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A general and robust Bayesian optimization framework for the extraction of intrinsic physical proper-
ties from an integration of pore-scale forward modeling and experimental measurements of macroscopic
system responses is developed. The efficiency of the scheme, which utilizes Gaussian process regression,
enables the simultaneous extraction of multiple intrinsic physical properties with a minimal number of
function evaluations. Here it is applied to nuclear magnetic resonance (NMR) relaxation responses, paving
the way for inverse problem approaches to digital rock physics given its general nature. NMR relaxation
responses of fluids in porous media may be described by sums of multiexponential decays resulting in a
relaxation time distribution. The shape of this distribution is dependent on intrinsic physical system prop-
erties, but also effects like diffusion coupling between different relaxation regimes in heterogeneous porous
materials. Forward models based on high-resolution images are employed to naturally incorporate struc-
tural heterogeneity and diffusive motion without limiting assumptions. Extracting the required multiple
intrinsic parameters of the system poses an ill-conditioned multiphysics multiparameter inverse problem
where multiple scales are covered by the underlying microstructure. Exploration of the multidimensional
search space given an expensive cost function makes an efficient solution strategy mandatory. We pro-
pose a workflow to match experimental measurements with simulations via Bayesian optimization, with
special attention paid to the multimodal nature of the topography of the objective function using solu-
tion space partitioning. A multimodal search strategy using state-of-the-art evolutionary algorithms and
gradient-based optimization algorithms guarantees that the multimodal nature is captured. The workflow
is demonstrated on T2 relaxation responses of Bentheimer sandstone, extracting three physical parame-
ters simultaneously: the surface relaxivity of quartz grains, the effective transverse relaxation time, and
the effective diffusion coefficient in clay regions. Multiple mathematically sound and physically plausi-
ble solutions corresponding to global minimum and multiple local minima of the objective function are
identified within a limited number of function evaluations. Importantly, the shape of the experimental T2

distribution is recovered almost perfectly, enabling the use of classical interpretation techniques and local
analysis of responses based on numerical simulation.
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I. INTRODUCTION

The characterization of materials, identification of
chemical, physical, and structural properties of matter as
well as governing processes and phenomena from known
observations poses inverse problems in applied sciences.
Given that the same observation may be the result of differ-
ent combinations of system properties and governing phe-
nomena, specific response mechanisms or unique property
values may be difficult to establish. The fundamental ill-
posedness of inverse problems, usually accompanied with
nonlinearity and lack of stability of associated equations,
dramatically complicates their solutions [1,2].

An important example is the interpretation of nuclear
magnetic resonance (NMR) relaxation responses in porous
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media. The observed NMR signal is an ensemble average
of spin states brought into nonequilibrium by a series
of rf pulses. Spins return to equilibrium due to inter-
actions with various surfaces, intrinsic processes in the
fluids themselves, and diffusion in internal fields caus-
ing dephasing. The associated relaxation processes can
be described by a sum of multiexponential decays, each
having a specific relaxation rate. The determination of a
fractional contribution from a given relaxation time (spec-
trum) to a total composite response is a nontrivial task and
constitutes an ill-posed and ill-conditioned inverse prob-
lem. The spectrum can be inferred following one of the
mathematical techniques commonly known as the inverse
Laplace transform [3,4]. NMR relaxation responses from
saturated porous systems provide important yet limited
amounts of explicit information, e.g., pore-size estimates
when a reference length scale is available—often chosen
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to be a mode of a pore-size distribution derived from mer-
cury intrusion capillary pressure measurements despite the
fact that it actually rather defines pore accessibility, and
the application of a constant surface relaxivity [5,6]. Fluid
saturations can be inferred from relaxation time or diffu-
sion contrast between different fluids utilizing customized
acquisition techniques relying on, e.g., partial polarization,
T1 weighting, relaxation-diffusion correlations and are sub-
ject to knowledge of wetting conditions or micro- and
macroporosity relationships [7].

The identification of intrinsic fluid and surface proper-
ties of rock samples is problematic. For example, values
of surface relaxivity of fully water-saturated Bentheimer
sandstone reported in the literature fall into a broad inter-
val ranging between 7.6 [8] and 15.4 μm/s [9]. Hardly any
value has ever been reported on the effective diffusion coef-
ficient of water-saturated kaolinite (as a rock constituent).
Relaxation of water in kaolinite has been reported on arti-
ficially made samples with the important (and expected)
qualitative conclusion that relaxation strongly depends on
compaction [10] and iron content [11].

Increasingly, simulation tools are utilized for NMR
interpretation, such as molecular dynamics simulations
[12] and relaxation simulations on digitized representa-
tions of porous systems [13–15]. The calculations based
on the forward calculation of NMR responses poten-
tially may provide a wide range of physical properties
impossible to measure directly or evaluate with any cer-
tainty otherwise: effective diffusion in microporous regions
and connectivity to porosity, surface relaxivity of specific
mineral phases, magnetic properties of selected regions,
and more. However, deriving conclusions about intrin-
sic physical properties by forward simulations requires an
extensive search across the multidimensional space of pos-
sible parameters to determine the correct configuration of
inputs, posing an ill-conditioned multiphysics multiparam-
eter inverse problem where multiple scales are covered by
the underlying microstructure. This presents a significant
challenge, since numerical simulations of NMR responses
in porous media like rocks are computationally expensive,
even with random walk methods, if inhomogeneous mag-
netic fields arising from susceptibility contrast are consid-
ered. In this general case a high time resolution is required
to capture the evolution of magnetization, leading to a
simulation time of several hours. This precludes exhaus-
tive search strategies for higher-dimensional inverse
problems.

Bayesian optimization (BO) techniques are some of
the most efficient approaches for constrained optimization
problems for which the number of function evaluations is
severely limited by time or cost. BO has been successfully
applied in reinforcement learning [16], computer graph-
ics design [17], robotics [18], etc., in a forward manner to
tune the performance of the complex, expensive black-box
function. The key to its efficiency is that

(a) under the continuity assumption, BO often interpo-
lates and extrapolates quite accurately over large distances
in the search space [19];

(b) the decision making of BO balances not only the
need to exploit the regression surface (by sampling where
it is minimized) but also the need to improve the approxi-
mation (by sampling where prediction error may be high),
making every search step well calculated and statistically
optimum.

There have been several attempts to solve inverse prob-
lems in engineering using Bayesian statistics, e.g., in the
geological and hydrogeological characterization of the
subsurface structure, where the ill-posedness presents a
significant challenge to the determination of the spatially
dependent variable conditioned on the observations since
a posterior ensemble of models fit the data equally well
given limited observations. Mariethoz et al. [20] pre-
sented the iterative spatial resampling method to perturb
realizations of a spatially dependent variable preserving
the specified spatial dependence, which can be used as
either a proposal distribution with Bayesian Markov chain
Monte Carlo (Bayesian MCMC), or a perturbation strat-
egy to reduce the model misfit to the measured data
with simulated annealing. However, such methods require
Bayesian inference directly on the variable of interest
and that the “good-enough fit” be assessed using exact
forward simulation, leading to tens of thousands of func-
tion evaluations, which preclude problems involving high-
dimensional solution space or expensive cost functions;
moreover, the ill-posedness is not fully addressed since the
solutions are starting-guess dependent such that only local
optimal solutions are found. In our work, we take BO com-
monly used in forward problems and apply it to inverse
problems.

The contribution of this paper is threefold. First, we pro-
pose the inverse solution workflow (ISW) based on BO
to identify values of multiple parameters simultaneously
for which the multiscale, multiphysics expensive forward
calculation is manipulated to perform nearly identical to
observations within a limited computational budget. An
overview of the ISW is displayed in Fig. 1. Using this
approach, the computational burden is eased by establish-
ing a cheap proxy for the objective function using Gaussian
process regression (GPR), so that Bayesian MCMC is
performed on GPR hyperparameters that control the topog-
raphy of the solution space, after which both values and
confidence intervals of the actual unknown variables are
predicted using such posterior estimates. Next, the spe-
cific value of unknown variables with globally the highest
potential to reduce the model misfit is identified using
expected improvement (EI) criteria, and the new misfit
is then calculated using forward NMR simulation once.
Bayesian MCMC is then reapplied to accommodate for
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FIG. 1. The detailed workflow to solve an inverse problem of finding feasible combinations of physical properties of saturated
sandstone resulting in NMR T2 distributions identical to the experiment.

the enlarged observation set. This approach is advanta-
geous since (1) locating where the objective function is
minimized and where the prediction and uncertainty quan-
tification error may be high using GPR is significantly
cheaper than the exact evaluation, (2) pairwise correla-
tions between physical parameters can be identified, (3)
inference on hyperparameters unveils sensitivity of the
objective function against each variable, and (4) the whole
optimization process is reproducible.

Second, we propose a multimodal search strategy using
state-of-the-art evolutionary algorithms and gradient-
based optimization algorithms that guarantees that both
the global optimal solution and (major) local optimal
solutions are identified. Since real-world observations,
e.g., transverse relaxation time (T2) measurements, are
always subject to noise, the topography of the noise-
corrupted, observed objective function is different from
that of the true objective function so that the optimality
of the solutions might be altered. The issue is allevi-
ated by identification of both the global optimal solu-
tion and major local optimal solutions by (1) formula-
tion of a candidate pool comprising the global optimal
solution identified using social-learning particle swarm
optimization (SL PSO) algorithms [21], as well as local
optimal solutions identified using box-constrained limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B)

[22], followed by (2) a proposal of the most promising
candidate from this pool using solution space partitioning
(SSP).

Third, we investigate how solutions obtained from the
ISW are affected by realizations and levels of noise. Since
the computation of the T2 distribution, s(T2), requires
transforming the time-domain representation of the signal
into a spectrum, which itself poses as an ill-posed inverse
problem, the s(T2) are subject to realizations of noise, and
so is the topography of the objective function and optimal-
ity of the solutions. In this paper we identify solutions at
seven logarithmically spaced signal-to-noise ratios (SNRs)
and study the dependency of identified intrinsic parameters
on SNRs.

The workflow is demonstrated on NMR T2 relaxation
responses of Bentheimer sandstone, identifying three phys-
ical parameters: the surface relaxivity of quartz grains, the
effective transverse relaxation time, and the effective diffu-
sion coefficient in clay regions. However, it is emphasized
that the ISW is a general framework and applies to many
other expensive simulations, whether being multiparame-
ter, multiscale, or multiphysics.

This paper is organized as follows. In Sec. II we pro-
vide a summary of the ISW and its four main components,
followed by a dedicated section detailing the optimization
framework. Results and discussion on identification of
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three physical parameters, together with a study on
the effect of SNRs and the corresponding regularization
parameter, are given in Sec. IV. This is followed by a sensi-
tivity analysis in Sec. V and a discussion on practical issues
in Sec. VI. We summarize our work in Sec. VII. Finally,
for clarity of notation, we provide nomenclature lists in the
Appendix.

II. INVERSE SOLUTION WORKFLOW

Inverse methods are powerful mathematical tools,
employed, e.g., in astrophysics, thermophysics, gravita-
tional lensing, seismological exploration (geophysics), and
underwater acoustic tomography [23–25]. In abstract form
the inverse problem can be represented as

�(x) = d for x ∈ X and d ∈ D, (1)

where the operator � maps parameters x in the parameter
or solution space X to observables d in the data space D.
Here X = {x | xl ≤ x ≤ xu}, a subset of R

N , is a nonempty
domain constrained by lower bounds (xl) and upper bounds
(xu) defining the possible range of physical parameters.
The solution of Eq. (1) can be obtained by minimization
of the least-squares residual, i.e.,

minimize ||�(x) − d||2F
subject to x ∈ X and d ∈ D, (2)

where || · ||F denotes the Frobenius norm.
Consider now the NMR T2 relaxation response of a nat-

ural porous system, which, without loss of generality, may
be considered to be a sandstone for concreteness; there are
directly observable physical quantities, e.g., the bulk relax-
ation time of water T2b,w, diffusion coefficient of water Dw,
and volumetric susceptibility of minerals χν . We are inter-
ested in the unknown parameter(s) x that are difficult to
measure or disputable, e.g., surface relaxivity of quartz
grains ρ�

q (ρ�
q is the continuum surface relaxivity that is

proportionally larger than the discrete surface relaxivity ρq
that is used for optimization, as will be described later),
effective transverse relaxation time T2e,c, or effective diffu-
sion coefficient in clay regions De,c. Following the prin-
ciples used in effective medium theory [26], the two key
properties of interest are named “effective” to stress that
these properties are not just straight volumetric averages,
but also weighted by time-dependent processes, describing
the behavior of the system. For instance, diffusion aver-
aging is true for miscible fluids and also applicable to
diffusional exchange at the imaginary interface between
different regions. However, an effective diffusion process
is the one experiencing sufficiently complete tortuosity
effects observed at long observation times. It is “an aver-
age diffusion” if only applicable time and spatial scales are
considered. Such values can be measured directly only if

we have abundant clay with identical structure to that from
the rock sample, which is practically impossible.

