
PHYSICAL REVIEW APPLIED 16, 014024 (2021)
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We discuss the realization of a universal set of ultrafast single- and two-qubit operations with super-
conducting quantum circuits and investigate the most relevant physical and technical limitations that arise
when pushing for faster and faster gates. With the help of numerical optimization techniques, we establish
a fundamental bound on the minimal gate time, which is determined independently of the qubit design
solely by its nonlinearity. In addition, important practical restrictions arise from the finite qubit transi-
tion frequency and the limited bandwidth of the control pulses. We show that, for highly anharmonic flux
qubits and commercially available control electronics, elementary single- and two-qubit operations can be
implemented in about 100 ps with residual gate errors below 10−4. Under the same conditions, we simulate
the complete execution of a compressed version of Shor’s algorithm for factoring the number 15 in about
1 ns. These results demonstrate that, compared to state-of-the-art implementations with transmon qubits,
a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
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I. INTRODUCTION

Current efforts to build large-scale quantum computers
are motivated by the prospect of enabling quantum algo-
rithms with an exponential or at least a quadratic speedup
for solving certain types of hard computational problems
[1]. This speedup implies that, independently of the time
it takes to execute a single gate, a quantum computer will
outperform its classical counterpart when the size of the
problem is sufficiently large. Also, in first physical realiza-
tions of small quantum processors it has turned out that it
is usually beneficial to encode qubits in weakly interacting
degrees of freedom, for example, using spin states instead
of electronic orbitals. These qubits are typically slower in
their control, but also exhibit much longer decoherence
times such that overall more coherent gate operations can
be performed. Thus, for both conceptual and experimental
reasons, the search for fast quantum gates has so far only
played a secondary role in the development of quantum
technologies. However, for any real-world application, not
only the scaling, but also the total computation time will be
of importance. In addition, in every physical device there
will be decoherence processes that are very hard or even
impossible to avoid. In this case the realization of faster
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gate operations becomes a necessity to further improve the
fidelity of the computation.

In the development of superconducting quantum com-
puters [2], many important breakthroughs were facilitated
by the development of the transmon [3] and related qubit
designs, where quantum information is encoded in the two
lowest levels of a weakly anharmonic oscillator. Typi-
cal operation timescales for such transmon qubits are of
the order of a few tens to a few hundreds of nanosec-
onds, but with the help of optimized control pulses [4–
30], the implementation of single- (two-) qubit gates in
about 4 ns [31,32] (12 ns [33,34]) has been demon-
strated. To realize much faster operations, it is necessary
to use qubits with higher nonlinearities, such as flux qubits
[35]. In this case, single-qubit rotations with a duration
of only 1.6 ns and residual errors in the range of 10−3

have recently been achieved [36]. Even stronger non-
linearities can be reached with charge qubits, for which
single- and two-qubit gates with durations of O(100 ps)
have been implemented already at the very early stage of
this field [37]. However, because of their rather shorter
coherence times and other difficulties in their control,
charge qubits are currently not considered as a suitable
candidate for high-fidelity quantum computation. On the
theoretical side, single- and two-qubit gates with dura-
tions of 0.1 ns and below have been predicted [4–6,
14,38], but either for charge qubits or based on crucial
approximations, such as two- or three-level truncations
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or instantaneously switchable control fields. Therefore,
despite its long-term relevance, the implementation of
quantum gates in the picosecond regime is still little
explored and the intriguing question about the ultimate
limit for the speed of superconducting quantum processors
remains open.

In this paper we present a systematic numerical study on
the implementation of ultrafast single- and two-qubit gates
in superconducting circuits. For this analysis, we consider
a generic circuit design with a varying degree of nonlinear-
ity, which interpolates between the most common types of
qubits in use today. By applying optimal control techniques
we determine the maximal fidelities for a set of elemen-
tary single- and two-qubit gates that can be achieved for
a given gate time tg . In these numerical simulations we
take the full multilevel structure of the underlying circuit
into account and include as well the effects of a finite
bandwidth of the control pulses. In this way we obtain
a realistic relation between the minimal achievable gate
time, tmin

g , and the most relevant circuit and control param-
eters. In the limit of control pulses with infinite bandwidth
we identify a fundamental bound tmin

g � C/|α|, where α
is the circuit nonlinearity and C = 2π (C = π ) for single-
(two-) qubit gates. This simple scaling holds over several
orders of magnitude and can be used to optimize the qubit
design in cases where it is not reached. For circuits with a
limited controllability, important practical restrictions arise
both from the finite bandwidth of the control pulses as well
as from a finite qubit oscillation period. These limitations
become highly relevant for gate times around tg ∼ 100 ps
and below, but can in principle be overcome by using more
advanced control electronics and implementing multiaxis
control schemes.

In a second step we go beyond individual quantum gates
and discuss the implementation of composite quantum cir-
cuits consisting of multiple ultrafast gates applied in a
consecutive manner. Here we encounter additional clock-
ing requirements, which are not yet of relevance at current
operation speeds. As an illustrative example, we consider
a minimal, but still useful circuit, which implements a
compressed version of Shor’s algorithm for factoring the
number 15 [39]. A full numerical simulation of the whole
gate sequences shows that this quantum algorithm can be
executed in about 1 ns with an overall fidelity of F ≈
0.999, assuming realistic qubit parameters and state-of-
the-art waveform generators. These results demonstrate the
principle feasibility of superconducting quantum circuits
operated in the picosecond domain and provide a valuable
benchmark for further refined theoretical and experimental
studies in this direction.

II. A SUPERCONDUCTING QUANTUM
PROCESSOR

For the following analysis, we consider a linear quan-
tum processor, which consists of an array of N identical

superconducting qubits with individual local control and
switchable nearest-neighbor interactions. The Hamiltonian
for the whole processor can be written as

H(t) =
N∑

i=1

H (i)
q (t)+

N−1∑

i=1

H (i,i+1)
qq (t), (1)

where Hq(t) and Hqq(t) represent the individual qubit
Hamiltonian and the qubit-qubit interaction, respectively.

A. Superconducting qubits

We assume that each qubit is implemented by the cir-
cuit shown in Fig. 1(a), which consists of a capacitance C,
an inductance L, and a Josephson junction with Josephson
energy EJ connected in parallel. The superconducting loop
formed by L and EJ is threaded by a static magnetic flux
�e. In addition, the qubit circuit can be driven by a time-
dependent external current I(t). We write the full qubit
Hamiltonian as Hq(t) = H0 + Hdrive(t), where

H0 = 4ECq2 + EL

2
ϕ2 − EJ cos

(
ϕ + �e

�0

)
. (2)

Here EC = e2/(2C), EL = �2
0/L, and �0 = �/(2e) is the

reduced flux quantum. The dimensionless charge and flux
operators q and ϕ obey the commutation relations [ϕ, q] =
i. The external driving term is given by

Hdrive(t) = MI(t)�0

L
ϕ, (3)

where M is the mutual inductance.
Depending on the values of EC, EL, EJ , and �e, this

basic circuit can be operated in different regimes and be
used to realize qubits with different degrees of nonlinear-
ity, as sketched in Fig. 1(b). Taking the external flux to be
�e = 0, the potential landscape for the phase coordinate ϕ
has a single minimum and, for EL + EJ > EC, we obtain a
transmon-type qubit with a weakly negative anharmonic-
ity. Instead, a value of �e = π�0 and EL < EJ results in a
double-well potential with a positive anharmonicity, which
is representative for various types of flux qubits. In both
cases the nonlinearity can be tuned by adjusting the charg-
ing energy EC. In the following we use this flexibility to
investigate superconducting qubits with varying (relative)
nonlinearity parameter

αr = E2 − E1

E1 − E0
− 1, (4)

where En = �ωn is the energy of the nth eigenstate |ψn〉
of H0. To do so, we assume a fixed ratio of EJ /EC and
vary EL/EC, setting either �e = 0 or �e = π�0. At the
same time we adjust the absolute value of EC to keep the

014024-2



QUANTUM COMPUTING WITH SUPERCONDUCTING CIRCUITS... PHYS. REV. APPLIED 16, 014024 (2021)

(a) Qubit circuit (b)

0

5

10

15

0.1

1

10

–5 5

FIG. 1. (a) Circuit for a generic superconducting qubit formed
by a capacitor C, an inductor L, and a Josephson junction with
Josephson energy EJ . The qubit can be controlled by an exter-
nal current I(t), which couples to the dimensionless flux variable
ϕ through a mutual inductance M . (b) Plot of the nonlinear-
ity parameter αr (solid line) for different ratios of EJ (�e)/EL =
EJ cos(�e/�0)/EL and EJ /EC = 4. The dashed line shows the
corresponding value of EC, which is used to obtain a qubit fre-
quency of ω10/(2π) = 5 GHz. The dashed vertical line indicates
the harmonic oscillator (HO) limit αr → 0. The two upper pan-
els show sketches of the potential for the phase variable ϕ and
the lowest three eigenstates for the cases �e = π�0 (left) and
�e = 0 (right).

transition frequency between the lowest two eigenstates,
ω10 = (E1 − E0)/�, fixed. In Fig. 1(b) we plot the result-
ing nonlinearity parameter for a ratio of EJ /EC = 4 and a
characteristic transition frequency of ω10/(2π) = 5 GHz.

