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Simulations of blood flows in microfluidic devices and physiological systems are gaining importance in
complementing experimental and clinical studies. The predictive capabilities of these simulations hinge
on the parameters of the red blood cell (RBC) model that are usually calibrated from experimental data.
However, these parameter values may vary drastically when calibrated using different experimental quan-
tities or experimental settings. In turn, the results of existing blood flow simulations largely depend on
the utilized parameters that have been chosen to validate a particular experiment. We suggest a revision
to this type of model calibration to properly integrate experimental data in the computational models
and accordingly inform their predictions. In this context, we introduce the calibration of a popular RBC
model using data-driven, hierarchical Bayesian inference. We employ data from classical experiments of
RBC stretching by optical tweezers and tank treading in shear flows, and distinguish the calibration of the
model parameters through single-level and hierarchical Bayesian uncertainty quantification. We find that
the optimal model parameters depend not only on the data used for the inference but also on the way the
data are used in the inference process. Single-level Bayesian models predict well the data used in their
calibration, but are inferior to the hierarchical Bayesian model at predicting previously unseen data. This
work demonstrates that the proper integration of experimental data is essential for the development of
a robust and transferable RBC model. We believe that the present study can serve as a prototype across
scientific fields, in revising the integration of computational models and heterogeneous experimental data.
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I. INTRODUCTION

Understanding the governing principles of blood flow is
instrumental for the design of future medical devices, the
improvement of diagnostic measures, and the development
of next-generation therapies for blood-borne diseases. The
rheology of blood is known to be governed by the hydro-
dynamic interactions between neighboring red blood cells
(RBCs) and the surrounding plasma [1]. Consequently, the
viscoelastic properties of single RBCs in static loads and in
shear flows have been studied extensively in experiments
[2,3]. In recent years, advanced microfluidic techniques
have enabled the detailed study of single RBCs under
various conditions [3—5]. Mathematical models can com-
plement these experimental studies and further assist the
optimization of microfluidic devices [6].

RBC models can be categorized in terms of contin-
uum, mesoscopic, and molecular-level methods. Contin-
uum models of blood, while able to cover domains from
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the size of an artery [7] up to the full circulatory system [8],
assume (often Newtonian) stress-strain relations and can-
not provide microscopic rheological accuracy that may be
of relevance in different parts of the flow field (microcap-
illaries, stenosis, vessel bifurcations, etc.). Detailed RBC
models described by boundary integral methods [9] allow
for subcellular resolution, although their computational
cost in simulations of multiple cells often implies the
usage of low-resolution models [10] or the study of two-
dimensional systems [6]. In a similar manner, molecular-
level methods are restricted to very small systems such as
modeling a part of the RBC membrane [11] and times of
the order of nanoseconds. Mesoscopic RBC models can
provide submicrometer resolution and have substantially
lower computational costs than molecular-level methods
[1,12]. However, their accuracy depends critically on the
model parameters for the RBC membrane and the lumen,
as well as their interaction with the surrounding flow field.

The first mesoscopic RBC model [13] represented the
spectrin cytoskeleton by two- and three-body effective
potentials. The bending resistance of the membrane’s lipid
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bilayer was described by an energy term. Volume and
area constraints were also incorporated in the model based
on experimental evidence from healthy RBCs [14]. Fol-
lowing this work, in Refs. [15,16] the authors used the
wormlike chain (WLC) model for the description of the
nonlinear force-displacement behavior of each spectrin
element. They derived expressions for the membrane’s
material properties, such as the shear modulus, linear area
compression modulus, linear elastic Young’s modulus, and
the Poisson ratio. They studied large cell deformations
under stretching and compared the computational results to
experimental data [17]. A systematic coarse-graining pro-
cedure [18] reduced the degrees of freedom of the model
by 2 orders of magnitude. The authors also introduced the
coupling of this model with dissipative particle dynamics
(DPD) to simulate flows with suspended RBCs. Karni-
adakis’ group [19,20] further extended this coarse-grained
model by introducing local area energy and membrane dis-
sipation. Subsequent studies dealt with the validation of
the model and simulations of RBCs under various condi-
tions. Single cell studies include stretching [19], twisting
torque cytometry (TTC) [20], dynamics of RBCs in high
viscosity-contrast shear flows [20], flows in stenotic chan-
nels [21], flows in cylindrical microchannels [22], mem-
brane thermal fluctuations at equilibrium [23], flows in
microfluidic devices aiming at size-based blood filtering
[24], RBC dynamics in shear flows with physiological
viscosity contrasts [25], and flow-induced shape transi-
tions [26]. Multicell studies include cell-free layer for-
mation in microvessels [27], Pf-malaria biophysics [28],
blood viscosity prediction [29], and platelet transport in
microchannels with constrictions [30].

Remarkably, despite the numerous validation studies
present in the literature, a consensus for the model parame-
ters has not yet been reached. The choice of the mechanical
law describing the elasticity of the spectrin cytoskeleton is
at the center of this problem. Moreover, it is well known
that the estimates of RBC mechanical moduli depend on
the particular mechanical model [19,31,32]. In this study
we demonstrate how to remedy this situation by focusing
on the WLC model of the spectrin elastic energy. Dif-
ferent studies employing the WLC model report (often
significantly) different values for the shear modulus, bend-
ing modulus, and the membrane viscosity for the RBC
(Table I). Moreover, the respective model predictions are
not robust, as no uncertainty bounds are reported for the
parameter values.