Given known or directly measured values of some key
physical parameters, the remaining key physical quantities
can be determined by matching measured and simulated
T2 distributions, by minimization of the squared differ-
ence between the two T2 distributions using the ISW, with
weights for all data points of the T2 distribution being
equally 1, which may be expressed as

minimize ‖ssim(T2 | x) − sexp(T2)‖2
F ,

for x = [ρq, T2e,c, De,c]�,

subject to x ∈ X . (3)

Here ssim(T2 | x) and sexp(T2) denote the discretized T2
distributions inverted from simulated and measured NMR
decays, respectively, whereas ssim is conditioned on the
values of the unknowns.

Solving Eq. (3) is problematic, since it requires eval-
uation of the feasibility of a candidate using the expen-
sive physical simulator, making traditional enumeration
methods, e.g., grid search, impractical especially if the
dimension of X is high. Beyond that, since the topogra-
phy of the noise-corrupted, observed objective function is
different from that of the true but unknown objective func-
tion, the optimality of the solutions might be altered, and
typical global optimization algorithms might not satisfy
our need. For such considerations, we propose a work-
flow to identify multiple feasible combinations of physical
quantities simultaneously by reproducing nearly identical
experimental T2 distributions, which is demonstrated in
Fig. 1.

The workflow consists of four main modules, namely
the generation of actual data (A), the forward solver (B),
the inverse Laplace transform procedure for the NMR
inverse problem (C), and the inverse solver for the determi-
nation of the unknown physical parameters, which carries
out the informed search (D1) and solution analysis (D2).
These modules are detailed in the following subsections.

A. Reference data—observable

As example porous medium we use an outcrop
Bentheimer sandstone quarried in Germany’s North
West—one of the most common reference rocks. This
sandstone is a consolidated quartz arenite made of well-
sorted subrounded to rounded grains of about 200 μm
mean diameter. It exhibits 23.9% porosity and a low
iron content of 3 wt % (expressed in Fe2O3), resulting in
the rock’s weak paramagnetism. Measurement of pow-
dered specimens using a magnetic susceptibility balance
(Sherwood Scientific) provided a volumetric susceptibility
value of 1.8 μSI. We estimated the specific surface area
of Bentheimer being 0.20 ∼ 0.35 m2/g, of which quartz
contributes approximately 20% and a minor quantity of
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kaolinite provides approximately 75% [27]. A cylindri-
cal core sample of 50 mm length and 25 mm in diameter
is fully saturated with 3-wt % NaCl brine prior to NMR
measurements.

Reference proton NMR T2 relaxation measurements are
performed using a 2 MHz Magritek Rock Core Analyzer
equipped with a P54 probe. The magnet temperature is
kept stable at 34.2 ◦C, while the sample is kept at 25.0 ◦C.
Transverse magnetization relaxation decays are acquired
using the standard Carr-Purcell-Meiboom-Gill (CPMG)
pulse sequence [28,29], composed by an initial π/2 pulse
placing the magnetization vector into the transverse plane,
followed by an echo train of refocusing π pulses (50 000
in total). All pulses are of 20 μs length. The time inter-
val between π pulses (echo time) is set to tE = 200 μs.
Experiments are performed as a sum of quadruple scans
following the standard four-step phase cycling sequence
CYCLOPS (cyclically ordered phase sequence) [30]. Alto-
gether we acquired 320 individual relaxation decays. Com-
bining these allowed us to obtain a desired SNR over a
fairly broad range. A similar procedure is utilized to obtain
matching background noise signals.

B. Forward solver—simulated NMR response

The NMR relaxation response is simulated by a lattice
random walk method on the segmented image. It generally
follows Refs. [31–33], with the added capability of captur-
ing dephasing in a general inhomogeneous magnetic field.
For the latter, it follows Ref. [28]. The method is explained
in detail in Ref. [13]; a brief account of the method is given
here.

A 5 mm diameter sister sample of above Bentheimer
sandstone is imaged via micro-x-ray-computed tomogra-
phy (micro-CT) at a resolution of 2.89 μm. This resolution
provides a sufficient field of view and is comparable to
the ruler length (or diffusional averaging length) intrinsic
to typical NMR measurements of surface to volume ratio,
which is of the order of 2 μm [34,35]. The tomogram
is corrected for beam hardening, filtered to reduce noise,
and segmented into three phases with an active converging
contour method [36], namely pore space (w), quartz (q),
and clay region (c), as is shown in Fig. 2. The clay region
is an unresolved mixed-phase containing mainly kaolinite
and porosity.

Given the measured average volumetric susceptibility
of dry Bentheimer sandstone χν,ave = −7.6 μSI, the NaCl
brine χν,w = −9.0 μSI, and assuming that the susceptibil-
ity of quartz is χν,q = −10.0 μSI, we assigned the effective
susceptibility for the clay regions (including 50% of brine
saturated voids) of χν,c = 60.0 μSI. The internal magnetic
field at lattice resolution ε is derived in the dipole approx-
imation [13,37] by carrying out the convolution operation
between the susceptibility field χ(r) and the dipole field

(a) (b)

FIG. 2. Cross section through a 11203 voxel subdomain of
Bentheimer sandstone; (a) tomogram and (b) phase segmented
image with resolution ε = 2.89 μm (blue represents the pore
space, red represents the quartz, green represents the clay region).

Bdip(r) as

Bint(r) = (χν ∗ Bdip)(r) =
∫

χν(r)Bdip(r − r’) dr’ (4)

with

Bdip(r) =

⎧⎪⎪⎨
⎪⎪⎩

μ0

4π

[
3(m r)r − mr2

r5

]
for r > a,

2
3
μ0m for r ≤ a,

m = μ0
χν

1 + χν

B.

(5)

Here a is the radius of the dipole, r is the distance from
the dipole center, μ0 = 4π × 10−7 N A−2 is the magnetic
permeability of the vacuum, and m is the magnetic dipole
moment for a unit volume. For a given structure and inter-
nal magnetic field, the NMR response is calculated as the
ensemble average of random walks on a subgrid with reso-
lution of εw = ε/ls and time step τi = ε2

w/[6D(r)]; in each
time step i walkers are attempting to move to a neigh-
boring side. We assign Dw to the open pore space, while
the effective diffusion coefficient of the clay region De,c
is considered as unknown and varied in a broad range
[10−7 cm2/s; 10−4 cm2/s]. All diffusion terms involving
the solid are set zero, pore-space clay-region cross terms
are set to the geometrical average, and the probability
to cross into the clay regions is scaled by porosity. The
spatial resolution of the random walk is chosen by set-
ting ls ∈ [5, 20] as a function of min(Dw, De,c). Lattice
random walks are started proportionally to voxel poros-
ity and Bint(r) of subgrid positions is derived by trilinear
interpolation.

Treating coherent and incoherent parts of the magnetiza-
tion decay separately, the transverse magnetization decay
can be written as

Mxy(tj ) = 〈Mw(tj )〉 =
〈
Mw(0) cos[φD(tj )]

∏
i

Si

〉
, (6)
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where Mw(tj ) is the magnetization decay of an individual
walker. Here φD(t) is the accumulated phase at time tj ,

φD = φ − φ0 =
N∑

j =1

γ τj [Bz(tj ) − Bz(0)], tj =
j∑

i=1

τi,

(7)

for a random walk starting with Lamor frequency ω0 =
γ Bz(0) and γ the gyromagnetic ratio. Here

∏
i Si incor-

porates surface and bulk or effective relaxation with Si =
SbSs, where Sb = exp (−τi/T2b,w) for bulk relaxation, Sb =
exp (−τi/T2e,c) for effective relaxation in clay regions, and
Ss = 1 − 6ρ2τi/(εwA) for surface relaxation (Ss = 1 for
steps within the same phase), where A is a correction
factor of order 1, which accounts for the details of the ran-
dom walk implementation [32]. For imaged structures, this
value is somewhat arbitrary and close to A = 3/2 for our
random walk implementation; we report the discrete sur-
face relaxivity ρq in the results for the inverse problem
section, which is subject to a respective surface area cor-
rection factor. The continuous surface relaxivity of quartz
is then the product of A and ρq. The CPMG sequence is
implemented by recording Mxy at all integer multiples of
the echo time tE = 2τ and switching the sign of the accu-
mulated phase at times τ + nttE , nt = 0, 1, . . . , Nt, with
NttE the duration of the simulated relaxation decay. This
implements a hard pulse approximation. Unknown param-
eters are the discrete surface relaxivity of quartz ρq, the
effective transverse relaxation time of the clay region T2e,c,
and the effective diffusion coefficient of the clay region
De,c. We set ρc = 0 given that surface relaxation within
clay regions is already incorporated into T2e,c.

C. Inverse Laplace transform procedure

It is widely accepted and considered certainly true for
the broad range of artificial and natural porous media,
including saturated rock samples, that due to the distribu-
tion of pore sizes the measured NMR relaxation signal is a
combination of individual signal contributions represented
by variously weighted monoexponential decays:

mt(t) =
∫

s(T2) e−t/T2 dT2 + εn(t). (8)

Here mt(t) is the measured data, εn(t) is the noise term
assumed Gaussian, white and additive, and our objec-
tive is to estimate the probability density function of the
transverse relaxation time s(T2).

Equation (8) is a Fredholm integral of the first kind
known to be an ill-posed problem, and the density function
s(T2) can be obtained following a procedure commonly
known as the inverse Laplace transform (ILT). Given the
observed time-domain transverse relaxation decay mt, Eq.

(8) can be expressed in matrix notation after discretization
as

mt = Ks + en, (9)

where mt ∈ R
m×1 is the time-domain data, s ∈ R

N×1 is the
discretized probability density function of T2, K ∈ R

m×N

is the inversion kernel, and en ∈ R
m×1 is the noise usu-

ally assumed zero mean Gaussian. Seeking a solution in
the least square sense and using a Tikhonov regularizer,
Eq. (8) becomes an inverse problem, i.e.,

minimize ‖Ks − mt‖2
F + λ‖s‖2

F ,

subject to s ≥ 0, (10)

where λ is the regularization parameter. Equation (10) is a
linearly constrained convex quadratic programming prob-
lem. Inversion from decay to T2 distribution is achieved by
minimization of the squared difference between decay and
its reconstruction together with the second norm of the reg-
ularization term. The weights for all observation points on
the decay are equally 1. For notational clarity, we refer to
the solvers for Eq. (10), i.e., the Newton active-set method,
as the ILT procedure [3,38].

Selection of λopt is nontrivial because (1) a smaller
λ makes s(T2) exhibit more features, but it should not
be too small that s(T2) exposes false features that are
not reproducible for different noise realizations under the
same SNR, and (2) a larger λ makes s(T2) less informa-
tive but much more stable with respect to different noise
realizations, but it should not be too large that not much
information is revealed.

In this context, we propose a strategy for determination
of λopt trading off stability (smoothness) and informative-
ness (resolution), which we discuss in Sec. IV.