For a given set of circuit parameters, the bare Hamilto-
nian H0 can be diagonalized and written as

H0 =
∑

n

�ωn|ψn〉〈ψn|. (5)

To identify the actual qubit states |0〉 and |1〉 for encoding
quantum information, we change to an interaction picture
with respect to H0 and set

|0〉 = e−iω0t|ψ0〉, |1〉 = e−iω1t|ψ1〉. (6)

According to this definition, a superposition of these qubit
states does not evolve in time when Hdrive = 0. In the
interaction picture the effect of the driving term is given
by

H̃drive(t) = ��(t)
∑

n,m

〈ψn|ϕ|ψm〉ei(ωn−ωm)t|ψn〉〈ψm|, (7)

where �(t) = MI(t)�0/(�L) is the characteristic driving
strength. In the limit of a weak resonant driving sig-
nal, �(t) = � cos(ω10t + φd) and � � ω10, the control
Hamiltonian reduces to

H̃drive(t) � ��ϕ10

2
(eiφd |0〉〈1| + e−iφd |1〉〈0|), (8)

where ϕ10 = 〈1|ϕ|0〉. In this limit, H̃drive(t) allows us to
implement qubit rotations along any axis in the x-y plane

by adjusting the phase φd. However, it is important to keep
in mind that on timescales comparable to ω−1

10 , H̃drive(t)
represents a “one-axis control,” since it only couples to the
phase variable ϕ and not to the conjugate charge.

B. Qubit-qubit interactions

For the implementation of two-qubit gates, we consider
a circuit as shown in Fig. 2(a), where two neighboring
qubits are coupled via a superconducting quantum inter-
ference device (SQUID) loop. The SQUID loop is formed
by two identical Josephson junctions with Josephson ener-
gies EJs/2 and the loop is threaded by an external flux
�s. Another closed loop is formed by the lower junc-
tion of the SQUID, the inductor of the qubit on the left,
and the Josephson junction of the qubit on the right. The
flux through this loop is denoted by �s′ . At a flux sweet
spot of the qubits, �e = nπ�0, where n is an integer, the
Hamiltonian for this coupling element is

Hqq = EJs

2

[
cos

(

ϕ + �s′

�0

)
+ cos

(

ϕ + �s′ +�s

�0

)]
,

(9)

where 
ϕ = ϕ1 − ϕ2. By assuming time-dependent exter-
nal fluxes with a fixed relation �s′(t) = −�s(t)/2, the
coupling simplifies to

Hqq(t) = EJs(t) cos(
ϕ) (10)

with a tunable Josephson energy EJs(t) = EJs cos[�s(t)/
2�0]. By varying the value of �s/�0, the coupling can be
tuned from 0 up to a maximal value of EJs . When restricted
to the qubit subspace, we can write

cos(ϕ) = g̃11 − g̃zσ
z, sin(ϕ) = g̃xσ

x, (11)

where the σ k are the Pauli operators. Note that through-
out this paper we adopt the convention that σ z = |0〉〈0| −
|1〉〈1|, as usually assumed in the quantum computing lit-
erature. The dimensionless parameters g̃1,z,x depend on the
specific qubit circuit, but in general all three of them are
nonzero. Therefore, within this subspace, the interaction
Hamiltonian takes the form

Hqq(t) � −�δω(t)
2

(σ z
1 + σ z

2 )+ �gz(t)σ z
1σ

z
2 + �gx(t)σ x

1σ
x
2 ,

(12)

where δω(t) = 2g̃1g̃zEJs(t)/�, gz(t) = g̃2
z EJs(t)/�, and

gx(t) = g̃2
x EJs(t)/�. In the transmon regime and for weak

couplings, Hqq(t) approximately reduces to a flip-flop
interaction ∼ gx(t)(|01〉〈10| + |10〉〈01|), which can be
used to realize a universal

√
iSWAP gate [2]. However, as

shown in Fig. 2(b), already for small nonlinearities, the
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FIG. 2. Qubit-qubit interactions. (a) The qubits of Fig. 1(a),
represented by the circles, are coupled via a SQUID loop. The
SQUID loop is formed by two Josephson junctions with the same
Josephson energy EJs/2 and it is threaded by an external flux
�s. The external flux through the big loop formed by the lower
arm of the SQUID and the qubits is denoted by �s′ . (b) Plot of
the dimensionless coupling parameters defined in Eq. (11) as a
function of the nonlinearity parameter αr. For this plot, the same
circuit parameters as in Fig. 1(b) have been assumed. Note that
in (b) the scale of the x axis is linear in the range [−0.1, 0.1] and
logarithmic elsewhere.

ZZ interaction and the single-qubit shifts are also non-
negligible and must be taken into account in the resulting
two-qubit operation.

For the actual numerical simulations of the gate, we
again change to the interaction picture, where the full
coupling Hamiltonian reads

H̃qq(t) = EJs(t)
∑

n1,m1n2,m2

〈ψn1 ,ψn2 | cos(
ϕ)|ψm1 ,ψm2〉

× ei(ωn1+ωn2−ωm1−ωm2 )t

× |ψn1 ,ψn2〉〈ψm1 ,ψm2 |. (13)

Since we assume that all qubits are identical and interact at
most with one of their neighbors at a time, it is enough to
analyze the evolutions generated by H̃drive(t) and H̃qq(t) in
order to model arbitrary quantum gates along the chain.

Let us emphasize that, although in our analysis we
take the full multilevel dynamics of the single- and two-
qubit circuits shown in Figs. 1(a) and 2(b) into account,
these circuits and their control are still based on vari-
ous idealizations. For example, we neglect the effect of
any parasitic capacitive or inductive elements as well as
any crosstalk between the control signals. In our simu-
lations we also neglect the effects of decoherence and
decay, which assumes that large coherence times of T∗

2 �
1 μs [35,40] can be achieved independently of the circuit
parameters and the degree of nonlinearity. Nevertheless,
these imperfections do not directly affect the problem
at hand, namely to identify the maximal speed of gate
operations, and will thus not be considered in our analysis.

III. SINGLE-QUBIT GATES

We first discuss the implementation of single-qubit
gates, which are generated through the local control Hamil-
tonian H̃drive(t) in Eq. (7). The goal is to realize rotations
of the form

Rk=X ,Y,Z(θ) = e−iθσ k/2, (14)

within the qubit subspace spanned by the states |0〉 and |1〉.
Because of limited control and transitions to other levels,
these operations can only be implemented approximately
in real circuits and we define by [6,18]

F = 1
d2 |Tr{U†

targetU(tg)}|2 (15)

the fidelity of the gate. Here Utarget is the targeted unitary
operation within the d = 2 dimensional subspace and

U(tg) = T e−i
∫ tg

0 dtH̃drive(t), (16)

where T denotes the time-ordered exponential, is the
actual evolution operator for the whole qubit circuit during
the time interval [0, tg].

