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We study the interplay between quantum annealing parameters in embedded problems, providing both
deeper insights into the physics of these devices and pragmatic recommendations to improve performance
on optimization problems. We choose as our test case the class of bounded-degree minimum-spanning-
tree problems. Through runs on a D-Wave quantum annealer, we demonstrate that pausing in a specific
time window in the anneal provides improvement in the probability of success and in the time to solution
for these problems. The time window is consistent across problem instances and its location is within the
region suggested by prior theory and seen in previous results on native problems. An approach to enable
gauge transformations for problems with the qubit coupling strength J in an asymmetric range is presented
and shown to significantly improve performance. We also confirm that the optimal pause location exhibits
a shift with the magnitude of the ferromagnetic coupling, |JF |, between physical qubits representing the
same logical one. We extend the theoretical picture for pausing and thermalization in quantum annealing
to the embedded case. This picture, along with perturbation-theory analysis and exact numerical results
on small problems, confirms that the effective pause region moves earlier in the anneal as |JF | increases.
It also suggests why pausing, while still providing significant benefit, has a less pronounced effect on
embedded problems.
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I. INTRODUCTION

Quantum computing provides novel mechanisms for
efficient computing but the extent of its impact is as yet
undetermined. A tantalizing area of application is com-
binatorial optimization, where challenging instances are
currently attacked by a variety of classical heuristics and
where quantum heuristics have the potential to outper-
form these classical approaches. Here, we advance the
understanding of one such heuristic, quantum annealing
[1–6], deepening the theoretical picture of the roles that
thermalization, adiabatic processes, and diabatic process
play in quantum annealing and demonstrating the impact
of annealing schedules and the interplay between quan-
tum annealing parameters on performance, particularly on
application-related problems that require embedding.

Our work builds on the theoretical picture of Marshall
et al. [7] that explains why pausing in an appropriate
time window during the anneal enables the system to
thermalize better, improving the fit of the output distri-
bution with a Boltzmann distribution and increasing the
probability of success by orders of magnitude. Because
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quantum annealing happens at nonzero temperature, tem-
perature plays a significant role, along with quantum
dynamics induced by varying the Hamiltonian, particu-
larly near where the temperature and the minimal energy
gap between the ground state and the first excited state are
commensurate. This effect has also been studied in simula-
tions [8] and, recently, rigorous sufficient conditions under
which pausing helps have been identified in Ref. [9]. Here,
we build on the above understanding, beyond the native
problems studied in Ref. [7], to embedded problems.

It is well known that most problem instances—in par-
ticular, those related to applications—will not have a
structure that matches that of the hardware, in which case
the problems must be embedded. Embedded problems use
multiple physical qubits to represent each logical qubit,
with these physical qubits coupled via ferromagnetic cou-
plings JF < 0. In the embedded problems we study, we
confirm an improvement in probability of success and that
for this class of problem, as is found for native prob-
lems, there is a time window in which a pause reliably
improves the performance across problem instances. We
extend the theoretical picture of Refs. [7,9] to embedded
problems, including a perturbative analysis on the effect
of |JF | on the minimal energy gap between the ground
and the first excited states. Our gap analysis and numerical
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simulations on small systems show that as |JF | increases,
the minimal gap shifts earlier and the gap size decreases.
This extended picture explains why one would expect a
shift of the optimal pause location to earlier in the anneal
with increasing |JF | and also a somewhat less pronounced
improvement from pausing on embedded problems than on
native problems.

We choose as our test case the class of bounded-
degree minimal-spanning-tree (BD-MST) problems, seen
in a variety of application areas such as a broad spectrum
of network-related problems. We demonstrate that small
instances of these problems can be embedded and suc-
cessfully solved by state-of-the-art quantum annealers and
confirm the results predicted by our theoretical picture. We
demonstrate that for the best parameters, pausing improves
not only the probability of success but also the time to solu-
tion (TS). To obtain these results, we use the newly added
extended range feature of the D-Wave 2000Q to enable
the use of stronger ferromagnetic couplings relative to the
problem-instance couplings. Because of the asymmetry in
the extended range, we cannot use the standard gauge
approach to randomize the effect of qubit biases in the
D-Wave 2000Q on the annealing runs. We develop a par-
tial gauge approach that enables us to obtain much cleaner
results and substantially better probabilities of success than
running without partial gauges.

The rest of the paper is organized as follows. In Sec. II,
we review background information on spanning-tree prob-
lems and on quantum annealing. In Sec. III, we describe
the specifics related to the hardware, the instances, and the
parameters for our runs, and the metrics we use to evalu-
ate them. Section IV is devoted to results on the annealer.
Results for annealing without pause are shown in Sec. A,
how pausing can be helpful is demonstrated in Sec. B and
how pausing shifts with |JF | in Sec. C. The technical treat-
ment that enables the conclusive results, partial gauges, is
discussed in Sec. D. We provide theoretical analysis and a
physical picture for the shifting of optimal pause location
with |JF | in Sec. V. In Sec. VI we summarize the results
and discuss future work.

II. BACKGROUND

We review background material on spanning-tree prob-
lems and on quantum annealing.

A. Spanning-tree problem classes

Definition A.1. A spanning tree for a graph G is a sub-
graph of G that is a tree and contains all vertices of
G.

Spanning trees are important for several reasons. They
play a critical role in designing efficient routing algo-
rithms. Some computationally hard problems, such as the

Steiner-tree problem and the traveling-salesperson prob-
lem, can be solved approximately using spanning trees
[10]. Spanning-tree problems also find broad applications
in network design, bioinformatics, etc.

One flavor of the spanning-tree problem is the weighted
spanning-tree problem: given a connected undirected
graph G = (V, E) and a set of weights wuv for each edge
(uv) ∈ E, we seek a spanning tree T ⊂ E such that the tree
weight

∑
(uv)∈T wuv is minimized.

For general graphs, the determination of whether
there exists a spanning tree of weight W can be car-
ried out in polynomial time and different efficient algo-
rithms exist to find a minimum-weight tree; for exam-
ple, Kruskal’s algorithm requires time O(|E| log |V|) [11].
(Special classes of graphs can be solved even faster.) On
the other hand, with the additional constraint that the max-
imum vertex degree of the spanning tree found is at most
�, even deciding whether there exists such a spanning
tree becomes nondeterministic polynomial-time (NP) com-
plete for fixed � ≥ 2 [12]. In this work, we focus on
the bounded-degree maximum-spanning-tree (BD-MST)
problem.

1. The BD-MST problem

Given an integer � ≥ 2 and graph G = (V, E) with edge
weights wuv , (uv) ∈ E, find a minimum-weight spanning
tree of maximum degree at most �.

We refer interested readers to Appendix B and the refer-
ences therein for approximation complexity theory related
to the BD-MST problem.

B. Solving on a quantum annealer

Quantum annealing is a quantum metaheuristic for
optimization. Quantum annealers are quantum hardware
that is designed to run this metaheuristic. Any classi-
cal cost function C(x) that is a polynomial over binary
variables x ∈ {0, 1}n can, with the addition of auxiliary
variables, be turned into a quadratic cost function. Prob-
lems with quadratic cost functions over a binary variable
without additional constraints are called quadratic uncon-
strained binary optimization (QUBO) problems. Quantum
annealing is carried out by evolving the system under
a time-dependent Hamiltonian H(s) = A(s)HD + B(s)HC,
where HD is a driver Hamiltonian, most commonly HX =
−∑i Xi, and HC is an Ising Hamiltonian derived from a
classical cost function. There is a straightforward mapping
between QUBO and Ising problems. The parameter s is a
dimensionless time parameter that ranges from 0 to 1, with
A(s) and B(s) determining the form of the anneal schedule.
As we will see, many different schedules s(t) are possi-
ble. More information about quantum annealing generally,
including mappings of problems to QUBO, can be found
in Refs. [13–15].
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For most application problems, on hardware with a
restricted qubit connectivity, the resulting QUBO problem
must further be embedded to conform with the hardware
connectivity; graph minor embedding enables coupling
between logical qubits in the QUBO graph by representing
each logical qubit by a set of physical qubits ferromag-
netically coupled with a magnitude of |JF | among them
to promote collective behavior (JF is always negative, so
we typically refer to its magnitude |JF |). Following stan-
dard terminology in graph theory, each such set of physical
qubits is called a vertex model for its corresponding log-
ical qubit. When embedding, we use the same coupling
strength |JF | for all the couplings within a vertex model.
Problems that do not require embedding because their
structure matches that of the hardware are called native
problems for that hardware.

While |JF | can be set to a large value such that the
embedded problem preserves the ground state of the log-
ical problem, and analytical bounds on this value can
be obtained [16], too large a |JF | can reduce quantum
annealing performance. Physically, there is an energy limit
on the Hamiltonian as a whole and too large a |JF | rel-
ative to other parameters would mean that all of the
problem parameters could reduce performance due to pre-
cision issues and noise in implementation. Furthermore,
the energy spectrum throughout the anneal varies with
the value of |JF | and its effect on the annealing often
requires careful case-by-case consideration [13,14,17,18].
Thus, optimally setting the ferromagnetic coupling |JF |
is a challenging task. Prior work has shown that there is
a sweet spot for this value. Physically, this makes sense
because a stronger |JF | makes it less likely for individual
qubits within a vertex model to flip, which helps to avoid
breaking the vertex model, but too large a |JF | makes it
increasingly costly for the vertex model qubit values to flip
together, potentially preventing the system from leaving a
nonoptimal configuration.