D. Inverse solver

1. Informed search

Bayesian optimization enables an informed search such
that the majority of function evaluations (FEs) are spent
in promising regions. We give a brief description of the
workflow that is detailed in Sec. III.

As is shown in Fig. 1, the informed search starts by
evaluation of a few candidates randomly generated using
the Latin hypercube sampling method. In the next step,
a computationally cheap proxy is constructed using GPR
with the distribution of model hyperparameters inferred by
Bayesian MCMC.

To search within the multimodal regression model for
proposing candidates, expected improvement, the amount
of fitness value reduction a candidate is expected to induce,
is calculated given the predicted mean values and vari-
ances, followed by the search for all promising candidates
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using SL PSO and L-BFGS-B. The most promising candi-
date is then proposed for evaluation according to distance
and fitness value metrics using SSP, followed by exact
evaluation using the forward NMR simulator.

As soon as the simulated NMR responses are avail-
able, we use the Newton-active method with Tikhonov
regularization to obtain the corresponding T2 distribution.
Candidates are added to the evaluated list upon comple-
tion of inversion, followed by a new round of inference,
regression, multimodal maximization, candidate proposal,
and exact evaluation. The informed search repeats itself
until the optimization budget is depleted.

2. Solution analysis

After the optimization budget is used up, all solutions
are clustered to the nearest local minima; the top 20 can-
didates are checked against mathematical and physical
plausibility to identify the optimal solution.

III. BAYESIAN OPTIMIZATION FOR
MULTIMODAL OBJECTIVE FUNCTIONS

In this section, we describe the construction of the
computationally cheap proxy for NMR forward simula-
tion, followed by identification of locations of both global
maximum and local maxima (global maximizer and local
maximizers) on the multimodal acquisition function, and
finally the procedure of solution analysis.

A. A computationally cheap proxy for NMR forward
simulation

1. Gaussian process regression

GPR, also well known as kriging in geostatistics [39,40],
and as surrogates in computer experiments [41,42], is
a nonparametric statistic method that has been actively
applied in regression. A Gaussian process (GP) is a dis-
tribution over functions fully specified by its mean and
covariance functions, which can be expressed as [43]

f (x) ∼ GP[m(x), k(x, x′)], (11)

where x = (x1, x2, . . . , xD)� is a candidate in X of dimen-
sion D × 1, f (x) is the process evaluated at location x,
m(x) is the mean function, and k(x, x′) is the covariance
function between pairs of candidates x and x′. A constant
mean m(x) = m0 is used throughout this paper. We assume
no prior knowledge about our problem, and we adopt the
smooth, stationary, aperiodic, and infinitely differentiable
covariance function: parameterized squared exponential
(kSE) as our covariance function, i.e.,

kSE(x, x′) = σ 2
f exp

[ − 1
2 (x′ − x)��−1(x′ − x)

]
, (12)

where � and σ 2
f denote the matrix of characteristic

length scales and signal amplitude, respectively. Here

� = diag (�)−2 accommodates different levels of sensitiv-
ity against each component of x, where � = (l1, . . . , lD)�
is a vector of positive values, referred to as length scales.
Incorporation of such length scales implements automatic
relevance determination (ARD) [43].

For clarity, we define the observation set Dobs and the
prediction set Dpred as

Dobs = (X , y) = {(xi, yi) | i = 1, . . . , n},
Dpred = (X ∗, y∗) = {(x∗

i , y∗
i ) | i = 1, . . . , n∗}, (13)

where X and y denote observed candidates and obser-
vations, respectively, and X ∗ and y∗ denote predicted
candidates and predictions, respectively.

In GPR, the latent variable f is assigned a Gaussian prior
with constant mean m0, i.e.,

f | X ∼ N [m0, Kf (X , X )], (14)

where N denotes normal distribution, m0 ∈ R
n×1 denotes

the mean vector for observations, and Kf (X , X ) denotes
the n × n covariance matrix for the latent variable f eval-
uated at all pairs of observed candidates, with the (p , q)

entry specified by kSE(xp , xq). This is similar for the other
entries Kf (X , X ∗), Kf (X ∗, X ∗), and Kf (X ∗, X ). Equation
(14) shows that entries of latent variable f conditioned on
observation X are jointly Gaussian distributed.

We use the Gaussian likelihood function to accommo-
date the noisy observations y, i.e.,

y | f = N (f, σ 2
n I). (15)

Combining Eq. (14) with Eq. (15) yields

y | X ∼ N [m0, Kn(X , X )], (16)

where Kn = Kf + σ 2
n I is the covariance for the noisy tar-

gets y and y∗. The joint distribution of the observations y
and the predictions y∗ is

[
y
y∗

]
∼ N

([
m0
m∗

0

]
,
[

Kn(X , X ) Kf (X , X ∗)
Kf (X ∗, X ) Kn(X ∗, X ∗)

])
, (17)

where m∗
0 ∈ R

n∗×1 is the mean vector for predictions. By
conditioning the predictions on observations, the posterior
distribution of predictions can be expressed as

y∗ | X ∗, X , y, θ ∼ N [μ(X ∗), �(X ∗)], (18)

where θ is a vector of model hyperparameters, and

μ(X ∗) = m∗
0 + Kf (X ∗, X )K−1

n (y − m0),

�(X ∗) = K∗
n − Kf (X ∗, X )K−1

n Kf (X , X ∗).
(19)

Specifically, for prediction y on a single predicted candi-
date x∗, Eq. (18) becomes

y∗ | x∗, X , y, θ ∼ N [μ(x∗), σ(x∗)]. (20)
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2. Bayesian inference on model hyperparameters

There are D + 3 hyperparameters in our model, assum-
ing a constant mean term that is used for both predictions
and observations, i.e.,

θ ′ = [σ 2
f , σ 2

n , m0, l21, . . . , l2D], (21)

and practically the base-10 log hyperparameters are used,
except for m0, i.e.,

θ = [log10(σ
2
f ), log10(σ

2
n ), m0, log10(l

2
1), . . . , log10(l

2
D)].
(22)

It is appealing in terms of simplicity to adopt point esti-
mates of hyperparameters either from maximum likelihood
estimation (MLE) or from maximum a posterior (MAP)
estimation. However, Bergstra et al. [44] pointed out that a
fully Bayesian treatment, i.e., inference on the joint distri-
bution of the hyperparameters using Bayes rule, is superior
to optimization of hyperparameters. In our case, since a
posterior ensemble of models fit the data equally well
given limited observations, inference of the joint prob-
ability density function of the hyperparameters becomes
necessary while a point estimate would rule out other
possibilities. Moreover, θMLE or θMAP are initial-guess
dependent and may actually converge to one of the local
maxima. As a result, we use a fully Bayesian treatment
of the hyperparameters with the posterior distribution of
hyperparameters given as

p(θ | X , y) = p(y | X , θ)p(θ)

p(y | X )
, (23)

where p(θ), p(y | X ), and p(θ | X , y) are the prior, likeli-
hood, and posterior of the hyperparameters.

a. Prior distribution of hyperparameters. Treatment of
hyperparameters is important since it is the hyperpa-
rameters that control the topography of the GPR proxy,
explained in Sec. V. Assuming no prior knowledge on
the optimization problem, it is appropriate to use nonin-
formative priors such as a uniform prior P(θ) ∝ 1 for the
hyperparameters, whereas more specific and effective pri-
ors can be used when previous optimization results are
available.

As suggested by Gelman [45], we apply an independent
log-uniform prior to each hyperparameter,

P(θ i) ∼ logU(−∞, +∞), i = 1, 2, . . . , D + 3,
(24)

which is an improper prior, but practically leads to a
proper posterior after checking that

∫
p(θ | X , y) dθ is

finite. How the optimization performance is assisted by

or compromised by various hyperpriors is demonstrated in
Sec. V.
b. Likelihood functions. In BO the likelihood is the joint
probability of the observations given values of a set of
hyperparameters, and it is also called marginal likelihood
since we marginalize over the function values f, i.e.,

L(θ | X , y) = p(y | X , θ) =
∫

p(y | f, X , θ)p(f | X , θ) df,

(25)

where the prior p(f | X , θ) and the likelihood p(y | f, X , θ)

are defined in Eqs. (14) and (15), respectively. Performing
the integration yields the likelihood in logarithmic form:

log[p(y | X , θ)] = −1
2
(y − m0)

�K−1
n (y − m0)

− 1
2

log |Kn| − D
2

log 2π . (26)

c. Posterior distribution of hyperparameters. Log transfor-
mation from both sides of Eq. (23) yields

log p(θ | X , y) = log p(y | X , θ)

+ log p(θ)− log p(y | X ), (27)

where p(y | X ) = ∫
p(y | X , θ)p(θ) dθ is a normalization

constant that usually does not need to be determined.

d. Posterior sampling of hyperparameters using Bayesian
MCMC. In statistics, Bayesian MCMC refers to the
algorithm drawing samples from the joint posterior distri-
bution of hyperparameters [in our case Eq. (27)] without
explicit calculation of the distribution. Typical choices of
MCMC samplers include the Metropolis-Hasting sampler
[46], Gibbs sampler [47], etc., which can be very effi-
cient to draw samples from most multivariate distributions,
especially when Hamiltonian Monte Carlo is involved,
despite tuning being required. Here we use the slice sam-
pler proposed by Neal [48], which performs well with
minimal tuning and can be easily extended for parallel
chaining purposes.

B. Proposal of promising candidates for exact
evaluation

1. Acquisition function

Given the GPR proxy and plausible hyperparameter set-
tings inferred using Bayesian MCMC, we could naively
query for the most promising candidate by identifying the
global minimizer of the predictive mean, i.e., Eq. (20).
The candidate selection criteria, also known as acquisi-
tion functions, take both value information and uncertainty
information into consideration.
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There are a variety of acquisition functions such as EI
[49], upper confidence bound [50], entropy search [51]
for sequential BO, and multistep EI [52], Kriging believer
[53], local-penalization [54] for parallel BO. Since we
evaluate one candidate at each iteration, we employ EI
as our acquisition function since it exhibits good proper-
ties, such as continuity, integrability, and differentiability;
meanwhile there is no parameter for manual tuning.

In minimization problems, EI acquisition function (aEI)

as a function of x∗ is defined as the amount of improvement
that the evaluation of a candidate is expected to induce, i.e.,

aEI(x∗) =
∫ y(x−)

−∞
[y(x−) − u]p(u) du, (28)

where x− is the current best observed candidate in Dobs and
the shorthand symbol, and the Gaussian-distributed vari-
able u = y∗ | X , y, x∗, θ is given by Eq. (20). Equations
(20) and (28) yield

EI(x∗ | X , y, θ) = [y(x−) − μ(x∗)]�
(

y(x−) − μ(x∗)
σ (x∗)

)

+ σ(x∗)φ
(

y(x−) − μ(x∗)
σ (x∗)

)
, (29)

where φ(x) and �(x) are the probability density function
(PDF) and cumulative distribution function (CDF) of the
standard normal distribution, respectively. For illustrative
purposes, we show in Fig. 3 a one-dimensional example
demonstrating the calculation of EI.