To maximize the fidelity F for a given total gate time tg ,
we use coherent control techniques to find a numerically
optimized shape for the control pulse �(t) = �c(t). As an
ansatz for �c(t), we use a pulse of the form

�c(t) = �0 cos(ωdt + φd)

nmax∑

n=1

an sin
(

nπ t
tg

)
, (17)

where the overall strength of the driving field, �0, the fre-
quency of the carrier, ωd, the phase of the carrier, φd, and
the components of the pulse envelope, an ∈ [−1, 1], are
adjustable parameters. We then use established numerical
optimization algorithms to find the set of parameters that
minimizes the gate error

E = 1 − F , (18)

using a fixed number of nmax = 20 frequency components.
While the resulting gate errors for individual data points
might vary slightly, we find that none of the general trends
and conclusions presented in this work depend signifi-
cantly on the chosen ansatz for the pulse or the precise
number of parameters, as long as nmax is sufficiently large.
All details about the numerical procedure for determining
�c(t) are given in Appendix A.
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FIG. 3. Optimization of the Hadamard-like gate, RY(π/2). (a)
Plot of the numerically minimized gate error E = 1 − F as a
function of the gate time tg and the qubit nonlinearity parame-
ter αr. (b) Examples of the optimized pulse shapes for �̄c(t) =
ϕ10�c(t) for the points marked in (a). Note that in (a) the scale
of the y axis is linear in the range [−0.1, 0.1] and logarithmic
elsewhere.

A. The Hadamard gate

Figure 3 summarizes the outcomes of this optimization
for the example of a π/2 rotation about the Y axis,

RY

(
π

2

)
= 1√

2

(
1 −1
1 1

)
, (19)

which, up to a flip of the basis states, is just the usual
Hadamard gate. The main plot in Fig. 3 shows the min-
imal gate error E as a function of the gate time tg and
the nonlinearity parameter of the qubit, αr. We see that,
for gate times down to about tg ≈ 1 ns, it is still possible
to implement high-fidelity qubit rotations with errors E �
10−4 using qubits with moderate nonlinearities, |αr| �
0.25. This degree of nonlinearity is still accessible with
a transmon design, i.e., for qubits with a single poten-
tial minimum. The corresponding numerically optimized
pulses shown in the center and right panel of Fig. 3(b)
simply consist of a near-resonant carrier tone with a
slowly modulated amplitude. These findings are fully con-
sistent with other optimal control studies [8,10,21,25,32]
and experiments [9,31,32,41,42] with weakly nonlinear
qubits.

For gate times below 1 ns, the total duration of the π/2
pulse is already comparable to the bare rotation time of
the qubit, Tq = 2π/ω10, where Tq = 0.2 ns for the cho-
sen qubit parameters. Nevertheless, for sufficiently high
nonlinearities, it is still possible to implement rotations
between the two lowest states of the circuit, with simi-
lar fidelities as above and in a time tg < Tq. Although,

10–1

10–2

10–3

10–4

10.1
10–5

(a) (b)

1

0.1

10

1 10–1 0

FIG. 4. (a) Dependence of the gate error E for an RY(π/2)
rotation on the gate time tg and for three different values of
the relative qubit nonlinearity. The red circles mark the times
where the infidelity crosses the threshold of Eth = 10−4. (b) Min-
imal gate time tmin

g as a function of the absolute nonlinearity,
α = ω10αr. The dashed and dotted lines show the results obtained
for the error thresholds Eth = 10−3 and Eth = 10−4, respectively,
whereas the solid line indicates the value of tmin

g = 2π/|α|. Note
that in (b) the scale of the x axis is linear in the range [−0.1, 0.1]
and logarithmic elsewhere.

under these conditions, the optimal control pulses are
no longer very intuitive, they remain rather smooth and
do not exhibit rapid oscillations or any other peculiar
features.

In Fig. 4(a) we show a cut through this infidelity map
for different nonlinearity parameters. In the regime 10−5 <

E ≤ 10−3 (note that our numerical search stops at a value
of E = 10−5) the gate errors depend very sensitively on
tg , which allows us to identify for each αr a minimal
gate time tmin

g (αr), below which high-fidelity rotations are
no longer possible. For concreteness, we choose here a
threshold value for the tolerable gate error of Eth = 10−4,
which means that E(tmin

g ) = Eth. In Fig. 4(b) we plot this
minimal gate time as a function of the absolute nonlinear-
ity, α = αrω10. These numerical results fit very well the
analytic scaling

tmin
g (α) ≈ C

2π
|α| (20)

with a numerical constant C ≈ 1.36 (for an error thresh-
old of Eth = 10−3, the same fit yields C ≈ 1.06). While
for simple three-level models, where α is the only relevant
energy scale, the scaling given in Eq. (20) is intuitively
expected, we find that it holds surprisingly well for a large
parameter range over which the level structure of the qubit
circuit and all the coupling matrix elements vary consider-
ably. For negative nonlinearities, this scaling breaks down
for |α|/(2π) � 1 GHz due to accidental two-photon reso-
nances with higher-energy levels. For α > 0, we observe
a deviation only for very large nonlinearities, which cor-
respond to gate times of about tg ≈ 50 ps. Below we
provide an intuitive explanation for this behavior, which
is a consequence of the finite qubit oscillation period, Tq.
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FIG. 5. Minimal gate time tmin
g for different single-qubit rota-

tions. (a) Plot of the minimal gate time for realizing an RY(θ)

gate, normalized to tmin
g (θ = π). (b) Plot of the minimal gate time

to perform a θ = π/2 rotation about an axis n(φ) = cos(φ)X +
sin(φ)Y, normalized to the minimal time of an X rotation. The
absolute gate times for the reference RX (π/2) rotations are tg =
2.36 ns (αr = 0.1), tg = 0.12 ns (αr = 3), tg = 0.12 ns (αr = 5),
and tg = 0.11 ns (αr = 10). (c) Comparison of the minimal gate
time for an Rn(φ)(π/2) rotation with the timescales Tq = 2π/ω10,
tα = 2π/|α|, and tφ = φ/ω10, indicated by the dashed lines. For
this plot, a large nonlinearity of αr � 7.3 has been assumed.
(d) Interpretation of the control pulses obtained in the different
regimes indicated in (c). See Sec. III B for more details. In all
plots an error threshold of Eth = 10−4 is used for the definition of
tmin
g .

B. Arbitrary Rn(φ)(θ) rotations

Let us now investigate more general single-qubit
gates, considering first RY(θ) rotations with an arbitrary
rotation angle θ . In the limit of very large nonlinearities,
all these rotations can in principle be implemented within
the same time, by simply scaling the overall amplitude�0.
Instead, when transitions to higher states become relevant,
we expect that �0 should be kept approximately constant
in order to reach the same fidelities as for the case of a
π/2 rotation. This would correspond to a linear scaling
tg(θ) ≈ θ/π × tg(π). In Fig. 5(a) we plot the numerically
minimized time tmin

g (θ) that is required to implement RY(θ)

rotations with an error below Eth = 10−4. We see that the
actual dependence is between the two scenarios, but over
the range θ ∈ [π/4,π ], the minimal gate time does not
vary considerably. This means that the Hadamard gate
RY(π/2) discussed in detail above is already representative
for most RY rotations.

In next step we consider single-qubit gates of the form

Rn(φ)(θ) = e−iθ [cos(φ)σ x+sin(φ)σ y ]/2, (21)

i.e., single-qubit rotations where the rotation axis, n(φ) =
cos(φ)X + sin(φ)Y, lies in the equatorial plane of the
Bloch sphere. As discussed below Eq. (8), for weak driv-
ing fields, all these gates can be implemented with the same
pulse by simply setting the phase of the carrier to φd = −φ.
In Fig. 5(b) we plot the numerically minimized gate time
tmin
g (φ) as a function of φ and find that it is indeed almost

independent of φ for small nonlinearities αr. However, this
is no longer true for large αr, where rather abrupt jumps in
the minimal gate time can also be observed.

To explain these variations for ultrafast gates, we show
in Fig. 5(c) a direct comparison between tmin

g (φ) and other
relevant timescales in this problem. We can identify three
qualitatively different regions. For the larger values of φ in
region (iii), we find an almost linear relation, tmin

g (φ) ∼ φ,
which can be understood as follows. Given a control pulse
�
φ
c (t) for implementing an Rn(φ)(θ) rotation, the shifted

pulse

�φ+φ′
c (t) = �φc (t − tφ′), (22)

where tφ′ = (φ′/2π)Tq, realizes an equivalent rotation
about the axis n(φ + φ′). This is a simple consequence
of the fact that our qubit states are defined in a rotating
frame and any shift of the pulse with respect to t = 0
translates into a corresponding rotation in the X -Y plane.
Although the actual optimized control pulses in region (iii)
of Fig. 5(c) are more complicated, they cannot outperform
this simple waiting strategy, which is also illustrated in
the upper panel of Fig. 5(d). For very large αr, an accu-
rate fit to the minimal gate times in region (iii) is given by
tmin
g (φ) � tφ + π/|α|.

