
PHYSICAL REVIEW APPLIED 15, 044006 (2021)

Quantum Functionalities Via Feedback Amplification

Rion Shimazu and Naoki Yamamoto*

Department of Applied Physics and Physico-Informatics, Keio University, Hiyoshi 3-14-1, Kohoku, Yokohama
223-8522, Japan

 (Received 20 August 2020; revised 30 January 2021; accepted 9 March 2021; published 2 April 2021)

Feedback amplification is a key technique for synthesizing various functionalities, especially in elec-
tronic circuits involving op amps. This paper presents a quantum version of this methodology, where the
general phase-preserving quantum amplifier and coherent (i.e., measurement-free) feedback are employed
to construct various types of systems having useful functionalities: quantum versions of differentiator, inte-
grator, self-oscillator, and active filters. The class of active filters includes the Butterworth filter, which
can be used to enhance the capacity of an optical quantum communication channel, and the nonreciprocal
amplifier, which enables measurement of a superconducting qubits system as well as protection of it by
separating input from output fields. A particularly detailed investigation is performed on the active phase-
canceling filter for realizing a broadband gravitational-wave detector; that is, the feedback-amplification
method is used to construct an active filter that compensates the phase delay of the signal and eventually
recovers the sensitivity in the high-frequency regime.
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I. INTRODUCTION

The amplifier is an essential component in modern tech-
nological systems, and it is usually involved in those
systems in some feedback form. Let us consider a clas-
sical amplification process y = Gu where u and y are input
and output signals, and G > 1 is the gain of the ampli-
fier. Then by feeding a fraction of the output back to the
input through the controller K , as depicted in Fig. 1, the
input-output relation is modified to

y = G(FB)u, G(FB) = G
1 + GK

= 1
1/G + K

.

Then by making the gain G large, we find y = (1/K)u;
hence if K is a passive device with gain K < 1, the entire
system works as a robust amplifier, which is insensitive
to the parameter change in G. The usefulness of this
feedback-amplification technique [1,2] is not limited to
realizing such a robust amplifier. That is, by combining
high-gain amplifiers (op amps in the electrical circuits)
with several passive devices such as resistors and capac-
itors, one can devise a variety of functional systems; e.g.,
integrator, active filters, switches, and self-oscillators [3].

This paper develops the quantum version of feedback-
amplification theory, which is expected to be of particu-
lar relevance to make the existing quantum technological
devices robust and further to engineer systems with func-
tionalities. In fact this idea has been implicitly employed
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in some specific systems [4,5]. An explicit research direc-
tion was addressed in Ref. [6], showing a general quan-
tum analog to the above-described robust amplification
method; more precisely, it is shown that a coherent (i.e.,
measurement-free) feedback control [7–14] of a high-gain
phase-preserving amplifier [5,15–18] and a passive device
(e.g., a beam splitter) yields a robust phase-preserving
amplifier.

This paper begins with Sec. II to introduce the models
of the quantum phase-preserving amplifier and some lin-
ear passive systems. Then, using those models, we extend
the quantum feedback-amplification scheme presented in
Ref. [6] from the Fourier domain to the Laplace domain
(Sec. III), together with developing a basic stability test
method (Sec. IV). We then apply the theory to construct
systems having several useful functionalities: quantum
versions of differentiator and integrator (Sec. V), self-
oscillator (Sec. VI), and active filters (Sec. VII). As for
the quantum integrator, it is proven applicable for improv-
ing the detection efficiency of an itinerant field. The ability
to synthesize a quantum self-oscillator might also be use-
ful for several purposes as in the classical case, such as
analog quantum memory and frequency converter [19,20],
though in this paper we do not provide a concrete example.
Active filtering is a typical application of feedback ampli-
fication, which in our case includes the quantum version
of the Butterworth filter [21] and nonreciprocal amplifier;
the former is used to realize the steep roll-off characteristic
in frequency, which enables the enhancement of the capac-
ity of a quantum communication channel [22]; the latter
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FIG. 1. Schematic of the classical feedback amplifier.

enables precise measurement of a superconducting qubits
system while protecting it from the unwanted backward
field generated in the amplification process [23–27].

In particular, in Sec. VIII we show a detailed investiga-
tion on the quantum phase-cancellation filter applied to the
gravitational-wave detection problem; this is an active fil-
ter that can compensate the delayed phase of an incoming
signal for the purpose of enhancing the detection band-
width. The quantum phase-cancellation filters proposed
in the literature [28–31] are based on an optomechanical
implementation, but it requires an extremely low environ-
mental temperature. The proposed phase-cancellation filter
based on the feedback-amplification method, on the other
hand, can be all-optically implemented at room tempera-
ture. We demonstrate a numerical simulation to show how
much this filter can broaden the bandwidth of a typical
gravitational-wave detector in a practical setting.

II. PRELIMINARIES

A. Phase-preserving linear amplifier

In this paper we consider a general phase-preserving
linear amplifier [15,16,18]. A typical realization of this
system is given by the nondegenerate parametric amplifier
(NDPA) [5,32]. In the optics case, as depicted in Fig. 2, the
NDPA is an optical cavity having two orthogonally polar-
ized fields with modes a1 and a2, which are created and
coupled with each other at the pumped nonlinear crystal
(the green box in Fig. 2) inside the cavity. Also, the mode
a1 (a2) couples with an input field b1 (b2) at the mirror
with transmissibity proportional to γ . The Hamiltonian of
the NDPA is given by

HNDPA = �ω1a†
1a1 + �ω2a†

2a2

+ i�λ(a†
1a†

2e−2iωp t − a1a2e2iωp t),

with ωk the resonant frequencies of ak, λ ∈ R the coupling
strength between a1 and a2, and 2ωp the pump frequency.
Here we assume that ω1 = ω2 = ωp . Then, in the rotating
frame at frequency ωp , the dynamics of the NDPA is given
by the following Langevin equation [33]:

[
ȧ1

ȧ†
2

]
=

[−γ /2 λ

λ −γ /2

] [
a1

a†
2

]
− √

γ

[
b1

b†
2

]
. (1)

Pump laser

FIG. 2. Nondegenerate parametric amplifier.

Note that the canonical commutation relation of input
fields is given by [b(t), b†(t′)] = δ(t − t′), with δ(t − t′) the
Dirac δ function. The output equations are given by

b̃1 = √
γ a1 + b1, b̃†

2 = √
γ a†

2 + b†
2. (2)

From Eqs. (1) and (2), the input-output relation of the
NDPA is represented as

[
b̃1(s)
b̃†

2(s
∗)

]
= 1

(s + γ /2)2 − λ2

×
[

s2 − λ2 − γ 2/4 −γ λ

−γ λ s2 − λ2 − γ 2/4

]

×
[

b1(s)
b†

2(s
∗)

]
. (3)

The operator b(s) is related to b(t) via the Laplace trans-
formation [6,34,35]:

b(s) =
∫ ∞

0
e−stb(t)dt, b†(s) = [b(s)]†

=
∫ ∞

0
e−s∗tb†(t)dt.

From Eq. (3), γ > 2λ if and only if the amplifier is stable
[i.e., every solution of the characteristic polynomial (s +
γ /2)2 − λ2 = 0 has a negative real part]. The output mode
b̃1 at s = 0 is given by

b̃1(0) = −γ 2 + 4λ2

γ 2 − 4λ2 b1(0) + −4γ λ

γ 2 − 4λ2 b†
2(0),

which diverges as γ → 2λ + 0. Hence, in this parame-
ter limit, the signal with s satisfying |s| � γ is largely
amplified.

In this paper we consider the general phase-preserving
linear amplifier with the following input-output relation:

[
b̃1(s)
b̃†

2(s
∗)

]
= G(s)

[
b1(s)
b†

2(s
∗)

]
,

G(s) =
[

G11(s) G12(s)
G21(s) G22(s)

]
.

(4)
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The condition on the transfer function matrix G(s) is rep-
resented in the Fourier domain as follows. The Fourier
transformation of the field operators are defined as

b(iω) =
∫ ∞

−∞
e−iωtb(t)dt,

b†(iω) = [b(iω)]† =
∫ ∞

−∞
eiωtb†(t)dt,

which satisfy [b(iω), b†(iω′)] = 2πδ(ω − ω′). This com-
mutation relation requires G(s) to satisfy

|G11(iω)|2 − |G12(iω)|2 = |G22(iω)|2 − |G21(iω)|2 = 1,

G21(iω)G∗
11(iω) − G22(iω)G∗

12(iω) = 0, ∀ω, (5)

where G∗
ij (iω) = [Gij (iω)]∗ is the complex conjugate of

Gij (iω).

B. Passive systems

The general form of passive linear system from the
inputs (b3, b4) to the outputs (b̃3, b̃4) in the Laplace domain
is represented as

[
b̃†

3(s
∗)

b̃†
4(s

∗)

]
= K(s)

[
b†

3(s
∗)

b†
4(s

∗)

]
,

K(s) =
[

K11(s) K12(s)
K21(s) K22(s)

]
,

(6)

where the creation-mode representation is used to sim-
plify the notation. The transfer function K(s) satisfies
|K11(iω)|2 + |K12(iω)|2 = 1, |K21(iω)|2 + |K22(iω)|2 = 1,
and K21(iω)K∗

11(iω) + K22(iω)K∗
12(iω) = 0, ∀ω. These

conditions are derived from unitarity of the response func-
tion matrix of passive quantum system:

K−1(iω) = K†(iω) =
[

K∗
11(iω) K∗

21(iω)

K∗
12(iω) K∗

22(iω)

]
.

A typical passive device is a single-mode optical cavity
having two input-output ports, depicted in Fig. 3(a). The
dynamics of the cavity is given by

ȧ†
3 =

(
−κ1 + κ2

2
+ i�

)
a†

3 − √
κ1b†

3 − √
κ2b†

4,

where a3 is the cavity mode, κi is the coupling strength
between a3 and the input itinerant field bi, and � is the

(a) (b)

FIG. 3. Single-mode optical cavity, functioning as (a) the low-
pass filter and (b) the high-pass filter, for the input-output relation
from b3 to b̃4.

detuning. Also the output equations are given by

b̃†
3 = √

κ1a†
3 + b†

3, b̃†
4 = √

κ2a†
3 + b†

4.

Then the transfer function matrix K(s) is given by

K(s) = 1
s + (κ1 + κ2)/2 − i�

×
[

s + (κ2 − κ1)/2 − i� −√
κ1κ2

−√
κ1κ2 s + (κ1 − κ2)/2 − i�

]
.

(7)

In the special case κ1 = κ2 = κ and � = 0, it is

K(s) = 1
s + κ

[
s −κ

−κ s

]
. (8)

Hence the relation between b3 and b̃4 is given by

b̃†
4(s

∗) = −κ

s + κ
b†

3(s
∗) + s

s + κ
b†

4(s
∗). (9)

That is, in the domain |s| 
 κ , the cavity works as an
integrator for the transmitting field from b3 to b̃4. Also it
works as a low-pass filter with bandwidth κ; that is, the
frequency components of b3 with |s| = |iω| � κ can only
pass through the cavity, and hence this cavity is called the
mode-cleaning cavity (MCC).