It is important to note that discrepancies between the
results of experimental studies [33] hinder validation stud-
ies while insufficient information for the discrimination
between models [1,34] contribute to reduced reliability of
these simulations. Hence, we believe that it is essential to
assess the veracity of predictions from the RBC model, and
its applicability as a design and exploration tool that can
assist in clinical studies.

TABLEI. Summary of RBC mechanical properties used in the
literature. Here 7' (°C) is the temperature, x is the equilibrium-
to-maximum spring length in the WLC strain law, o (uM/m)
is the shear modulus, «, (107!° J) is the bending rigidity, and 7,,
(PaS) is the three-dimensional lipid bilayer viscosity as given in
the respective studies. If no parameter value is given, we label
the corresponding entry with three center dots (- - - ). If Young’s
modulus is given instead of the shear modulus, we estimate the
shear modulus following Ref. [19] as Y & 414, and label the entry
with an asterisk (*).

-1

Application T x o Kp N
Single RBC

Stretching [19] 23 22 63 2.4 e

TTC and shear flow [20] 23 2.2 6.3 4.8  0.022

Cylindrical channel 37 22 473 3.0 e
flow [22]

Equilibrium [23] 23 22 242 143 0.1

Flow in microfluidic 37 22 473 3.0 oy
device [24]

Dynamics in shear [25] 37 22 473 3.0

Shape transitions [26] 37 22 4.8 3.0

Multiple RBCs
Cell-free layer [27] 23 22 473 24 0.022
Pf-malaria biophysics 37 22 6.3 2.4 e
(28]
Blood viscosity [29] 37 22 482 3.0

0.0144
Platelet transport [30] 27 22 45 3.0 e

The diversity in the sources of uncertainty and our
lack of knowledge on their effect in the final computa-
tional prediction necessitates their explicit consideration
in the construction of a predictive model. We propose
a data-driven, Bayesian uncertainty quantification (UQ)
framework to address the challenges inherent to RBC mod-
eling. The framework is conveniently built on hierarchi-
cal Bayesian methods [35,36] for quantifying uncertainty
due to estimation accuracy and variability from various
modeling and experimental effects. This framework inte-
grates data in the modeling process and quantifies the
uncertainties in model predictions [37—39]. The increas-
ing importance of UQ in simulations related to this study
is reflected in its applications, including sensitivity analy-
sis and error estimation in molecular simulations [40—43],
model comparison, and uncertainty quantification in blood
flow simulations [44,45].

The ever expanding role of UQ in science and engi-
neering is facilitated as recent hardware and algorithmic
advances have helped to overcome their computational
cost [38]. In addition, open-source UQ software is facili-
tating the incorporation of complex computational models
into the UQ framework [46—48].

Here we integrate a RBC model and DPD flow simu-
lations, following a hierarchical Bayesian UQ framework
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[49] that takes into account the heterogeneity of the exper-
imental data. The resulting hierarchical Bayesian model
Muyg depends on a set of parameters ¥ with probabil-
ity distributions inferred from experiments on cells under
stretching and shear flow. We compare the hierarchical
Bayesian model with single-level Bayesian models M;,
whose parameters ¥; are inferred based on a distinct exper-
imental data set d;. We propagate the parameter uncertainty
in the predictions of the RBC model, and compare the
results of the single-level and hierarchical Bayesian mod-
els. The transferability of the RBC model is assessed in
cross-experiment predictions: by testing the predictions of
the RBC model on a specific quantity using parameters
inferred from a different quantity. In particular, cross-
experiment predictions are made for the thickness of RBCs
at equilibrium, the extension of RBC diameters under
stretching, and the inclination angle of tank-trading RBCs
in shear flow, using Bayesian models that have not used
these experimental data during the inference.

II. METHODS

The coarse-grained RBC model is described in
Sec. ITA 1, and the DPD solvent model in Sec. ITA2. In
Sec. IIB we present the Bayesian UQ framework used
to infer probability distributions for the parameters of the
RBC model. The inference is performed via sampling,
thus requiring large numbers of model evaluations (i.e.,
RBC simulations). We remedy the high computational cost
associated with each model evaluation by constructing sur-
rogates for the output of the RBC model using Gaussian
processes (GPs), as described in Sec. I1 C.

A. Mesoscopic modeling of RBCs
1. Membrane modeling

We discretize the RBC membrane on a triangulated
mesh, composed of N, vertices and N; links (springs)
[20]. The elasticity of the spectrin cytoskeleton is mod-
eled by elastic forces between the springs (for the shear
energy) and by a local area conservation constraint (for
the stretch energy). The resistance to bending induced by
the lipid bilayer is incorporated through an energy poten-
tial. Its magnitude depends on the angle between neigh-
boring triangles while the membrane incompressibility is
enforced by a global area constraint. The membrane vis-
cosity is modeled by the addition of viscous dissipation on
the springs. Finally, the incompressibility of the enclosed
hemoglobin solution is represented by a volume constraint
term. The total potential energy on the RBC membrane is
therefore composed of four terms:

U= l]in plane + Ubending + Uarea + Uvolume-

Here Uiy plane accounts for the energy of the elastic spectrin
network of the RBC membrane, modeled by an attractive

wormlike chain potential and a repulsive potential such
that a nonzero equilibrium spring length can be obtained,

N, 2 3
[k (3x7 —2x7) Ky,
l]il’l = . ! k >
plane ]E_l |: 4(1 —xj) + lj :|

where k; is a spring constant, /; is the length of the jth
spring, x; = [; /1, 1, is the maximum spring extension,
and k), is computed such that the total spring force on each
spring is zero at equilibrium (/; = /o, ). The bending energy
term, Upending, accounts for the bending resistance of the
lipid bilayer and is modeled as

Ns
Utending = ks y_[1 — cos 6],
j=1

where k;, is a bending coefficient and 6, is the angle
between two adjacent triangles. The terms Uy, and
Uyolume Tepresent the area and volume conservation con-
straints, respectively, given by

v K-> % ka(4; — Ag,)>
area 2A0 P ZAOJ« s

Ky(V — Vy)?
Uvolume = ua

21

where 4; and 4, are the current and initial areas of the j th
triangle, 4 and A4 are the current and initial total membrane
areas, V and V) are the current and initial volumes enclosed
by the membrane, £, is the stretch modulus controlling the
local area compressibility, and K4 and Ky are coefficients
for the global area and volume, respectively.

The viscous dissipation of the membrane is modeled
through the addition of a dissipative force term on the
springs. We use the membrane viscosity formulation pre-
sented in Ref. [20] and set the noncentral part of the force
to zero (yT = 0), as this term does not conserve the angular
momentum. In this case, the dissipative force on a spring
connecting vertices i and j is

D c
Fm,ij =V (vl] 'el'j)el'j’

where ¥ and y € are coefficients to the central and noncen-
tral parts of the membrane dissipation force, respectively,
e; is the unit vector along the membrane vertex cen-
ters, e; = r;/|lr;ll, and r; =r; —r; with r; being the
positional vector of vertex i. The model includes an addi-
tional fluctuation term to satisfy the fluctuation-dissipation
theorem [20,50].
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a. Connection to macroscopic mechanical properties.
The parameters of the RBC model have been correlated
to its macroscopic mechanical properties through a linear
analysis of a regular hexagonal network [20]. Based on this
analysis, the shear modulus (¢, bending rigidity «;, and
membrane surface viscosity 720 are estimated as

34/3k,
41

o

B

Bk (X Lo
T 4lxo \2(1 —x0)}  4(1—xp)? ' 4

Ky ~ kp/3/2,
2P ~ y©/3/4,

where xo = ly, /Iy, 18 the equilibrium-to-maximum spring
length, and &, is computed similarly to kpj by using the
average equilibrium spring length, /o = [44/ (2ﬁNv —
4)]'/?, instead of the individual spring length.

b. Stress-free shape.  The set of I, spring lengths defines
the equilibrium, or stress-free, shape of the RBC. The exis-
tence of the stress-free shape is attributed to experimental
findings of Fischer [51], who studied the shape memory of
human RBCs by tracking the final position of membrane
points initially forming the rim of the RBC, after the RBC
is subjected to a shear flow. The exact stress-free shape
is currently a subject of ongoing investigations [52—54].
It has been postulated [52] that the stress-free shape affects
the dynamics of the RBC at low shear stresses and the tran-
sition threshold from tumbling to the tank-treading regime.
Here, we only consider pure tank-treading motion, at shear
stresses considerably larger than the transition regime. We
follow a popular choice of using a biconcave stress-free
shape [24,55], which is hereafter considered as part of our
computational model. The reference biconcave shape is
based on the experimental findings of Evans and Fung [56]
for an isotonic solution.

2. Solvent modeling

The solvent is modeled as a collection of DPD parti-
cles [57] with a given density p = nyzm, where ny is the
number density and m is the DPD particle mass. Particle
interactions are governed by pairwise forces F;;, and their
velocity v; and position r; are updated based on Newton’s
second law,

dr; av; 1
— =V, — = — Fj.
ar dt ~ m ; /

The force F;; consists of three parts: a conservative force

Fg, a dissipative force Ff/? , and a random force Ff;,

F; =F +F] +F}

with

C C
Fl.j =aw (ry)e;,
D D
Fij =yw (r,])(e,] . V,-j)eij,

Ffj = O'WR(VU)CU At_l/zeij.

Here a, y, and o are coefficients of the respective DPD
forces, and affect the material properties of the solvent,
wP, wR, and w® are weight functions that are zero for
r > r¢, re is the cutoff radius, and the ¢; are independent
Gaussian random variables with zero mean and unit vari-
ance, chosen independently for each pair of particles and
at each timestep. The vector between particle centers i
and j is denoted by r; = r; —r; and their relative veloc-
ity by v; =v; —v;. The coefficients of the dissipative
and random forces are connected through the fluctuation-
dissipation theorem [58]. We choose the weighting kernels
wP, wR and w€, defined as

wP(r) = W] = [wr),

wE @) = w(r),

where £ is the envelope parameter and
W(l" ) = Ve

The time integration is performed using a modified
velocity-verlet algorithm with A = 1/2 [57]. The timestep
is set through Courant - Friedrichs - Lewy-type condi-
tions for the viscous, sonic, and acceleration timescales,
following Ref. [59].