2. Multimodal optimization of integrated EI

Since we adopt a fully Bayesian treatment on hyperpa-
rameters, the prediction y is expressed as the expectation
of y∗ over the posterior distribution of θ , i.e., the weighted
average of an ensemble of models,

p(y∗ | X , y, X ∗) = Eθ (y∗, θ | X , y, X ∗)

=
∫

p(y∗ | X , y, X ∗, θ)p(θ | X , y) dθ

=
ns∑

i=1

p(y∗ | X , y, X ∗, θ i), (30)

where ns is the number of hyperparameter samples drawn
using Bayesian MCMC. Similarly, Srinivas et al. [55]
pointed out that EI should also be calculated as the expec-
tation over the posterior distribution of hyperparameters,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

0.0

0.1

0.2

0.3

0.4

FIG. 3. Illustration of GPR (main axis) and EI (secondary axis)
in a minimization problem. EI is high where the predictive value
is low (exploitation) and where the uncertainty is high (explo-
ration). The four peaks on the EI plot indicate the four local
maxima of EI. How EI is calculated at the four locations is also
displayed: the horizontal red line indicates the minimum value at
the current iteration and the purple line indicates the probability
density distribution of the predictive mean given x, μ, and σ . The
shaded purple region indicates the distribution of the possible
improvement at that location, the integral of which is precisely
EI.

i.e.,

aEI(x∗ | X , y) = Eθ [aEI(x∗, θ | X , y)]

=
∫

aEI(x∗ | X , y, θ)p(θ | X , y) dθ

=
ns∑

i=1

aEI(x∗ | X , y, θ i), (31)

which is also referred as integrated EI acquisition function
(aiEI). Mathematically, the maximization of the integrated
EI can be written as

maximize aiEI(x∗ | X , y), subject to x∗ ∈ X . (32)

a. Partitioning the solution space. The expectation
aiEI(x∗ | X , y) incorporates an ensemble of regression
models and its topography is rather complex and strongly
multimodal, necessitating broader exploration in X so that
the global optimal solution is covered. Ideally, we only
need to identify the global maximizer of Eq. (31); how-
ever, in the topography of the noise-corrupted, observed
objective function, a global solution may be obscured by
multiple local solutions, such that not only the global opti-
mal solution but also local optimal solutions need to be
considered. Accordingly, we develop a subroutine for the
proposal of the promising candidates for exact evaluation
based on SSP; see Fig. 4.
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FIG. 4. Illustration of the subroutine searching for promising
candidates by partitioning the solution space. GSP and LSP indi-
cate the global solution partition and local solution partition,
respectively, UP indicates the unique partition, _PSO indicates
the solution is obtained using SL PSO, _R indicates the result is
refined by L-BFGS-B.

Using the L-BFGS-B optimization algorithm and n0
candidates in the solution space X as starting guesses,
local optimal solutions, denoted as LSi, i = 1, 2, . . . , n0,
are identified; the global solution found by SL PSO but
then refined by L-BFGS-B is denoted as GS_PSO_R.

Since we use a gradient-based optimizer, some starting
guesses may end up with the same local optimizer of Eq.
(32). By mapping the start position and end position of the
candidates before and after the L-BFGS-B optimization
algorithm is applied, we can partition the solution space
X into various UPs, comprising a global solution partition
and N0 local solution partitions (N0 < n0). There is a local
maximizer of integrated EI for each UP, referred to as xopt,

altogether forming the proposal set

Dprop = {(xopt,j , yopt,j ) | j = 1, 2, . . . , N0 + 1}, (33)

where yopt,j is the local optimum value for xopt,j . The set
Dprop is then sorted in descending order of yopt,j . Enu-
merating from the top of the list, we search for the first
xopt,j that satisfies the condition that, for all xi ∈ Dobs, i =
1, 2, . . . , n,

Eθ [‖�−1(xopt,j − xi)‖2] ≥ d0, (34)

where d0 is a predefined distance threshold. Equation (34)
is indeed a safe guard to prevent the proposal of a candidate
that is too close to the previously evaluated candidates.
Employing the L-BFGS-B optimization and SL-PSO algo-
rithms together will guarantee that both the global optimal
solution and major local optimal solutions are covered; see
the detailed explanation given below.

b. The L-BGFS-B optimization algorithm. The L-BFGS-B
is a quasi-Newton method of which the inverse Hessian
matrix of the objective function is updated using the first-
derivative information. We denote the global maximizer
and multiple local maximizers of integrated EI obtained
using L-BFGS-B as

xBFGS = argmax
x∗∈X

aiEI(x∗|X , y). (35)

L-BFGS-B is adopted for the following reasons [56].

(a) It maintains the inverse Hessian implicitly using
the first-derivative information as several vector pairs so
that the Hessian vector product can be performed as inner
products and vector summation, making it very efficient in
terms of both storage and computation [22]. Computation
of the first derivative is described below.

(b) Instead of saving the full n × n inverse Hessian
approximation, it saves only the several most recent vec-
tors in the interest of saving storage and speeding up
computation while maintaining a good rate of conver-
gence.

One of the practical challenges is the computation of
derivatives of aEI with respect to x∗. Using the chain rule,
the derivative of aEI[μ(x∗), σ(x∗)] with respect to x∗ is
calculated as

daEI

dx∗ = ∂aEI

∂μ

dμ

dx∗ + ∂aEI

∂σ

dσ

dx∗ , (36)

where the partial derivatives of aEI with respect to μ(x∗)
and σ(x∗) can be calculated using Eq. (29) as

∂aEI(μ, σ)

∂μ
= −�(z0), (37)
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∂aEI(μ, σ)

∂σ
= φ(z0), (38)

with

z0 = fmin − μ

σ
. (39)

The derivatives of μ and σ with respect to x∗ can be
derived using Eqs. (19) and (20):

dμ

∂x∗ = 2�−1(X − x∗ · 1){Kf (X , x∗)

� [Kn(X , X )−1(y − m0)]}, (40)

dσ

∂x∗ = −2�−1(X − x∗ · 1){Kf (X , x∗)

� [Kn(X , X )−1Kf (X , x∗)]}. (41)

A detailed description of the overall procedure of L-BFGS-
B comprising determination of the active set and subspace
maximization can be found in Refs. [56,57].

c. The social-learning particle swarm optimization. Orig-
inally proposed by Kennedy, the particle swarm opti-
mization is a population-based evolutionary optimization
technique that minimizes the objective function by iter-
atively improving candidate solutions [58]. The SL-PSO
algorithm, in which particles learn and imitate the behav-
iors of the better individuals in the whole population
instead of learning from a single best particle, possesses
the following advantages.

(a) Early convergence to local optima is resolved with
exploration ability improved.

(b) A sophisticated dimensional-dependent control of
swarm size, learning rate, etc. makes this algorithm scal-
able to both low-dimensional and high-dimensional prob-
lems.

Similarly, we denote the global maximizer of integrated EI
obtained using SL PSO as

xSL PSO = argmax
x∗∈X

aiEI
(
x∗|X , y

)
. (42)

Description of the SL-PSO algorithm, as well as the
detailed implementation such as termination, scalability,
the trade-off between exploration and exploitation, can be
found in Ref. [21].

The progression of BO for the multimodal objective
function over two iterations is illustrated in Fig. 5 for an
example problem with a single unknown parameter. BO
starts with six observed candidates. At each iteration, aEI

(a)
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Step 1

Step 2
(b)

FIG. 5. Illustration of two consecutive steps using the ISW to
find global and local minima of the designed one-dimensional
objective function. GP mean and GP variance are calculated
using Eq. (18). At each step a new candidate is proposed by
maximization of EI (green line, right axis).

is maximized to propose the most promising candidate.
The GP proxy is then updated, getting closer to the true
but unknown objective function, and the whole process is
repeated. Note that the proposed candidate at step 2, also
as the maximizer of aEI, is extremely close to the global
minimum of the true but unknown objective function.

C. Solution analysis

In the ISW, new candidates are proposed and evalu-
ated sequentially until the optimization budget is depleted.
As mentioned in Sec. I, in the topography of the noise-
corrupted, observed objective function a global solu-
tion may be obscured by multiple local solutions since
relaxation decays mt,exp and corresponding distributions
sexp(T2) are intrinsically subject to noise. As a result, we
create a pool of candidates to cover most feasible solu-
tions, comprising a global optimal solution and major
local optimal solutions, and then check for their physical
plausibility. The multimodal GPR proxy for the objective
function is analytically calculated with all UPs identified
using SSP, with all candidates clustered to the nearest UP
by checking which UP they end up with.

Figure 6 demonstrates the clustering results follow-
ing successful identification of the global minimum; see
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FIG. 6. In step 3, three UPs and the corresponding minima,
i.e., local minimum 1 (LM 1) in UP 1 (LSP 1), global minimum
(GM) in UP 2 (GSP), and local minimum 3 (LM 3) in UP 3 (LSP
2), colored orange, green, and brown, respectively, are identi-
fied using SSP. Of all observations, LMs are colored in denser
colors. LM 2 will be proposed for evaluation in the next itera-
tion. Hyperparameters and the GPR proxy are updated whenever
a new candidate is evaluated.

Fig. 5(b). Eight candidates are clustered into three UPs.
In this toy example, the ISW identifies all three UPs and
three local optima (in this case, three local minima, or
three LMs) using only four additional FEs. After cluster-
ization, all LMs are checked against criteria of physical
validity, and solutions that do not pass the plausibility test
are removed.

IV. RESULTS FOR THE INVERSE PROBLEM

A. Determination of three physical quantities: ρq, T2e,c,
and De,c at SNR = 100

Consider the optimization problem of NMR T2 relax-
ation in Bentheimer sandstone with three unknown phys-
ical parameters (D = 3): the discrete surface relaxivity of
quartz ρq, the effective transverse relaxation time T2e,c, and
the effective diffusion coefficient De,c in clay regions. Since
the latter two decision variables usually vary across many
orders of magnitudes, we take the base-10 logarithm of
T2e and De as log10(T2e,c/s) and log10[De,c/(μm2/s)]. The
search for feasible solutions is constrained by the solu-
tion space X specified in Table I. The solution space X
is rather large and even a coarse discretization leads to
17 × 11 × 13 = 2431 expensive NMR simulations. The
budget of FEs is set to 40D = 120, with the initial 4D = 12
FEs spent on random sampling of the parameter space.

1. Progression of optimization

Figure 7 illustrates the selection of the most promis-
ing candidate for evaluation at the 67th and 114th steps,
balancing both exploration and exploitation. In each plot
there are five isosurfaces, corresponding to the minimum

TABLE I. The three physical parameters of interest and the
discrete three-dimensional solution space X resulting in 2431
combinations of physical parameters. The discretization is also
used in Sec. V.

Parameters Abbreviation Min Max Discretization

ρquartz
/(μm2/s)

ρq 0 16 0,1,. . . ,16

log10
(T2e,c/s)

log10 T2e,c −3 0 −3.0, −2.7, . . . , 0.0

log10[De,c/

(μm2/s)]
log10 De,c −6.28 −4 −6.4, −6.2, . . . , −4.0

(or maximum, speaking of integrated EI) 0.01%, 0.1%,
1%, 3%, and 5% of the values of that scalar field. The cor-
relations among the three physical parameters are plotted
in the ρq-log10 T2e,c, ρq-log10 De,c, and log10 T2e,c-log10 De,c
planes. The GP mean depicts the locations of UPs and the
identified LMs together with other feasible solutions at that
step. In the GP-mean plot, the long spindle-shaped corre-
lations between each pair of parameter highlight a region
of solutions providing a reasonably good fit. For better
demonstration, for GP-mean, GP-variance plots, only the
minimum 5% are shown on the isosurface plot, the cor-
relation plot, and the colormap; for the integrated EI plot,
only the maximum 5% are shown. Practically, good solu-
tions are usually found within the region defined by the
top 0.1% fitness value. Moreover, correlations between the
ρq-log10 T2e,c and ρq-log10 De,c pairs are positive, while the
correlation between the log10 T2e,c-log10 De,c pair is nega-
tive. As expected, from the GP-variance plot we observe
that frequently sampled domain regions exhibit smaller
variance as compared to regions that are seldom sam-
pled; the unsampled region with larger uncertainties is
worthwhile exploring.

At step 67, from the integrated EI plot we observe that
the proposed candidate (5.774, −2.250, 5.316), the global
maximizer of the integrated EI at the 67th step, turns out
to be the global minimizer of the GP mean since both low
GP mean and high GP variance are found in this region.
Moreover, this candidate is found to be the solution with
the lowest fitness value of all 120 evaluations.