In this paper we also work on the case where b̃4 is the
reflected field of b3, as shown in Fig. 3(b); in this case the
transfer function is given by

K(s) = 1
s + (κ1 + κ2)/2 − i�

×
[ −√

κ1κ2 s + (κ1 − κ2)/2 − i�
s + (κ2 − κ1)/2 − i� −√

κ1κ2

]
.

(10)

Again in the special case κ1 = κ2 = κ and � = 0, it is

K(s) = 1
s + κ

[−κ s
s −κ

]
. (11)
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Hence the relation between b3 and b̃4 is given by

b̃†
4(s

∗) = s
s + κ

b†
3(s

∗) + −κ

s + κ
b†

4(s
∗).

That is, at around s = 0, the cavity works as a differentia-
tor for the reflected field from b3 to b̃4. Also it works as a
high-pass filter with bandwidth κ; that is, the optical com-
ponents of b3 in the domain |s| = |iω| 
 κ can only pass
through the cavity. We also call this cavity a MCC.

III. QUANTUM FEEDBACK AMPLIFICATION

In this paper we consider the general feedback-
connected system shown in Fig. 4, composed of the high-
gain quantum phase-preserving amplifier G and a passive
system K . The feedback structure is made by

b̃2 = b3, b2 = b̃4,

which are of course the same as b̃†
2 = b†

3 and b†
2 = b̃†

4.
The entire system has the inputs (b1, b†

4) and the outputs
(b̃1, b̃†

3). From Eqs. (4) and (6), the input-output relation of
this system is given by

[
b̃1(s)
b̃†

3(s
∗)

]
= G(FB)(s)

[
b1(s)
b†

4(s
∗)

]
,

G(FB)(s) =
[

G(FB)

11 (s) G(FB)

12 (s)
G(FB)

21 (s) G(FB)

22 (s)

]
,

(12)

where

G(FB)

11 = G11 − K21 det [G]
1 − K21G22

, (13)

G(FB)

12 = G12K22

1 − K21G22
, (14)

G(FB)

21 = G21K11

1 − K21G22
, (15)

G(FB)

22 = K12 + G22 det [K]
1 − K21G22

, (16)

with det [G] = G11G22 − G12G21 and det [K] = K11K22 −
K12K21. These matrix entries satisfy |G(FB)

11 (iω)|2 −

Amplifier 

Controller

FIG. 4. Feedback structure of the quantum amplifier.

|G(FB)

12 (iω)|2 = 1, ∀ω, etc., meaning that it also functions
as a phase-preserving amplifier.

It was shown in Ref. [6] that |G(FB)

11 (iω)| ≈ 1/|K21(iω)|
holds in the high-gain amplification limit |G11(iω)| → ∞;
because the characteristic change in the passive transfer
function K(s) is usually very small, this realizes the robust
quantum amplification, which is the quantum analog to
the classical feedback-amplification technique mentioned
in the first paragraph in Sec. I. We now extend this idea to
the Laplace domain. The point to derive the result is that,
from Eq. (5), we have

det [G(iω)] = G11(iω)G22(iω) − G12(iω)
G22(iω)G∗

12(iω)

G∗
11(iω)

,

= [|G11(iω)|2 − |G12(iω)|2]G22(iω)

G∗
11(iω)

= G22(iω)

G∗
11(iω)

,

and thus
det [G(iω)]

G22(iω)
= 1

G∗
11(iω)

→ 0,

in the high-gain limit |G11(iω)| → ∞. Also again from
Eq. (5), |G11(iω)| = |G22(iω)| and |G12(iω)| = |G21(iω)|
hold. Then in the same limit, Eq. (5) leads to

1 −
∣∣∣∣G12(iω)

G11(iω)

∣∣∣∣
2

= 1
|G11(iω)|2 → 0

=⇒
∣∣∣∣G12(iω)

G22(iω)

∣∣∣∣ → 1,

1 −
∣∣∣∣G21(iω)

G22(iω)

∣∣∣∣
2

= 1
|G22(iω)|2 → 0

=⇒
∣∣∣∣G21(iω)

G22(iω)

∣∣∣∣ → 1.

These are equivalent to

G12(iω)

G22(iω)
→ eiθ(ω),

G21(iω)

G22(iω)
→ eiϕ(ω),

where θ(ω) and ϕ(ω) are certain real functions of ω.
We now extend the above result and assume that

det [G(s)]
G22(s)

→ 0,
G12(s)
G22(s)

→ 1,
G21(s)
G22(s)

→ 1 (17)

hold in the domain D = {s ∈ C ; |G11(iω)| → ∞}. More-
over, we assume G11(s) = G22(s) for all s ∈ C. These
conditions are indeed satisfied in the case of NDPA shown
in Sec. A, for s satisfying |s| � γ , where the high-gain
limit is realized by taking γ → 2λ + 0. Under the above
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assumptions, the transfer function matrix of the entire
closed-loop system can be approximated by

G(FB)(s) = −1
K21(s)

[
1 K22(s)

K11(s) det [K(s)]

]
, (18)

in the domain D. Hence, we now have a quantum
system that, as proven later, generates several interest-
ing and robust functionalities available in the feedback-
amplification setting.

The proof of Eq. (18) is as follows:

G(FB)
11 = G11 − K21 det [G]

1 − K21G22
= 1 − K21(det [G]/G22)

(1/G22) − K21

→ − 1
K21

,

G(FB)
12 = G12K22

1 − K21G22
= (G12/G22)K22

(1/G22) − K21
→ −K22

K21
,

G(FB)
21 = G21K11

1 − K21G22
= (G21/G22)K11

(1/G22) − K21
→ −K11

K21
,

G(FB)
22 = K12 + G22 det [K]

1 − K21G22
= (K12/G22) + det [K]

(1/G22) − K21

→ −det [K]
K21

.

We again emphasize that Eq. (18) is the system depending
only on the passive component K , meaning that G(FB) is
robust against the characteristic change in G. Note that,
for a general phase-preserving amplifier, which does not
necessarily satisfy Eq. (17) and G11(s) = G22(s) ∀s ∈ C,
the resulting closed-loop system in the high-gain limit may
still contain some components of G. Hence, following the
convention of the classical feedback-amplification theory,
we call G satisfying these assumptions the ideal quantum
op amp.

IV. STABILITY ANALYSIS METHOD

From an engineering viewpoint, it is useful to guar-
antee the stability of the entire controlled system before
activating it (more precisely, before closing the loop for
control). In the classical case the seminal Nyquist method
[36] is often used for this purpose. Here we show the quan-
tum version of this method, particularly for the quantum
feedback-controlled system with transfer function matrix.
Eq. (12); note that, hence, the stability must be guaranteed
for the system with finite amplification gain.

Let us represent the matrix entries of G(s) and K(s) as
Gij (s) = gij (s)/g(s) and Kij (s) = kij (s)/k(s), respectively,
where g(s), gij (s), k(s), and kij (s) are the polynomial func-
tions. Then, it is easy to see that G(FB)(s) has the following

form:

G(FB)(s) = 1
g2(s)k2(s){1 − K21(s)G22(s)}

[
� �

� �

]
,

where for simplicity the matrix entries, the polynomial
functions denoted by �, are not shown. Here we assume
that the original systems G(s) and K(s) are stable; then
because k(s) and g(s) are stable polynomial functions
[meaning that the zeros of k(s) and g(s) lie in the left
side plane in C], the stability of the closed-loop system is
completely characterized by the zeros of 1 − K21(s)G22(s).

We can now apply the classical Nyquist method to test
the stability of this closed-loop system. As in the classical
case let us define the open-loop transfer function:

L(s) = −K21(s)G22(s).

Then, from the Nyquist theorem, the simplest stability cri-
terion is as follows. If the point −1 lies outside the Nyquist
plot [i.e., the trajectory of L(iω) for ω ∈ (−∞, +∞) in the
complex plane], then the closed-loop system is stable; oth-
erwise, it is unstable. The point is that this stability test can
be carried out for an open-loop system illustrated in Fig. 5,
which is constructed via simply cascading the amplifier
and the controller. In fact the input-output relation of this
open-loop system is given by

⎡
⎣ b̃1(s)

b̃†
3(s

∗)
b̃†

4(s
∗)

⎤
⎦ = G(open)(s)

⎡
⎣ b1(s)

b†
2(s

∗)
b†

4(s
∗)

⎤
⎦ ,

G(open)(s) =
⎡
⎣ G11(s) G12(s) 0

K11(s)G21(s) K11(s)G22(s) K12(s)
K21(s)G21(s) K21(s)G22(s) K22(s)

⎤
⎦ .

Therefore, the Nyquist plot can be obtained by setting b1
and b4 to the vacuum fields and injecting the coherent field
|αeiω〉 in the b2 port with several frequencies ω. In fact,
measuring the amplitude of the output field b̃4 gives us the
Nyquist plot in the form L(iω) = −〈b̃†

4(−iω)〉/α∗. Note
that the measurement result of b̃4 must be probabilistic, and

Amplifier 

Controller

FIG. 5. System structure for the stability test of the closed-loop
system.
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hence the Nyquist plot constitutes a “band” with variance
〈|�b̃4(iω)|2〉, meaning that the stability margin should be
taken into account.

V. FUNCTIONALITIES 1: QUANTUM
PROPORTIONAL INTEGRAL DIFFERENTIAL

(PID)

We now start describing several functionalities realized
by the developed quantum feedback-amplification method.
The first functionality is the quantum PID [37]. That is, we
show that, via the proper choice of the system K , the ideal
closed-loop system, Eq. (18), functions as a differentiator
(D) or integrator (I ) on the input itinerant field b1; hence
together with the proportional component (P), which sim-
ply attenuates or amplifies the amplitude of the input, now
P, I , and D components are provided to us. These three are
clearly the most basic components involved in almost all
electrical circuits and used for constructing several useful
systems such as a PID feedback controller and an analog
computer. In fact, a classical PID control for quantum sys-
tems has been proposed [38,39]; the fully quantum PID
controller constructed using feedback amplification may
have some advantages over the classical one, but we leave
this analysis for future work. Instead, we show a simple
application of the quantum integrator at the end of this
section.

A. Differentiator

Let us take the symmetric cavity, Eq. (8), as the con-
troller K(s). In this case, the transfer function of the ideal
closed-loop system, Eq. (18), is given by

G(FB)(s) = 1
κ

[
s + κ s

s s − κ

]
.

Hence from Eq. (12), the output b̃†
3(s) is given by

b̃†
3(s

∗) = s
κ

b1(s) + s − κ

κ
b†

4(s
∗),

or in the time domain it is

b̃†
3(t) = 1

κ

d
dt

b1(t) + 1
κ

d
dt

b†
4(t) − b†

4(t),

meaning that the closed-loop system works as a differen-
tiator for the itinerant field b1(t).