3. Boundary conditions

The no-penetrability condition for the RBC membrane
is enforced through the bounce back reflection mechanism
for the solvent particles [60]. The RBC is coupled to the
fluid flow through dissipation forces between the mesh ver-
tices and surrounding solvent particles [20]. Solid walls
are modeled using “frozen” particles, generated by first
equilibrating a homogeneous DPD fluid and then freezing
the particles that are inside the wall geometry [12]. The
“frozen” particles have a prescribed wall velocity and are
not subjected to position update. The density profile and
viscous dissipation for wall-solvent interactions are main-
tained through DPD interactions, identical to those used
for solvent-solvent interactions.

It is important to note that we model the inner and
outer solvents with different particles (having different y),
allowing for different inner and outer solvent viscosities.

034062-4



BAYESIAN UQ FOR A RBC MODEL...

PHYS. REV. APPLIED 15, 034062 (2021)

4. Software

The simulations are performed with Mirheo [61],
a high-throughput open-source software with kernels
thoroughly optimized for graphics processing units, aimed
at microrheology simulations using state-of-the-art RBC-
DPD models.

B. Bayesian uncertainty quantification

The objective of our study is to infer values for the
parameters of the RBC model using a set of experimental
datad = (dy,...,dy) € RY, where each d; corresponds to
external conditions x; € R Since the observations may
contain noise and the model is an imperfect description of
the physical phenomenon, we assume that the parameters
of the RBC model will also contain uncertainty. We wish
to quantify this uncertainty using the rigorous setting of
Bayesian inference.

In Sec. II B 1 we describe the Bayesian inference under
the assumption of a single experimental data set. In
Sec. 1 B2 we extend this framework to account for mul-
tiple data sets, by considering more complex Bayesian
models.

1. Single-level Bayesian models

We consider a set of experimental data d € RY where
each data point corresponds to external conditions X; €
R . We develop a Bayesian model M that aims to explain
all data d. We assume that the model output is a random
variable y and that d is an observation of this variable. We
have

yi =FXx;;9.) +og, j=1,...,N, (1)
where F' is the output of the computational model that
depends on a set of parameters ¥, and a set of input vari-
ables or conditions x € R™, and the ¢, are independent
random variables following A'(0,1) [62]. The additive
random term models the collective effect of all sources of
errors and uncertainty discussed in the Introduction. The
variable o is the standard deviation of the random term. We
call all variables other than ¥, statistical parameters and we
denote them by ¥,. The vector of all parameters is denoted
by ¥ = (9., ¥,) and is considered a random variable.

In the context of the current work, the computational
model is the RBC model and its output is the diame-
ter extensions or the tank-treading frequency (TTF) in
the stretching and shear flow simulations, respectively.
The computational model parameters correspond to the
mechanical parameters of the RBC model, and the input
variables to the conditions of the simulation, e.g., the
applied force in the stretching simulations or the shear rate
in the shear flow simulations.

Since the parameters ¥ are random variables, we are
interested in finding their distribution conditioned on the

assumption that the output of model M is equal to the
experimental observations, y = d. Using Bayes’ theorem,
this conditional distribution is written as (for the sake of a
lighter notation, the dependence of the probabilities on the
inputs xi, . .., Xy is omitted)

py ¥, M) p|M)
¥y, M) = , 2
p@ |y, M) P (2

where the terms p (y | %, M), p(% | M), and p(y | M) are
the likelihood function, the prior probability density, and
the model evidence factor, respectively. The prior beliefs
regarding the model parameters are updated in light of the
experimental data, to yield a data-informed distribution for
the parameters. This prior belief is updated by the exper-
imental data through the likelihood function p(y | %, M),
yielding the posterior distribution p (¥ |y, M), which rep-
resents our knowledge about the parameters after consid-
ering the data.

The likelihood function p(y|¥, M) represents how
probable the observations y are for a given parameter set
V. Under the assumption of Eq. (1), the likelihood function
is given by

p(y19, M) =Ny|n(d.), (D], (3)

where  w(¥,) = [F(x1;9,),...,F(xy; 9)], Z(®,) =0’
Iy, 9y = o, and Iy is the identity matrix in RV>*V,

Once the posterior distribution of the parameters is esti-
mated, we can propagate the model uncertainty to any
output quantity of interest y™*%:

pY*Vy, M) = /p(y“ewll‘})p(ﬁly,/\/l)dﬂ

Ns
1
~ o 2 P9, “)
k=1

Here the ¥ ~ p (¥ |y, M) are samples obtained from the
posterior distribution.

The relation of the variables involved in the Bayesian
inference is usually described through a directed acyclic
graph (Fig. 1). The variables that are unobserved,
observed, and propagated are denoted by a circle, square,
and shaded circle, respectively. We refer to these mod-
els as single-level Bayesian models, as opposed to the
hierarchical ones discussed in the next section.

2. Hierarchical Bayesian models

When multiple data sets are available, one approach is to
pool all data together and use the single-level methodology
of the previous section. However, this approach has been
shown to be inaccurate for atomistic and coarse-grain mod-
els [42,63]. The data heterogeneity can be attributed to data
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p(¥ | Mug)

p(d[ M) M

p(9; |, Mup) G

p(y |9, M) Y p(yi |9, Mus) | Y1

FIG. 1.