To boost the probability of success, |JF | must strike the
right balance, leading to better chances of arriving at—and
staying in—the correct configuration. The D-Wave 2000Q
allows asymmetric extension of the pairwise qubit cou-
pling strengths Jij ∈ [−2, 1] (in addition to the canonical
symmetric option Jij ∈ [−1, 1]). One usage of this exten-
sion is to set |JF | in the extended range. We show how the
extended values improve the probability of success of our
problems.

The schedule s(t) can significantly affect performance.
Of particular interest to us are schedules that include
a pause where, for some subinterval, s(t) is constant
(i.e., H is constant for a specified time). Marshall et al.
[7] have observed on an ensemble of native problems
that, strikingly, a pause at a location (generally) insen-
sitive to the instance specifics boosts the probability of
finding the ground state—the probability of success—by
orders of magnitude. The physical picture underlying

such a universal effect is reviewed and expanded in
Sec. V.

III. METHODS

Here, we discuss the specifics of the problem instances,
annealing schedules and parameters, and metrics used to
obtain our results.

A. Problem instances

Each BD-MST problem instance consists of a weighted
graph G = (V, E) and a degree bound �. The underlying
graphs are chosen by exhausting all connected graphs with
n = |V| = 5, which have m = |E| ranging from 4 to 10.
The weight sets are uniformly drawn from 1 to 7. Graphs
and weight sets are combined to yield a large number of
unique instances. The results are averaged over ensembles
of instances. The size of the ensemble is specified for each
result in Sec. IV. The complete list of graphs and weight
sets can be found in Tables III and IV, respectively, of
Appendix C.

A number of mappings of the BD-MST problem
to QUBO can be found in Ref. [19]; here, we use
the resource-efficient level-based mapping described in
Appendix A. For each problem instance, the level-based
mapping yields an objective function Hamiltonian HC.
Once mapped to QUBO, our n = 5 problems result in
20–74 logical variables, depending on m. Embedding to
accommodate the limitations in the architecture of the
annealer leads to a final tally of 83–485 physical qubits,
with a median vertex model size between 1.5 and 7. More
detailed information can be found in Table V. For the
degree bound, we generally select � = 2, resulting in
problems equivalent to Hamiltonian path problems; we
also test � = 3 and our results hold for this case as well
(see Fig. 10 in Appendix F).

B. Annealing parameters and schedules

We run our problems on the D-Wave 2000Q quantum
annealer housed at the NASA Ames Research Center,
which has 2031 qubits and a chimera graph architec-
ture [20]. To embed the resulting QUBO instances in
the D-Wave 2000Q hardware graph, we run D-Wave’s
embedding-finding algorithm 30 times and use the small-
est size embedding found (the fewest total physical qubits).
This procedure finds an embedding for all of the graphs
we consider. Detailed information about the typical size of
the embedded problems for different graphs can be found
in Fig. 9 in Appendix D, including the number of physi-
cal qubits and the size of the vertex models. Embedding
statistics for a future D-Wave architecture (Pegasus) are
also given.

The objective Hamiltonians are scaled so that the
coupling strengths are in the range [−1, 1]. In the
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embedded Hamiltonian, the extended J range is used
to couple physical qubits representing the same logical
qubits. We choose |JF | in the range [1, 2], initially explor-
ing all values in that range at 0.1 intervals.

We use the D-Wave 2000Q default A(s) and B(s),
exploring two qualitatively different schedules. The first is
a standard anneal, with time parameter s(t) = t/ta, where
ta is the annealing time. Baseline runs are performed with
this schedule and several annealing times ta are initially
tested. The shortest time allowed by D-Wave, ta = 1 μs, is
found to be optimal in terms of TS for the instance ensem-
bles, agreeing with previous studies for other problems
[18,21,22].

The second type of schedule includes a pause. The
beginning and end of the anneal are the same as in the first
case but at some intermediate point sp the Hamiltonian is
held constant for some time tp . The entire range of pos-
sible pause locations (sp ∈ [0, 1]) is initially surveyed. A
peak is reliably found (see Sec. B). Although the location
of the peak is affected by |JF |, it is always within the range
[0.2, 0.5], so further runs are limited to this region of inter-
est, with sp varied between 0.2 and 0.5 at 0.02 intervals. A
range of pause durations tp are also surveyed. Since shorter
pause times are found to yield better TS (see Sec. B), our
runs are performed with pause duration tp = 1 μs unless
otherwise noted. After optimal values for other parame-
ters are found, other tp values in the range [0.25, 2] μs are
explored.

We use the extended range of Jij ∈ [−2, 1] (in addi-
tion to the canonical symmetric option Jij ∈ [−1, 1]). The
asymmetry in the range with respect to zero precludes the
use of a general strategy, gauge transformation (or, spin-
reversal transformation), which has been shown to be very
effective in reducing noise effects and obtaining higher-
quality output data. This is due to the fact that, to perform
a gauge transformation, each coupling Jij is transformed
as Jij → J̃ij = aiaj Jij , where the ak are randomly chosen
from {±1}. If aiaj = −1 and Jij ∈ [−2, −1), the trans-
formed coupling would need to be in (1, 2], which is not
available due to the asymmetry in the extended range. We
design and implement a strategy, partial gauge transfor-
mation, that selectively applies the transformation only to
couplings in the symmetric range [−1, 1]. For the case that
only the embedding couplings are in the extended range,
this is equivalent to applying a general gauge transforma-
tion to the logical problem prior to the embedding and
is simple to implement. We find that the partial gauge
transformation helps significantly in both boosting the
probability of success and reducing the output variance.
Only by employing partial gauges can we obtain results
clean enough to see various features we report on, such
as the positive role of an extended |JF | in the case of no
pausing and the shift of the optimal pause location with
|JF |. Partial gauges and their effect are discussed in more
detail in Sec. D.

Unless otherwise specified, all runs are performed with
ta = 1 μs, 50 000 anneals (or reads) and 100 partial
gauges.

C. Metrics

We use the empirical probability of success (psuccess) and
time to solution (TS) as our figures of merit for determining
how likely a problem is to be solved, defined as

psuccess = number of anneals with correct solution
total number of anneals

, (1)

TS = log(1 − 0.99)

log(1.0 − psuccess)
ttot, (2)

where the total time ttot = ta + tp is the time spent on each
run, taking into account both the base annealing time ta and
the pause duration tp .

These two measures are complementary to each other.
The TS figure of merit reports the expected time required
to solve the problem with 99% confidence. While psuccess
is directly determined by and hence provides a portal to
understand the underlying physical process, TS gives a
more practical measure that is universal across different
parameter ranges and different solvers. A higher probabil-
ity of success does not necessarily mean a lower TS. For
instance, we might get a slightly higher psuccess by using
a longer annealing time ta = 100 μs than a shorter one
ta = 1 μs, yet the chance of finding the solution might
be higher by repeating the ta = 1 μs runs 100 times than
doing the ta = 100 μs anneal once.

Because we compare results from two different sched-
ules (baseline no-pause and pause), we also need metrics
that help us examine the benefits that the latter presents
over the former. To this end, we define two quantities based
on the instance-wise improvement in TS. The first one is
the absolute TS improvement, defined for each instance i as

�TSi = TSi(no pause) − TSi(pause), (3)

with the two TS values calculated at their respective opti-
mal |JF | values (|J ∗

F | = 1.6 for the no-pause case and 1.8
for the pause case). A positive �TSi indicates that a pause
improves upon the baseline results (i.e., reduces TS) for
that particular instance. The second one is the relative TS
improvement, defined as the ratio

�TSi/TSi = TSi(no pause) − TSi(pause)
TSi(no pause)

. (4)

When a valid solution is not found for a specific instance
and thus psuccess = 0 for that instance, its corresponding TS
is infinity. If TS for both the pause and no-pause results
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are infinity, the pause is not improving upon the no-
pause results, hence �TSi = 0. When TS = ∞ only for
the no-pause case, pausing provides the maximum possi-
ble improvement and we set �TSi = ∞ and �TSi/TSi = 1.
Finally, when TS = ∞ only for the pause case, the opposite
occurs, with �TSi = −∞ and �TSi/TSi = −∞.

After the embedded problem is run on the D-Wave, out-
puts with any inconsistent values on physical qubits that
represent the same logical qubit—or with violated penalty
terms such that the output does not encode a degree-
bounded spanning tree—are considered to be invalid
answers and are counted as failed runs. The retained valid
answers are then verified against the exact solution of
the problem, which is obtained through direct enumera-
tion for the small problem sizes we consider. The reported
data points correspond to the median, with the error bars
marking the 35th and 65th percentiles. For ensembles of
instances, 105 bootstraps are performed over the instances
to obtain those values, where each bootstrap sample is
drawn with replacement from the original instance ensem-
ble until it is of the same size as the original ensemble.
Median and 35th and 65th percentiles from the bootstrap
samples are reported, meaning that the data points corre-
spond to a median of medians. There are a few instances
that do not solve with or without pauses; these instances
are not excluded from the ensemble in our bootstrap pro-
cedure but are given a TS of ∞. These ±∞ values for �TSi
and �TSi/TSi do not appear in our reported results, as they
remain very far from the median (which we report as our
data point) and from the 35th and 65th percentiles of the
bootstrapped results that we present as error bars.