At step 114, we observe from the GP-mean plot that
the region in which good solutions are expected to be
found narrowed; meanwhile, at this step the single fea-
sible region shown in the GP mean and integrated EI of
Fig. 7 starts to split into two narrower regions, respec-
tively, revealing the multimodal nature of the topography
of the true but unknown objective function; this is also
clear from the correlation plot in the ρq-log10 De,c plane.
Indeed, the split of the feasible region containing good
solutions is more obvious at step 120, as will be dis-
played later. The most promising candidate determined
at this step, i.e., (6.032, −2.807, −4.796), is the solution
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FIG. 7. Isosurfaces of the parameter space. (a) predictive GP mean, step 67; (b) predictive GP variance, step 67; (c) GP integrated EI,
step 67; (d) predictive GP mean, step 114; (e) predictive GP variance, step 114; (f) GP integrated EI, step 114. Five levels of isosurfaces
are displayed, corresponding to the minimum (mean and variance) or maximum (integrated EI) 0.01%, 0.1%, 1%, 3%, and 5% of the
values of that scalar field. The absolute values corresponding to these isosurface levels are shown on the colorbar. The correlations
among physical parameters evaluated at the best candidate are shown in the ρq-log10 T2e,c, ρq-log10 De,c, and log10 T2e,c-log10 De,c
planes. The contour plot and the isosurface plot share the same colorbar.

with the fourth lowest fitness value, as will be shown
later.

Figure 8 displays the trace of the fitness value and mini-
mum fitness value on the log scale. Huge fluctuations in
the fitness value suggest that during the search process
the optimization algorithm switches between exploration
and exploitation. The minimum fitness value decreases sig-
nificantly by two orders of magnitude during the first 70
FEs. Over the next 50 FEs there is little reduction in the
minimum fitness value; however, the fitness value sug-
gests that more candidates explored the promising region,
indicating that the next evaluation step is increasingly wel
l guided.

Figure 9 compares the posterior distribution of hyper-
parameters and the correlations among hyperparameters at
the 67th and 114th steps. It is clear that inference of σ 2

n
is much more uncertain than other hyperparameters since
inference of all hyperparameters is similar when compar-
ing the two steps except for σ 2

n whose PDF still undergoes
big changes. At step 114 all inferred hyperparameters are
approximately Gaussian distributed with new mean and
standard deviation values compared with step 67. The
search process in the later stage becomes well guided given
more accurate inference on hyperparameters due to more
FEs involved. Results at the final step—step 120—will be
discussed in the following subsection.

2. Optimization results

We begin with the analysis of the inference on
hyperparameters. Figure 10 shows the marginal distribution
and the Gaussian fit for the six hyperparameters inferred at
the final optimization step, i.e., step 120. All hyperparam-
eters θ follow Gaussian distributions very well, indicating
that variables θ ′

i follow base-10 lognormal distributions,

20 40 60 80 100 120

10–3

10–2

10–1

100 Minimum fitness value

FIG. 8. Trace of the fitness value and minimum fitness value
for the decay of interest at SNR = 100. Candidates with low fit-
ness values are identified at step 67 (rankings first) and step 114
(rankings fourth). The horizontal axis starts at 13 since the first
12 candidates are preevaluated without using the ISW to avoid a
cold start.
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FIG. 9. The comparison of the correlation plots between each
pair of hyperparameters at the 67th and 114th steps. The panels
along the diagonal show histograms of 20 000 samples for the six
hyperparameters θ drawn using Bayesian MCMC after a burn-in
period, and the off-diagonal panels display correlations between
each pair of hyperparameters.

i.e.,

θ ′
i = 10μθi+σθi Z , i = 1, 2, D + 1, . . . , D + 3, (43)

where Z is the standard normal variable, such that the
expectation value of the hyperparameters E(θ ′

i ) can be
calculated using the equation

E(θ ′
i ) = eμθi ln(10)+σ 2

θi
[ln(10)]2/2, (44)

where μθi and σθi are the fitted mean and standard devia-
tion of the variable’s base-10 logarithm.

In Table II, the E(θ ′) column demonstrates different
sensitivities of the fitness value against three physical
quantities: in terms of variability in the fitness value, a
change of 7.142 in ρq would be equivalent to a change of
1.473 in log10 T2e,c or a change of 1.850 in log10 De,c. This
relationship is due to the application of ARD, as discussed
in Sec. III. The pairwise correlation is readily identified by
the isosurface plots given in Figs. 7 and 11. In consider-
ation of Bayesian optimization stronger correlations lead
to faster and more confident inference of hyperparameters,
which makes the proposal of new candidates increasingly
more effective. In consideration of physics, the correlation
and underlying length scales derived using ARD (Table II)
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FIG. 10. Normal distribution fitted to the marginal distribution
of all six hyperparameters inferred at step 120. The three length
scales are plotted together for easier comparison of the kurtosis.
Either horizontal axes or vertical axes are displayed in the same
scale and the histograms are normalized so that the integral of the
bar area is 1. The mean, standard deviation (SD), and expectation
for each hyperparameter are given in Table II.

provide a confidence region within which the identified
values are considered valid.

Although correlations between physical quantities are
important, we do not need to manually feed such informa-
tion to the ISW. The ISW tends to recover the correlation
itself by constantly sampling and evaluating candidates in
the solution domain to improve inference of the hyper-
parameters. As an example, we can see from Fig. 7 that
the correlation gradually crystallizes from step 67 to step
114. By contrast, in Sec. V we show that the ISW fed with
wrong correlation information completely failed to locate
both local and global minima.

By using SSP (see Fig. 4), we identified two UPs in the
given parameter space, as shown in Fig. 11. Although the
two UPs appear very close to each other, they are inde-
pendent UPs and cannot be merged. From each UP we
propose the top three candidates; see Fig. 11 and Table III.

TABLE II. Details of normal distributions fitted to six hyper-
parameters corresponding to Fig. 10. All hyperparameters θ are
inferred Gaussian distributed.

θ mean(θ ) SD(θ ) θ ′
E(θ ′)

log10(σ
2
f ) 0.277 0.237 σ 2

f 2.195

log10(σ
2
n ) −6.254 0.102 σ 2

n 5.723 × 10−7

m0 1.336 0.601 m0 1.336
log10(l

2
1) 1.676 0.165 l21 7.1422

log10(l
2
2) 0.331 0.069 l22 1.4732

log10(l
2
3) 0.526 0.083 l23 1.8502
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log
10 (T

2e,c /s)

LM 1 opt LM 2 opt

FIG. 11. Distribution of the two identified UPs at step 120 with
the top three solutions from each UP. Five isosurface levels are
displayed, corresponding to the minimum 0.01%, 0.1%, 1%, 3%,
and 5% of the GP mean. Colored circles and crosses shown in the
ρ-T2, ρ-De, and T2-De planes are projections of the candidates.
Details of plotted candidates are shown in Table III.

In each UP, the top three candidates with their projections
on the three planes are noted as circles, with LMs plotted
as crosses. As we have discussed before that the single UP
splits into two UPs from step 114, it becomes more obvious
at step 120. Note that ρq is the identified discrete surface
relaxivity of quartz; actual continuum values would be a
factor A larger, as discussed previously.

The corresponding T2 distributions are shown in Fig. 12.
While both predicted distributions are closely match-
ing a reference, the application of physical constraints
is required to determine the feasibility of each UP and

TABLE III. The top three candidates in terms of fitness value
(FV) within each UP, identified using the ISW. Listed candidates
are displayed in Fig. 11. UPs are sorted in ascending order or
values of LMs. Numbers in the Rank column indicate the rank-
ings of the solutions out of 120 evaluated candidates in terms of
their fitness values, whereas numbers in the Step column indicate
at which step those solutions are proposed. The T2 distributions
corresponding to both LMs are shown in Fig. 12. Note that ρq is
the lattice-based discrete surface relaxivity of quartz.

UP Rank ρq log10 T2e,c log10 De,c FV Step

1 1 5.774 −2.250 −5.316 6.547 × 10−4 67
2 5.836 −2.193 −5.346 7.259 × 10−4 96
3 5.832 −2.261 −5.291 7.854 × 10−4 64

2 4 6.032 −2.807 −4.796 8.209 × 10−4 114
20 5.892 −2.807 −4.842 1.515 × 10−3 119
28 4.805 −3.000 −5.123 2.052 × 10−3 52

10–4 10–3 10–2 10–1 100 101
0.0

0.5

1.0

1.5

2.0

2.5

rank 1
rank 4

FIG. 12. The comparison of fit for the two LMs from the two
UPs (see also Table III).

each solution. Mathematical and physical validity will be
checked against each solution listed in Table III.

(a) The active boundaries. Solutions reaching the lower
bound of the given solution space are indeed less practical
as those values could be even more unrealistic if bounds
are removed, not to mention we deliberately designed a
large solution domain to overcome violation of the bound-
ary. As a result, the solution at step 52 is excluded for
subsequent assessment.

(b) The diffusion coefficient. The self-diffusion coeffi-
cient of water at 25 ◦C is 2.3 × 10−5 μm2/s−1), which
corresponds to the base-10 logarithm −4.6021. As a result,
physically valid candidates should satisfy log10 De,c <

−4.6021. No violation of this item is identified.

The optimality of UP 1 and UP 2 is considered in the
following context.

(a) The (mean) fitness value and rankings. Theoreti-
cally, the solution with the lowest fitness value is the
optimum solution in this minimization problem. Under
such considerations, UP 1 is superior to UP 2 since both
fitness values and rankings of the proposed solutions in UP
1 are better than solutions in UP 2. Meanwhile, out of the
top 20 candidates only two are from UP 2.

(b) The shape of the T2 distribution. The shape of the T2
distribution is also a critical criterion in the identification
of the optimal solution. Taking the 67th (best solution in
UP 1) and the 114th (best solution in UP 2) for example,
the 114th solution exhibits greater amplitude in the very
short-time component, which is impractical as it displays
features that the reference experimental T2 distribution
does not possess. Indeed, such a misfit is due to nonuni-
form sensitivity against the 256 T2 bins: since we are
minimizing the T2 distribution difference in the least square
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FIG. 13. The comparison of fit of the four LMs out of 2431
candidates (see also Table IV).

sense, not all differences are equally captured, e.g., the fit-
ness value is more sensitive to a 10% change in the T2 main
(long-time component) peak than the T2 minor (short-time
component) peak.

After comparison of best candidates to the complete set of
mathematical and physical criteria and constraints, candi-
date 67 is found to be the best overall solution. In situations
when multiple UPs have solutions with similar rankings
and pass plausibility tests, identification of the best solu-
tion requires a new round of optimization in a solution
space further constrained by the domain covered by plau-
sible UPs. Given the inferred values of hyperparameters,
more informative prior distributions for hyperparameters
can be used to properly guide the formulation of GPR,
thus making the subsequent search more efficient. Com-
parative results of the noninformative priors, informative
priors, and wrong priors for hyperparameters in terms of
the global and local search ability can be found in Sec. V.

3. Comparison with grid search

To further understand the global and local search ability
of the ISW, we performed an exhaustive search in the solu-
tion space X using grid search, with the discretization of
X specified in Table I. Inversion of all simulated decays
arising from exact evaluation of 2431 combinations of
physical parameters is performed using the same settings.
Four feasible UPs and LMs identified by performing GPR
on all 2431 candidates on the grid are displayed in Table IV
and Fig. 13. Comparing fitness values of the candidates in
Tables IV and III we conclude that by using the ISW we
are able to identify solutions with much lower fitness value
but with significantly less computation resources.

By inference of hyperparameters using maximization
of marginal likelihood, we find that the “ground truth”
for the noise hyperparameter is σ 2

n = 3.223 × 10−7. As a

TABLE IV. Four feasible UPs and LMs identified by perform-
ing GPR on all 2431 candidates on the grid. The T2 distributions
corresponding to all four LMs are shown in Fig. 13. Note that ρq
is the lattice-based discrete surface relaxivity of quartz.

UP Rank ρq log10 T2e,c log10 De,c FV

1 1 7 −1.5 −5.8 1.728 × 10−3

2 2 7 −2.4 −5.0 1.846 × 10−3

3 5 6 −3.0 −4.8 2.193 × 10−3

4 23 5 −1.8 −6.2 4.136 × 10−3

result, we confirm that the noise variance σ 2
n inferred dur-

ing optimization using the ISW is also inferred correctly,
avoiding overfit or underfit regressions, an issue that will
be discussed in Sec. V.