MHB

Yi YN

Directed acyclic graphs describing two Bayesian models. Left: a single-level model with observation variable y correspond-

ing to experimental data d. Right: a hierarchical Bayesian model with observations y; corresponding to experimental data d;. The data
may correspond to different experimental conditions or even completely different experiments. Each data set d; is represented with
different parameters ¥; and the parameters are connected through the hyperparameters .

sets reflecting different physical quantities and/or experi-
mental conditions. Model parameters need to account for
this heterogeneity and at the same time express the same
physical system, the RBC in this study. This dual role for
the model parameters is addressed through the hierarchical
Bayesian (HB) framework. .
We denote the collection of data sets as d=
{di,...,dy,}. Bach d; = (d;1,...,d;y,) € R is the data
vector corresponding to the data set 7, and d;; corresponds
to input conditions x;; fori = 1,...,Nyandj = 1,...,N;.
The HB model Myg introduces a vector of hyperpa-
rameters ¥, following a distribution p (¥ | d, Myg), that
encodes the information exchanged between data sets. This
hyperparameter vector is then used to specify a prior prob-
ability distribution on %;, p(¥;| ¥, Mpyg), as shown on
the right of Fig. 1. Through the HB framework we can
hence obtain better informed individual posterior distri-
butions p(¥; |d, Myp), using information from all data
sets. Finally, the hyperparameter prior can be used to
obtain a new general set of parameters 9" correspond-
ing to unobserved data. The details of sampling from this
Bayesian model are covered in Ref. [63]. For the sake of
completeness, we have added a section in Appendix F.

3. Sampling methods

The posterior probability distributions are estimated
through BASIS [64], a variant of the transitional Markov
chain Monte Carlo algorithm [65]. The BASIS algorithm
is deployed inside korali [47], a high-performance
framework for uncertainty quantification. We apply a spe-
cial technique to sample the parameters, developed in
Ref. [49], that allows us to reduce the computational
expenses associated with hierarchical Bayesian inference.
The details for the setup of the BASIS algorithm are given
in Appendix F.

C. Surrogates for expensive models: Gaussian
processes

The computational cost of Bayesian UQ is determined
by the sampling of the likelihood function [Eq. (3)]. Here,
sampling the respective high-dimensional spaces involves
numerous evaluations of the RBC model and each is com-
putationally intensive. We reduce the number of expensive
model evaluations through surrogate models based on GP
regression [66]. GPs are a widely used approach for gener-
ating surrogate models to mitigate the computational cost
of Bayesian inference [67—71]. We construct GP surrogates
for the following quantities of interest: (i) the thickness of
aresting RBC, expressed in terms of the deviation from the
analytical approximation of Ref. [56] [Eq. (6)], denoted
by z%, (ii) the axial and (iii) transverse diameter exten-
sions of a RBC under stretching, denoted by z** and z",
and (iv) the TTF and (v) inclination angle of RBCs under
shear, denoted by z*" and z?. The inputs for each GP are a
set of nondimensional RBC parameters ¥.* and conditions
x*. The GP output z is a Gaussian distribution with mean
m, and standard deviation o,. Each GP is trained on Ny
simulations, performed at preselected values of ¥.* and
x*, obtained from a latin hypercube (LH) in the (¥.%, x*)
space. The training process serves for the optimization of
the hyperparameters of each GP. Details for the training of
the GPs and the LH construction are given in Table IV in
Appendix E.

The prediction accuracy of each GP is assessed through
cross validation (CV) with repeated random subsampling
[72], also known as Monte Carlo CV [73]. During the CV,
the GPs are trained on a randomly selected subset com-
prising 90% of the simulation data, and their prediction
is tested on the remaining 10%. This process in repeated
100 times, and statistics are collected. The results show
a small prediction error and uncertainty for all surrogates
considered (with an average between 1%—4% of the tar-
get value), suggesting that the means of the GPs provide
an acceptable approximation to the simulation outputs.
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Details for the construction and training of the GPs are
given in Appendix E.

III. PARAMETRIC INFERENCE

The RBC model of Sec. IT A 1 has seven parameters, two
of which are the global area and volume constraints, set
to Ky = 0.5J/m? and Ky = 7.23 x 10° J/m?>. These val-
ues are obtained from Ref. [2] and result in global area
and volume deviations of less than 0.5% in all consid-
ered simulations. There is considerable uncertainty for the
value of the stretch (local area) modulus k,. Experimental
studies summarized in Ref. [2] estimate &k, = 2—13 uN/m.
However, this estimate corresponds to measurements on
bare membrane skeletons, and thus applicability to intact
RBCs is unknown. Previous computational studies have
assumed either a weakly compressible (C = k,/uo ~ 1)
or an incompressible membrane (see Appendix B). We set
C =1 in all simulations, to reduce the computational cost
associated with the introduction of an additional parame-
ter in the UQ study. Further studies could unveil the effects
of local area conservation, and infer &, given experimental
data.

The remaining parameters are the equilibrium-to-
maximum spring length ratio xo, the shear modulus ¢, the
bending modulus «, and the membrane surface viscosity
n;D. We infer the distribution of these parameters based on
experimental data of RBCs (i) under stretching, and (ii) in
shear flow, a summary of which is given in Table II and
plotted in Fig. 2. Afterwards, the inferred distributions are
used to predict data of resting RBCs at equilibrium, and
the inclination angle of tank-treading RBCs in shear flow.