As discussed in Sec. III, the approximation is valid
only in a specific s region such that the high-gain limit
is effective. To show a concrete example of this region,
we study a feedback-controlled system composed of the
optical NDPA and the control cavity, depicted in Fig. 6(a).
Recall that, in the case of NDPA, the high-gain limit
is achieved in the regime |s| � γ ≈ 2λ, which becomes

(a)

MCC 

NDPA 

(b)

10–3 10–2 10–1 100 101 102
10–3

10–2

10–1

100

101

102

(F
B

)

FIG. 6. (a) Optical realization of the quantum differentiator.
(b) Gain plot of the actual transfer function, Eq. (15), and its
ideal limit |iω/κ| for the quantum differentiator.

wider as λ increases. Actually this can be seen in Fig. 6(b),
showing the gain plot of the transfer function, Eq. (15),
of this optical system with parameters γ = 2.01λ and its
high-gain limit |iω/κ|; that is, the frequency range such
that this controlled system effectively approximates the
ideal differentiator becomes wider as λ gets bigger.

Note that, as in the classical case, the differentiator itself
is an unstable system, and thus this system should be used
together with other components such that the entire sys-
tem is stable. This instability can be readily seen using
the method addressed in Sec. IV; the open-loop transfer
function in this case is

L(s) = κ(s2 − γ 2/4 − λ2)

(s + κ)(s2 + γ s + γ 2/4 − λ2)
,

and the Nyquist plot is given by Figs. 7(a) and 7(b), show-
ing that the point −1 lies inside the trajectory of L(iω) and
thus the system is unstable. Note that the actual Nyquist
plot fluctuates along the curve shown in the figure, with
variance 〈|�b̃4(iω)|2〉.

B. Integrator

Next we take the high-pass filtering cavity, Eq. (11), as
the controller, where in this case the reflected field is fed
back to the amplifier, as shown in Fig. 8(a) in the optics
case. Then the transfer function matrix, Eq. (18), of the

044006-6



QUANTUM FUNCTIONALITIES VIA FEEDBACK. . . PHYS. REV. APPLIED 15, 044006 (2021)

(a) (b)

–100

0

100

–200 –100 0 – 2 0 2
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0

2

FIG. 7. (a) Nyquist plot of the quantum differentiator, where
the parameters are set as κ = 1, λ = 2κ , and γ = 2.01λ. (b)
Enlargement of (a) at around s = 0.

ideal closed-loop system is given by

G(FB)(s) = 1
s

[−s − κ κ

κ s − κ

]
.

Hence from Eq. (12) the output b̃†
3(s

∗) is connected to the
input b1(s) as

b̃†
3(s

∗) = κ

s
b1(s) + s − κ

s
b†

4(s
∗),

or in the time domain it is

b̃†
3(t) = κ

∫ t

0
b1(τ )dτ + b†

4(t) − κ

∫ t

0
b†

4(τ )dτ . (19)

This means that in a specific s region where the high-gain
limit of the amplifier is effective (|s| � γ in the NDPA
case, as discussed in Sec. III), the closed-loop system
works as an integrator for the itinerant field b1(t). Note
again that the feedback-controlled system can approximate
the integrator in the low-frequency regime, while the stan-
dard noncontrolled cavity, Eq. (9), can do the same task in
a high-frequency regime |iω| 
 κ; in this sense the inte-
grator shown here is the functionality realized only via the
feedback-amplification method.

Now, unlike the differentiator, the integrator forms a cir-
culating field in the feedback loop between the amplifier
and the controller cavity. Therefore, we regard this loop
as another cavity with mode a4, as depicted in Fig. 8(b)
in the optics case and Fig. 8(c) in a microwave sys-
tem case, which we call the loop cavity. In fact, for the
model depicted in Fig. 8(a) where b2, b̃2, b3, and b̃4 are
treated as the itinerant fields, they violate the Ito rule such
as dB2(t)dB†

2(t) = dt with B2(t) = ∫ t
0 b2(τ )dτ [33,40]. In

what follows we show that this modified model still main-
tains the functionality of integration. More precisely, we

(a) (b)

MCC ( )NDPA ( ) MCC ( )NDPA ))

(c)

Amplifier Cavity ( )

Cavity ( )Pump

  

10–3 10–2 10–1 100 101 102
10–2

10–1

100

101

102

103
(d)

(F
B 

)

FIG. 8. (a) Optical realization of the quantum integrator with input b1 and output b̃3. (b) Modified model for the quantum integrator
where the loop between the NDPA and MCC is regarded as a cavity with the mode a4. (c) Microwave realization of the quantum
integrator. (d) Gain plot of the actual transfer function |G(FB’)

21 (iω)| in Eq. (23) and its ideal limit |κ/iω|. The spike around ω/κ ≈ 102

is due to invalid approximation in the high-frequency region.
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show that the transfer function from b1 to b̃†
3 in Fig. 8(b) or

Fig. 8(c) approaches to κ/s in the same high-gain limit.
First, the Hamiltonian of the system is given by

HFB amp =
4∑

k=1

�ωka†
kak + i�λ(a†

1a†
2e−2iωp t − a1a2e2iωp t)

+ �g24(a
†
2a4 + a2a†

4) + �g34(a
†
3a4 + a3a†

4),
(20)

where ω3 and ω4 are the resonant frequencies of a3 and
a4, respectively. g24 (g34) describes the coupling strength
between a2 and a4 (a3 and a4), which are given by

g24 =
√

cγ /L4, g34 =
√

cκ/L4, (21)

with L4 the round-trip length of the loop cavity and c =
3 × 108 m/s the speed of light. Here we assume ωk = ωp
(k = 1, . . . , 4). Together with the coupling to the external
fields, we find that, in the rotating frame at frequency ωp ,
the dynamical equations are given by

ȧ1 = −γ

2
a1 + λa†

2 − √
γ b1, ȧ†

2 = λa1 + ig24a†
4,

ȧ†
3 = −κ

2
a†

3 + ig34a†
4 − √

κb†
4, ȧ†

4 = ig24a†
2 + ig34a†

3,

b̃1 = √
γ a1 + b1, b̃†

3 = √
κa†

3 + b†
4.

(22)

The input-output equation of this system in the Laplace
domain is of the form[

b̃1(s)

b̃†
3(s

∗)

]
=

[
G(FB’)

11 (s) G(FB’)
12 (s)

G(FB’)
21 (s) G(FB’)

22 (s)

] [
b1(s)

b†
4(s

∗)

]
,

where particularly G(FB’)
21 (s) is given by

G(FB’)
21 (s) = α0

s4 + β3s3 + β2s2 + β1s + β0
, (23)

with

α0 = √
γ κλg24g34, β0 = γ κg2

24/4 − λ2g2
34,

β1 = (γ g2
24 + κg2

24 + γ g2
34 − κλ2)/2,

β2 = γ κ/4 − λ2 + g2
24 + g2

34, β3 = (γ + κ)/2.

In the limit γ → 2λ + 0, together with Eq. (21), the above
coefficients are approximated as

α0 ≈ 2cκλ2/L4, β0 ≈ 0,

β1 ≈ 2cλ(κ + λ)/L4 − κλ2/2,

β2 ≈ κλ/2 − λ2 + c(κ + 2λ)/L4, β3 ≈ κ/2 + λ.

Furthermore, we assume |s| � γ , so that the higher-order
term of s can be neglected. Then the transfer function,

Eq. (23), can be approximated by

G(FB’)
21 (s) ≈ α0

β1s
≈ 2cκλ2/L4{

2cλ(κ + λ)/L4 − κλ2/2
}

s

= κ(
1 + κ

λ
− L4κ

4c

)
s

.

Thus, if κ � λ and L4κ/(4c) � 1, this system becomes
the integrator, which we wish to obtain:

G(FB’)
21 (s) ≈ κ

s
.

In Fig. 8(d), the solid black line shows the ideal gain
plot of the integrator, (i.e., |κ/iω|), while the dotted lines
represent |G(FB’)

21 (iω)| in Eq. (23) with parameters γ =
2.01λ, c/L4 = 103κ , and λ = nκ (n = 3, 5, 7, 9). Clearly,
|G(FB’)

21 (iω)| well approximates |κ/iω| in a specific s region
where the high-gain limit of the NDPA is effective, which
is now given by |s| � γ ≈ 2λ. Hence, λ should be rel-
atively large to guarantee that the integrator works in a
wider region in s; this can be actually seen in the figure,
although making λ large does not make a big difference
in the parameter regime considered here. However, the
approximation is not valid in the frequency domain where
ω/κ < 10−2. This is because, if s = 0, the transfer func-
tion in Eq. (23) is G(FB′)

21 (0) = α0/β0, whereas the transfer
function of the integrator goes towards infinity if s →
0. Therefore, the approximation is valid in the relatively
low-frequency domain where s4, s3, s2 can be ignored and
where |β1s| 
 |β0| (⇔ |s| 
 |β0/β1|).

The stability of the modified model depicted in
Figs. 8(b) and 8(c) cannot be investigated via the stabil-
ity test discussed in Sec. IV, which can only be applied
to the case where the feedback loop does not form a cav-
ity. Therefore, instead of Nyquist’s theorem, we use the
Routh-Hurwitz method [41]. In our case, the system is sta-
ble if and only if every root of the characteristic polynomial
function in the denominator in Eq. (23) has a negative real
part; the Routh-Hurwirz method systematically leads to the
stability condition as follows:

β3 > 0,
β2β3 − β1

β3
> 0,

β2
3β0

β1 − β2β3
+ β1 > 0.

Note that β3 > 0 is already satisfied.

C. Application to qubit detection

Here we give an application of the integrator, which can
be used in a stand-alone fashion unlike the differentiator.
The system of interest (not the feedback-controlled sys-
tem) is a qubit that is dissipatively coupled to the external
itinerant field b0(t), such as a transmon qubit coupled to
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a superconducting resonator; the Langevin equation of the
system variable σx(t) is given by

d
dt

σx(t) = −�

2
σx(t) +

√
�σz(t){b0(t) + b†

0(t)},

where � is the strength of the dissipative coupling [33].
The output field is given by b1(t) = √

�σ−(t) + b0(t); the
quadrature q1(t) = {b1(t) + b†

1(t)}/
√

2 thus follows

q1(t) =
√

�

2
σx(t) + b0(t) + b†

0(t)√
2

.

Now the field state is set to the vacuum |0〉F . Then we find

F〈0|q1(t)|0〉F =
√

�

2
e−�t/2σx,

where for a system-field operator X , F〈0|X |0〉F represents
an operator living in the system Hilbert space. This means
that, for a very short time interval �t � 1, the above oper-
ator is approximated as F〈0|q1(t)|0〉F ≈ √

�/2σx, which
thus takes ±√

�/2 when measuring it. In other words, to
measure the qubit state we need a high-speed detector.

Using the integrator changes this condition. Let us
place the ideal integrator having the input-output rela-
tion, Eq. (19), along the output field of the qubit. That
is, the output b1(t) is taken as the input to the integrator,
and we measure its output b̃3(t). The quadrature q̃3(t) =
{b̃3(t) + b̃†

3(t)}/
√

2 then satisfies

F〈0|q̃3(t)|0〉F = F〈0|
(
κ

∫ t

0

b1(τ ) + b†
1(τ )√

2
dτ

)
|0〉F

= κ

√
2
�

(1 − e−�t/2)σx,

where b4 is set to be a vacuum field. Therefore, in the long
time limit �t 
 1, this output itinerant field becomes

F〈0|q̃3(t)|0〉F ≈ κ

√
2
�

σx.