4. CPU time consumption

All simulations and optimizations have been carried
out on the research supercomputer Gadi of the National
Computational Infrastructure (Canberra, Australia) built
on Intel Xeon Platinum 8274 3.20 GHz CPUs. The NMR
T2-CPMG simulation code is implemented in FORTRAN 95,
and the ISW code is implemented in MATLAB® 2019b.

The NMR forward simulation is conducted on a 10003

domain with voxel size ε = 2.88 μm and subgrid resolu-
tion εw = ε/ls, paralleled on eight cores using OpenMPI
with 5000 random walkers per core. Under such settings,
the wall time of the simulation depends on the value of
De,c and typically takes between 10 to 15 min. For three-
dimensional problems where we used 120 FEs, the ISW is
expected to complete in 34 ± 2 h.

During the optimization using the ISW, more than 90%
of the computational resources are consumed in the eval-
uation of expensive NMR simulations. From the remain-
ing 10% required for the “next candidate” search, about
half is spent on drawing samples of hyperparameters θ

using Bayesian MCMC and another half spent on the
maximization of integrated EI using L-BFGS-B. Since
both computations require Cholesky factorization of the
covariance matrix Kn, of which the computational com-
plexity is O(N 3), where N is the ever-growing number
of completed evaluations, we ease the burden of maxi-
mization of aEI(x∗ | X , y) by precalculating and storing the
factorization of Kn within each iteration.

B. Determination of three physical quantities at seven
different SNRs

1. Determining λopt and the effect of noise realizations

As we established in Sec. II discussing the ILT
procedure, λopt trades off stability (smoothness) and
informativeness (resolution). The SNR-dependent value of
λopt is crucial to the stability and correctness of the iden-
tified parameter values. Fortunately, values of λopt can be

054003-16



SOLVING MULTIPHYSICS, MULTIPARAMETER. . . PHYS. REV. APPLIED 15, 054003 (2021)

TABLE V. Summary of λopt for seven log-spaced SNRs.

Number Acquisition time Number
of scans SNR (min) of decays λopt

4 50 12 16 51.20
8 71 24 16 26.12
16 100 48 16 12.80
32 141 96 8 6.54
64 200 192 4 3.20
128 282 384 2 1.64
256 400 768 1 0.80

correctly determined if T2 decays of the same sample over
a range of SNRs are measured.

To determine λopt for the low-SNR decay, we consis-
tently decrease λ until the monitored misfit between T2
distributions of low SNR and high SNR becomes non-
negligible. Table V displays λopt, in which λopt monotoni-
cally decreases with the SNR since ill-posedness of solving
Eq. (10) decreases with increasing SNR, which also coin-
cides with our belief that decays acquired at higher SNRs
are more reliable and trustworthy.

Using this rule, T2 distributions inverted from decays
measured at seven SNRs are depicted in Fig. 14. For
each SNR group, the mean value and standard deviation
averaged over 2 to 16 distributions are displayed. Indeed,
the confidence interval of the short-time T2 component is

(a)
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FIG. 14. Illustration of (a) the mean T2 distributions at seven
SNRs and (b) an enlarged view of the short-time peak. Within
each SNR group, the solid line and shaded area represent the
mean value and confidence interval, respectively, averaged over
2 to 16 distributions, indicated in Table V.
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FIG. 15. Illustration of the representative fits in each SNR
group. Simulated T2 distributions are colored according to which
generalized unique partition (GUP) they belong to. Fitness val-
ues and identified parameter values corresponding to each T2
distribution are listed in Table VI.

around 0.5% of the maximum amplitude of the s(T2) mean.
Owing to such variations, a good fit to one decay is usually
not a good fit to the other, so that identified parameter val-
ues are not only dependent on the SNR but also realizations
of noise. As a result, there are still some uncertainties in the
determination of the physical quantities from the optimiza-
tion result of a single decay, while averaging results from
multiple decays will help to reduce such uncertainties.

2. The effect of the SNR

Consider the effect of the SNR of the relaxation data
on the parameter identification using the ISW. We mini-
mize the effect of noise by reporting the mean identified
parameter values. For each SNR, the number of repeti-
tions and configurations of λopt are shown in Table V. For
each SNR group, we show the optimization result for one
decay, demonstrating all LMs and the corresponding phys-
ical parameter values in Fig. 15 and Table VI, respectively.
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TABLE VI. The fitness values and identified physical parame-
ter values corresponding to the fittings in Fig. 15.

SNR GUP R FV p1a p2a p3a Ind

50 GUP 3 1 5.428 × 10−4 6.510 −2.060 −5.393 68
GUP 2 3 6.611 × 10−4 6.647 −1.698 −5.749 99
GUP 6 4 6.685 × 10−4 6.430 −3.000 −4.537 77

71 GUP 3 1 8.828 × 10−4 5.683 −2.468 −5.264 89
GUP 6 2 1.075 × 10−3 6.042 −3.000 −4.580 117

100 GUP 3 1 6.547 × 10−4 5.773 −2.250 −5.3164 67
GUP 5 4 8.209 × 10−4 6.032 −2.807 −4.7960 114

141 GUP 3 1 7.880 × 10−4 4.829 −2.398 −5.500 101
GUP 4 5 1.201 × 10−3 4.961 −3.000 −4.937 60

200 GUP 3 1 8.839 × 10−4 4.928 −2.484 −5.394 110
GUP 4 12 2.055 × 10−3 5.063 −3.000 −4.885 84

282 GUP 3 1 1.345 × 10−3 6.419 −2.254 −5.202 72
GUP 4 18 3.748 × 10−3 5.400 −3.000 −4.870 87

400 GUP 3 1 2.576 × 10−3 6.264 −1.977 −5.426 108
GUP 5 5 3.836 × 10−3 5.415 −3.000 −4.799 76

aParameter 1 (p1), ρq; p2, log10 T2e,c; p3, log10 De,c.

We illustrate the resultant match of decays at SNR 50 and
SNR 400 on both the linear scale and log-t scale in Fig. 16.

For each of the 63 decays, 120 candidates are clustered
into multiple UPs using L-BFGS-B, resulting in 185 dis-
tinct UPs. UPs with LM rankings below 20 are excluded
from the subsequent evaluation, leaving 139 UPs across
seven SNR groups. Typically, the ISW identifies 2–4 UPs
for each decay, which is advantageous to balance mathe-
matically sound and physically plausible solutions. Using
the linear correlation between each pair of physical param-
eters (Fig. 11), the 139 UPs are categorized as six GUPs
in terms of the value of log10 De,c, as shown in Fig. 17
and Table VII. GUP 1 is excluded for analysis due to its
extremely low occurrence. GUP 6 is also excluded since
its log10 De,c values are too high to be physically valid.

EXP decay, SNR = 50
EXP decay, SNR = 400

EXP decay, SNR = 400

SIM decay, rank 1
SIM decay, rank 1

SIM decay, rank 1

SIM decay, rank 5

SIM decay, rank 5

SIM decay, rank 3
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FIG. 16. Illustration of the decays on both the linear scale and
log scale for low-SNR (50) and high-SNR (400) groups. Decays
are colored according to which GUP they belong to.
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FIG. 17. (a) Illustration of the spatial distribution of the 139
UPs and LMs identified from 63 decays followed by categoriza-
tion of all UPs into six GUPs. Potential correlations between
pairs of physical parameters are shown as projections. (b) The
strongest correlation is found between relaxation and diffusion in
the clay effective phase. Categorization of the six GUPs is based
on the value of log10 De,c, which can be found in Table VII. Here
SNR = 50 (•), 71 (�), 100 (∗), 141 (+), 200 (×), 282 (�), and
400 (�) are collectively demonstrated. The 139 LMs are colored
according to which GUP they belong to.

For each SNR group, it is obvious that the six GUPs are
scattered along a single line.

The ISW demonstrated capacity to reduce the fitness
values across all SNR groups by two orders of magni-
tude at around 90 steps. Figure 18 displays the minimum
fitness value for each SNR group, with confidence inter-
vals shaded the same color as the lines. It is also evident
from Table VI that the majority of the feasible solutions
are found before step 90.

Under each SNR, the mean fitness values and the mean
parameter values for each GUP averaged over 2 to 16
decays are reported in Table VIII; similarly, ρq is the
identified discrete surface relaxivity of quartz, and actual
continuum values ρ�

q would be a factor A larger, as dis-
cussed previously. From Table VIII we observe that from
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TABLE VII. Categorization of the 139 UPs into six GUPs. Min
and Max indicate bin edges and each bin includes the left edge,
but does not include the right edge, except for the last bin that
includes both edges. The Sum indicates the number of UPs in
that SNR group. For SNR groups 50, 71, 100, 141, GUPs with
highest occurrences are colored in orange.

Generalized UP Min Max Number of UPs

50 71 100 141 200 282 400

GUP 1 −6.3 −6.2 · · · 1 · · · · · · · · · · · · · · ·
GUP 2 −6.2 −5.7 11 2 6 1 · · · · · · · · ·
GUP 3 −5.7 −5.2 4 11 10 6 2 3 1
GUP 4 −5.2 −4.8 6 7 9 6 4 1 · · ·
GUP 5 −4.8 −4.6 5 8 7 1 2 · · · 1
GUP 6 −4.6 −4 12 6 5 1 · · · · · · · · ·
Sum 38 35 37 15 8 4 2

50 to 400, the SNR does affect the optimality of a sin-
gle solution or UP since the topography of the objective
function is affected. However, the optimality of GUP is
maintained. It is also clear from Table VIII and Fig. 19 that
both identified mean parameter and mean fitness values
are SNR dependent, a feature that is expected since higher
SNRs lead to smaller λopt and associated more versatile T2
distributions.

Figure 19 displays comparisons of fitness values and
identified physical parameter values of the four GUPs at
seven SNRs. The correlations between the physical param-
eters we discovered in Sec. IV are much more obvious
here: in all SNR groups, log10 T2e,c is anticorrelated to
log10 De,c. Expectedly, within each GUP, identified values
are dependent on the SNR: there is approximately a 7%
decrease in ρq within the adjacent SNR groups in all GUPs,
which is also true for log10 T2e,c but with a smaller rate
of decrease. By contrast, log10 De,c almost keeps constant
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FIG. 18. Minimum fitness values across seven SNR groups.
Confidence intervals for the first three SNR groups with 16
decays are displayed as shaded areas. The first 12 steps are
not displayed (same fixed preevaluated candidates without using
the ISW). The zig-zag shapes are due to a limited number of
realizations of decay in high-SNR groups.

TABLE VIII. The results of the mean fitness value (MFV) and
the mean parameter value (MPV) at the four physically valid
GUPs for seven groups of decays. For each SNR, GUPs with
minimum fitness values are colored in blue. Note that ρq is the
lattice-based discrete surface relaxivity of quartz.

MPV

SNR GUP MFV ρq log10 T2e,c log10 De,c

50 GUP 2 6.143 × 10−4 6.489 −1.584 −5.882
GUP 3 5.150 × 10−4 6.549 −2.119 −5.346
GUP 4 7.308 × 10−4 6.282 −2.600 −5.007
GUP 5 7.938 × 10−4 6.266 −2.921 −4.684

71 GUP 2 1.249 × 10−3 6.532 −1.492 −5.886
GUP 3 7.326 × 10−4 6.151 −2.114 −5.432
GUP 4 7.879 × 10−4 6.427 −2.482 −5.029
GUP 5 9.879 × 10−4 6.125 −2.903 −4.727

100 GUP 2 1.217 × 10−3 5.874 −1.639 −5.932
GUP 3 1.088 × 10−3 5.843 −2.146 −5.460
GUP 4 1.195 × 10−3 5.850 −2.153 −5.448
GUP 5 1.306 × 10−3 5.641 −2.753 −4.973

141 GUP 2 1.669 × 10−3 5.832 −2.957 −4.700
GUP 3 1.106 × 10−3 5.400 −2.249 −5.466
GUP 4 1.612 × 10−3 5.774 −2.691 −5.017
GUP 5 1.421 × 10−3 6.699 −2.695 −4.692

200 GUP 3 1.249 × 10−3 5.283 −2.391 −5.402
GUP 4 1.934 × 10−3 5.590 −2.757 −4.966
GUP 5 1.479 × 10−3 6.919 −2.611 −4.680

282 GUP 3 1.979 × 10−3 5.957 −2.184 −5.378
GUP 4 3.748 × 10−3 5.400 −3.000 −4.870

400 GUP 3 2.576 × 10−3 6.264 −1.977 −5.426
GUP 5 3.836 × 10−3 5.415 −3.000 −4.799

within each SNR group, which is as expected since this is
how we defined the six GUPs.