D-Wave returns the solution with the minimum cost it
has found. To ensure the validity of this solution, we first
confirm that the resulting graph is in fact a spanning tree
that satisfies the degree constraint and also a true optimal
solution by comparing with the true minimal cost obtained
by an exact classical algorithm. Any other outcome is
weighted zero toward psuccess.

IV. RESULTS

We now present our results on the D-Wave 2000Q,
including anneals without a pause (baseline) and the effect
of pausing.

A. Annealing without pause, effect of |JF|
We first show that the BD-MST problems we study are

successfully solved on the D-Wave 2000Q using a standard
annealing schedule, demonstrating the ability of a quantum
annealer to solve a new class of optimization problems,
and study the effect of the strength of the ferromagnetic
coupling on the probability of success.

The baseline results are obtained with no pause and
ta = 1 μs, which is the shortest that D-Wave allows, and is
chosen for consistently yielding the best TS for ensembles

1.4 1.5 1.6 1.7 1.8 1.9 2.0
|JF |

5000

10 000

15 000

20 000

25 000

T
S

(µ
s)

FIG. 1. The optimal |JF | for the baseline. TS for an ensemble
of 45 instances as |JF | varies. A 1-μs anneal is used. The best
performance is observed at |J ∗

F | = 1.6.

of problem instances for both this study and previously
studied problems [18,21,22].

By exploring the available range of |JF | values between
1.0 and 2.0, we confirm the advantage of using the
extended |JF | range and identify its optimal value for
the base case at |J ∗

F | = 1.6 with statistical significance, as
shown in Fig. 1 where the probability of success is shown
for a range of |JF | for the ensemble of instances.

The results might vary for groups of instances with dif-
ferent n; the optimal |JF | for n = 4 appears to be lower,
around 1.2 or 1.3. This result is obtained from only a
limited number of instances and is without statistical sig-
nificance. A larger number of n = 4 instances, and prefer-
ably also n = 6, would be needed to make any stronger
assertions in this regard. Within n = 5 instances, the opti-
mal |JF | does not appear to correlate with the logical or
embedded size.

B. Improvement with a pause

After establishing the baseline with the no-pause sched-
ule, we introduce a midanneal pause. A pause can be
placed at any point in the anneal, i.e., sp ∈ [0, 1]. Our
results show that, as for native problems, the probability
of success improves significantly when pausing within a
specific region that is consistent across problem instances.
The optimal pause location is between 0.3 ∼ 0.4, in the
same range as the optimal location for the native prob-
lems studied in Ref. [7]. Figure 2 shows this improvement
for an ensemble of 45 instances, with a pause of length
tp = 100 μs and |JF | = 1.6 (the optimal |JF | for the no-
pause case). With the introduction of the 100-μs pause,
the total time increases significantly. Our first goal is to
confirm that psuccess improves with the introduction of the
pause and to identify the region where the pause is ben-
eficial, which is shown in the top panel of Fig. 2. But
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10−3
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p s
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no pause
pause

0.20 0.25 0.30 0.35 0.40 0.45 0.50
sp

103

104

105

T
S

(µ
s) no pause

pause

FIG. 2. The improvement of psuccess with a pause. Top: The
probability of success for an ensemble of 42 instances. |JF | =
1.6 and a 1-μs anneal are used. The pause duration is 100 μs.
The horizontal line shows the baseline, i.e., the no-pause results.
Each data point represents the results when introducing a pause
at location sp . At the optimal pause locations, an improvement
of about an order of magnitude in psuccess is obtained. Bottom:
The improvement in psuccess due to the 101-μs anneal time (a 1-
μs anneal plus a 100-μs pause) is not sufficient to overcome the
extra time incurred when it comes to TS , which becomes worse in
this case. To improve TS , we need to optimize the pause duration
and location.

psuccess alone does not necessarily provide a fair compari-
son between the two schedules (pause and no pause) when
it comes to time. As explained in Sec. C, the improvement
in the probability of success does not necessarily translate
to an improvement in the time to solution (TS); if instead
of using the additional time needed for a pause it is used
to repeat the anneal, that procedure may result in a higher
TS. For this reason, we also evaluate the time to solution
(TS), shown in the bottom panel of Fig. 2. In this case,
due to the length of the pause, TS increases with respect
to the no-pause case. To achieve an improvement in TS,
we need to investigate shorter pause durations and opti-
mize the pause location, an investigation we detail later in
this section. The improvement in psuccess shown in Fig. 2
confirms the physical arguments given in Sec. A.

When we examine how the optimal pause location is
affected by |JF |, we see that the peak in psuccess moves

earlier with increasing |JF | but remains in this range. We
also find that for instances that are unsolved in the baseline
(no-pause) runs, a solution is often found after introduc-
ing an appropriate pause. For statistics on such cases,
see Appendix E. These findings are given theoretical and
numerical support in Sec. V. Beyond that, a correlation
between the hardness of a problem and the extent of the
benefit provided by pausing is not observed.

As in Ref. [7], the probability of success grows mono-
tonically as the pause duration increases in the range tp ∈
[0.25, 100] μs (not shown). With respect to the expected
TS, a longer duration can cancel out improvements due to
an increased probability of success. We are able to locate
a sweet spot in pause duration for the various TS met-
rics (Sec. C) with pause durations of tp = 0.75 or tp = 1.0
(Fig. 3) at pause locations sp = 0.30 or sp = 0.32. We now
discuss these results in more detail.

The results of Fig. 3 demonstrate that a properly placed
pause of a certain duration leads to a statistically significant
improvement in the various TS metrics on our ensemble
of BD-MST instances. After sparsely sweeping through a
range of parameters (not shown), we find that the parame-
ter ranges tp ∈ [0.25, 2] μs, sp = 0.3 and sp = 0.32, and
|JF | = 1.8 deserve particular attention. These tp values
match those found in recent work [23] in which a con-
dition on the pause duration that leads to improvement
in TS is obtained. The three panels of Fig. 3 correspond
to the three metrics of Sec. C: (1) the median TS across
the ensemble; (2) the instance-wise difference �TS, tak-
ing the median of this difference across the ensemble; and
(3) the instance-wise relative difference �TS/TS, taking
the median of this difference across the ensemble. The
“median of the difference” of the two latter metrics can
be quite different from the “difference in median.” Since
the magnitude of the TS across our instances ranges over a
few orders of magnitude, the instance-wise relative differ-
ence �TS/TS can be quite different from the instance-wise
difference �TS. While several of the pause schedules are
better than the baseline according to every metric we use,
others only do better in some of the metrics. The mag-
nitude of the improvement, as well as the optimal pause
location and duration, can vary significantly depending on
the metric.

The left panel of Fig. 3 shows TS for the ensemble in the
above narrowed parameter range. Plotted as a horizontal
line is the baseline (no-pause) case at its optimal |JF | =
1.6. At both pause locations sp = 0.3 and sp = 0.32, a
pause duration tp = 1 μs is optimal on the ensemble of
45 instances. While at sp = 0.3, only the tp = 1 μs case
beats the baseline, at sp = 0.32, the TS for all values of
tp ∈ [0.25, 2] μs is consistently lower (better) than that of
the baseline (for the corresponding psuccess, see Fig. 14 in
Appendix F).

The center panel in Fig. 3 shows the median instance-
wise difference �TS for the ensemble of 45 instances.
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FIG. 3. The effect of the pause duration on TS . Left: With pause durations of {0.25, 0.5, 0.75, 1, 2} μs, and |JF |=1.8, the median
TS for an ensemble of 45 instances is shown for pause locations sp = 0.3 and sp = 0.32. The reference (horizontal line and band for
median and 35 and 65 percentiles, respectively) is the no-pausing case with parameters optimal for TS: ta = 1 μs and |JF | = 1.6. The
data points show the median, with error bars at the 35th and 65th percentiles, after performing 105 bootstraps over the set of instances.
Center: The instance-wise absolute improvement in TS (in μs). �TS represents the reduction in TS accomplished by introducing a short
pause at an optimal location sp . A positive �TS indicates that the TS is reduced (improved) by the introduction of the pause. �TS is
calculated by subtracting the TS for the pause case with |JF | = 1.8 from that of the no-pause case with |JF | = 1.6 (the optimal |JF |
for each case). The data points are the median and the error bars are 35th and 65th percentiles obtained from 105 bootstraps over 45
instances. Right: The instance-wise improvement ratio �TS/TS . The data points are staggered along the sp axis for readability. The
error bars are chosen to showcase where most of the data lie. They represent the 35th and 65th percentiles of the bootstrap samples,
instead of the median value of the 35th and 65th percentiles in the instance ensemble.