For the RY(π/2) rotation, we have found above that the
gate times are limited from below by tg > tα = 2π/|α|.
This bound is set by transitions out of the qubit subspace
and is thus expected to hold for any Rn(φ) gate. Although
this bound is not fully reached for large αr, it still explains
the plateau for the minimal gate time observed in region
(ii) of Fig. 5(c). Finally, for very small angles φ, i.e., for
a rotation axis close to the X axis, we find a sharp jump
of the minimal gate time to values tmin

g (φ ≈ 0) � Tq/2.
The inability to implement faster RX rotations arises from
the fact that during the minimal gate time tα the average
angle of the rotation axis is φα = π tα/Tq [see Fig. 5(d)].
Therefore, for the same pulse duration, rotations about an
axis with φ < φα become impossible. As indicated in the
lower panel of Fig. 5(d), it is then the optimal strategy to
find a suitable control pulse for an Rn(φ+π) rotation and
use the inverted pulse �φc (t) = −�φ+π

c (t) to implement
the indented Rn(φ) gate. According to the waiting strat-
egy discussed above, the total time for this pulse should
be about tg ≈ tφ+π , consistent with the numerically opti-
mized gate times. Note that flipping the sign of the control
pulse can also be used to realize any other Rn(φ) gate with
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φ ∈ (π , 2π ] by simply inverting the corresponding control
pulse �φ−π

c (t).

C. Limit on the speed of single-qubit operations

In summary, we find that, for the whole parameter range
explored in our simulations, there exists a lower bound for
implementing single-qubit rotations,

tmin
g � 2π

|α|C(θ , Eth), (23)

where, for Eth = 10−4–10−3 and most rotation angles, we
can set C(θ , Eth) ≈ 1. For small and moderate nonlinear-
ities, this bound is almost reached for all Rn(φ) rotations,
while for very fast gates, there appears another limitation
from the qubit frequency,

tmin
g (φ) � 1

ω10
×

⎧
⎪⎨

⎪⎩

(φ + π), φ ∈ [0,φα),
φ, φ ∈ [φα ,π + φα),
(φ − π), φ ∈ [π + φα , 2π).

(24)

Note that this second bound is less fundamental and could
be avoided by implementing a two-axis control Hamilto-
nian. For example, by adding another driving field that
affects the charge variable, H ′

drive(t) ∼ q, one can choose
the effective rotation axis at t = 0 and therefore implement
all Rn(φ) gates within the same time. However, adding one
additional control line per qubit increases the circuit com-
plexity and might not always be feasible. Therefore, here
we restrict our analysis to a minimal circuit design.

We remark that the bound in Eq. (23) has been discussed
previously for a weakly nonlinear three-level system under
the validity of the rotating-wave approximation [7,8]. It
has successively been shown that, under the same assump-
tions, this bound can be surpassed using a two-axis control
Hamiltonian, in which case essentially arbitrarily short
gate times are possible [6]. While our optimization results
confirm this conclusion for the three-level system, we do
not find any considerable improvements of the minimal
gate time when the full circuit Hamiltonian is taken into
account. In our exact simulations the speed limit in Eq.
(23) is established as a lower bound for tmin

g , both for
single- and two-axis control.

D. Z rotations

Finally, let us briefly comment on the implementation of
Z rotations. In the single-qubit control Hamiltonian given
in Eq. (7) there is no term ∼ σ z and we consider instead a
quasiadiabatic strategy for implementing a relative phase
shift between the qubit states. To do so, the control field
�(t) is slowly turned on and off again, such that the qubit
follows adiabatically the rotated eigenstates of Hq(t). In the
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5

FIG. 6. (a) Plot of the minimal gate error E for an RZ(π/2)
rotation as a function of the qubit nonlinearity and the gate time.
(b) Examples of optimized pulse shapes for �̄c(t) = ϕ10�c(t) for
the points marked in (a).

limit of a two-level system, these instantaneous eigenstates
are split by a time-dependent frequency

ωad
10(t) =

√
ω2

10 + 4ϕ2
10�

2(t). (25)

Therefore, this tunability can be used to implement an
RZ(θ) = e−iθσ z/2 gate with a rotation angle

θ = −
∫ tg

0
dt′[ωad

10(t
′)− ω10], (26)

assuming that the system evolution remains fully adiabatic.
In Fig. 6 we plot the results of a numerically optimized

RZ(π/2) rotation, where we use the ansatz for �c(t) given
in Eq. (17), but without the carrier. This plot shows that,
compared to Rn(φ) rotations, rather fast RZ gates can be
implemented even with very small qubit nonlinearities.
We attribute this different behavior to the fact that nona-
diabatic state flips are suppressed by ω10 and not by α.
This also explains the rather sharp bound for high-fidelity
gates around tg ≈ π/ω10, which depends only weakly on
the value of αr.

From this and other examples we conclude that, down to
gate times of tmin

g � Tq, fast and high-fidelity RZ rotations
can be implemented without additional control terms in the
circuit Hamiltonian. Note, however, that the detailed find-
ings for optimized RZ gates are much more sensitive to the
precise value of the rotation angle and pulse optimization
parameters, and compared to other single-qubit gates, no
clearly interpretable trends for tmin

g are observed. For most
applications, this is not a relevant issue since in compos-
ite quantum circuits the RZ gates can either be eliminated
completely or be replaced by an equivalent sequence of
Rn(φ) gates. As we discuss in more detail in Appendix B,
this can be achieved with only a minor overhead on the
total computation time such that the independent realiza-
tion of Z rotations can be advantageous, but is not strictly
necessary.
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FIG. 7. A possible decomposition of a CNOT gate into the native two-qubit gate V and single-qubit rotations. The local phase γ is
canceled by RZ(γ ) gates. The RX (π) gate on the target qubit before and after the first V eliminates the conditional phase β.

IV. TWO-QUBIT GATES

In addition to single-qubit rotations, universal quan-
tum computation requires at least one entangling two-qubit
gate. To identify a suitable choice for this operation in the
current setting, we first consider the projection of Hqq(t)
in the qubit subspace, as given in Eq. (13), and keep only
energy conserving terms. Under these assumptions and for
a gate time of tg = π/(4gx), we obtain the time evolution
operator

V =

⎛

⎜⎜⎝

e−i(β−γ ) 0 0 0
0 eiβ/

√
2 −ieiβ/

√
2 0

0 −ieiβ/
√

2 eiβ/
√

2 0
0 0 0 e−i(β+γ )

⎞

⎟⎟⎠ ,

(27)

where γ = δωtg and β = gztg . Up to single-qubit RZ rota-
tions and an overall phase, this gate is equivalent to the
unitary

Ṽ =

⎛

⎜⎜⎝

1 0 0 0
0 1/

√
2 −i/

√
2 0

0 −i/
√

2 1/
√

2 0
0 0 0 e−4iβ

⎞

⎟⎟⎠ , (28)

which is the product of a
√

iSWAP gate and a controlled-
phase gate [2]. Note that Ṽ is the same gate as imple-
mented, for example, in the Sycamore quantum processor
[33,34], where it is also known as the “fSim gate” and
used for quantum computation and quantum simulation
applications. The V gate can further be converted into a
controlled-NOT (CNOT) gate, as relevant for many circuits,
by applying it twice and combining it with single-qubit
rotations. Importantly, the corresponding sequence of gates
shown in Fig. 7 does not rely on any specific values
for γ and β. Therefore, this equivalence shows that V is
universal for arbitrary values of γ and β, and for the
optimization of V, these parameters do not impose any
constraints.