Despite significant changes in the shape of T2 distribu-
tions against SNRs, observing that, for all SNR groups,
solutions from GUP 3 are physically plausible, and pos-
sess the lowest fitness value and the least false features, we
conclude that, for the specific Bentheimer sandstone sam-
ple we use, GUP 3 is superior to other GUPs. This is also
true for the optimization result of a single decay, as demon-
strated in Table VI that the solutions in GUP 3 always
possess the lowest fitness value and are most physically
plausible.

V. SENSITIVITY ANALYSIS

As we established in Sec. IV when discussing the
progress of optimization, practically, there is much more
uncertainty in the inference of hyperparameter σ 2

n than
other hypers (Fig. 9). Moreover, due to the ill-posed nature
of the ILT, small changes in physical parameter values may
lead to small variations in T2 decay but huge changes in
the T2 distribution after the ILT, making the observations
noisy. As a result, successful identification of all feasible
solutions is strongly dependent on whether the Gaussian
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FIG. 19. The results of comparisons of fitness values and iden-
tified physical parameters of the four local minima at seven SNR
values. Each plot shows four groups of bars, corresponding to
the four GUPs that passed the physical validity test (GUP 1 and
GUP 6 are not shown). Mean and standard deviations are shown
for SNR groups with 16 decays.

process regression captures the true objective function,
especially the noise hyperparameter.

A. Underfit and overfit

To understand what role is played by the noise hyper-
parameter σ 2

n , we display three types of regression model
in Fig. 20: underfit, adequate, and overfit, induced by dif-
ferent hyperparameter configurations. With such a limited
number of observations (i.e., five), the regression could
be conducted in a variety of ways, but we found that
the most likely, adequate configuration of hyperparame-
ters is 20% more probable than the overfit configuration
and more than twice as likely as the underfit configuration;
see Table IX. The overfit model assumes noise-free data
and the regression almost passes every observed candidate,
which naturally leads to a smaller noise variance σ 2

n and
a smaller length scale l1. By contrast, the underfit model
assumes that all observations are noisy observations sam-
pled from a smooth function and it makes no attempt to fit
all candidates precisely. In this context, in the early stage
when either an overfit or underfit model is possible, consid-
eration of a posterior ensemble of models is advantageous
since it is more versatile, adaptive, and accurate.

B. Global and local search ability

Since the topography of the regression is significantly
affected by the choice of hyperparameters, we are curious
about the following question: How does inference on the
GPR hyperparameters affect the physical parameter iden-
tification of the ISW? In this subsection we analyze the
sensitivity of the ISW performance against choices of the
prior distribution on hyperparameters.
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FIG. 20. (a) Overfit and (b) underfit regression for the same
dataset as Fig. 5(a). The hyperparameter settings are shown in
Table IX.

We empirically compare the search ability of the ISW
against five variants of hyperpriors: H6-MCMC and H6-
SX , where X = 1, 2, 3, 4. Detailed descriptions of all five
variants are given in Table X. The four variants of H6-
SX compare the different physical parameter identification
capabilities given different hyperpriors adopted. As dis-
played in Table II, the inferred value is σ 2

n = 5.723 ×
10−7, and by comparing H6-SX with H6-MCMC we know
immediately if the correct prior could speed up the search
process.

Recall from Table IV that after performing GPR using
all 2431 candidates, we find that there are six UPs in the
true objective function but only four are physically valid.

TABLE IX. Details of different configurations of hyperparam-
eters shown in Figs. 20 and 5 with rankings and probabilities.
The Rank column indicates the rankings out of 200 samples of
hyperparameters.

Model log10(σ
2
f ) log10(σ

2
n ) m0 log10(l

2
1) Prob Rank

Adequate −0.800 −5.280 0.784 −1.391 0.0116 1
Overfit −0.851 −12.065 0.724 −1.882 0.0095 6
Underfit −1.538 −0.952 0.839 −0.541 0.0055 37
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TABLE X. Description of the ISW with five variants of hyper-
priors.

Variants Description

H6-MCMC Uniform priors on all hyperparameters θ

H6-S1 Differs from H6-MCMC in that σ 2
n ∼ N (10−2, 0)

H6-S2 Differs from H6-MCMC in that σ 2
n ∼ N (10−4, 0)

H6-S3 Differs from H6-MCMC in that σ 2
n ∼ N (10−6, 0)

H6-S4 Differs from H6-MCMC in that σ 2
n ∼ N (10−8, 0)

Because of the existence of multiple local optima, the abil-
ity to identify not only the global optimal solution but also
(major) local optimal solutions is crucial. To compare such
abilities, we perform the ISW using the same settings as in
Sec. IV testing the effectiveness of the hyperpriors except
that the search is limited to the grid of size 17 × 11 × 13
generated as a finite discretization of the parameter space;
see Table I. During the optimization by the ISW, all pro-
posed candidates are constrained to the nearest candidate
on the grid. The decay under SNR = 100 used in Sec.
IV is used throughout the comparison and each optimiza-
tion problem using the ISW is repeated 128 times using
different random streams.

As is shown in Figs. 21 and 22, due to overestimation
in σ 2

n , the search in H6-S1 is completely biased, leading
to misfit of T2 distributions and very high fitness values as
well as incorrectly identified values of physical quantities.
Furthermore, from Table XI we observe that H6-S1 fails to
identify either GUP 2 (containing the global optimal solu-
tion) or GUP 4 (containing local optimal solutions) in all
128 attempts. In fact, the GPR proxy is underfit owing to
the relatively high value of σ 2

n adopted, and thus providing
incorrect insight into the topography of the true objective
function causing the optimizer to consistently evaluate the
nonpromising region. The poor search ability leads to 0 in
both MC-G and MC-C. In H6-S2 the σ 2

n is slightly better
but is still underfit with compromised capability, reflected
in the low MC-G and MC-C in Table XI and the high
minimum fitness value in Fig. 21.

By contrast, the more appropriately configured H6-S3
and H6-S4 lead to significantly higher MC-G and MC-
C. GUP 2 is identified by H6-S4 102 times and all best
solutions from GUP 2 are the global optimal solution with
rankings equaling 1, while GUP 4 is identified 29 times
with mean rankings of 2.6. The MC-G and MC-C tell us
that, by using the prior σ 2

n ∼ N (10−8, 0), we expect to
identify on average 0.80 global optimal solutions rank-
ing at 1.0 or 1.20 optimal solutions, both global and local,
ranking at 1.35. By comparison, σ 2

n ∼ N (10−6, 0) is less
effective with an inferior ability to identify both the global
optimal solution and local optimal solutions.

Compared with the hyperprior σ 2
n ∼ N (10−8, 0) that

has a greater ability to identify the global optimal solu-
tion but not local optimal solutions, H6-MCMC identifies
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FIG. 21. The mean fitness values for five ISW variants. Means
and standard deviations of the inverse problem using the ISW are
displayed, repeated 128 times but using different random streams.

the GUP 2 at a slightly lower 89 times but GUP 4 at a
significantly higher 112 times. This can be explained by
H6-MCMC employing a probabilistic model involving a
posterior ensemble of regression models, so that the topog-
raphy of the GPR proxy constructed using H6-MCMC is
much more complex than the H6-SX variants. In terms
of the identification ability of the global optimal solu-
tion, σ 2

n ∼ N (10−8, 0) is the most effective prior of all five
variants.

In fact, we only tested five different priors and poten-
tially there are more effective priors with which the MC-G
could be very close to 1. With such priors, the regres-
sion could be adequate from the start, which reduces FEs
spent on exploration and building up the joint distribution
of hyperparameters since it knows the correct distribution
before optimization starts. This suggests that the knowl-
edge learnt in one optimization problem is reusable and

0

2

4

6

8
10–3

0.0

2.0

4.0

6.0

8.0

10.0

12.0

–4.0

–3.0

–2.0

–1.0

–6.5

–6.0

–5.5

–5.0

–4.5

FIG. 22. The comparisons of fitness values and identified
physical parameter values in the four physically valid GUPs
for five ISW variants. Each plot shows four groups of bars
(one for each GUP). Means and standard deviations for the 128
repetitions are displayed.
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TABLE XI. Assessment of the five ISW variants. The mean rankings following the counts specifies the mean rankings of the
solutions found within that GUP. MC-G indicates the mean counts of successful identification of the region containing the global
optimal solution (GUP 2) and MC-C indicates the mean counts of successful identification of the complete region containing both the
global optimal solution and local optimal solutions (GUP 2 and GUP 4), both calculated as GUP counts/number of repetitions (128).
MR-G indicates the mean rankings of the solutions found in GUP 2 and MR-C indicates the mean rankings of the solutions found in
GUP 2 and GUP 4.

Pairs of solution counts and associated mean rankings

GUP Min Max H6-MCMC H6-S1 H6-S2 H6-S3 H6-S4

GUP 1 −Inf −6.2 43 33.0 28 39.2 27 36.7 1 25.0 · · · · · ·
GUP 2 −6.2 −5.7 89 2.4 · · · · · · 12 1.8 75 1.3 102 1.0
GUP 3 −5.7 −5.2 15 22.7 · · · · · · 18 24.4 4 6.5 · · · · · ·
GUP 4 −5.2 −4.8 112 3.4 · · · · · · · · · · · · 41 2.9 29 2.6
GUP 5 −4.8 −4.6 · · · · · · · · · · · · · · · · · · 7 7.9 · · · · · ·
GUP 6 −4.6 Inf 41 15.5 97 144.4 69 30.4 · · · · · · · · · · · ·

Pairs of MC-G 0.70 2.40 0 · · · 0.09 1.80 0.59 1.30 0.80 1.00
and MR-G

Pairs of MC-C 1.57 2.96 0 · · · 0.09 1.80 0.91 1.87 1.02 1.35
and MR-C

transferable to similar problems, which could significantly
save FEs for exploration of a similar parameter space to
speed up the search.

In short, σ 2
n plays a vital role in the global and local

search ability of the ISW in that it controls the topography
of the GPR proxy, which finally affects the physical param-
eter identification capability. Given finished optimization
tasks, a more effective hyperprior can be derived to guide
the search.

VI. DISCUSSION

Determining physical parameters using the ISW
requires that the physical responses dependent on such
parameters can be encoded into the time-domain data, i.e.,
a magnetization decay mt for both measurement and sim-
ulation. In this work, mt is sensitive to all three unknown
parameters selected for optimization, i.e., all three param-
eters can significantly change observed NMR responses.
This leads to practical considerations for the ISW regard-
ing the forward solver, the ISW workflow, and associated
SNR considerations for the input data.

A. Practical considerations for the ISW

The resolution of micro-CT imaging is approximately
1–2 μm at best. According to Hürlimann [35], for sand-
stones, pore size (or surface roughness) less than a critical
length scale is considered small and falls into the motional
averaging regime despite strong magnetic susceptibility
differences. Depending on the sample, the critical length
scale ranges from 1.3 to 3.6 μm. This suggests that, for
voxels smaller than this, voxel-scale effective physical
properties can be defined. In this work clay regions are
represented by assigning a single homogeneous phase. In
more complex cases a distribution of effective properties at
tomogram resolution—or actual microstructure models to

account for small-scale heterogeneity explicitly—could be
considered.