All the data points and their respective error bars are
above zero, indicating that pausing provides a statisti-
cally significant improvement when the pause parameters
are in the studied range with sp = {0.3, 0.32} and tp ∈
[0.25, 2] μs.

For example, while the median TS of the ensemble is
better for the baseline case than for the pause schedule with
sp = 0.3, tp = 0.25, this pause schedule does better than
the baseline on more than half of the 45 instances, lead-
ing to a positive �TS. These two metrics provide different
information about the strengths of each method.

The right panel of Fig. 3 represents the instance-wise
relative improvement in TS, that is, each instance-wise
improvement is divided by the corresponding baseline no-
pause TS for that particular instance and then the median
over the ensemble of instances of this set of values is cal-
culated. We find that for a pause duration of tp = 1 μs,
the median relative improvement holds an optimal value of
approximately 0.22. This pause duration is not the optimal
for the absolute improvement shown in the middle panel,
giving somewhat lower values of �TS than a pause dura-
tion of 0.75 μs. This “change of order” occurs whenever

the following condition is met:

TSj (base)

TSk (base)
>

�TSj (tp , sp)

�TSk (t′p , s′
p)

, (5)

where j is the instance where the median of �TS/TS(tp ,
sp ) occurs and k is the instance where the median of
�TS/TS(t′p , s′

p ) occurs. We examine in more detail the four
best data points with respect to the �TS/TS metric, those
with sp ∈ {0.30, 0.32} and tp ∈ {0.75, 1.0} μs.

We first look at the absolute improvement. At pause
location sp = 0.3, the median improvement for pause dura-
tions tp = 1 and 0.75 μs are 216 and 266 μs, respectively.
At sp = 0.32, it is 369 and 401 μs, respectively, all the
same order of magnitude. Consider the four instances that
yield these four values. Their baseline no-pause TS values
vary considerably, being 897, 5003, 2738, and 25 581 μs,
respectively. The substantially longer baseline TS for the
instances that are the median in each of the 1 μs cases
than those in the 0.75 μs cases (5× at 0.3 and 10× at
0.32) suggests that the 1-μs pause performs better than the
0.75 μs pause under the relative difference metric. (This
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TABLE I. sp = 0.3.

sp = 0.3
Number of
instances

Median
�TS/TS

35th
percentile

65th
percentile

tp = 1
Pause hurts 15 −0.6666 −0.77 −0.42
Pause helps 27 0.3960 0.33 0.59
tp = 0.75
Pause hurts 14 −1.19 −2.02 −0.61
Pause helps 28 0.2522 0.22 0.41

is not certain, because the median in the two metrics may
correspond to different instances.)

We now look at the relative improvement. Compared
to how it did with respect to the �TS metric, the 0.75-
μs pause does much worse than expected relative to the
other pause durations. For all four cases with parameters
sp ∈ {0.30, 0.32} and tp ∈ {0.75, 1.0} μs, the relative per-
formance of many more instances improves more with a
pause than is hurt by a pause (see Tables I and II). On
the other hand, for pauses at sp = 0.3, the median bene-
fit over the instances for which a pause helps is less than
the median amount of harm caused by a pause over the
instances in which a pause hurts. This difference is much
more pronounced for the sp = 0.30 tp = 0.75 case, with
the median harm over 5 times that of the median benefit,
compared to the other case, where the ratio is less than 2.
At sp = 0.32, the median benefit is larger than or the same
as the median harm.

(In all cases, there are three instances that are not solved
with or without a pause and hence are not included here.)

When interpreting these results, it is worth keeping in
mind that with the exponential dependence of TS on the
probability of solution, long TS values are subject to much
greater statistical fluctuations than shorter ones.

C. Shift in optimal pause location with |JF|
One interesting new avenue that opens up with the study

of embedded problems is how the value of |JF | affects the
benefits and effects of pausing. As previously discussed,
the psuccess versus sp curve typically shows a peak around
an optimal pause location and is mostly flat far away from
it (as in Fig. 2). We also seen in Fig. 1 that without a pause,

TABLE II. sp = 0.32.

sp = 0.32
Number of
instances

Median
�TS/TS

35th
percentile

65th
percentile

tp = 1
Pause hurts 12 −0.1993 −0.29 −0.14
Pause helps 30 0.3467 0.32 0.58
tp = 0.75
Pause hurts 13 −0.3602 −0.59 −0.21
Pause helps 29 0.3879 0.34 0.50

the value of |JF | affects psuccess. For the pausing case, when
|JF | increases, not only does the height of the peak change
with |JF | but its position shifts as well, moving earlier in
the anneal. The top panel of Fig. 4 shows this shift for
a demonstration instance and a wide range of |JF |, with
the horizontal axis spanning the range of pause locations
where the peak in psuccess is found.

Such clear shifting is found in many instances and
results in a shift in the behavior of the whole instance
ensemble, as shown in the bottom panel of Fig. 4. For
figure clarity, pausing results for just three values of |JF |
are shown. The shift is consistent over all of the |JF | val-
ues we examine (in [1.2, 2]); see Fig. 12 in Appendix F for
additional results.

The probability of success for smaller |JF | values, such
as 1.2 and 1.3, even away from the peak, is clearly lower
than for larger |JF | values (This holds true for the ensemble
of instances, but some individual outliers are found, with
a high psuccess for smaller values of |JF |. Figure 11 in the
Appendix shows some examples.) The reason is that when
the ferromagnetic coupling is not very strong compared
to the problem couplings, it is more likely that the low-
lying energy states are densely populated by states with an
inconsistent vertex model (i.e., when not all the qubits are
aligned and hence are no longer acting as a single vari-
able). Accordingly, even when the annealer is doing well
at finding the ground state or a low-lying state, such an out-
come does not correspond to a valid solution of the original
problem. Indeed, by applying simulated annealing to solve
the embedded problem (which is too large to diagonalize
exactly), we verify that in the range of |JF | that we use, the
ratio of states with broken vertex models in the ground or
low-lying states is significantly higher for |JF | = 1.2, 1.3
than that for 1.4 and above.

The mechanism for why the optimal pause location typ-
ically shifts toward earlier in the anneal with |JF | fits our
theoretical understanding, which is set out in Sec. B.

D. Help of partial gauges

We develop a partial gauge transformation technique
that significantly improves the probability of success and
enables the confirmation of the peak shift.

Gauge averaging is a technique commonly used to alle-
viate the effect that intrinsic biases on the local fields and
couplers can have on the data obtained from a quantum
annealer [24]. It can help improve statistics and lead to
less noisy results and improved psuccess and TS. A gauge
transformation starts with assigning a random sequence
aj ∈ {±1} to redefine the basis for each qubit, Z̃j = aj Zj .
If we adjust the local field and couplers accordingly such
that

J̃ij = aiaj Jij

h̃i = aihi,
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FIG. 4. The shift of the optimal pause location with |JF |. Top left: The probability of success versus the annealing pause location
for the demonstration instance. The anneal is performed with a 1-μs anneal time and a 100-μs pause. A monotonic shift in the peak
location with |JF | is observed. The horizontal curve corresponds to no pause, |JF | = 1.6, and an anneal time of 1 μs. The reason for
lower probability of success for |JF | = 1.2 is detailed in Sec. C. Top right: The graph of the demonstration instance. The dashed red
edges represent the minimum spanning tree of degree 2. Bottom: The probability of success for an ensemble of nine instances of n = 5
with a pause duration tp = 100 μs and ta = 1 μs. The horizontal lines (for the median) and the bands (for the 35th to 65th percentiles)
are baseline results with no pause, |JF | = 1.6: Blue (lower) line or band, ta = 1 μs; orange (lower) line or band, ta = 101 μs.

then the resulting Hamiltonian has the same energy spec-
trum as the original one. This Hamiltonian is run on the
annealer and the output bit string is transformed back
using the same aj ’s. By performing multiple gauge trans-
formations and averaging results over them, biases that
stem from, for example, a qubit having a slight prefer-
ence to aligning in one direction over the opposite can be
suppressed.

When Jij ∈ [−1, 1], it is straightforward to apply
gauges. For our embedded problems, however, we are
making use of D-Wave’s extended J range, allowing

Jij ∈ [−2, 1]. The extended range discourages the break-
ing of vertex models during annealing due to the stronger
ferromagnetic couplings between physical qubits repre-
senting the same logical variable, but it also impedes the
use of standard gauges, since any couplings in the range
[−2, −1) cannot change sign.

Our partial gauge method circumvents this issue by only
applying the gauge transformation on the couplings within
the interval [−1, 1]. Because the extended range is exclu-
sively used on the vertex models in our problems, the
partial gauge on the embedded problem is equivalent to
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applying a general gauge to the logical problem before
embedding.

In a previous study [25], the boost in psuccess by pausing
has been observed for a family of embedded problems, but
no relation between the optimal pausing location and JF
has been observed. In our study, with the help of partial
gauge transformation, the variance in the annealing output
is significantly suppressed, resulting in the revelation of
the shift of the peak in Sec. C. This improvement of the
variance is seen in the top panel (note the log scale) and by
comparing the middle and bottom panels of Fig. 5.