The qubit-qubit coupling Hqq(t) can be controlled via
the external flux �s(t) = π�0 +�c(t) and thus our goal
is to find a control pulse�c(t) for which the actual unitary,

U2(tg) = T e−i
∫ tg

0 dt H̃qq(t), (29)

approximates V with the highest fidelity. For the numerical
optimization, we use a similar ansatz as for the single-qubit
gates,

�c(t) = �0

nmax∑

n=1

an sin
(

nπ t
tg

)
, (30)

but without a carrier frequency. We also add the Josephson
energy of the coupler, EJs , as a static optimization param-
eter, which typically assumes values of about EJs/h ∼ t−1

g .
In contrast to the single-qubit gates, we now employ a
slightly different cost function

CV = 1 − 1
d2 |diag[V†U2(tg)]|2. (31)

Here d = 4 and the vector norm | · | is evaluated for the
diagonal of the matrix product. This cost function is insen-
sitive to the phases γ and β, which is desirable since both
can take arbitrary values. Note that this cost function does
not guarantee that U2(tg) will approach V as CV → 0, since
we lose information about the phases. However, it turns out
that, for the considered Hamiltonian in Eq. (13), this is not
a problem and we find that the difference between the cost
function CV used for the optimization and the gate error E
defined by Eq. (18) is negligible. Importantly, in all our
plots we show the actual gate error E .

In Fig. 8 we present the results for the numerically min-
imized errors for the two-qubit gate V, for varying gate
times and nonlinearity parameters. Overall the results look
very similar to what we have obtained for the single-qubit
gates. Again, we find that high-fidelity two-qubits gates
can be implemented on timescales tg � 100 ps, if the qubit
nonlinearity is sufficiently large. The corresponding opti-
mal pulses for the control flux�c(t) shown in Fig. 8(c) are
rather smooth in all regimes.

An unexpected finding in the optimization of two-qubit
gates is that, for gate times in the approximate range
0.3–1 ns, there are individual points where very high gate
fidelities can be reached for very low qubit nonlinear-
ities. As discussed in more detail in Appendix C, this
observation can be explained by the fact that the coupling
Hamiltonian Hqq(t) is by itself nonlinear and can sup-
press excitations to higher states even if the qubit circuit
is almost linear. However, since such exceptional cases

014024-8



QUANTUM COMPUTING WITH SUPERCONDUCTING CIRCUITS... PHYS. REV. APPLIED 16, 014024 (2021)

0

1

10

–0.2
011.0 1

10–1 10–2 10–3 10–4(a)

(c)

(b)

1

0.1

10

1 10–1 0

0 1
0.0

0.5

0 5

0.5

0.00.0

0.5

0.0 0.1

FIG. 8. Optimization of the two-qubit gate V. (a) Plot of the
minimal gate error E for varying gate times and nonlinear-
ity parameters. (b) Minimal gate time tmin

g as a function of
the absolute nonlinearity α = αrω10 and for two different error
thresholds. (c) Examples of the optimized pulse shapes for the
points marked in (a). Note that in (a) the scale of the y axis and
in (b) the scale of the x axis are linear in the range [−0.1, 0.1]
and logarithmic elsewhere.

are rather rare and are no longer found for the bandwidth-
limited pulses discussed below, we do not go into possible
redefinitions of the nonlinearity parameter to account for
such conditions here. Therefore, leaving these fine-tuned
outliers aside, we plot in Fig. 8(b) the minimal gate time
tmin
g (α) for the two-qubit gate as a function of the abso-

lute single-qubit nonlinearity. From this plot, we extract
the lower bound

tmin
g (α) >

π

|α| . (32)

We see that the optimized pulses approach this bound for
a large range of nonlinearities. Again, we find a devia-
tion from this scaling for gate times of tg � 0.1 ns, which
shows that in this regime the assumed control Hamiltonian
∼ XX is no longer optimal to implement a gate derived
under the rotating-wave approximation. This problem can
be overcome by implementing a more flexible coupling
Hamiltonian or by optimizing not for a predefined, but
for an αr-specific entangling operation, similar to what has
been discussed in Refs. [15,16].

V. BANDWIDTH LIMITATIONS

In all the examples so far we have considered con-
trol pulses of essentially arbitrary shape. Although arbi-
trary waveform generators (AWGs) with sampling rates of
50 GHz and more are commercially available, for ultrafast
gates, the corresponding discretization steps of about 20 ps
are still comparable to the total gate time. In addition, the

rise and fall times between the voltage steps are finite and
the bandwidth of the actual output signal of an AWG is in
general smaller than the sampling rate. The propagation of
the signal through attenuators and cables can lead to fur-
ther pulse dispersion and filtering effects. Therefore, in the
picosecond domain, control pulses of arbitrary shape are
no longer available and bandwidth limitations become one
of the major technical limitations for implementing fast
and high-fidelity quantum gates.

To account for finite-bandwidth effects without going
into the details of the control electronics, we here simply
assume that the driving field�(t) for the qubit is related to
the control pulse �c(t) via the linear transformation

�(t) =
∫ t

−∞
dt′ F(t − t′)�c(t′), (33)

and a corresponding relation for �s(t) and �c(t). Here
F(t) = ∫ ∞

−∞ dω eiωtF(ω) is a filter function, which is setup
specific. For concreteness, we consider in all our calcula-
tions a Butterworth filter [43] with a frequency response

F(ω) = iω∏m
k=1[ω − i
Fe−iπ(2k+m−1)/(2m)]

, (34)

where m is the order and 
F is the bandwidth of the fil-
ter. In Fig. 9(a) we illustrate the effect of this filter for
m = 4 and 
F/(2π) = 15 GHz. The plot shows the origi-
nal control signal �c(t) derived above for a gate time of
tg = 0.2 ns and the resulting driving field for the qubit,
�(t). We see that the filter not only distorts the pulse, but it
also induces a significant delay and a nonvanishing driving
signal for times t > tg .

A. Optimization of filtered control pulses

For the optimization of bandwidth-limited control
pulses, let us first of all emphasize that our goal is to imple-
ment a target single- or two-qubit operation within the
prespecified time interval [0, tg]. The example in Fig. 9(a)
shows that, for filtered pulses, a non-negligible part of the
qubit evolution can take place outside the intended gate
interval. Therefore, in this case not only the optimization
procedure, but also the definition of gate errors must be
adapted.

To compensate for the filter-induced delay, we can sim-
ply start the control pulse a little earlier, i.e., �c(t) →
�c(t + td), where td is adapted during the optimization
process. As before, we then calculate the fidelity of the
resulting unitary evolution during the time interval [0, tg]
and denote the corresponding gate error by E[0,tg ]. How-
ever, this error does not take into account the fact that, for
times −td < t < 0 and t > tg , the driving field does not
vanish completely and can induce additional rotations of
the qubit state. To estimate these errors, we calculate as
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FIG. 9. Optimization of the single- and two-qubit gates for
control pulses with limited bandwidth. (a) When the original
control signal �c(t) is passed through a lowpass filter, the pulse
driving the qubit, �(t), gets distorted, delayed, and has a sig-
nificant support outside the targeted gate interval [0, tg]. (b) To
compensate for these effects, the control signal is shifted and
reoptimized, such that the filtered pulse minimizes the total cost
function C defined in Eq. (A1) for single-qubit gates and Eq.
(A3) for two-qubit gates. (c),(d) Minimized total gate error EF
for implementing (c) an RY(π/2) rotation and (d) a V gate with
bandwidth-limited driving fields. The contour lines indicate the
error threshold Eth = 10−4 for a Butterworth filter of order m = 4
and different bandwidths 
F . The black solid lines represent the
same error threshold for the unfiltered control pulses taken from
Figs. 3 and 8. Note that, for the filtered pulses in (d), we have
doubled the amount of iterations in the numerical optimization.

well the circuit evolution over a longer time interval,

U′
g = T e−i

∫ tf
ti

dt H̃drive(t), (35)

and evaluate the corresponding error E[ti,tf ]. In our sim-
ulations we choose ti = −td and tf = 10tg , but we have
verified that the results do not change considerably when
the length of this interval is varied. Since we can improve
E[0,tg ] at the expense of E[ti,tf ] and vice versa, we define the
gate error for filtered pulses as

EF = max{E[0,tg ], E[ti,tf ]}. (36)

In Fig. 9(b) we show an example of a control pulse
�c(t) that minimizes this generalized gate error, EF (see
Appendix A for further details). While in this case the con-
trol signal can be a bit more complicated, the actual filtered
signal that drives the qubit is rather smooth and most of its
support is contained in the targeted time interval [0, tg].