Hence the measurement result is ±κ
√

2/�, which equal is
to ±√

�/2 by choosing the integrator parameter as κ =
�/2. This means that, even if the given detector is slow,
the integrator assists it to capture the same amount of
measurement signal as that obtained by a fast detector.

VI. FUNCTIONALITIES 2: SELF-OSCILLATION

Self-oscillation is also an useful functionality realized
with the feedback-amplification method, which is indeed
widely used in a variety of engineering scenes. To real-
ize a sustained oscillation, of course, some nonlinearities

such as a voltage saturation are necessary to be involved,
but here we focus only on the linear part; a possible prac-
tical application of the proposed method, which combines
a nonlinear component will be presented in a future work.

Let us consider the cavity, Eq. (10), with κ1 = κ2 = κ .
Then the transfer function of the ideal closed-loop system,
Eq. (18), is given by

G(FB)(s) = 1
s − i�

[
s + κ − i� −κ

κ s − κ − i�

]
.

Therefore, the output b̃3 is given by

b̃†
3(s

∗) = κ

s − i�
b1(s) + s − κ − i�

s − i�
b†

4(s
∗).

Because the pole is on the imaginary axis, this represents
a self-oscillation of b̃3. In fact, if both b1 and b4 are set to
the vacuum and 〈b̃3(0)〉 �= 0, then in the time domain b̃3
satisfies

〈b̃3(t)〉 = e−i�t〈b̃3(0)〉, (24)

hence it oscillates with frequency −� (in the rotating
frame). Also, the spectral broadening of this oscillation can
be seen from

1
2π

∫ ∞

−∞
〈b̃†

3(−iω)b̃3(−iω′)〉dω′ = κ2

(ω − �)2 .

In practice, the cavity parameter κ1 − κ2 is set to a
small positive number, which makes the system oscillating
almost with a fixed frequency yet with growing amplitude;
but the amplitude is saturated by some dissipative nonlin-
earities, and as a result a sustained oscillation called the
quantum limit cycle can be realized. As in the classical
case, there may be several applications of this functional-
ity, e.g., a quantum memory [19] and synchronization for
spectroscopy [42]; also see Ref. [43] for the general semi-
classical method for analyzing the quantum limit cycle and
synchronization.

Now we show the dynamics of the entire closed-loop
system in nearly the ideal amplification limit. In the optics
case, the realization of the self-oscillator is very similar
to the integrator shown in Fig. 8(a). The only difference
between the self-oscillator and the integrator is that the
detuning of the MCC is not zero for the case of the self-
oscillator, while it is zero for the integrator. Also as in the
integrator, the self-oscillator forms a loop cavity between
the NDPA and MCC, and thus it should be modeled as the
system shown in Fig. 8(b) or Fig. 8(c) with nonzero detun-
ing � in the mode a3. Then the entire dynamical equation
of the self-oscillator is the same as those in Eqs. (22)
except that i�a†

3 is added to the right-hand side of the
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equation that has a term ȧ†
3 in the left-hand side. Here, if

〈b1(t)〉 = 〈b†
4(t)〉 = 0 ∀t, the mean dynamics is

d
dt

⎡
⎢⎢⎢⎢⎣

〈a1〉
〈a†

2〉
〈a†

3〉
〈a†

4〉

⎤
⎥⎥⎥⎥⎦ = Aosc

⎡
⎢⎢⎢⎢⎣

〈a1〉
〈a†

2〉
〈a†

3〉
〈a†

4〉

⎤
⎥⎥⎥⎥⎦ , 〈b̃†

3〉 = √
κ〈a†

3〉,

where

Aosc =

⎡
⎢⎣

−γ /2 λ 0 0
λ 0 0 ig24
0 0 −κ/2 + i� ig34
0 ig24 ig34 0

⎤
⎥⎦ .

Figure 9 shows the mean time evolution of the quadratures
of b̃3(t):

q̃3(t) = b̃3(t) + b̃†
3(t)√

2
, p̃3(t) = b̃3(t) − b̃†

3(t)√
2i

.

The parameters and the initial conditions are set as fol-
lows: � = 1, λ = 0.01�, γ = 2.01λ, and c/L4 = 0.1�.
Also κ is set to κ = 0.1� (black lines in the figure)
or κ = 0.01� (light blue lines). The initial condition is
〈a1(0)〉 = 〈a†

2(0)〉 = 〈a†
3(0)〉 = 〈a†

4(0)〉 = 1/
√

2. Now the
ideal oscillation, Eq. (24), is represented in terms of the
quadratures as

[〈q̃3(t)〉
〈p̃3(t)〉

]
=

[
cos (�t) sin (�t)

− sin (�t) cos (�t)

] [〈q̃3(0)〉
〈p̃3(0)〉

]
.

With the initial values mentioned above, these are given by
〈q̃3(t)〉 = √

κ cos (�t) and 〈p̃3(t)〉 = −√
κ sin (�t), mean-

ing that there is a π/2 phase difference between the two
quadratures. Figure 9 shows that the case κ = 0.01�

closely reproduces this ideal oscillation. In particular, the

0 10 20 30 40 50 60 70
–0.3

–0.2

–0.1

0.0

0.1

0.2

FIG. 9. Time evolution of the quadratures of b̃3. Note that the
amplitudes will eventually diverge due to instability of the self-
oscillator, which is not illustrated in the figure; in practice, such
divergence is suppressed via some nonlinearity.

smaller value of κ leads to the slower attenuation of the
oscillation. This is simply because the smaller κ is, the
fewer photons leak out from the MCC with detuning �.
Thus, by setting κ smaller, we can preserve the coherence
of the light field oscillating with frequency � in the MCC.
However, making κ smaller also reduces the amount of
photons coming from the NDPA into the MCC, and thus
the amplitude of oscillation is limited. Conversely, a large
value of κ allows a large amount of photons to flow from
NDPA to MCC, resulting in a large oscillation amplitude,
as demonstrated in the case κ = 0.1� in Fig. 9. There-
fore, there is a trade-off between the coherence time and
the amplitude of the self-oscillation.

VII. FUNCTIONALITIES 3: ACTIVE FILTERS

As we see in Sec. B, the two-input two-output cavity
works as a low-pass or high-pass filter with bandwidth κ

and maximal gain 1. Here we show that, by the feedback-
amplification method, several types of filter with tunable
bandwidth, gain, and phase, i.e., the quantum version of
active filters, can be engineered.

A. High-Q active filter

First we show a simple first-order active filter. As in the
quantum integrator, the controller is chosen as the high-
pass filtering cavity, Eq. (10), with zero detuning � = 0,
which in this case is set to be asymmetric (i.e., κ1 �= κ2).
Then, the closed-loop , Eq. (18), realized in the high-gain
amplification limit is given by

[
b̃1(s)
b̃†

3(s
∗)

]
= G(FB)(s)

[
b1(s)
b†

4(s
∗)

]
,

G(FB)(s) = 1
s + (κ2 − κ1)/2

×
[−s − (κ1 + κ2)/2

√
κ1κ2√

κ1κ2 s − (κ1 + κ2)/2

]
.

(25)

Here we focus on the output b̃†
3(s

∗):

b̃†
3(s

∗) =
√

κ1κ2

s + (κ2 − κ1)/2
b1(s) + s − (κ1 + κ2)/2

s + (κ2 − κ1)/2
b†

4(s
∗),

with κ2 − κ1 > 0. Hence, this system functions as a low-
pass filter for b1(s) with bandwidth (κ2 − κ1)/2. In contrast
to the standard low-pass filter, Eq. (8), with bandwidth
κ , the bandwidth of this active filter can be made very
small by making κ1 and κ2 close to each other. As a result,
the Q factor can be largely enhanced from Q = ω0/2κ to
Q′ = ω0/(κ2 − κ1). For instance, for a coherent light field
with frequency ω0 = 3 × 1014 Hz, an optical cavity κ =
3 × 106 leads to Q = 5 × 107, while the active filter with
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κ1 = κ and κ2 = 1.01κ leads to Q′ = 1 × 1010. Note that
this active filter also functions as an amplifier with gain
2
√

κ1κ2/(κ2 − κ1), which becomes large if the Q factor
increases. It is noteworthy that, in this case, the idler noise
mode b4 is also amplified with gain (κ2 + κ1)/(κ2 − κ1) at
s = 0. This means that basically the filtering makes sense
only for an input field with amplitude much bigger than
(κ2 + κ1)/(κ2 − κ1). Also we remark that, as discussed in
the case of the integrator, the feedback loop now constructs
another cavity, which should be taken into account for
more precise modeling of the filter; we give such a detailed
investigation in Sec. VIII for another type of active filter
discussed in the next subsection.

B. Phase-cancellation filter

The functionality provided by an active filter is not only
modifying the gain profile, but changing the phase of an
input field. In fact Miao et al. proposed a quantum active
filter that can effectively change the phase and thereby
enhance the bandwidth of the gravitational-wave detec-
tor or, in a wider sense, any cavity-based quantum sensor
[28]. A rough description of their idea is as follows. When
a gravitational wave propagates through the interferome-
ter (arm cavity), then it must pick up a phase φarm(�) =
−2�Larm/c, where �, Larm, and c are the gravitational-
wave frequency, the length of the cavity, and c the speed
of light, respectively. Note that only in Secs. B and VIII
we use the conventional � rather than ω to recall that
this is the gravitational-wave frequency. This extra phase
eventually limits the bandwidth of the detector; hence con-
structing an auxiliary intracavity filter with the transfer
function e−iφarm(�) = e2i�Larm/c will compensate this extra
phase and thus may recover the bandwidth.

Here we show that the feedback-amplification method
can be employed to realize such a phase-canceling filter
in a fully optical setting. We again use the closed-loop
system, Eq. (25), and now consider the output b̃1:

b̃1(s) = G(FB)
11 (s)b1(s) + G(FB)

12 (s)b†
4(s

∗)

= −s + (κ1 + κ2)/2
s + (κ2 − κ1)/2

b1(s) +
√

κ1κ2

s + (κ2 − κ1)/2
b†

4(s
∗).

Let us then set κ2 = 0:

b̃1(s) = G(FB)
11 (s)b1(s) = −s + κ1/2

s − κ1/2
b1(s). (26)

In the frequency domain s = i� this equation reduces to

b̃1(i�) = G(FB)
11 (i�)b1(i�) = − i� + κ1/2

i� − κ1/2
b1(i�).

Then by setting � � κ1 and κ1 = 2c/Larm, we actually
find that G(FB)

11 approximates our target filter:

G(FB)
11 (i�) = −�2 + κ2

1 /4 + i�κ1

�2 + κ2
1 /4

≈ κ2
1 /4 + i�κ1

κ2
1 /4

,

≈ e4i�/κ1 = e2i�Larm/c = e−iφarm(�). (27)

This phase-canceling filter might be realizable in prac-
tice by carefully devising the controller cavity so that the
optical loss κ2 is very small. Note that in the literature
works [28–31] an optomechanical oscillator was employed
to realize the same filter where in that case κ2 represents
the magnitude of the thermal bath added on the oscillator;
hence κ2 ≈ 0 requires the oscillator to be in an ultralow
temperature environment.