Another benefit is a remarkable increase in psuccess
for hard problems. Usually, we do not expect psuccess to
change significantly from gauge averaging, because solv-
ing the problem without gauge transformations amounts to
just applying one gauge, which is typically near average
instead of being an outlier. But the probability of success
is lower bounded by zero and when problems such as the
ones we are solving here are difficult for the solver, the
typical empirical psuccess is zero or very close to zero. The
existence of such a lower bound explains the significant
benefit in applying gauges: even if we get a bad gauge,
psuccess cannot go below zero, while a good gauge can yield
a much higher psuccess. In a number of gauges, it is likely to
encounter a few good gauges, bringing the average psuccess
up. The top panel of Fig. 5 shows, for a large ensem-
ble of instances, that the improvement in the probability
of success with 100 partial gauges is significant: about
an order of magnitude higher than the results run with-
out gauge transformation. The number of anneals remains
unchanged regardless of the number of gauges used, with
the total always being 50 000 anneals. For instance, with
100 gauges, 500 anneals are performed for each gauge. In
this way, the use of gauges does not negatively impact the
TS.

The improvement in psuccess saturates as one increases
the number of gauges applied. Figure 13 in the Appendix
shows, for an n = 4 ensemble, that applying as few as
ten gauges yields similar psuccess to 100 gauges. These
results indicate that with ten gauges we are already likely
to encounter one or more positive outliers, leading to the
large improvement in psuccess. As the number of gauges
increases further, the effect is not as dramatic, indicating
that the spread in gauge quality approaches the intrinsic
distribution.

The partial gauge transformation therefore enables us to
extend the benefits of general gauge averaging to embed-
ded problems.

V. PHYSICAL PICTURE

In this section, we expand the physical picture of Ref. [7]
to embedded problems, explaining both the shift of the
optimal pausing location with increasing |JF | and why
embedded problems, while benefiting significantly, benefit
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FIG. 5. The effect of partial gauges. Top: Partial gauges help
to boost the average probability of success for an ensemble of
instances (54 instances without gauges and 42 with gauges).
|JF | = 1.6 is used for all of the data shown. The baseline case
without pausing is shown for reference: the median is shown as
the horizontal lines and the 35th and 65th percentiles are shown
as half-transparent bands. The blue (lower) band is for no gauges
and orange (upper) band is for 100 gauges applied. Middle: The
effect of |JF | on Psucc for a single instance. ta = 1 μs and a pause
of duration 100 μs is applied. No gauge transformations are per-
formed. Bottom: The same instance and parameters as in the
middle panel, but with 100 partial gauges applied. The partial
gauges help to suppress the variance and reveal the peak shift
with |JF |.
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less from a pause than native problems. We provide a
perturbation analysis supporting the picture and numeri-
cal evidence on the change in minimal gap location. The
picture is far from that of the adiabatic regime. Pausing is
effective after—not at—the minimum gap and diabatic and
thermal effects play a significant role.

A. How pausing helps

We start with a recap of the physical picture of Ref. [7]
that explains the increase in the probability of success by
introducing a pause in the middle of the annealing sched-
ule, after the minimal energy gap. Recent work [9] has ver-
ified this qualitative picture in numerical simulations and
has also provided sufficient conditions under which paus-
ing improves the probability of success. Loosely speaking,
so long as shortly after the minimum gap the relaxation
time scale is small enough (relative to the pause time), one
can expect a pause to boost the probability of success. As
discussed above, whether or not this improves TS is not as
obvious.

We use GS and FES to refer to the ground and subspace
of the first excited states of the instantaneous quantum
Hamiltonian. In the rest of the section, we refer to the gap
as the energy gap between the GS and the FES.

At very early or late regions in the annealing, only
one Hamiltonian—either the driver HX or the problem
HC—dominates. Since both the problem Hamiltonian and
the driving Hamiltonian are classical when acting alone,
the dynamics in these regions are almost classical. Because
the temperature T is much lower relative to the energy
scale, excitations out of the GS are suppressed.

In the middle of the anneal, when the scales of HX and
HC are comparable, the system dynamics are determined
by the interplay of the energy gap, the nonadiabaticity (the
annealing speed relative to the gap), and thermalization. In
this region, we expect significant population loss from the
ground state to excited states. In particular, when the gap
is small enough, thermal-excitation channels are expected
to become more dominant, populating excited states. This
region is also where nonadiabiatic transitions are expected
to be largest.

We thus distinguish three different regimes in the anneal,
as described below and illustrated by the schematic pre-
sented in Fig. 6.

Regime I: ||A(s)HX || 
 ||B(s)HC||. The instantaneous
Hamiltonian is mainly HX and its energy scale is much
larger than the temperature, T. The system stays in the
ground state of HX .

Regime II: ||A(s)HX || ∼ ||B(s)HC|| and their energy scale
is comparable to the temperature. Both thermal and quan-
tum dynamics happen and the minimal gap occurs in this
region. As opposed to the zero-temperature case of adi-
abatic evolution, in which all of the population remains

FIG. 6. A sketch of the three regimes. Colored in purple, the
left and rightmost regions are the adiabatic regimes I and III
(which extend further to the left and right as indicated by the
arrows). Regime II is further subdivided into three regions, a, b,
and c, as in the main text, which are determined by the instan-
taneous gap � and the temperature T. In region IIa, we expect
the system to stop behaving strictly adiabatically and in region
IIb approximate instantaneous thermalization may occur if the
relaxation time scale is small enough, as well as nonadiabatic
transitions. In region IIc, a pause may help to repopulate the
GS. This should be thought of as an approximate picture of what
occurs, to aid the reader. In reality, the transitions between these
regions will, of course, not be sharp and defined by a single point
during the evolution.

in the GS, thermal excitations and nonadiabatic transitions
can both occur and it is difficult to distinguish between the
two.

As the anneal goes on in this regime, it sequentially goes
through the following regions:

(a) Gap approaching the temperature, system leaving
the adiabatic regime, but transitions (nonadiabatic and
thermal) may still be relatively slow compared to the
system evolution.

(b) Gap near its minimum and much smaller than the
temperature—thermalization effects play a dominant role
and cause population loss from the GS. If a long enough
pause is inserted, the system could approach its thermal
equilibrium. Quantum nonadiabatic effects could be strong
enough to increase the population of the FES beyond its
magnitude at thermal equilibrium.

(c) Gap larger than the temperature, nonadiabaticity is
weak. The system may still approximately equilibriate if
given enough time (e.g., a pause) but will likely be far from
the instantaneous Gibbs state during the standard anneal.

As the system enters region II c from II b, pausing can
bring significant FES population back to the GS, since rel-
ative to the gap, the temperature T is now lower, hence
boosting the probability of success.
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Regime III: ||B(s)HC|| 
 ||A(s)HX ||, ||B(s)HC|| 
 T,
dynamics are slow, the system simply picks up phases
under HC, and the population distribution is final. This is
also known as the frozen region in the literature.

B. How |JF| shifts the optimal pausing location earlier

An increase in |JF | is expected to shift the minimal gap
to earlier in the anneal, meaning that region II b occurs
earlier in the anneal, and therefore also shifts the optimal
pause region II c earlier. This shift of the minimal gap
can partly result from the increase in the relative norm of
HC, i.e., decreasing the value of [A(s)/B(s)](‖HX ‖/‖HC‖).
Similar to Ref. [13], this is akin to shifting each point
earlier in the anneal. In the case in which the |JF | are
dominant, the result of Ref. [13] can be applied in a
straightforward manner and one expects (i) the gap loca-
tion to shift earlier in the anneal and (ii) the minimum gap
size to increase. In our case, however, the |JF | are not gen-
erally dominant, in which case the argument of Ref. [13]
cannot be applied directly. Instead, we approach it using
perturbation theory. As we show below, while we do gen-
erally expect the location of the gap to shift earlier in the
anneal, the size of the minimum gap may decrease with
|JF | when taking the problem couplings Jij into account.

In Fig. 7, for a small Ising problem embedded using an
additional physical qubit on chimera connectivity—which
allows exact diagonalization of the instantaneous Hamil-
tonian—we show the change of minimal gap with |JF |.

FIG. 7. The shift of the minimal gap with |JF |. The energy
gap between the ground and the first excited states for the
instantaneous quantum Hamiltonian during annealing for a toy
problem. The logical problem is a disordered Ising problem with
local fields (Jij , hi ∈ [−1, 1]) of a complete graph of size 3 (tri-
angle), embedded to four physical qubits (square) on chimera
connectivity. The gap is computed exactly by diagonalizing the
instantaneous Hamiltonian. As |JF | increases, the instantaneous
gap closes and the minimum gap shifts to earlier in the anneal.

Because the cells in chimera are bipartite graphs, odd
cycles are not native to the structure. In this small example,
a fully connected triangle graph on three nodes requires
minor embedding as a square with four nodes. Below, we
provide an argument as to why the minimum gap increases
in value with decreasing ferromagnetic strength.