B. Bandwidth limitations for single- and two-qubit
gates

In Figs. 9(c) and 9(d) we repeated the optimization of
the single- and two-qubit gates discussed in Figs. 3 and 8
for different values of the filter bandwidth 
F . For clar-
ity, the plots show only the contour line at EF = 10−4. For
small and moderate nonlinearities and the considered val-
ues of 
F , we find no significant influence of the filter
beyond small variations from the optimization procedure.
At intermediate values of tg the presence of the filter starts
to degrade the achievable gate fidelities, but this can still
be compensated by working with qubits with a slightly
higher nonlinearity. Finally, depending on the value of
F ,
we find a rather sharp boundary, below which high-fidelity
gate operations are no longer possible, independent of the
degree of nonlinearity. This boundary is roughly consistent
with tmin

g (αr � 1) ≈ 2π/
F , as expected from the general
time-frequency uncertainty relation. This scaling indicates
that the leakage of the driving signal outside the time inter-
val [0, tg] is more detrimental than the elimination of some
of the faster wiggles in the pulse.

VI. ULTRAFAST QUANTUM CIRCUITS

The ability to realize any Rn(φ)(θ) rotation together with
the two-qubit unitary V is in principle enough to construct
arbitrary quantum circuits [1]. For this reason, most opti-
mization studies focus on the implementation of either
individual or similar universal sets [21,28] of single- and
two-qubit gates. However, if one is interested in abso-
lute processing times, there are several additional aspects
and physical constraints that need to be taken into account
when combining those individual gates into larger circuits.
In this section we address, first of all, the clocking require-
ments for ultrafast quantum gates, which are imposed in
the picosecond regime by a finite qubit rotation time. In a
second step, we then describe the implementation of larger
quantum circuits using an explicit example.

A. Clocking of composite circuits

In Secs. III and IV we have optimized all our gate oper-
ations for the time interval [0, tg]. Since our qubit states
are defined in a rotating frame [see Eq. (6)], the meanings
of RX and RY gates are also defined only with respect to
this origin in time. Consequently, by applying the same
control pulses during a different time interval [t, t + tg],
the resulting gate operation will in general not be the
same, except when t is a multiple of the qubit precession
time Tq = 2π/ω10. For single-qubit gates, we can further
reverse the sign of the control field to convert, for example,
a rotation around −X into a rotation around X and thereby
obtain identical gates already after a period of Tq/2. The
same turns out to be true for the two-qubit gate V given
in Eq. (27), since the period of the product σ x

1σ
x
2 is half of
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FIG. 10. Constructing quantum circuits with ultrafast gates.
The optimized gates are arranged according to a clocking cycle
with period tcyc = Tq/2. The RX gates are shifted with respect to
RY gates by a waiting time Tq/4, as explained in Sec. III B. After
each cycle the same single-qubit gates can be implemented by
simply flipping the sign of the control pulse. For these examples,
it is assumed that the RY and V gates can be implemented in the
same time tg , where tg/tcyc = 0.75 in (a) and tg/tcyc = 1.5 in (b).

the single-qubit oscillation time. Therefore, we identify a
minimal cycle time, tcyc = Tq/2, according to which all the
control pulses must be clocked.

In Fig. 10 we illustrate how a finite clocking interval,
which is tcyc = 0.1 ns in all our examples, influences the
consecutive execution of ultrafast gates. For the two exam-
ples, we assume the same gate time tg for implementing an
RY(π/2) rotation and the V gate. As discussed in Sec. III B,
an RX (π/2) gate can then be implemented with the same
pulse shifted by tπ/2 = Tq/4. We see that, although in the
first example tg = 0.75tcyc is 2 times shorter than in the
second example, where tg = 1.5tcyc, the run time of the
whole circuit is not too much different in the two cases.
This illustrates that, for ultrafast gate operations, the bare
qubit frequency ω10 can set an important limitation for
the overall computation speed. Note that RZ rotations are
invariant under a shift of the phase of the qubit states and
can thus be implemented at any time.

B. Shor’s algorithm in a nanosecond

In a final step we now combine all the results and consid-
erations from the previous sections and discuss an ultrafast
implementation of a small composite quantum circuit. As

an illustrative example, we consider here the three-qubit
circuit shown in Fig. 11, which consists of one Hadamard
and two CNOT gates. This particular circuit represents the
most essential part in the implementation of a compressed
version of Shor’s algorithm for factoring the number 15.
For a more detailed discussion of this circuit and its rela-
tion to the original Shor algorithm [44,45], we refer the
reader to Ref. [39], where the implementation of the same
algorithm has been demonstrated with trapped ions. For
the current purpose, it is enough that this circuit executes
a minimal useful quantum computation, but at the same
time it still permits an exact numerical simulation of the
full superconducting circuit that is used to encode the three
qubits.

From a naive decomposition of the two CNOT gates into
V and single-qubit operations, as shown in Fig. 7, we
would obtain 25 elementary gates and a total execution
time of about Tcirc ≈ 20tg . However, by implementing fur-
ther simplification we end up with the equivalent circuit
shown in Fig. 11, which is reduced to four applications of
V and seven single-qubit rotations. Note that this circuit is
equivalent to the original one up to Z rotations of the initial
and final states.

To simulate the implementation of this circuit with
superconducting qubits, we consider the full Hamiltonian

H(t) =
3∑

i=1

H (i)
q (t)+ H (1,2)

qq (t)+ H (2,3)
qq (t), (37)

as described in Sec. II. For a given nonlinearity parameter
αr and filter bandwidth 
F , we then find numerically opti-
mized control pulses for implementing individual RY(π/2)
and RY(π) rotations and the V gate. For all three gates,
we assume the same time tg , which is chosen such that
EF � 10−4 for each individual gate. All the remaining
single-qubit gates are then implemented using the same,
but shifted control pulses, as described in Eq. (22). In cases
where there is no overlap with a preceding gate, the time
shifts tφ can also be chosen negative to avoid unneces-
sary waiting periods. All these individual pulses are then
matched with the clocking cycle and combined into a full
control sequence, as described in Sec. VI A. An example
for the resulting control signals for the three qubits and

FIG. 11. The quantum part of a compressed Shor algorithm for factoring N = 15 [39]. The left side shows the original circuit
composed of one Hadamard gate and two CNOT gates. The right side shows the equivalent circuit implemented with V and Rn(φ) gates.
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0.0 0.5 1.0 1.5 2.0

FIG. 12. Example of a pulse sequence for implementing the
quantum circuit shown in Fig. 11. The five lines indicate the
time dependence of the individual control fields �(i)(t) for each
qubit and the fluxes �i,i+1(t) (omitting a constant offset π�0)
for controlling the two-qubit interactions. Note that here qubit 2
is used as the control qubit such that the circuit can be imple-
mented using only nearest-neighbor interactions. The parameters
for these pulses are taken from example (ii) in Table I.

the two couplers is shown in Fig. 12. Note that this proce-
dure of combining control pulses is not fully optimal, but it
makes use of only a small number of optimized gates and
does not rely on any specific details of the circuit.

Following this procedure, we simulate the implementa-
tion of the full quantum circuit for different combinations
of αr and 
F . The detailed set of gate parameters is sum-
marized in Table I. For the full simulation, we initialize the
qubits in the state |�(0)〉 = |0〉1|0〉2|0〉3 and calculate the
final state

|�(Tcirc)〉 = T e−i
∫ Tcirc

0 dt H̃(t)|�(0)〉, (38)

including the ten lowest basis states for each subcircuit. We
define the error of the full computation in terms of the state
overlap,

Ecirc = 1 − |〈�target|�(Tcirc)〉|2, (39)

TABLE I. Summary of the parameters used for the simulation
of the quantum circuit shown in Fig. 11. The different EF denote
the gate error define in Eq. (36) for the RY(π/2), the RY(π), and
the V gates, which are all implemented in the same time tg . Note
that in example (i) the filter is only applied to the pulse envelop
and not the carrier.