Separation of internal field effects from surface relax-
ivity in NMR T2-CPMG simulation is suggested. If that
condition is not fulfilled, the extracted surface relaxivity
value will incorporate additional dephasing induced by
internal gradients. For stronger internal gradients, the sur-
face relaxivity would then become a function of echo time
and, for gases like methane, of pore pressure.

Since the underlying correlation between the physical
parameters can be fully utilized to efficiently guide the
search, it is advantageous if the physical parameters to
be optimized have similar influence on the objective func-
tion so that no parameter would be considered “irrelevant.”
An example could be identifying effective transverse relax-
ation time constants and effective diffusion coefficients for
sandstones with multiple clay types.

We adopted a SNR-dependent regularization parame-
ter, which here requires SNR > 50. Below this SNR T2
distributions are expected to be strongly biased. In a labo-
ratory environment, the recommended range for the SNR is
[100; 280] considering both distribution and informative-
ness and acquisition time of decay.

B. Suggestions for the SNR choice

Experimentally acquired NMR relaxation responses are
subject to various environmental effects, resulting in ran-
dom and systematic signal fluctuations (noise). The SNR
plays a key role in recovering the values of those physical
quantities in two aspects. From the perspective of opti-
mization, since the objective function, Eq. (3), involves
sexp(T2) inverted from noisy mt,exp and ssim(T2) inverted
from biased mt,sim. For such reasons, the topography of the
noise-corrupted, observed objective function is different
from that of the true but unknown objective function, so
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that the optimality of the solutions might be altered, neces-
sitating identification of both the global optimal solution
and local optimal solutions. From the perspective of the
ILT, false features will arise due to inversion of relatively
noisy decays. In fact, for T2 measurements, a SNR of about
50 is the lowest value we observed for the given cores.
Therefore, it would be best if the valid SNR range in which
the recovered multiple physical parameters are deemed
appropriate can be determined in advance.

For Bentheimer sandstone, the optimization results may
be deemed acceptable even at a SNR as low as 50. Other
rocks can make optimization more vulnerable to noise
depending on the pore-size distribution, especially the
micropore component (which is naturally a fast relaxation
spot). By contrast, the long-time components of the T2
distribution (macroporosity) typically associated with a
relaxation time as long as hundreds of milliseconds could
retain a signal well above the noise level for a few seconds
of observation. For Bentheimer sandstone at tE = 200 μs,
the inversion process for magnetization decay operates on
approximately 70 times more data for the long-time com-
ponent than the short-time component. As a result, the
short-time components are very vulnerable to noise. One
may consider more complex NMR sequences with vari-
able tE and initially higher CPMG pulse frequency. To
design such a sequence optimally, prior knowledge of the
pore-size distribution would be very desirable.

VII. CONCLUSIONS

In this work we have proposed an ISW to identify
values of multiple parameters simultaneously for which
the multiscale, multiphysics expensive forward calculation
is manipulated to perform nearly identical to observa-
tions within a limited budget. The workflow is demon-
strated on the inverse problem for identification of three
physical parameters in the scope of NMR relaxation in
porous media, based on minimization of residuals between
simulated and experimentally measured transverse (T2)
relaxation distributions, where simulations are carried out
directly on high-resolution tomographic images. To over-
come the impact of noise arising in T2 measurements,
a search strategy using state-of-the-art evolutionary opti-
mization algorithms —SL PSO and the gradient-based
optimization algorithm L-BFGS-B—are chosen for the
selection of plausible configurations of variables, which
guarantees that the multimodal nature of the topography
of the objective function is captured, and the global opti-
mal set of unknown variables together with most of the
local optimal set are identified using solution space parti-
tioning. How solutions obtained from the ISW are affected
by numerical realizations and levels of noise are investi-
gated at seven logarithmically spaced SNRs comprising up
to 16 uniquely measured decays in each SNR group.

We draw the following specific conclusions.

1. An excellent match between measured and simu-
lated NMR T2 distributions on Bentheimer sandstone is
achieved, enabling the identification of the intrinsic sur-
face relaxivity of the resolved solid (essentially ρq) as
well as a specific effective diffusion coefficient and effective
transverse relaxation time of clay regions.

2. The ISW uncovers correlations between pairs of
parameters. The identified surface relaxivity of quartz is
dependent on the effective clay transverse time and the
effective clay diffusion coefficient, which affects standard
NMR interpretations.

3. The identified surface relaxivity of quartz lies
between ρq = 8.1 μm/s and ρq = 9.8 μm/s for a SNR
ranging from 50 to 400, in agreement with estimates from
mercury intrusion capillary pressure [59].

4. The identified surface relaxivity of quartz does
not include the effect of internal fields, which is sepa-
rately modeled. This is different from common approaches,
where surface relaxivity plays the role of a fitting param-
eter. Consequently, it is to be expected that the presented
approach is more sensitive to extracting information about
physical surface interactions, in particular if considering
different field strengths or combining longitudinal (T1) and
transverse (T2) relaxation experiments.

5. For the practical application of the ISW, we recom-
mend a micro-CT image resolution roughly in line with the
NMR diffusion ruler length, which here is about 2 μm, and
SNR > 100 to reduce bias sufficiently.

We note that once the solution domain has been explored,
the work may be extended to similar optimization prob-
lems for other samples, or the same sample in a different
state. An example would be tracking the change in sur-
face relaxivity in dynamic experiments. This should not
significantly increase the computational complexity as a
full reexploration of the solution domain should not be
required.

While the workflow is demonstrated using inverse prob-
lems in NMR relaxation in porous media, the principle
is general and does not rely on the specific form of the
simulator. Consequently, it may find wide applications,
in particular in the area of digital rock physics or gen-
eral porous media applications on the basis of tomographic
images.
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APPENDIX: ABBREVIATIONS AND
NOMENCLATURE

Abbreviations

ILT Inverse Laplace transform
NMR Nuclear magnetic resonance
BO Bayesian optimization
GPR Gaussian process regression
ISW Inverse solution workflow
MCMC Markov chain Monte Carlo
SSP Solution space partitioning
L-BFGS-B Box-constrained limited-memory Broyden-

Fletcher-Goldfarb-Shanno
SL PSO Social-learning particle swarm optimization

algorithm
SNR Signal-to-noise ratio
CPMG Carr-Purcell-Meiboom-Gill
micro-CT Micro-x-ray-computed tomography
ARD Automatic relevance determination
EI Expected improvement
FE Function evaluation
GP Gaussian process
MAP Maximum a posterior
MLE Maximum likelihood estimation
CDF Cumulative distribution function
PDF Probability density function
GSP Global solution partition
LSP Local solution partition
UP Unique partition
LM Local minimum
FV Fitness value
GUP Generalized unique partition
MFV Mean fitness value
MPV Mean parameter value
H6-MCMC Uniform priors on all hyperparameters
H6-SX H6-MCMC with wrong priors on σ 2

n
MC-C Mean counts of successful identification of the

complete region containing both the global opti-
mal solution and local optimal solutions (GUP 2
and GUP 4)

MC-G Mean counts of successful identification of the
region containing the global optimal solution
(GUP 2)

Math symbols

aEI (x∗) Expected improvement evaluated at x∗
aiEI (x∗) Integrated expected improvement evaluated at x∗
d Observables
diag (�) A diagonal matrix containing the elements of

vector �

D Dimension of input space
D, Dobs, Dpred, Dprop Data space, observation set, predic-

tion set, proposal set
Eq(x)[z(x)] Expectation of z(x) when x ∼ q(x)

f Vector of Gaussian process latent function values
GP Gaussian process, f (x) ∼ GP[m(x), k(x, x′)];

the function is distributed as a Gaussian pro-
cess with mean function m(x) and covariance
function k(x, x′)

I The identity matrix
k(x, x′) The covariance function between pairs of candi-

dates x and x′
kSE Parameterized squared exponential kernel
K Inversion kernel for the ILT
Kf or Kf (X , X ) The n × n covariance matrix for the

(noise-free) latent variable f
Knor Kn(X , X ) The n × n covariance matrix for the noisy

targets y and y∗, Kn = Kf + σ 2
n I

�i Characteristic length-scale (for input dimension
i)

� Vector of characteristic length scale
log10 Logarithm to the base 10
logU(a, b) Log-uniform distribution defined on [a, b]
λ Regularization parameter
λopt Optimum regularization parameter
� Matrix of characteristic length scales, � =

diag (�)−2

m0 Constant mean
m0 Vector of constant mean
m(x) The mean function of a Gaussian process
μθi Fitted mean of the variable’s base-10 logarithm
N [μ(X ∗), �(X ∗)] Normal distribution: a Gaussian (nor-

mal) distribution with mean vector μ and covari-
ance matrix �

φ(x) Probability density function
�(x) Cumulative distribution function
R

N , R
N×1, R

m×1 Real spaces of dimensions N , N × 1,
m × 1

σ 2
f Variance of the signal

σ 2
n Variance of the noise

σθi Standard deviation of the ith hyperparameter’s
base-10 logarithm

θ ′
i The hyperparameter before taking the base-10

log
θ Vector of hyperparameters
xi The ith component of input x
x Unknown parameter(s) of dimension D × 1
xl Lower bounds of x
xu Upper bounds of x
x− The global minimizer of the function
xBFGS Local maximizer of integrated EI identified using

L-BFGS-B
xopt,j The j th local maximizer of integrated EI
X D × n matrix of observed candidates
X ∗ D × n matrix of predicted candidates
X Solution space and also parameter space
y Observation
y∗ Prediction
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y n × 1 vector of observations
y∗ n × 1 vector of predictions
yopt,j The local optimum value evaluated at xopt,j

Physics symbols

A Correction factor for survival probability
Bdip(r) Dipole magnetic field
Bint(r) Internal magnetic field
φ Phase of a spin-bearing random walker
φD Accumulated phase of a spin-bearing random

walker
φ0 Initial phase of a spin-bearing random walker at

t = 0
Bz(tj ) z component of the internal gradient experienced

by a spin-bearing walker at tj
De,c Effective diffusion coefficient of water in the clay

region
Dw Self-diffusion coefficient of water
en Random noise assumed zero mean Gaussian
εn(t) Random noise assumed zero mean Gaussian

evaluated at time t
γ Gyromagnetic ratio
m Magnetic dipole moment for a unit volume
mt Transverse relaxation decay
mt(t) Transverse magnetization decay evaluated at

time t
mt,exp Measured transverse magnetization decay
mt,sim Simulated transverse magnetization decay
Mw(tj ) Magnetization decay of an individual walker
Mxy(tj ) Transverse magnetization decay at tj
μ0 Magnetic permeability of the vacuum
ω0 Larmor frequency
χ(r) Susceptibility field
χν Volumetric susceptibility
χν,ave Average volumetric susceptibility
χν,c Volumetric susceptibility of the clay region
χν,q Volumetric susceptibility of quartz
χν,w Volumetric susceptibility of brine
ρc Discrete surface relaxivity of clay
ρq Discrete surface relaxivity of quartz
ρ�

q Continuum surface relaxivity of quartz
s Discrete probability density function of physical

quantities
s(T2) Discrete probability density function of T2
sexp(T2) s(T2) inverted from mt,exp
ssim(T2) s(T2) inverted from mt,sim
Si Survival probability during the ith echo time,

Si = SbSs
Sb Survival probability due to bulk relaxation dur-

ing the ith echo time
Ss Survival probability due to surface relaxation

during the ith echo time
T2e Effective transverse relaxation time

T2e,c Effective transverse relaxation time of the clay
region

T2b,w Bulk relaxation time of water
tE Echo time
tj Time accumulated until step j
τi Time step for random walker τi = ε2

w/[6D(r)]

Other symbols

d0 The predefined distance threshold
ε Resolution of the CT image
εw Voxel size of the CT image after subgriding
nand n∗ Numbers of observation and prediction cases
ns Number of hyperparameter samples drawn using

Bayesian MCMC
n0 Number of candidates used as starting guesses

for SSP, also number of LS
N0 Number of local solution partitions
ls Subgriding factor
LSi The ith local optimal solution
�(x) Nonlinear, black-box function
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