A. Stretching

We first perform the inference of parameters related to
the elastic properties of the RBC: xy, 1o, and «,. We sim-
ulate a RBC under stretching and compare its axial and
transverse extensions [Fig. 3(a)] with experimental data

@ 2.5,

FIG. 2.

TABLEII. Experimental data considered for the UQ inference.
The symbols refer to Fig. 2. The solvent viscosity 7o is given
in units of mPas, and the assumed cell area 4, in um?. For all
experiments where the area is not explicitly given, we assume
that Ag = 135 um? [56]. The last column denotes the data set
ID, as used in the UQ. Details for the extraction of data from the
respective references are given in Appendix D.

Reference Symbol no Ay 1D
Stretching
Mills et al. [17] o s dy
Suresh et al. [74] X e e dy
Shear flow
Fischer et al. [75] e 11 135
Fischer et al. [75] e 18 135 -
Fischer et al. [75] A 31 135 d;
Fischer et al. [75] e 59 135 .-
Fischer [76] e 23 178
Tran-Son-Toy [77] “e 20 135
Tran-Son-Toy et al. [78] e 35 41 -
Fischer [79] (donor 3) O 289 135 d4
Fischer et al. [80] e 129 135 ...
Fischer et al. [80] (donors 1, 2) A 289 135 ds
Fischer ef al. [80] e 539 135 ...
Fischer et al. [80] e 109.3 135

of healthy RBCs stretched with optical tweezers [17,74].
In the experiments, a RBC is stretched by two silica
microbeads attached at opposite sides of its rim and pulled
in opposite directions by an externally applied force Fey:.
We simulate this setup by following the procedure pro-
posed by Sigiienza et al. [34], assuming a circular contact
area between the bead and the RBC with diameter d,.. A
stretching force is then applied only to the RBC vertices
located on the edge of the contact area, mimicking the
rigidity of the beads. We note that d, is not determined
experimentally. As suggested by an anonymous reviewer,
a possible treatment could be to assume uncertainty about

(®) .7,

0.61

d5 d3

5 _ 10 20 40
YnoRo (UN/m)

(a) Experimental data sets considered for the inference on stretching. The y axis shows the axial and transverse extensions

normalized by the diameter at rest, D/Dy. (b) Experimental data sets considered for the inference on shear flow. The y axis shows the
dimensionless TTF, v* = 47 /(y T), with Ty the tank-treading period. Error bars are omitted for clarity, and can be obtained from the

respective references in Table I1.
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(@ L (b)

Dax

FIG. 3. Simulation snapshots from RBCs under (a) stretch-
ing and (b) in shear flow, depicting the axial (D,x) and trans-
verse (Dy) diameters, dimensionless TTF (v*), and inclination
angle (¢).

the value of d,. and account for this in the Bayesian infer-
ence. To reduce the computational cost associated with the
inclusion of an additional parameter in the inference, we
fix d. = 2 um [34].

The elasticity and extension of a stretched RBC can be
described by four dimensionless numbers: the equilibrium-
to-maximum spring ratio xo, the Foppl-von Karman (FvK)
number, the dimensionless local compressibility (C) (here
fixed at C = 1; see Sec. III), and the nondimensional force
F*. We define FVK = ugRo*/kp and F* = Fu/(1oRo),
with Ry = [4o/(4m)]/? the effective radius of the RBC.
The nondimensional extensions are defined as Dj, =
Dyy /Dy and D}, = Dy/Dy, with Dy the diameter of a RBC
at rest.

The computational cost of the Bayesian inference is
reduced by forming two surrogate models for the axial and
transverse extensions using GPs. The GPs are trained on
a set of simulations with preselected parameters obtained
from a LH [81] (details in Table IV in Appendix E). Since
the stretching depends on the aforementioned set of dimen-
sionless numbers, the simulations are performed in the
region 0.2—0.7 for xy, 20450 for FvK, and 0-30 for F*.

The mean of the GP predictions for D}, and Dj. is
shown in Fig. 4. The diameter extension is characterized
by two regimes [31]: at low applied forces the exten-
sion is linearly dependent on the applied force [82], while
at larger forces the RBC extension follows a nonlinear,
strain-hardening response. The extensions in the nonlin-
ear regime are highly affected by x¢, as shown in Fig. 4 for
F* =15 and F* = 30, with lower x( (softer cells) yield-
ing larger D}, . Conversely, the combination of increasing
Dj, and global area and volume conservation results in
decreasing D}, with decreasing xo. The FvK number has
negligible effect on the extensions, indicated by the nearly
horizontal isolines of D}, and Dj.. Our results corroborate
the findings of Sigiienza et al. [34], who demonstrated that
the inclusion of bending rigidity changes the cross-section
shape of the RBC but does not have a considerable effect
on the axial and transverse extensions.