(i) (ii) (iii)

αr −0.05 5 10

F/(2π) 0.75 GHz∗ 10 GHz 15 GHz
tg 6 ns 170 ps 100 ps
γ −0.5039 0.4594 0.5863
Eπ/2F 4.4 × 10−5 6.0 × 10−6 3.9 × 10−4

EπF 8.7 × 10−5 9.9 × 10−5 1.6 × 10−4

EV
F 3.8 × 10−7 5.0 × 10−6 3.9 × 10−5

Tcirc 54.3 ns 1.9 ns 1.2 ns
Fcirc 0.9996 0.9998 0.9984

where |�target〉 is the targeted state in the qubit subspace.
In the first example listed in Table I we consider a

conventional transmon qubit with a nonlinearity param-
eter of αr = −0.05. In this case we can choose a gate
time of t = 6 ns, close to the bound in Eq. (23), and
obtain a total execution time of Tcirc � 54 ns. Note that
this time for implementing the whole circuit is compara-
ble or even faster than most of the individual gates that
are used in experiments today [40,46,47]. For the second
example, we choose a highly nonlinear qubit with αr = 5
and 
F/(2π) = 10 GHz. For these parameters and a gate
time of tg = 170 ps, we obtain Tcirc � 1.9 ns with a total
error Ecirc � 2 × 10−4. Finally, in the third example we
consider gates of only tg = 100 ps, assuming that αr = 10
and 
F/(2π) = 15 GHz. In this case the total algorithm
can be implemented in just above 1 ns, still retaining a total
error of about Ecirc ≈ 2 × 10−3.

VII. DISCUSSION AND CONCLUSIONS

In summary, we have presented a systematic study about
the implementation of ultrafast quantum gates with super-
conducting circuits. In particular, by assuming a very
generic qubit design, we have investigated the dependence
of the minimal gate time on the qubit nonlinearity and
the bandwidth of the control pulse over a large parame-
ter range. Our numerical results show that there exists a
lower bound of tmin

g ≈ 2π/|α| for single-qubit gates and
tmin
g ≈ π/|α| for the considered two-qubit gate. This con-

tradicts previous conclusions drawn from the optimization
of three-level systems, where in principle arbitrarily fast
gates can be implemented [6]. At the same time, over
the whole range of parameters explored in this work, this
bound does not depend on the precise level structure of
the qubit circuit and is thus expected to also apply for
all other qubit designs in use today. Although based on
purely numerical observations, the ansatz for the control
pulses assumed in this work is completely generic with an
exhaustive number of variational parameters. Since also no
variation of the optimization strategy or the initial condi-
tions led to a different result, we conclude that the observed
bound indeed represents a fundamental limit for the gate
time. For very fast gates, tg ∼ 100 ps, we have found that
additional restrictions arise from the finite qubit oscillation
time Tq, which, however, can in principle be overcome by
changing, for example, to a two-axis control scheme.

In the second part of this paper we have addressed in
more detail the implementation of larger quantum circuits
composed of many ultrafast gates. Here again we have
found that the finite qubit rotation time must be taken
into account and introduces a natural cycle time tcyc =
Tq/2 according to which gates must be clocked. We have
illustrated this circuit composition by performing a full
multilevel simulation of a basic three-qubit circuit con-
sisting of 11 elementary single- and two-qubit gates. For
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realistic qubit nonlinearities and control bandwidths, the
simulated execution times for the whole circuit are about
Tcirc ∼ 1–2 ns. This is about 100 times faster than what
is achievable in most superconducting quantum comput-
ing experiments today and demonstrates that significant
improvements in this direction are still possible.

In our analysis we have restricted ourselves to gate times
down to about tg ∼ 50 ps, which require absolute nonlin-
earities of α/(2π) � 25 GHz and even a bit larger control
bandwidths. While such parameters are highly nonstan-
dard for current superconducting qubit experiments, they
are still within physical and technological bounds. In par-
ticular, in this regime the involved frequencies remain
below the value of 2
SC ≈ 2π × 80 GHz, which is twice
the superconducting gap of aluminium, such that resonant
excitations of quasiparticles are still negligible.

Quasiparticles, which affect the coherence of the qubit,
can also be generated through nonlinear processes at large
driving strengths. Note, however, that, while the maximal
amplitude of the control pulse increases as �0 ∼ 1/tg, this
scaling does not necessarily translate into an equivalent
increase in the signal power. For example, all the two-qubit
gates in Fig. 8 are implemented with approximately the
same maximal value of the control flux. Also, the mutual
inductance for the single-qubit control can be effectively
realized through a weakly driven Josephson junction and
we remark that driving amplitudes of about �0/(2π) ≈
5 GHz have been experimentally demonstrated without
a drastic impact on the qubit coherence [48]. While a
detailed evaluation of the effect of quasiparticle production
will be setup specific and is beyond the scope of the current
analysis, it is not expected to represent a major technical
obstacle down to gate times of about tg ∼ 100 ps.

Finally, let us remark that, while for the implementation
of even faster gates the superconducting gap can no longer
be ignored, the gap can be substantially higher in other
materials, such as niobium. This means that coherent oper-
ations of superconducting qubits on timescales as short as
tg ≈ 1–10 ps are at least physically still conceivable.
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APPENDIX A: PULSE OPTIMIZATION

To identify the optimal pulses for implementing single-
and two-qubit gates, we parameterize the control pulses in

terms of a finite set of variables and identify an appro-
priate cost function C, which we want to minimize. For
such generic optimization problems, there are several stan-
dard numerical methods available and different versions of
such algorithms have already been implemented in the past
for optimizing quantum gates [4–30]. However, to obtain
a sufficiently fast convergence, smooth pulse shapes, etc.,
usually a problem-specific tuning of these algorithms is
required. In this appendix we summarize the detailed opti-
mization procedure that has been used to produce all the
results presented in this paper.

1. Pulse parametrization

For the control pulses�c(t) and�c(t), we use the expan-
sion in terms of sine waves as given in Eqs. (17) and (30)
and the pulse amplitude is set to zero for times outside the
interval [0, tg]. For all results, we take the same number
of frequency components nmax = 20 to represent the pulse
envelope, which, for the single-qubit gates, is multiplied
by a carrier wave of frequency ωd and phase φd. For long
gate times, ωd is close to the qubit frequency, but taking it
as a variable parameter allows the optimizer to account for
small ac Stark shifts and results in smoother pulse shapes
for the remaining envelope. For the two-qubit gate, there is
no resonance condition and therefore no carrier is included.

For the optimization of filtered control pulses discussed
in Sec. V, we must take into account the fact that the
ideal control signal is shifted compared to the actual driv-
ing signal. In this case we replace �c(t) → �c(t + td)
and �c(t) → �c(t + td), which are nonzero in the interval
[−td, tg − td]. Otherwise, the ansatz for the control pulses
is left unchanged. The value of td is determined at each
iteration of the optimization algorithm by finding the peak
position of the cross-correlation function between the input
and the filtered pulse.

2. Cost function

For the optimization, we must choose a cost function C,
which, for unfiltered pulses and single-qubit rotations, we
take as the gate error C = E = 1 − F , where the fidelity
F is defined in Eq. (15). For the two-qubit gate, we only
require that the exact unitary has the same form as V
defined in Eq. (27), independently of the precise values of
β and γ . Therefore, we choose the cost function CV given
in Eq. (31).

For the optimization of filtered control pulses, we want
to minimize the support of the driving signals outside the
target interval [0, tg]. Therefore, for the single-qubit gates,
we consider the generalized cost function

C = E + η
ζ(−td, 0)+ ζ(tg , 10tg)

ζ(0, tg)
, (A1)
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where

ζ(ti, tf ) =
∫ tf

ti
|�(t + td)| dt. (A2)

Similarly, for the two-qubit gate, we use

C = CV + η
ξ(−td, 0)+ ξ(tg , 10tg)

ξ(0, tg)
, (A3)

where

ξ(ti, tf ) =
∫ tf

ti
|�c(t + td)| dt. (A4)

In both cases η is an additional penalty coefficient. For the
current problem, we find that a range of η ∈ [0.01, 0.1] is
a suitable choice to obtain very good optimization results
in all parameter regimes. We take η = 0.01, 0.1 for Figs.
9(c) and 9(d), respectively.