Before providing a proof sketch for the gap increase, we
mention another picture that comes into play, which is that
an increase in |JF | can yield “clusters” (physical qubits
representing the same logical qubits) with stronger inter-
nal couplings. Changing the state in such clusters requires
collective flipping of qubits, demanding greater quantum
dynamics. Accordingly, the transition from region II b to
region II c would happen earlier in the anneal. Such a pic-
ture may also be accountable for the less dramatic increase
in the success rate compared to the native Ising case: the
associated energy barrier may require a much higher rela-
tive temperature—while pausing earlier helps, the amount
by which it can help is limited (because it is an interplay
of the three influences, which are correlated in a given
annealing schedule and at a given temperature).

1. Proof sketch of gap scaling under |JF|
We apply first-order nondegenerate perturbation theory.

Let H(s) = H0(s) + B(s)λHF with H0(s) = A(s)HX +
B(s)HC + B(s)JFHF , where λ > 0, JF < 0, and HF is the
ferromagnetic Hamiltonian for the vertex model. That is,
we are considering the effect of weakening the vertex
model infinitesimally by decreasing |JF |. To simplify mat-
ters, assume that the only vertex model is a chain of length
2. Then, HF = σ z

k1
σ z

k2
for two qubits k1, k2. Write |Ei(s)〉

as the instantaneous ith eigenstate of H0(s). For simplicity,
we drop the explicit s dependence (i.e., we just consider
s fixed at some value). Then we can always decompose
our instantaneous eigenstates in the computational basis
|Ei〉 = ∑

j a(i)
j |zL

j 〉 +∑
k b(i)

k |zB
k 〉, where the |zL

j 〉 are logi-
cal states and |zB

k 〉 has the chain broken. We compute the
matrix elements as follows:

〈Ei|HF |Ei〉 =
∑

j

|a(i)
j |2 −

∑

k

|b(i)
k |2. (6)

Note that, by normalization,
∑

k |b(i)
k |2 = 1 −∑

j |a(i)
j |2

and, denoting the logical probability P(i)
L := ∑

j |a(i)
j |2,

〈Ei|HF |Ei〉 = 2P(i)
L − 1. (7)

This tells us, to first order in λ > 0, that the low-lying
energy levels experience an increase in energy upon
decreasing the ferromagnetic strength (|JF | → |JF | − λ),
i.e., E′

i = Ei + Bλ(2P(i)
L − 1) > Ei, assuming that P(i)

L >

1/2. We see consistent behavior with this picture in Fig. 8
(even though this figure is not in the perturbative limit).
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FIG. 8. The energy-level shift with |JF |. The individual energy
levels show an increase in energy upon decreasing the ferromag-
netic strength (i.e., the case in which λ > 0 in our perturbation
theory) for the problem in Fig. 7.

Now, the gap � = E1 − E0 changes under λ, to first
order, as

�′ = � + Bλ(〈E1|HF |E1〉 − 〈E0|HF |E0〉)
= � + 2Bλ(P(1)

L − P(0)
L ), (8)

which therefore increases in magnitude (at a fixed s)
by weakening the ferromagnetic couplings, assuming that
P(1)

L > P(0)
L .

At the start of the anneal, |E0(0)〉 = |+〉⊗N and so
P(0)

L = 1/2 (in the specific case when the embedding
contains just one additional qubit). At s = 0, the FESs
are linear combinations containing one excitation in the
x eigenbasis, i.e., a single |−〉. Consider the symmet-
ric FES, denoted |FE+〉, where the state of the chain is

1√
2
(| − +〉 + | + −〉) (and the other qubits are all |+〉).

This state is entirely in the logical subspace, due to the
canceling out of the |01〉 and |10〉 terms. When the trans-
verse field is “strong,” i.e., “near” to s = 0 (but where the
FES degeneracy is broken), by the perturbation theory we
may indeed therefore expect that �′ > �. We see this in
Fig. 7, where the strongest chain, |JF | = 8, has the small-
est instantaneous gap. In the case of an arbitrary chain
length, following the general expression given in the first
line of Eq. (8), a similar argument applies provided that
P(1)

L is large enough relative to P(0)
L , though the precise

dependence is more complicated.
We also know that once the transverse field becomes

weak relative to the problem Hamiltonian (e.g., A/B � 1),
P(1)

L − P(0)
L → 0, as both the instantaneous GS and the FES

become close to logical states.
By interpolating between the two extremes (s ≈ 0, s →

1), the above argument explains the change in gap size

observed in Fig. 7 and, moreover, why the location of
the minimum gap is expected to move earlier in the
anneal.

VI. CONCLUSIONS AND FUTURE WORK

We study how midanneal pauses affect performance on
embedded problems using the class of degree-bounded
minimum-spanning-tree problems. We develop a partial
gauge approach that allows us to take advantage of the
extended J range while also using gauges (partially), yield-
ing significantly cleaner results and improved performance
than without partial gauges, enabling us to confirm the the-
oretical predictions. Our results confirm that, as for native
problems, there is a region, consistent across instances,
in which a pause improves the probability of success.
We further show that the pause generally improves the
time to solution (TS) for these problems and we evaluate
the performance on three TS-related metrics. We extend
the theoretical picture of Ref. [7] to embedded prob-
lems, describing the interaction of embedding parameters
with annealing parameters, thermalization, and nonadia-
batic effects. This picture explains why the optimal pause
location moves earlier in the anneal as |JF | increases and
why the benefit provided by pausing, while significant, is
not as great as for native problems. It generally provides
both deeper insights into the physics of these devices and
pragmatic recommendations to improve performance on
optimization and sampling problems.

This study suggests a number of avenues for future
research. As the connectivity of quantum annealing hard-
ware increases, as is anticipated in D-Wave’s upcoming
Pegasus architecture, a lower embedding overhead should
translate into greater benefit from pausing. Larger and
more connective devices will allow larger problem sizes
to be run, enabling scaling analyses. As annealing hard-
ware becomes more flexible, a wider variety of advanced
schedules become possible, such as a smooth slowing
down rather than a pause or annealing at different rates
in different parts of the system depending on the local
embedding characteristics or the local problem-instance
structure. All of these possibilities should be explored on
a variety of optimization problems as well as on the BD-
MST problem class investigated here. Embedding affects
sampling problems even more than optimization prob-
lems [26], so a study of the interplay between embedding
parameters and annealing parameters should be done in
that context as well. Experiments at other temperatures
and with the ability to do quick quenches at arbitrary
points in the anneal would give further insight into the
underlying physics. Further, given that diabatic behavior
is expected to be useful even for devices that could remain
adiabatic throughout a run, an intriguing area for both the-
oretical research and hardware development is the use of
engineered dissipation to support cooling in conjunction
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with diabatic evolution, enabling much more controlled
utilization of thermalization in quantum annealers in the
future.
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APPENDIX A: PROBLEM MAPPING:
“LEVEL-BASED”

Consider a graph G = (V, E) with weights w(E) for each
edge, from which we wish to obtain a minimum-weight
spanning tree with maximum degree �, i.e., find its BD-
MST. This involves minimizing the sum of the weights of
the tree edges, represented by the cost function

C0 =
∑

p ,v

wpvxp ,v , (A1)

which we explain below. Several constraints are also
imposed to ensure that the graph is in fact a spanning tree
and its degree is bounded by �.

A root for the tree is picked randomly or based on prob-
lem structure—generally, picking a high-degree vertex as
the root will result in lower resource costs—and assigned
to level 1. Its children will be at level 2, their children at
level 3, and so on, leading to the “level-based” designation.

The variables xp ,v appearing in Eq. (A1) represent the
parent-child relationships in the tree; xp ,v = 1 if p is the
(adjacent) parent of v (and 0 if not). The indices p , v range
over p = 1, . . . , n and v = 2, . . . , n, restricted to (inter-
sected with) pairs (p , v) or (v, p) that occur in E. Thus
there are two variables for every edge not containing the
root and one for every root edge, giving 2m − dr total xp ,v
variables, with m being the number of edges in E and dr
the degree of the root.

Since our problem needs to be in QUBO form, the con-
straints are expressed as penalty terms. The first penalty
term enforces that every node (except the root) has exactly

TABLE III. n = 5 graphs.

m Label Graph name Edges

4 m4ver1 DhC (1,2), (2,3), (3,4), (4,5)
5 m5ver1 Dhc (1,2), (2,3), (3,4), (4,5), (1,5)
5 m5ver2 DiK (1,2), (2,3), (2,5), (3,4), (4,5)
5 m5ver3 DjC (1,2), (2,3), (2,4), (3,4), (4,5)
5 m5ver5 DiS (1, 2),(1, 3), (1,4),(1,5),(4,5)
5 m5ver6 DKs (1, 2), (2, 3), (3, 4), (4, 5), (3, 5)
6 m6ver1 DyK (1,2), (1,5), (2,5), (2,3), (3,4), (4,5)
6 m6ver2 DjS (1,2), (2,3), (2,4), (2,5), (3,4), (4,5)
6 m6ver3 DjK (1,2), (2,3), (2,5), (3,5), (3,4), (4,5)
6 m6ver4 D{K (1,2), (1,5), (1,3), (2,3), (3,4), (4,5)
6 m6ver5 D{c (1, 2), (1, 3), (2, 3), (3, 5), (3, 4), (4, 5)
6 m6ver6 D]o (1, 2), (2, 3), (3, 4), (1, 4), (2, 5), (4, 5)
7 m7ver1 D|S (1,2), (1,5), (1,4), (2,5), (2,3), (3,4), (4,5)
7 m7ver2 DzW (1,2), (1,5), (2,5), (2,3), (2,4), (3,5), (4,5)
7 m7ver3 D|c (1,2), (1,3), (1,4), (1,5), (2,3), (3,4), (4,5)
7 m7ver4 D ∼ C (1,2), (1,3), (1,4), (2,4), (2,3), (3,4), (4,5)
7 m7ver5 D]w (1, 2), (2, 3), (3, 4), (1, 4), (4, 5), (2, 5), (3, 5)
8 m8ver1 D}k (1,2), (1,5), (1,3), (1,4), (2,5), (2,3), (3,4), (4,5)
8 m8ver2 Dz[ (1,2), (1,5), (2,5), (2,3), (2,4), (3,4), (3,5), (4,5)
9 m9ver1 D ∼ k (1, 2), (2, 3), (4, 5), (1, 5), (1, 4), (1, 3), (2, 5), (2, 4), (3, 5)
10 m10ver1 D ∼{ (1, 2), (2, 3), (3, 4), (4, 5), (1, 5), (1, 4), (1, 3), (2, 5), (2, 4), (3, 5)
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one parent:

Cpen1 =
∑

v∈{2,...,n}

⎛

⎝
∑

p:(pv)∈E

xp ,v − 1

⎞

⎠

2

. (A2)

The number of terms in the sum is 2m − dr, i.e., equal to
the number of variables xp ,v .

The second penalty term enforces that each vertex exists
at exactly one level in the tree:

Cpen2 =
∑

v∈{2,...,n}

(
n∑

�=2

yv,� − 1

)2

. (A3)

It introduces the yv,� variables, with yv,� = 1 if v is at depth
� of the tree, v = 2, . . . , n, � = 2, . . . , n. There are (n − 1)2

such variables. However, since the number of variables
will eventually determine how many logical qubits the
problem requires, it is in our interest to reduce it as much
as possible. By picking the root smartly, the range of �

can be reduced. We also carry out the following prepro-
cessing: taking the original graph G = (V, E), the distance
from each node to the one we have selected as the tree
root is calculated. Given that it is impossible for a node to
be at a level smaller than its distance to the root, we can
avoid generating any yv,� for which that is the case, further
bringing down the total number of yv,� variables.

The third penalty term enforces that the tree has degree
at most �:

Cpen3 =
v∑

p=2

⎛

⎝
∑

v:(pv)∈E

xp ,v −
�−1∑

j =1

zp ,j

⎞

⎠

2

+
⎛

⎝
∑

v:(1v)∈E

x1,v −
�∑

j =1

z1,j

⎞

⎠

2

. (A4)

It is separated into two terms to account for the fact that
the root can have up to � children, while all other nodes
cannot have more than (� − 1), since they have a parent.
To enforce the inequality

∑
v:(pv)∈E xp ,v ≤ � − 1, integer

variable zp ∈ [0, � − 1] is introduced as a slack variable
and the inequality is enforced as equality

∑
v:(pv)∈E xp ,v =

zp . The integer variable is further encoded into binary
variables zp ,j . In general, various encoding methods can
be applied to encode an integer into binaries, includ-
ing binary, unary, and one-hot encodings. While binary
encoding is most efficient for integers of value power of
2, we use unary encoding here, which can be applied
straightforwardly to arbitrary values of �.

The fourth and final penalty term enforces that the tree
encoding is consistent, i.e., that if p is the parent of v, then

its level is one less than v’s:

Cpen4 =
∑

p ,v

n∑

�=3

xp ,vyv,�(1 − yp ,�−1) +
dr∑

v=2

x1,v(1 − yv,2)

+
dr∑

v=2

yv,2(1 − x1,v), (A5)

where the last two sums handle the edges connected to
the root and their terms are quadratic, while the first sum
deals with the remaining edges and produces cubic terms
of the form xp ,vyv,�(1 − yp ,�−1). While the original number
of cubic terms would be

(2m − 2dr) ∗ (n − 2),

due to the preprocessing of the yv,� variables this num-
ber is reduced. Because cubic terms cannot be directly
encoded in D-Wave, we introduce an ancilla variable
ap ,v,� to encode xp ,vyv,� and, accordingly, a penalty func-
tion f (x, y, a) = 3a + xy − 2ax − 2ay is added to raise a
penalty if a = xy is violated. The term xp ,vyv,�(1 − yp ,�−1)

TABLE IV. Graph weights are uniformly drawn from the above
lists.

Label Weight list

w2 [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
w3 [1, 1, 2, 1, 1, 2, 1, 1, 2, 1]
w4 [1, 1, 2, 2, 1, 1, 2, 2, 1, 1]
w5 [1, 4, 1, 4, 1, 4, 1, 4, 1, 4]
w6 [1, 3, 6, 1, 3, 6, 1, 3, 6, 1]
w7 [1, 7, 1, 7, 1, 7, 1, 7, 1, 7]
w8 [3, 2, 1, 3, 2, 1, 3, 2, 1, 3]
w9 [4, 3, 2, 1, 4, 3, 2, 1, 4, 3]
w10 [5, 4, 3, 2, 1, 5, 4, 3, 2, 1]
w11 [6, 5, 4, 3, 2, 1, 6, 5, 4, 3]
w12 [7, 6, 5, 4, 3, 2, 1, 7, 6, 5]
w13 [1, 1, 3, 4, 2, 1, 2, 3, 4, 2]
w14 [3, 2, 1, 1, 1, 1, 2, 4, 2, 2]
w15 [2, 1, 2, 1, 4, 1, 1, 3, 3, 2]
w16 [4, 3, 3, 4, 3, 3, 4, 3, 4 ]
w17 [3, 4, 7, 5, 5, 5, 5]
w18 [2, 1, 4, 1, 2, 1, 2]
w19 [4, 6, 4, 7, 4, 7]
w20 [1, 1, 2, 3, 2, 3]
w21 [4, 5, 4, 5, 5]
w22 [2, 2, 6, 2, 4]
w23 [3, 3, 5, 2, 3, 2, 5, 2, 5]
w24 [4, 3, 2, 2]
w25 [2, 2, 6, 2, 4]
w26 [4, 3, 3, 3]
w27 [3, 4, 7, 5, 5, 5, 5]
w28 [4, 6, 4, 7, 4, 7]
w29 [6, 4, 2, 2]
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can then be replaced by quadratic terms:

4a − ayp ,�−1 + xp ,vyv,� − 2axp ,v − 2ayv,�. (A6)

The total number of variables (and hence, logical qubits)
without preprocessing is at most

2m − dr + (n − 1)2 + n(� − 1) + 1

+ (2m − 2dr)(n − 2) � 2mn + n2.

This would mean, for instance, that the complete graph
K5 with � = 3 would require between 86 and 100 logi-
cal qubits (depending on dr). With preprocessing, we are
able to bring this number down to 74.

Finally, we can write the overall objective function as

C = C0 + A(Cpen1 + Cpen2 + Cpen3 + Cpen4), (A7)

and, accordingly, the cost Hamiltonian HC. In Eq. (A7),
we have defined the minimum penalty weight to be the
maximum edge weight:

A = wmax = max
(uv)∈E

wuv . (A8)

In Ref. [19], we provide proof that setting A = wmax + ε

with any positive ε suffices to guarantee C is minimized
by bounded-degree spanning trees that are optimal for C0

TABLE V. The mapped problem size for N = 4-6 using the D-Wave chimera architecture and problem size N = 4-10 using the
future D-Wave Pegasus architecture. For the Pegasus-architecture entries, embedding is only performed for the complete graphs,
which is the reason for the large number of unset entries in the last three columns. For the chimera-architecture-embedding entries, we
are unable to embed graphs with n ≥ 7 using the default embedding parameters, which is the reason for the missing data entries in the
last four rows of the table in columns 3–5. Lastly, we are not collecting median-vertex-model-size statistics for some of the early n = 4
network communication graphs that we examine early in the study, which is the reason for the missing chimera-architecture entries for
the n = 4 graphs near the top of the table.

n m Chimera architecture Pegasus architecture

Number of Number of Median vertex Number of Number of Median vertex
logical variables physical variables model size logical variables physical variables model size

4 6 35 108–150 3–4 35 54–71 1–2
4 5 29 65–121 . . . . . . . . . . . .

4 4 25 60–116 . . . . . . . . . . . .

4 4 23 47–82 . . . . . . . . . . . .

4 3 20 40–76 . . . . . . . . . . . .

5 4 32 83–140 1.5–3 . . . . . . . . .

5 5 42 121–215 2–4 . . . . . . . . .

5 5 43 138–169 2–3 . . . . . . . . .

5 5 44 149–205 2–4 . . . . . . . . .

5 5 47 151–220 2–4 . . . . . . . . .

5 5 39 112–179 1.5–3 . . . . . . . . .

5 6 50 169–205 2–4 . . . . . . . . .

5 6 53 194–255 2–4 . . . . . . . . .

5 6 49 181–246 2–4 . . . . . . . . .

5 6 46 148–272 2.5–4.5 . . . . . . . . .

5 6 50 170–249 3–5 . . . . . . . . .