Lastly note that the system, Eq. (26), is clearly unstable;
particularly the system, Eq. (27), represents a phase-lead
filter that violates the causality. Similar to the case of the
integrator, therefore, in a practical setting such a phase-
cancellation filter must be incorporated in a bigger system
that is totally stable. In Sec. VIII we give a detailed study
to see how much the phase-cancellation filter, Eq. (26),
could compensate the phase delay and thereby enhance the
bandwidth of the stabilized gravitational-wave detector in
a practical setup.

C. Butterworth filter

Let us move back to the problem of modifying the
gain profile via an active filter. A particularly useful
bandpass filter, which is often used in classical electri-
cal circuits, is the Butterworth filter. The transfer function
of the nth-order classical Butterworth filter is given by
Tn(s) = g/Bn(s) where g is a constant and the following
are examples of polynomials Bn(s):

B1(s) = s + 1, B2(s) = s2 +
√

2s + 1,

B3(s) = (s + 1)(s2 + s + 1).

The gain of the filter is given by

|Tn(iω)| = g√
(ω/ωB)2n + 1

,

which has the steep roll-off characteristic of frequency,
particularly for large n, at the cutoff frequency ωB.

A quantum version of Butterworth filter has actually
been employed in the literature; in Ref. [22], a fourth-
order quantum Butterworth filter was applied to enhance
the channel capacity of a linear time-invariant bosonic
channel. However, its physical realization has not been dis-
cussed. Here we show that, in the simple case n = 2, the
feedback-amplification technique can be used to realize the
quantum Butterworth filter.

044006-11



RION SHIMAZU and NAOKI YAMAMOTO PHYS. REV. APPLIED 15, 044006 (2021)

FIG. 10. The controller K for realizing the second-order quan-
tum Butterworth filter in the optical setting. The detuning of the
left cavity is �, while that of the right cavity is −�. This con-
troller has the inputs (b3, b4) and outputs (b̃3, b̃4). A phase shifter
is embedded between the two cavities.

The controller K is chosen as the cascaded cavities,
an optical case of which is depicted in Fig. 10. The left
cavity with mode c1 has two inputs (b3, b4) and two out-
puts (b′

3, b′
4), and the right one with mode c2 has two

inputs (b′′
3, b′′

4) and two outputs (b̃3, b̃4). We assume that
the detuning of the left and right cavities are � and −�,
respectively. A phase shifter eiπ(= −1) is placed in the
path from b′

4 to b′′
3. Then the two input and output fields

are connected as follows:

b′′
3

†(s∗) = −b′
4

†(s∗), b′′
4

†(s∗) = b′
3

†(s∗).

The input-output relations of each cavities are given by

[
b′

3
†(s∗)

b′
4

†(s∗)

]
= Kl(s)

[
b†

3(s
∗)

b†
4(s

∗)

]
,

[
b̃†

3(s
∗)

b̃†
4(s

∗)

]
= Kr(s)

[
b′′

3
†(s∗)

b′′
4

†(s∗)

]
,

where Kl(s) is given by the left-hand side of Eq. (7) and

Kr(s) = 1
s + (κ1 + κ2)/2 + i�

×
[

s + (κ1 − κ2)/2 + i� −√
κ1κ2

−√
κ1κ2 s − (κ1 − κ2)/2 + i�

]
.

The transfer function of the controller is thus given by

K(s) = Kr(s)
[

0 −1
1 0

]
Kl(s). (28)

Here we set � = (κ1 + κ2)/2. The feedback configuration
is depicted in Fig. 4, where K(s) is now given by Eq. (28).
Then from Eqs. (18) and (28), we find that the output b̃†

3 of
the closed-loop system composed of this controller and a

10–3 10–2 10–1 100 101
10–2

100

102

(F
B

)

FIG. 11. Gain plot of the ideal second-order quantum Butter-
worth filter (black solid line) and that of actual transfer function
G(FB)

21 = G21K11/(1 − K21G22) with several λ (dotted lines).

high-gain amplifier G is given by

b̃†
3(s) = G(FB)

21 (s)b1(s) + G(FB)
22 (s)b†

4(s
∗),

= − {κ1 − κ2 + i(κ1 + κ2)} √
κ1κ2

s2 + (κ2 − κ1)s + (κ2 − κ1)2/2
b1(s)

− s2 − (κ2 + κ1)s + (κ2 + κ1)
2/2

s2 + (κ2 − κ1)s + (κ2 − κ1)2/2
b†

4(s
∗).

The transfer function from b1 to b̃†
3 has a form of

the second-order Butterworth filter with cutoff fre-
quency ωB = (κ2 − κ1)/

√
2 and maximal gain g =√

2κ1κ2(κ
2
1 + κ2

2 )/ω2
B. Also, it is easy to see that the trans-

fer function from b†
4 to b̃1 has the same form of second-

order Butterworth filter as above. Note that, as mentioned
in Sec. A, the amplitude of the input field should be much
bigger than that of the amplified idler vacuum noise.

Figure 11 shows the gain plot of the second-order But-
terworth filter developed above. In this figure, the black
solid line shows the gain plot of the ideal transfer func-
tion G(FB)

21 (iω) = −K11(iω)/K21(iω), which corresponds to
γ → 2λ + 0, while the dotted lines show the gain plot of
G(FB)

21 (iω) = G21(iω)K11(iω)/ {1 − K21(iω)G22(iω)} with
γ = 2.01λ and several parameters λ = mκ1 (m = 1, 3, 5, 7).
The other parameters are fixed to κ2 = 1.5κ1 and � =
(κ1 + κ2)/2. Now, as mentioned before, |G11(iω)| 
 1
holds in the frequency range ω � γ = 2.01λ. Therefore,
making λ bigger results in broadening the frequency range
where the approximation is valid, and in fact Fig. 11 shows
that the dotted line approaches the ideal solid line as λ gets
larger.

D. Nonreciprocal amplifier

The last topic in this section is a proposal of a nonrecip-
rocal (directional) amplifier, constructed via the feedback-
amplification method. Nonreciprocal amplifiers are partic-
ularly useful in the field of superconducting circuit-based
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quantum technologies [44–46]. In the microwave regime
the phase-preserving amplifier obeys the same Eq. (4), but
the configuration differs from the optical case; the input b1

and the corresponding output b̃1 propagate along the same
transmission line yet with opposite direction as shown in
Fig. 8(c). If the purpose of the use of amplifier is to detect
a small signal b1 generated from a source system, e.g., a
superconducting qubit, then the propagating direction of
the reflected output field b̃1 must be changed to protect the
source system from the backward field (if the output b̃1 is
the amplified vacuum noise field) or to measure it (if the
output b̃1 is the amplified signal). In fact there have been a
number of theoretical and experimental proposals of active
nonreciprocal amplifier [23–27]. Our scheme is similar to
Ref. [27], but it has a clear concept of using the feedback
amplification to realize a robust nonreciprocal amplifier as
described below.

Before describing the result, we note that the assump-
tions in the coherent feedback theory (e.g., see Ref. [47])
are not always satisfied in superconducting devices, while
there is certainly the case where the theory is valid and
was experimentally demonstrated [48]. Here we leave this
problem, i.e., the analysis for experimental implementabil-
ity of the method in the proposed superconducting circuit,
for the future work.

The proposed microwave nonreciprocal amplifier has
a form of coherent feedback shown in Fig. 12(a), which
takes into account the above-mentioned fact that the
input and reflected output fields propagate along the same
transmission line. This whole system has three inputs
(b1, b3, b4) and three outputs (b̃2, b̃3, b̃4); particularly b3

is the input signal and b̃3 is the amplified signal to be
detected, while b1 and b4 are the vacuum field. G and G are
both phase-preserving amplifiers, and K is a passive sys-
tem. As mentioned above, the source system generating b3

may be contaminated due to the backward field b̃4, which
is not necessarily vacuum. Hence b̃4 should be sufficiently
suppressed.

Each system component has the following input-output
relations:

[
b̃1(s)
˜̃b†

1(s
∗)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [ ˜̃b3(s)
b†

1(s
∗)

]
, (29)

[
b̃†

2(s
∗)

˜̃b2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [ ˜̃b†
1(s

∗)
b2(s)

]
, (30)

[
b̃3(s)
˜̃b3(s)

]
=

[
K11(s) K12(s)
K21(s) K22(s)

] [
b3(s)
˜̃b2(s)

]
, (31)

[
b̃4(s)
b2(s)

]
=

[
K∗

11(s) K∗
21(s)

K∗
12(s) K∗

22(s)

] [
b4(s)
b̃1(s)

]
. (32)

(vacuum)

(vacuum)

(output)(input)

circulator
transmission line

G

K

(a)

(b)

FIG. 12. (a) Configuration of the proposed microwave nonre-
ciprocal amplifier with the input b3 and the amplified output b̃3.
This system is composed of two amplifiers (G, G) and a passive
controller K . Although in this figure K represents a beam splitter,
other general quantum passive systems can also work as K . (b)
Intuitive illustration of the signal flow in the closed-loop system
containing high-gain amplifiers in the general classical case (left)
and in the proposed quantum case (right).

Combining these equations, the input-output relation of
the whole feedback-controlled system is represented as
follows:

⎡
⎢⎢⎣

b̃†
2(s

∗)

b̃3(s)

b̃4(s)

⎤
⎥⎥⎦ = G(FB)(s)

⎡
⎢⎣

b†
1(s

∗)
b3(s)
b4(s)

⎤
⎥⎦ ,

G(FB)(s) =

⎡
⎢⎣

G(FB)
11 (s) G(FB)

12 (s) G(FB)
13 (s)

G(FB)
21 (s) G(FB)

22 (s) G(FB)
23 (s)

G(FB)
31 (s) G(FB)

32 (s) G(FB)
33 (s)

⎤
⎥⎦ .

(33)

Here we find that, in a s domain such that both G(s) and
G(s) have a large gain, the transfer function matrix G(FB)(s)
converges to

G(FB)(s) →

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
K22(s)

−K21(s)
K22(s)

0

−K12(s)
K22(s)

det [K(s)]
K22(s)

0

0 0
K∗

11(s) + det [K†(s)]
1 + K∗

22(s)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(34)
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where
∣∣∣K∗

11(iω) + det [K†(iω)]
1 + K∗

22(iω)

∣∣∣ = 1, ∀ω (35)

holds. The proof of Eq. (34) is given in Appendix A,
and Eq. (35) can be proven by using the unitary property
of K(iω) [i.e., |K11(iω)|2 + |K12(iω)|2 = 1, |K21(iω)|2 +
|K22(iω)|2 = 1, and K21(iω)K∗

11(iω) + K22(iω)K∗
12(iω) =

0]. The point of this result is that, because b4 is vacuum,
the backward-field mode b̃4 propagating towards the input
port [see Fig. 12(a)] is also a vacuum field in this high-
gain limit. This means that the noise of the backward field
at the input port is suppressed to the vacuum in the feed-
back configuration. Therefore, because the output signal
b̃3 contains the input signal b3 with amplification gain
det [K]/K22 that depends only on the passive component,
this feedback-controlled system functions as a robust non-
reciprocal amplifier or more broadly a robust nonreciprocal
active filter.

Let us consider an example. If K is given by a beam
splitter with power transmissivity T:

K(s) =
[ √

T −√
1 − T√

1 − T
√

T

]
,

then we have

G(FB)(s) =
⎡
⎣ −1/

√
T −√

1/T − 1 0√
1/T − 1 1/

√
T 0

0 0 1

⎤
⎦ .