3. Initial conditions and preoptimization

The performance and convergence of numerical opti-
mizers depend strongly on the choice of the initial con-
ditions for the pulse parameters. For all the single-qubit
gates Rn(φ)(θ), we start the optimization with the param-
eters ωd = ω10, φd = −φ, a1 = 1, and an>1 = 0. For the
unfiltered pulses, we then set the initial value of the driving
strength to�0 = πθ/(2tgϕ10), which would implement the
correct rotation under the validity of the rotating-wave and
the two-level approximations. For the filtered pulses, we
estimate the reduction of the pulse area of the filtered pulse
within the time window [0, tg] and adjust the initial value
of �0 accordingly. For the two-qubit gates, we initialize
the control pulse with a slightly lower amplitude, a1 = π/2
and an>1 = 0, such that the interaction still scales approxi-
mately linearly in�c(t). The initial value for the Josephson
energy is set to EJs/� = π/(4W), where

W =
∫ tg+td

td
dt

∫ t

−∞
dt′ F(t − t′) sin

[
a1

2
sin

(
π t′

tg

)]

(A5)

for both the unfiltered (td = 0) and the filtered (td > 0)
pulses.

For very short gate times, the initialization of parame-
ters discussed above still gives a rather poor approximation
for the optimal pulses. Therefore, as a second step, we
implement an additional preoptimization step for the first
n = 1, . . . , 5 amplitudes an and the frequency and the
phase of the carrier. For this preoptimization, we use the
Nelder-Mead algorithm [49] with a reduced cost function
Cpre = C/10. This gradient-free algorithm is very effi-
cient for a small parameter space and thus allows us to

substantially improve the initial conditions without signif-
icantly increasing the computation time. We set the target
infidelity of the optimization to 10−5, but run at most 2000
iterations. A similar hybrid optimization scheme combin-
ing gradient-free and gradient-based methods has been
shown to outperform the schemes with either one of the
two methods alone [50].

4. Gradient-based optimization

After obtaining good initial values we use the gradient-
based limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm [51] for the actual optimization. At each itera-
tion step this algorithm requires the evaluation of the cost
function C as well as its gradient with respect to all vari-
able parameters. For problems with a small Hilbert space
dimension, the evaluation of this gradient can be done
using, for example, the GOAT algorithm described in Ref.
[24]. However, for the current problem, it turns out to be
more efficient to calculate C multiple times and approxi-
mate its gradient by a finite difference method. To keep the
pulse spectrum simple, we divide the set of {an} into two
batches, i.e., {a1, . . . , a10} and {a11, . . . , a20}, and optimize
them alternatively together with the carrier parameters.
We use 15 optimization steps for each batch and repeat
the sequence 5 times. Similar to the preoptimization step,
we stop the search as before in case an infidelity below
10−5 has been reached. All our numerical simulations are
implemented in JULIA using the packages Optim.jl [52] for
optimization, OrdinaryDiffEqs.jl [53] for evaluating the
time-evolution operator, DSP.jl for filtering, and Quantu-
mOptics.jl [54] for constructing operators and simulating
the composite circuit results.

5. Level truncation

In all our numerical simulations we truncate the Hilbert
space of each subcircuit to the ten lowest basis states. To
show that this number of basis states is sufficient, we plot
in Fig. 13 the results for the gate error E as a function of the
number of included basis states for the two examples of (a)
a transmon qubit with a small negative anharmonicity and
(b) a flux qubit with a large positive anharmonicity. We see
that, for systems with a negative anharmonicity, there can
be accidental multiphoton resonances with higher states
and we need at least six levels to get convergent results.
For systems with positive anharmonicity, the inclusion of
four to five levels is usually enough and the same is true
for systems with small positive nonlinearities. Note that in
both examples the results obtained from a three-level trun-
cation, as often assumed in optimization studies, are still
inaccurate.
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FIG. 13. Level truncation. Plot of the gate error E for an opti-
mized RY(π/2) rotation as a function of the number of included
basis states and for different gate times. The plot in (a) shows the
case of a transmon qubit with a negative anharmonicity of αr �
−0.2 and (b) the results for a qubit with a positive anharmonicity
of αr � 5.0.

APPENDIX B: ELIMINATION OF Z ROTATIONS

Although in Sec. III D we have shown that rather
fast Z rotations can be realized without changing the
control Hamiltonian, in many circuits the execution of RZ
gates can be avoided altogether by constructing equivalent
circuits according to the following rules.

1. By making use of the commutation relation
RZ(θ)Rn(φ)(ϕ) = Rn(φ+θ)(ϕ)RZ(θ), the Z rotations can be
exchanged with preceding or successive Rn(φ) gates. All
RZ gates that can be moved to the beginning or the end
of the circuit through this procedure can be dropped,
assuming that we initialize and measure the qubits in the
computational basis.

2. The Z rotations that are initially located between
two V gates are commuted either right next to the following
or the preceding V gate. We can then use

[RZ(ϕ)⊗ RZ(θ)]V

= [I ⊗ RZ(θ − ϕ)]V[RZ(ϕ)⊗ RZ(ϕ)] (B1)

to bring the common part of the rotation to the other side
of the two-qubit gate and proceed with step 1.

3. After implementing steps 1 and 2 we are left with a
circuit where at most one Z rotation appears between two V
gates. These remaining gates are decomposed as RZ(θ) =
Rn(φ)(π/2)Rn(φ)+π/2(θ)Rn(φ)(−π/2) and combined with
neighboring Rn(φ) gates.

Since the duration of an Rn(φ) gate depends on the rotation
axis n(φ), step 1 changes the duration of the remaining
single-qubit gates, but on average this effect cancels out.
In step 3 the rotation axis n(φ) can be optimized and,
depending on the neighboring gates, the maximum added
gate count per Z rotation is two. This only happens in
the unlikely situation when an RZ rotation is sandwiched
between two V gates with no neighboring single-qubit

rotations, i.e., V[I ⊗ RZ(ϕ)]V. Therefore, for most appli-
cations, RZ rotations can be eliminated or replaced by
equivalent Rn(φ) with only a minor overhead in the total
computation time.

APPENDIX C: EFFECTIVE NONLINEARITIES
DURING TWO-QUBIT GATES

In the optimization of the fidelities for the two-qubit gate
shown in Fig. 8(a), we find isolated points where despite
a rather small qubit nonlinearity parameter αr, rather fast
gates can be implemented, which break the overall bound
set by π/α. The existence of such outliers can be under-
stood from the fact that in the two-qubit case the coupling
junction can induce additional nonlinearities, which are
not taken into account in the definition of the single-qubit
nonlinearity αr.

To illustrate this point in more detail, we consider in this
appendix the Hamiltonian

Heff(t) = H (1)
q + EJs cos

(
�s(t)
2�0

)
cos(ϕ1), (C1)

which represents the coupling circuit shown in Fig. 2(a),
but with the phase of the second qubit set to ϕ2 = 0.
For this effective single-qubit circuit, we can define an
instantaneous nonlinearity parameter,

αeff(t) = [E2(t)− E1(t)] − [E1(t)− E0(t)], (C2)

where the Ei(t) are the instantaneous eigenenergies of
Heff(t). This parameter reflects the degree of single-qubit
nonlinearity at each point in time during the two-qubit gate
sequence.

In Fig. 14(a) we plot this parameter for the case αr =
0.05 and tg � 300 ps, where it is possible to implement
a high-fidelity two-qubit gate in a time much faster than
π/α � 2 ns. We see that in this example the effective
nonlinearity during the pulse is considerably larger than
the bare nonlinearity, with a time-averaged value of about
ᾱeff � 8.1α. This explains the existence of such outliers,

(a) (b)

FIG. 14. (a) Plot of the effective nonlinearity parameter
defined in Eq. (C2) for the control pulse shown in (b). This
optimized control pulse has been obtained for αr = 0.05 and
implements the two-qubit V gate in a time of tg � 300 ps with
a gate error of E � 0.004.
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but also shows that the achievable gate time still respects
the bound tg ≥ π/ᾱeff, when expressed in terms of the
effective nonlinearity. However, since the occurrence of
such exceptional pulses is rather rare and they are no longer
observed when introducing a realistic filter bandwidth, we
do not go into further details here.
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