5 6 50 164–217 2.5–4.5 . . . . . . . . .

5 7 54 193–247 3–5 . . . . . . . . .

5 7 58 229–300 3–4.5 . . . . . . . . .

5 7 50 171–260 3–5 . . . . . . . . .

5 7 55 226–281 3–5 . . . . . . . . .

5 7 56 227–273 2–5 . . . . . . . . .

5 7 50 162–224 2.5–5 . . . . . . . . .

5 8 58 219–284 3–5 . . . . . . . . .

5 8 64 287–362 3–5 . . . . . . . . .

5 9 66 299–413 3.5–6 . . . . . . . . .

5 10 74 380–485 4–7 74 164–233 2–3
6 15 137 1166–1293 4–6 137 477–544 3
7 21 . . . . . . . . . 230 1018–1292 2–4
8 28 . . . . . . . . . 359 2046–2712 2–4
9 36 . . . . . . . . . 530 3744–4464 2–4
10 45 . . . . . . . . . 749 6024–7889 2–4
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and correctly encoded. In our runs, for convenience, we set
ε = 0, which can, in principle, lead to an invalid bit string
also minimizing C. The solutions returned from the quan-
tum annealer are each checked for optimality and correct
encoding. Though increasing A by any amount would guar-
antee that the optimal cost of a solution implies its correct
encoding, in practice we observe that this is still the case
despite having set ε = 0. We provide details and further
discussion in Ref. [19].

APPENDIX B: APPROXIMATION COMPLEXITY
FOR BD-MST PROBLEMS

To find a degree-bounded spanning tree of cost at most r
times the optimum remains NP hard for any r ≥ 1 [27].
Hence, approximation algorithms are often designed to
return a low-weight spanning tree with the vertex degree
bound � slightly relaxed. In Ref. [28], a polynomial time
algorithm is given for the unweighted problem that returns
a spanning tree of degree at most �∗ + 1, where �∗ is
the minimal � for which such a spanning tree exists.
For the weighted case, Ref. [29] shows a polynomial
time algorithm that returns a spanning tree with vertex
degree at most � + 2—subsequently improved to � + 1
in Ref. [30]—and cost at most OPT, where OPT is the
optimal spanning-tree weight under the desired bound �.
Alternatively, heuristics exist that return valid �-bounded
spanning trees but with suboptimal cost that may be diffi-
cult to quantify generally. A wide variety of approaches
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FIG. 9. An embedding comparison between current and future
architectures. Embedding for the complete graphs for problem
size n = 4-10 with default embedding parameters and 10–20
instances drawn for each graph. Chimera embedding performed
with D-Wave’s SAPI2 FIND_EMBEDDING routine with the D-
Wave 2000Q hardware adjacency graph. Pegasus embedding
performed with the Ocean MINORMINER FIND_EMBEDDING rou-
tine. The median number of physical qubits as a function of the
number of logical qubits with error bars are at the 35th and 65th
percentiles after bootstrapping over the ensemble of instances.

have been developed for this problem [31–36], includ-
ing specific approximations for various special cases (e.g.,
geometric weights); for an overview, see Ref. [37].

APPENDIX C: BD-MST PROBLEM INSTANCES

All connected graphs of n = 5, with m = |E| ranging
from 4 to 10, are considered where an BD-MST with
� = 2 exists. The edges in these graphs are provided
in Table III. Additionally, the graph labeled “m5ver5” is
included to demonstrate the BD-MST with � ≥ 3. For
each graph, problem instances are generated by assigning a
set of weights by sampling from one of the lists of weights
appearing in Table IV. The first m weights in each weight
list are used to define an instance.

APPENDIX D: EMBEDDING STATISTICS

Table V contains the mapped problem size for each
graph and embedding features such as the number of phys-
ical qubits, the size of the vertex model, etc. Embedding
statistics on a future D-Wave architecture (Pegasus) are
also included in this table. For the Pegasus architecture,
each qubit can couple to 15 other qubits, as opposed to the
chimera architecture, which allows each qubit to connect
to at most six additional qubits.

As discussed in Sec. B, Fig. 9 contains detailed informa-
tion about the typical size of the embedded problems for
different graphs, including the number of physical qubits
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FIG. 10. The shift of the optimal pause location for an instance
with � = 3 probability of success versus the annealing pause
location for the n = 5, “m5ver5” [m = 5, K1,4 + e, g6: DiS],
14-instance weight set using embedding number 20 with �=3,
1 μs anneal, 100-μs pause, 50 000 reads and zero partial gauges.
Pause location ranging from 0.2 to 0.5 and Jferro varied from
−1.2 to −2.0. The peak in psuccess shifts from sp = 0.42 at
Jferro = −1.2; to sp = 0.36 for Jferro = −1.5; and sp = 0.32 for
Jferro = −2.0. Note that �=3 is the minimum delta that can be
used to obtain a minimum-weight spanning tree.
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FIG. 11. The shift of the optimal pause location with |JF | (for multiple instances). The shifting of the optimal pause location with
|JF | for multiple instances with a 100-μs pause. Note that the scale of the y axis is different across instances.
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FIG. 12. The shift of the optimal pause location with |JF |
(ensemble). The probability of success for an ensemble of nine
instances of n = 5 with a pause duration tp = 100 μs, and ta =
1 μs.

and the size of the vertex models. Embedding statistics for
a future D-Wave architecture (Pegasus) are also given.

APPENDIX E: DETAILS ON UNSOLVED
INSTANCES

As a special case of the improvement in TS, we find
that for certain problems, the no-pause annealing fails to
find a solution even after 50 000 reads, while the annealing
with an appropriate pause is able to find one. In particu-
lar, out of the 45 instances tested, the no-pause annealing
fails to solve seven of them. Of those seven, there are
three that remain unsolved by any of the pause runs (we
are considering a total of ten pause runs, resulting from
two pause locations sp = {0.3, 0.32} and five pause dura-
tions tp = {0.25, 0.5, 0.75, 1, 2} μs), while the other four
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no gauges
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100 gauges

FIG. 13. The improvement of the probability of success with
partial gauges. The effect of partial gauges on the probability of
success for ten of n = 4 instances with varying |JF | and a no-
pause schedule.

are solved by most or all of them: two are solved by ten
out of the ten pause runs, one is solved by nine pause runs,
and the other one is solved by eight pause runs. There are
also two other instances that are solved by the no-pause
runs but that, respectively, one and three of the pause runs
cannot solve (but all the rest can). There are no instances
that are solved by the no-pause runs but are not solved by
the pause runs. Of the ten pause runs, the worst one cannot
solve six of the 45 instances (making it better than the no-
pause runs in that metric). The second worst cannot solve
five, there are two that cannot solve four, and the other six
cannot solve three.

0.30 0.32
sp

10−3

6 × 10−4

2 × 10−3

3 × 10−3

p s
uc

ce
ss

sp = 0.3

sp = 0.32

no pause
tp = 0.25 µs
tp = 0.5 µs

tp = 0.75 µs
tp = 1.0 µs
tp = 2.0 µs

FIG. 14. The effect of the pause duration on the probability
of success corresponding to TS shown in Fig. 3 in Sec. B. With
pause durations of {0.25, 0.5, 0.75, 1, 2} μs and |JF | = 1.8, the
probability of success for an ensemble of 45 instances is shown
for pause locations sp = 0.3 and sp = 0.32 (which we find to
be optimal during the initial sweep). The reference (horizontal
line and band for the median and the 35th and 65th percentiles,
respectively) is the no-pausing case with parameters optimal for
TS: ta = 1 μs and |JF | = 1.6. The data points show the median,
with error bars at the 35th and 65th percentiles, after performing
105 bootstraps over the set of instances.
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APPENDIX F: SUPPORTING INSTANCES
SHOWCASING THE SHIFT OF THE OPTIMAL
PAUSE LOCATION, IMPROVEMENTS WITH

PARTIAL GAUGES, AND THE EFFECT OF PAUSE
ON PROBABILITY OF SUCCESS

In Fig. 10, we show the shift of the optimal pause loca-
tion with |JF | for a problem instance for bounded degree
� = 3.

In Fig. 11, we show a few more instances from the
instance ensemble for � = 2, n = 5.

Figure 12 illustrates the clear shifting of the optimal
pause location for an instance ensemble over all |JF | val-
ues that we examine (in the range [1.2, 2]). For clarity on
the figure, pausing results for just three values of |JF | are
shown earlier in the bottom panel of Fig. 4 and discussed
in Sec. C.

As discussed in Sec. D, the improvement in psuccess sat-
urates as one increases the number of gauges applied.
Figure 13 shows, for an n = 4 ensemble, that applying
as few as ten gauges yields similar psuccess to 100 gauges.
As detailed in Sec. D, these results indicate that with ten
gauges we are already likely to encounter one or more pos-
itive outliers, leading to the large improvement in psuccess.
As the number of gauges increases further, the effect is not
as dramatic, indicating that the spread in the gauge quality
approaches the intrinsic distribution.

Figure 3 in Sec. B contains results for TS for an ensemble
in the narrowed parameter range discussed in this section.
The corresponding psuccess values are shown in Fig. 14.
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