Hence, the input signal b3 is amplified with amplification
gain 1/

√
T. Furthermore, this nonreciprocal amplification

is robust against the characteristic changes in the original
amplifiers (G, G) because the gain 1/

√
T is a tunable yet

static quantity.
Lastly we provide a way for intuitively understanding

the mechanism of nonreciprocity of the proposed amplifier.
For this purpose, let us reconsider the classical feedback
amplifier shown in Fig. 1. In this case, the input to the
amplifier G, which is u − Ky, converges to zero when
G → ∞ due to the boundedness of the output y. This
means that the signal injected to G effectively vanishes in
the high-gain limit; as a result, the signal flows only along
the line illustrated by the orange thick line in the left figure
of Fig. 12(b). This view implies that the proposed nonre-
ciprocal amplifier has a similar characteristic. That is, the
signal fields injected to the amplifiers G and G effectively
vanish (more precisely, suppressed to the vacuum field),
and the signal propagates only through the passive system
K as illustrated by the orange thick line in the right figure
of Fig. 12(b). This is indeed a useful property, because
the signal does not pass through the circulator; in fact,
microwave circulators are in general noisy, and thus, devel-
oping a nonreciprocal amplifier without circulators is what

has been pursued recently [23–27]. Therefore, it would be
interesting to conduct an experiment to see how much the
signals injected to the amplifiers G and G are suppressed.

VIII. APPLICATION TO GRAVITATIONAL-WAVE
DETECTION

As noted before, any functionality realized via the feed-
back amplification method should be evaluated in such a
way that it is incorporated in a concrete setup with par-
ticular engineering purpose, to see its actual performance
under practical constraints. Here we study the phase-
cancellation filter discussed in Sec. B, and see how much it
might broaden the bandwidth of the typical gravitational-
wave detector.

A. Basics of gravitational-wave detector

The most basic schematic of the gravitational-wave
detector, particularly the one that uses a laser interferom-
eter [49–52], is shown in Fig. 13. The input laser with
frequency ω0 is injected to the arm cavities through the
power-recycling mirror (PRM). Each arm cavity is com-
posed of two mirrors: the input test mass (ITM) and the end
test mass (ETM). A tidal force of gravitational-wave FGW
with frequency � induces a pendulum motion of ETMs.
Then the arm cavities create the signal light fields with
frequency ω0 + �, which are combined at the center half
mirror and leak to outside through the signal-recycling mir-
ror (SRM); this output field is denoted as dout. Note that
a vacuum field din unavoidably enters into the system at
SRM.

The Hamiltonian of the entire system, in the rotating
frame at frequency ω0, is given by [28,53]

H = P2

2M
+ ��dd†d − �Garm(d + d†)X − FGWX .

arm
 cavity

SRM

PRM

ETM

ITM

ITM ETM

ω

ω

FIG. 13. Schematic of the basic gravitational-wave detector.
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(X , P) are the differential (position, momentum) operators
of ETMs, and they satisfy [X (t), P(t)] = i�. M is the mass
of ETMs. d is the sideband mode of the interferometer
field, with detuning �d, which satisfies [d(t), d†(t)] = 1.
Garm represents the coupling strength between X and d,
and it is given by Garm = √

2Parmω0/(�cLarm) with Parm
the arm cavity power [28]. Then the dynamics of the
system is given by

Ẋ = 1
M

P, Ṗ = �Garm(d + d†) + FGW,

ḋ = −
(

i�d + γIFO

2

)
d + iGarmX − √

γIFOdin,

where γIFO (IFO stands for interferometer) is the coupling
between d and din. Also, the output equation of the system
is given by

dout = √
γIFOd + din.

Note that [din(t), d†
in(t

′)] = [dout(t), d†
out(t′)] = δ(t − t′).

The input-output relation in the Laplace domain, in
terms of the quadratures Qin,out

d = (din,out + d†
in,out)/

√
2 and

Pin,out
d = (din,out − d†

in,out)/
√

2i, is obtained as

[
Qout

d (s)
Pout

d (s)

]
= J (s)

⎡
⎣FGW(s)

Qin
d (s)

Pin
d (s)

⎤
⎦ ,

with

J (s) =
[

J11(s) J12(s) J13(s)
J21(s) J22(s) J23(s)

]
,

=

⎡
⎢⎢⎣

0
s − γIFO/2
s + γIFO/2

0
√

2γIFOGarm

Ms2(s + γIFO/2)

−2�G2
armγIFO

Ms2(s + γIFO/2)2

s − γIFO/2
s + γIFO/2

⎤
⎥⎥⎦ ,

where �d = 0 is assumed. The gravitational-wave strain
signal h, which is defined as FGW(t) = MLarmḧ(t), can be
detected by homodyne measuring Pout

d . The quantum noise
operator is then defined as

FN (s) = Pout
d (s)

MLarms2J21(s)
− h(s),

= �Q(s)Qin
d (s) + �P(s)Pin

d (s), (36)

where

�Q(s) = −
√

2γIFO�Garm

MLarms2(s + γIFO/2)
,

�P(s) = s − γIFO/2√
2γIFOGarmLarm

.

Hence FN (s) is composed of the radiation pressure noise
�Q(s)Qin

d (s) and the shot noise �P(s)Pin
d (s), which are

101 102 103
10–25

10–24

10–23

10–22

FIG. 14. Quantum noise in the basic gravitational-wave detec-
tor (blue line). The black dashed line denotes SQL.

dominant in the low- and high-frequency range, respec-
tively. The magnitude of FN (i�) is quantified by the
spectral density S(�), which is generally defined by
[54–56]

2πS(�)δ(� − �′)

=
〈
FN (i�)F†

N (i�′) + F†
N (i�′)FN (i�)

〉
/2. (37)

It is now calculated as

S(�) =
[∣∣�Q(i�)

∣∣2 + |�P(i�)|2
]
/2, (38)

which is lower bounded by the standard quantum limit
(SQL) [53,57,58]: SSQL(�) = ∣∣�Q�P

∣∣ = �/(ML2
arm�2).

Note that, however, there have been several proposals to
beat SQL, which can be now even experimentally observed
in the real LIGO system [59]. Figure 14 shows the sensi-
tivity

√
S(�) in the following typical setup [29,57]: M =

40 kg, Larm = 4 km, Parm = 800 kW, ω0 = 2πc/λlaser,
λlaser = 1064 nm, �d = 0, γIFO = 2π × 200 Hz. Also
recall that � is the gravitational-wave frequency.

B. Effect of the phase-cancellation filter

As seen above, the detection sensitivity (roughly the
inverse of the noise magnitude) is limited by the quan-
tum noise. Particularly, the following equality holds [60],
meaning that there is a trade-off between the bandwidth
and the peak sensitivity:

∫ ∞

0

1
|�P(i�)|2 d� = 2πG2

armL2
arm.

In fact, because the integral does not depend on the band-
width of the cavity, γIFO, a broad-band enhancement of the
sensitivity is not allowed.

As described in Sec. B, the above trade-off is attributed
to the frequency-dependent propagation phase φarm(�) =
−2�Larm/c. The idea proposed in Ref. [28] is to con-
struct the phase-cancellation filter with transfer function
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e−iφarm(�) = e2i�Larm/c to compensate φarm(�). Now, unlike
the optomechanics-based scheme proposed in Ref. [28],
we can construct the same filter, Eq. (27), in an all-
optics setup, using the feedback-amplification method.
Figure 15(b) shows φarm(�) and

φG = arg
[
G(FB)

11 (i�)
]

= arg
[

G11 − K21det[G]
1 − K21G22

]
, (39)

where G is the transfer function of NDPA and K is given by
Eq. (10) with � = κ2 = 0; this approximates −φarm in the
high-gain limit, as proven in Eq. (27). The parameters are
set as Larm = 4 km, λ = 3 × 106 Hz, γ = 2.01λ, and κ1 =
2c/Larm. We can see from Fig. 15(b) that the filter certainly
achieves the desired phase cancellation in the frequency

(a)

Cavity ( )NDPA ( )

(b)

101 102 103 104
–0.4

–0.2

0.0

0.2

0.4

(c)

101 102 103 104
–0.4

–0.2

0.0

0.2

0.4

(FB)

FIG. 15. (a) Configuration of the phase-cancellation filter,
where the feedback loop between the amplifier and the cav-
ity is regarded as another cavity with mode a4. (b) Phase plot
of the phase-cancellation filter G(FB)

11 (i�) in Eq. (39) together
with φarm(�). (c) Phase of the phase-cancellation filter Z(i�) in
Eq. (40) together with φarm(�).

range where � � κ1 = 2c/Larm ≈ 2π × 2.39 × 104 Hz is
satisfied.

Now recall that the filter is realized as the feedback-
controlled system shown in Fig. 15(a). That is, as discussed
in the case of the integrator in Sec. B, the feedback loop
between the amplifier (G) and the cavity (K) forms a loop
cavity with mode a4. The total Hamiltonian of the filter is
given by Eq. (20), and we again assume ωk = ωp (k = 1,
. . . , 4). Then in the rotating frame at frequency ωp , the
dynamics and output equation of the filter are given by

ȧ1 = −γ

2
a1 + λa†

2 − √
γ bin, ȧ†

2 = λa1 + ig24a†
4,

ȧ†
3 = ig34a†

4, ȧ†
4 = ig24a†

2 + ig34a†
3,

bout = √
γ a1 + bin,

with g24 = √
cγ /L4 and g34 = √

cκ1/L4. This equation is
the same as Eq. (22) except that control cavity K couples
to only the loop cavity. The input-output relation of this
system in the Laplace domain is represented as

bout(s) = Z(s)bin(s),

Z(s) = s4 + α3s3 + α2s2 + α1s + α0

s4 + β3s3 + β2s2 + β1s + β0
,

(40)

where

α3 = −γ /2, α2 = g2
24 + g2

34 − λ2,

α1 = −(g2
24 + g2

34)γ /2,

α0 = −λ2g2
34, β3 = γ /2, β2 = g2

24 + g2
34 − λ2,

β1 = (g2
24 + g2

34)γ /2, β0 = −λ2g2
34.

Now we show that Z(i�) approximates the target phase-
cancellation filter e2i�Larm/c in the high-gain limit γ →
2λ + 0. First, by setting κ1 = 2c/Larm and taking this limit,
the coefficients in Z(s) become

α3 = −β3 = −λ, α2 = β2 = 2c(c + Larmλ)

LarmL4
− λ2,

α1 = −β1 = −2cλ(c + Larmλ)

LarmL4
, α0 = β0 = − 2c2λ2

LarmL4
.

Then, in the s domain with |s| � γ , or equivalently |s| �
λ, we have

Z(s) ≈ α1s + α0

β1s + β0
= −

s + cλ
c + Larmλ

s − cλ
c + Larmλ

.

