APPENDIX B: AN OVERVIEW OF OUR QUANTUM GAN
	C. APPENDIX C: THE IMPLEMENTATION OF QUANTUM PATCH GAN
	1. Quantum generator
	2. Discriminator
	3. Loss function and optimization rule

	D. APPENDIX D: THE CONVERGENCE GUARANTEE OF QUANTUM PATCH GAN
	E. APPENDIX E: THE IMPLEMENTATION OF QUANTUM BATCH GAN
	F. APPENDIX F: EXPERIMENT DETAILS
	1. Superconducting quantum processor
	2. Handwritten digit image generation
	a. Some discussion about the setting about the number of measurements

	3. Gray-scale bar image generation
	a. The gray-scale bar image dataset
	b. Experimental details

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