The experimental data sets considered in the inference
[17,74] are shown in Fig. 2(a) and Table II. The collection

0.7 F"=0 F*=15 F* =30
: 1.6 —
| ——1.6— >
051 [ ——1.8—
o —
X (= | _———2.0—

22— |
0.31 Lo— 2.4 —
/[ o=————— |

0.7 o
0.7
o~ 07— | [o6s 9
© ——— 0.65 0.60
S| ——0.60 0.55
0.51 \ 055 — |

J/

0.3

/ 001

50 200 350 50 200 350 50 200 350
FvK FvK FvK

FIG. 4. Two-dimensional (2D) slices from the 3D GP surro-
gate of the relative extensions D}, (top) and D}, (bottom) of a
RBC under stretching. The color corresponds to the extensions,
with low (high) values represented by white (gray). Lines repre-
sent isolines of the extensions. Columns correspond to different
extensional forces F*, denoted at the top of the figure.

of data for the axial and transverse extensions will be
denoted as d; = {d**,d!'}, where i = 1 corresponds to the
data of Mills et al. [17] and i = 2 to the data of Suresh
etal. [74].

The statistical model for the stretching setup is defined
as
y;x = Mzax (Xij s 1}c,z‘) + O-ax,is?'xa

tr

tr
yU = Mtr (le s ‘ﬂc,i) + O.tl',iglj 5

where x;;,i=1,2,j =1,...,N;, is the input of the jth
data point within the ith data set, and &%*, ¢!l are inde-
pendent random variables following N (0, 1). Addition-
ally, ¥ ; = (xo,i, o,i> k1) and Xy = Fj; = Fexq 5/ (1o,iRo,)
for i =1,2. The relation of the variables involved in
the inference is described through the directed acyclic
graph in Fig. 5. We note that introducing correlation
between the error random variables 8;‘-}", 8; showed no
significant improvement in the posterior distributions and
the propagation. Therefore, the complete parameter set
used in the inference for stretching is defined by ¥; =
(X0,i» 40,5 Kb,i> Oax,i> Otr,i) -

We adopt a uniform distribution for all priors for ¥,
p(O | M;), so that p(xg| M;) =U(0.2,0.7) [a random
variable ¢ following a uniform distribution with lower
and upper bounds « and B is denoted as ¢ ~ U(w, B)],
P (o | M) =UQ2, 6) uN/m, p(kp | M;) = U(LS, 10) x
10719 1, p(ow | M) =U(0,05), and p(oy| M) =
U(0, 0.5). These bounds cover the range of experimentally
estimated values for pg and «; as summarized in Appendix
A of Ref. [2], while the bounds for x( are based on previous
studies of the same RBC model [19,20].
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@ 9 = (20, 10,i, Kbyir Tax,is Otr,i)

FIG. 5. Single-level Bayesian model M; used in the inference
with stretching data.

The results of the inference are depicted in Figs. 6(a)
and 6(b). The marginal distributions of xy and w are char-
acterized by narrow peaks, suggesting that xo and o are
inferred with high certainty from the stretching data. This,
in turn, indicates that D}, and Dj. are highly affected by xo
and 9, in agreement with earlier observations from the GP
stretching surrogates [19,31,82]. In contrary, « is found to
be unidentifiable from the stretching data. This is shown in
Figs. 6(a) and 6(b) by the spread of the posterior distribu-
tion along the entire range of «p, and a high log likelihood
across a wide range of «; values. Lastly, the noise asso-
ciated with the prediction of the axial data is smaller than
for the transverse, as seen by the marginal distributions of
0ax and oy. This is possibly because the axial extensions
(larger values) have a larger contribution to the likelihood
than the transverse (smaller values).

The uncertainty of ¥;, i = 1,2, is propagated to the
model output p (y*V, | d;, M,) using Eq. (4). The results
are shown in Figs. 6(c) and 6(d) by the expected value of
the prediction along F™* and the uncertainty associated with
four credible intervals (Cls). The 90% Cls are relatively
narrow, implying a strong belief in the model prediction.
Additionally, the experimental data lie within the bounds
of the 90% Cls.

B. Shear flow

We report the inference of the RBC parameters xg, i,
kp, and n;, under dynamic flow conditions. We choose
to simulate a simple shear flow setup [Fig. 3(b)], due to
the large number of available experimental data sets with
measurements for the TTF of RBCs in shear flow [75-80].

In the simulation, a single RBC is suspended in a solu-
tion of viscosity 7,, enclosing a liquid with viscosity ;.
The simulations are performed in a cubic domain with
length L = 10R, chosen to minimize wall-induced con-
finement effects [26,83—85]. A linear shear flow with shear

P (91dy, ;)

0 50 100 150 0 50 100 150
Fext (PN) Fext (PN)

FIG. 6. Summary of the single-level Bayesian inference based
on the stretching data sets. (a),(b) Marginal distribution with
respect to each parameter (diagonal), two-dimensional projec-
tions of the posterior colored by the probability density [black
(white) denotes high (low) density] (below diagonal), and sam-
ples from the posterior distribution coloured by the log likelihood
[red (blue) denotes high (low) log likelihood] (above diagonal).
For tiles in every even column (e.g., 4o, Oax), the x-axis range is
given at the bottom of the figure. For tiles in every odd row (e.g.,
Xo, Kb, Oy), the y-axis range is given at the right of the figure.
(c),(d) Propagation of the uncertainty in ¥ to the prediction of
D} and D, p(y™"¥;|d;, M;), i = 1,2. The colored areas denote
the 99% (blue), 90% (green), 75% (yellow), and 50% (red) cred-
ible intervals. Circles correspond to the experimental data. The
dashed line corresponds to the expected (mean) prediction.

rate y is created by two planar walls, moving at a constant
velocity v = {yL/2,0,0} in opposite directions, with peri-
odic boundary conditions along x and z. Technical details
regarding the implementation of the flow setup with the
DPD method are given in Appendix A.