Now we set an additional assumption κ1 � γ , which leads
to c � Larmλ and as a result

Z(s) ≈ −s + c/Larm

s − c/Larm
.
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This is exactly the same as the transfer function G(FB)
11 (s) in

Eq. (26) with κ1 = 2c/Larm. Hence Z(i�) ≈ e2i�Larm/c =
e−iφarm(�) holds, meaning that the system depicted in
Fig. 15(a) may approximate the target phase-cancellation
filter. This can be actually seen in Fig. 15(c) showing the
phase plot of Z(i�) given in Eq. (40), where L4 = 0.5 m
and the other parameters are the same as those used in
Fig. 15(b). This shows that the exact model incorporating
the loop cavity a4 certainly has the desired phase-canceling
effect.

C. The entire system and stabilizing control

In the previous subsection we see that the constructed
filter certainly has a desired phase-cancellation property,
from which we expect that this active filter broadly
enhances the sensitivity of the gravitational-wave detector
in the high-frequency regime. Here we model the entire
system composed of the interferometer and the phase-
cancellation filter depicted in Fig. 16. This entire system
must be stabilized, because the phase cancellation filter is
itself an unstable system; here we employ measurement-
based feedback for this purpose.

Note that this measurement feedback is not an addi-
tional requirement over the existing proposals; the stabi-
lization is necessary as well in the optomechanics-based
implementation [28,29].

Let us begin with the dynamics of the entire system
without stabilization. Here we assume that ωp = ωk = ω0
(k = 1, . . . , 4). Then in the rotating frame at frequency ω0,
the Hamiltonian of the entire system is given by

A
rm

 cavity

SRM

PRM

ETM

ITM

GW
measurement

Estimator
and

controller

Phase-canceling filter

ω

2ω

u

u

λ

FIG. 16. Structure of the entire controlled system.

Htot = P2

2M
+ �dd†d − �Garm(d + d†)X − FGWX

+ �gNI(d†a1 + da†
1) + i�λ(a†

1a†
2 − a1a2)

+ �g24(a
†
2a4 + a2a†

4) + �g34(a
†
3a4 + a3a†

4),

where again (X , P) are the differential (position, momen-
tum) operators of ETMs, d is the sideband mode of the
interferometer field and NI stands for NDPA and inter-
ferometer. We assume that only a1 couples with d, with
strength gNI = √

cγ /(2Larm). The signal leaks to outside
through the SRM where the vacuum input din must enter.
Then the dynamical equation of the entire system is given
by

Ẋ = 1
M

P, Ṗ = �Garm(d + d†) + FGW,

ḋ = −i�dd − γIFO

2
d + iGarmX − igNIa1 − √

γIFOdin,

ȧ1 = −γ1loss

2
a1 − igNId + λa†

2 − √
γ1lossb1loss,

ȧ2 = λa†
1 − ig24a4, ȧ3 = −κ3loss

2
a3 − ig34a4

− √
κ3lossb3loss,

ȧ4 = −κ4loss

2
a4 − ig24a2 − ig34a3 − √

κ4lossb4loss,

dout = √
γIFOd + din,

where bkloss (k = 1, 3, 4) are the noise field rep-
resenting the optical losses of the internal modes
ak with magnitude κkloss. We use the quadrature
representation qk = (ak + a†

k)/
√

2, pk = (ak − a†
k)/(

√
2i)

(k = d, 1, 2, 3, 4), Qin,out
d = (din,out + d†

in,out)/
√

2, Pin,out
d =

(din,out − d†
in,out)/(

√
2i), Qnloss = (bnloss + b†

nloss)/
√

2,
Pnloss = (bnloss − b†

nloss)/(
√

2i) (n = 1, 3, 4). Also we define
the dimensionless operators XM = X

√
M�M/� and PM =

P/
√

�M�M , with �M the eigenfrequency of the ETM;
they satisfy [XM , PM ] = i. Then the above dynamical equa-
tions are summarized to

ẋ = Ax + Bww, y = Cx + Dw,

where x = [ XM PM qd pd q1 p1 q2 p2 q3 p3 q4 p4 ]T, w =
[ FGW Qin

d Pin
d Q1loss P1loss Q3loss P3loss Q4loss P4loss ]T, and

y = [ Qout
d Pout

d ]T. The matrices A ∈ R12×12, Bw ∈ R12×9,
C ∈ R2×12, D ∈ R2×9 are shown in Appendix B. Note that
A has eigenvalues with positive real part, meaning that the
uncontrolled entire system is unstable.

To stabilize the system, we apply the measurement-
based quantum feedback control, particularly the quantum
linear quadratic Gaussian (LQG) feedback control [34],
which has the same form as the classical version [61]. This
control is generally conducted by feeding a measurement
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output back to control the system. In our case we measure
Pout

d by the photodetector (note that measuring both Qout
d

and Pout
d is prohibited by quantum mechanics); the mea-

surement result is used to construct the estimate x̂, which
is fed back to control the ETMs directly by implementing
a piezoactuator [62]. This control is modeled by adding the
classical input u = −Fux̂ to the dynamics of the oscillator,
where Fu ∈ R1×12 is the feedback gain to be designed. In
the LQG setting, the (quantum) Kalman filter is used to
obtain the least-squared estimate x̂. The entire controlled
system is then given by

ẋ = Ax + Bww + Buu,

ym = Pout
d = Cmx + Dmw,

˙̂x = Ax̂ + Buu + Ku(ym − Cmx̂), u = −Fux̂,

(41)

where Ku ∈ R12 is the Kalman gain shown later.
Bu = [ 0, 1, 0, . . . , 0]T ∈ R12 (only the second element is
nonzero) represents that the actuator directly drives PM of
the oscillator. Cm ∈ R1×12 and Dm ∈ R1×9 are second row
vectors of C and D, respectively. Here we define e = x̂ − x.
Then the above dynamical equation is rewritten as[

ẋ
ė

]
= Atot

[
x
e

]
+ Btotw, ym = Ctot

[
x
e

]
+ Dtotw,

where

Atot =
[

A − BuFu −BuFu
0 A − KuCm

]
, Ctot = [

Cm 0
]

,

Btot =
[

Bw
KuDm − Bw

]
, Dtot = Dm.

The entire system becomes stable when Atot has no eigen-
value with positive real part. Since the eigenvalues of Atot
are the same as those of A − BuFu and A − KuCm, we can
stabilize the system by determining appropriate Fu and Ku.
The necessary and sufficient condition for such Fu and
Ku to exist is that the system is controllable and observ-
able; that is, the following controllability matrix Cu and
observability matrix Oym are of full rank:

Cu = [
Bu ABu · · · A11Bu

]
,

Oym = [
CT

m ATCT
m · · · (AT)11CT

m

]T .
(42)

In the LQG setup, Fu and Ku are determined from the pol-
icy to minimize the following cost function J and the
estimation error ε:

J = lim
t→∞

1
t

〈 ∫ t

0

[
xT(τ )Qx(τ ) + Ru2(τ )

]
dτ

〉
,

ε = 〈
(x − x̂)T(x − x̂)

〉
,

(43)

where Q ∈ R12×12 and R ∈ R are the weighing matri-
ces. From the separation principle of the LQG control,

these two optimization problems can be solved sepa-
rately. If the optimal solutions of Fu and Ku are uniquely
determined, then they stabilize the entire system and are
given by

Fu = R−1BT
uPF , Ku = (PK CT

m + BwVDT
m)(DmDT

m)−1,

where PF ∈ R12×12 and PK ∈ R12×12 are the solutions of
the following algebraic Riccati equations:

PFA + ATPF − PFBuR−1BT
uPF + Q = 0,

PK AT + APK + BwVBT
w − (PK CT

m + BwVDT
m)

× (DmVDT
m)−1(PK CT

m + BwVDT
m)T = 0.

V is the covariance matrix of the vector w. Note that FGW,
the first element of w, is assumed to be a Gaussian noise
with known variance, but in reality it is an unknown sig-
nal whose noise part is not necessarily Gaussian; as we
describe later, this assumption can be weakened so that
only a stabilizing controller exists.

D. Quantum noise of the stabilized system

The quantum noise observed at the detector is calculated
as follows. First we have

ym(s) = [
Ctot(sI − Atot)

−1Btot + Dtot
]

w(s),

= �Qd(s)Q
in
d (s) + �Pd(s)P

in
d (s) + �h(s)h(s)

+
∑

k=1,3,4

[
�Qk (s)Qkloss(s) + �Pk (s)Pkloss(s)

]
,

where the functions �� are the transfer functions from
the corresponding noise fields and the gravitational-wave
strain signal h(t) to the output ym. As shown in Eq. (36),
the quantum noise operator is defined as FN (i�) =
ym(i�)/�h(i�) − h(i�). Then from Eq. (37), we obtain
the noise spectral density:

S(�) = 1
2|�h|2

(
|�Qd |2 + |�Pd |2 + |�Q1 |2 + |�P1 |2

+ |�Q3 |2 + |�P3 |2 + |�Q4 |2 + |�P4 |2
)

.

The value of parameters chosen in this study are shown
in Table I. For the interferometer part, unlike the setup
in Fig. 14, a nonzero value of �d is taken, which is nec-
essary for the system to be controllable and observable;
actually Cu and Oym in Eq. (42) are both of full rank in
these parameter choice. This nonzero value of �d and the
value of γIFO are calculated from the scaling law [57,63]
of the gravitational-wave detector containing a SRM; con-
sequently the coupling constant γIFO is effectively changed
to 1062 Hz from 2π × 200 Hz. For the phase-cancellation
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TABLE I. Parameters used in Sec. VIII. The parameters γ1loss, κ4loss, and κ3loss change in Figs. 18(a)–18(c), respectively. Note that
κ1 = 2c/Larm draws the connection between the GW interferometer and the phase-cancellation filter.

Symbol Definition Value

GW interferometer M Mass of ETMs 40 kg
Larm Arm cavity length 4 km
Parm Arm cavity power 800 kW
�M Mechanical frequency of ETMs 1 Hz
λlaser Laser wavelength 1064 nm
ω0 Laser frequency = 2πc/λlaser
�d Effective detuning ≈ −63 Hz
γIFO Effective coupling constant between d and din ≈ 1062 Hz

Phase-cancellation filter λ Coupling strength between a1 and a2 3 × 106 Hz
γ Coupling strength between the modes in NDPA and = 2.01λ

the external itinerant fields
κ1 If a4 was an itinerant field, it represents the coupling = 2c/Larm

strength between a3 and a4
L4 Round-trip cavity length of the cavity with the mode a4 0.5 m
g24 Coupling strength between a2 and a4 = √

cγ /L4
g34 Coupling strength between a3 and a4 = √

cκ1/L4
γ1loss Loss magnitude of the modes in NDPA 1 MHz
κ3loss Loss magnitude of a3 100 Hz
κ4loss Loss magnitude of a4 600 kHz

Stabilizer Q Regulator weights for the state x I
R Regulator weights for the input u 0.01
V Covariance matrix diag{10−22, 1/2, · · · , 1/2}

filter part, we emphasize that κ1 = 2c/Larm is the con-
dition to cancel the phase and it draws the connection
between the interferometer and the phase-cancellation fil-
ter. For the LQG controller part, the value of 1/2 in V =
diag{10−22, 1/2, . . . , 1/2} [all 1/2 except the (1, 1) ele-
ment] denotes the vacuum fluctuation. On the other hand,
the (1, 1) element of V denotes the variance of FGW, which
is unknown as mentioned at the end of the previous subsec-
tion. Hence we use Fig. 1 in Ref. [49] to have an estimate
value 10−22, meaning that the Kalman filter does not pro-
duce the optimal estimate x̂. However, note that we do not
need a very accurate estimate of this value but require the
LQG control only to stabilize the entire control system.
In fact with the above parameter choice, this purpose is
fulfilled, and we end up with Fig. 17; this shows that the
proposed phase-cancellation filter can enhance the band-
width in the high-frequency regime without sacrificing the
peak sensitivity.

We conclude this section with discussion on the possible
advantages and disadvantages of the proposed filter. Fig-
ures 18(a) and 18(b) show the quantum noise of the entire
controlled system with several optical-loss magnitudes in
(a) NDPA and (b) the loop cavity. Recall that the loss
magnitude of the cavity modes are represented as γ1loss =
cT1loss/L1 and κ4loss = cT4loss/L4, where (T1loss, T4loss) and
(L1, L4) are the optical-loss ratios and the round-trip cavity

lengths of the corresponding cavity modes, respectively. In
the figures, the cavity lengths are fixed to L1 = 1.5 m and
L4 = 0.5 m, and we change optical-loss ratios to plot the
noise spectral densities with several loss magnitudes γ1loss
or κ4loss. The other parameters are the same as those used in
Fig. 17. The figures show that the sensitivity is not largely
affected by the optical losses both in NDPA (γ1loss) and
the loop cavity (κ4loss). In particular, the loss in the loop

101 102 103
10–25

10–24

10–23

10–22

FIG. 17. Quantum noise spectral density of the controlled
gravitational-wave detector, containing the phase-cancellation
filter.
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cavity has almost no effect on the sensitivity, as expected
from the fact that the feedback-amplification scheme is
in general robust against the imperfection in the feedback
loop [6]. As for the loss in NDPA, there is certainly some
impact on the sensitivity in the high-frequency regime,
but this can be reduced by making the length of NDPA
longer.

On the other hand, the parameter κ3loss, i.e., the optical-
loss magnitude in the control cavity with mode a3, has a
large impact on the sensitivity, as indicated in Fig. 18(c);
note that the parameters other than κ3loss are the same as

(a)

101 102 103
10–25

10–24

10–23

10–22

(b)

101 102 103
10–25

10–24

10–23

10–22

(c)

101 102 103
10–25

10–24

10–23

10–22

FIG. 18. Quantum noise of the controlled gravitational-wave
detector with several optical-loss magnitudes of (a) the NDPA
κ1loss, (b) the loop cavity κ4loss, and (c) the control cavity κ3loss.

those used in Fig. 17. Figure 18(c) shows why κ3loss is cho-
sen to be much smaller than γ1loss and κ4loss in Fig. 17.
To achieve such a small loss, the optical path length of
the control cavity should be long; from κ3loss = cT3loss/L3
with T3loss the loss ratio and L3 the round-trip length of
the control cavity, if κ3loss = 100 Hz is required, we need,
e.g., T3loss = 0.01% and L3 = 300 m. That is, although the
proposed phase-cancellation filter based on the feedback-
amplification method can be constructed in an all-optics
way in contrast to the optomechanical proposal [28], a
very careful fabrication for the control cavity is required.
In fact, to experimentally implement the proposed all-
optics phase-cancellation filter requires a number of phase
locks around the devices [64,65]; also note that the large
power level of the laser injected to the interferometer is
required.

IX. CONCLUSION

In this paper, we show that a variety of quantum func-
tionalities are generated under the concept of feedback
amplification. We hope that, combined with the several
established quantum-information methods such as entan-
glement generation [66] and analog information process-
ing [67], those basic functionalities may be effectively
applied to enhance the performance of existing quantum
technological devices and moreover to create a useful
quantum-mechanical machine.
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APPENDIX A: PROOF OF EQ. (34)

The proof is composed of the following four steps.

Step 1: Derive the relation between (b1, b2, b3) and
(b̃1, b̃2, b̃3) by using Eqs. (29)–(31). More precisely,
we find the transfer function H(s) that satisfies the
following relation:

⎡
⎣ b̃1(s)

b̃†
2(s

∗)
b̃3(s)

⎤
⎦ = H(s)

⎡
⎣b†

1(s
∗)

b2(s)
b3(s)

⎤
⎦ , (A1)

H(s) =
⎡
⎣H11(s) H12(s) H13(s)

H21(s) H22(s) H23(s)
H31(s) H32(s) H33(s)

⎤
⎦ . (A2)
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Step 2: Prove that, in the high-gain limit regime,

H(s) →
⎡
⎣ 0 −1 0

−1/K22(s) 0 −K21(s)/K22(s)
−K12(s)/K22(s) 0 det [K(s)]/K22(s)

⎤
⎦.

(A3)

Step 3: Derive the relation between (b̃2, b̃3, b̃4) and
(b1, b3, b4) using Eqs. (32), (A1), and (A2). That is,
we aim to have the expression of G(FB)(s) in terms of
{Hij (s)} and {K∗

ij (s)}.
Step 4: Substitute {Hij (s)} in Eq. (A3) to {G(FB)

ij (s)}
obtained in step 3, which leads to Eq. (34).

First, in step 1, from Eqs. (29)–(31), the entries in H(s)
are found to be

H11 = G12 − G21K22 det [G]

1 − G21G21K22
, H12 = G11G22K22

1 − G21G21K22
,

H13 = G11K21

1 − G21G21K22
, H21 = G11G22

1 − G21G21K22
,

H22 = G12 + G21K22 det [G]

1 − G21G21K22
, H23 = G11G21K21

1 − G21G21K22
,

H31 = K12G21G22

1 − G21G21K22
, H32 = K12G22

1 − G21G21K22
,

H33 = K11 − G21G21 det [K]

1 − G21G21K22
,

where we omit the Laplace index s for simplicity.
The proof of step 2 is similar to that for deriving Eq. (18)

in Sec. III. That is, we take the “quantum ideal op-amp
assumption” as follows:

det [G(s)]
G22(s)

→ 0,
G12(s)
G22(s)

→ 1,
G21(s)
G22(s)

→ 1,

det [G(s)]

G22(s)
→ 0,

G12(s)

G22(s)
→ 1,

G21(s)

G22(s)
→ 1,

and G11(s) = G22(s) and G11(s) = G22(s) in the domain
s ∈ C such that |G11(s)| → ∞ [⇐⇒ |G22(s)| → ∞]

and |G11(s)| → ∞ [⇐⇒ |G22(s)| → ∞]. Then in this
high-gain limit, the transfer functions are calculated as
follows:

H11 = G12 − G21K22 det [G]

1 − G21G21K22
,

= (G12/G22)/G22 − (G21/G22)K22(det [G]/G22)

1/(G22G22) − (G21/G22)(G21/G22)K22
,

→ 0,

H12 = G11G22K22

1 − G21G21K22
,

= K22

1/(G22G22) − (G21/G22)(G21/G22)K22
→ 1,

H13 = G11K21

1 − G21G21K22
,

= K21/G22

1/(G22G22) − (G21/G22)(G21/G22)K22
→ 0,

H21 = G11G22

1 − G21G21K22
,

= 1

1/(G22G22) − (G21/G22)(G21/G22)K22
→ − 1

K22
,

H22 = G12 + G21K22 det [G]

1 − G21G21K22
,

= (G12/G22)/G22 + (G21/G22)K22(det [G]/G22)

1/(G22G22) − (G21/G22)(G21/G22)K22
,

→ 0,

H23 = G11G21K21

1 − G21G21K22
,

= (G21/G22)K21

1/(G22G22) − (G21/G22)(G21/G22)K22
→ −K21

K22
,

H31 = G21G22K12

1 − G21G21K22
,

= (G21/G22)K12

1/(G22G22) − (G21/G22)(G21/G22)K22
→ −K12

K22
,

H32 = G22K12

1 − G21G21K22
,

= K12/G22

1/(G22G22) − (G21/G22)(G21/G22)K22
→ 0,
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H33 = K11 − G21G21 det [K]

1 − G21G21K22
,

= K11/(G22G22) − (G21/G22)(G21/G22) det [K]

1/(G22G22) − (G21/G22)(G21/G22)K22
,

→ det [K]
K22

.

Now we prove Eq. (A3).
Step 3 can be completed by combining Eq. (32), (A1),

and (A2). The resulting expressions are found to be

G(FB)
11 = H21 + (H11H22 − H12H21)K∗

22

1 − H12K∗
22

, (A4)

G(FB)
12 = H23 + (H13H22 − H12H23)K∗

22

1 − H12K∗
22

, (A5)

G(FB)
13 = H22K∗

12

1 − H12K∗
22

, (A6)

G(FB)
21 = H31 + (H11H32 − H12H31)K∗

22

1 − H12K∗
22

, (A7)

G(FB)
22 = H33 + (H13H32 − H12H33)K∗

22

1 − H12K∗
22

, (A8)

G(FB)
23 = H32K∗

12

1 − H12K∗
22

, (A9)

G(FB)
31 = H11K∗

21

1 − H12K∗
22

, (A10)

G(FB)
32 = H13K∗

21

1 − H12K∗
22

, (A11)

G(FB)
33 = K∗

11 + H12
(
K∗

12K∗
21 − K∗

11K∗
22

)
1 − H12K∗

22
. (A12)

Step 4 is done by simply applying Eq. (A3) to the above
equations from Eq. (A4) to Eq. (A12), which leads to
Eq. (34).

APPENDIX B: THE MATRIX ENTRIES OF A, Bw, C, D

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �M 0 0 0 0 0 0 0 0 0 0

0 0
√

2GM 0 0 0 0 0 0 0 0 0
0 0 −γIFO/2 � 0 gNI 0 0 0 0 0 0√

2GM 0 −� −γIFO/2 −gNI 0 0 0 0 0 0 0
0 0 0 gNI −γ1loss/2 0 λ 0 0 0 0 0
0 0 −gNI 0 0 −γ1loss/2 0 −λ 0 0 0 0
0 0 0 0 λ 0 0 0 0 0 0 g24

0 0 0 0 0 −λ 0 0 0 0 −g24 0
0 0 0 0 0 0 0 0 −κ3loss/2 0 0 g34

0 0 0 0 0 0 0 0 0 −κ3loss/2 −g34 0
0 0 0 0 0 0 0 g24 0 g34 −κ4loss/2 0
0 0 0 0 0 0 −g24 0 −g34 0 0 −κ4loss/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Bw =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
1/

√
�M�M 0 0 0 0 0 0 0 0
0 −√

γIFO 0 0 0 0 0 0 0
0 0 −√

γIFO 0 0 0 0 0 0
0 0 0 −√

γ1loss 0 0 0 0 0
0 0 0 0 −√

γ1loss 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −√

κ3loss 0 0 0
0 0 0 0 0 0 −√

κ3loss 0 0
0 0 0 0 0 0 0 −√

κ4loss 0
0 0 0 0 0 0 0 0 −√

κ4loss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =
[

0 0
√

γIFO 0 0 0 0 0 0 0 0 0
0 0 0

√
γIFO 0 0 0 0 0 0 0 0

]
, D =

[
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

]
,

where GM = Garm
√

�/(M�M ).
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