The dimensionless numbers controlling the dynamics
of RBCs [32,85,86] and capsules [87—89] in simple shear
flow, as well as their stability and transition from one state
to another [89—91], are the capillary (Ca) number, the FvK
number, the viscosity ratio (1), the dimensionless mem-
brane viscosity (7,), and the stress-free shape [53,54].
In this study we define Ca = yn,Ro/1t0, A = n;/1,, and
nt = n2P/(mRo) (1% is defined with respect to the inner
viscosity, since the outer solvent viscosity varies between
experimental data sets).

The computational cost of the inference is reduced
significantly by the GP surrogates for the dimensionless
TTF, v* = 47 /(y Ty), where Ty is the tank-treading period
[33,85]. Similarly to the stretching surrogate GPs, the TTF
GP is trained on a set of simulations with preselected
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parameters obtained from a LH. The simulations are per-
formed in the region 0.2—0.7 for xy, 20450 for FvK, 020
for i}, and 0.5-20 for Ca, covering the region of FvK num-
bers [86] and n;, [78,92] relevant to RBCs. The viscosity
ratio is set to A = 0.32 (see the discussion in Appendix C).

The Reynolds number Re = yRy?p /1, in the shear flow
experiments is approximately 10~#. The simulation of low
Reynolds number flows with DPD implies very small time
steps (due to the usage of an explicit time-integration
scheme), leading to excessively long simulation run times.
A common practice is to scale down the viscosities (1, 7;,
1n2P) by multiplying with a factor f;. < 1, while at the same
time, increasing y by dividing it with f;, such that the Ca
number is preserved. While this kind of scaling preserves
the Ca number, it increases quadratically the Reynolds
(Re) number. In all simulations we maintain Re < 0.1 such
that inertial effects are negligible [84], and Ma < Re to
preserve the separation of viscous and sonic time scales
[93].

The predictions from the GP surrogate of the TTF are
shown in Figs. 7 and 8. The trends observed in v* are qual-
itatively similar to the computational results of Yazdani
et al. [33] for membranes as a function of A, and as a func-
tion of n;, [85]. In particular, v* follows a nonmonotonic
trend as a function of #}, with an initial decrease and a
subsequent increase. Additionally, the n, corresponding to

FvK=63 FvK=235 FvK=407
UED U a0 0.59
"L{‘g‘b’o ) V) 6?9 L0
S ¥ Q? o2 ~N
*DE 10 - i 6 5 e
NN N Y N "
> ? > /i o Qo,%/ X
Qo Q- .
2 7 /
0 UoU =T T
| | e r&&"g
1 1 1 1 [Te)
e o fb e g
* & 101 - % n % o
< s 11O ! ® AN
o /1 {"% S A <
1 1 1 Q Q-
RSS2 7
20 1 1 1
0
V oosep o858 %%
©
* Ao R
020/ N o 2
Qﬁ /a
20
10 20 10 20 10 20
Ca Ca Ca
FIG. 7. 2D slices from the 4D GP surrogate of the TTF. The

color corresponds to v*, with low (high) values represented by
white (gray). Lines represent isolines of v*. Columns and rows
correspond to fixed FvK and xy values, shown on the top and
right of the figure. The dashed lines in the center tile correspond
to the slices shown in Fig. 8.

0.7

—e— Ca =0.5
0.6 —a— Ca=25
—— Ca=54

"5 0.51 —— Ca =10.2
—e— Ca = 15.1
0.47 —— Ca = 20.0
0.3 - - -
0 5 10 15 20
Nm
FIG. 8. TTF over n, at xo = 0.45 and FvK = 235. Points

denote predictions from the GP surrogate. Shaded areas show the
respective uncertainty in the prediction.

the minimum v* decreases with increasing Ca. At low 77,
v* seems to be insensitive to the Ca number for large Ca >
10. At high n, v* increases with Ca, a trend not shown in
the results of Refs. [33,85], who however performed sim-
ulations for up to Ca ~ 0.5 corresponding to the minimum
Ca considered in our study. We also observe the emergence
of wrinkles with increasing 7, and their disappearance
with increasing bending (thus decreasing FvK number),
consistent with the observations in Ref. [85].

The data sets considered in the inference are shown in
Fig. 2(b) and Table II. Details for the extraction of the data
from the respective references are given in Appendix D,
while a discussion on qualitative differences observed
between these data sets can be found in Ref. [33]. The
dimensionless number characterizing the shear stress sus-
tained by a RBC in shear flow is the Ca number. However,
as o is one of the parameters that will be inferred, we
present the experimental data in terms of y n,Ry.

The collection of TTF data sets is denoted as d; =
df.h, i =3,...,5. The statistical model for shear flow is

h
y; = mZSh (le s ]}C,i) + O.Sh,igij > (5)

where &;; ~N(0,1) and ¥.; = (xo,, to,» kpis7},;) for
i=3,...,5and j =1,...,N;. The input x;;, i = 3,4,5,
j =1,...,N;, corresponds to the input of the jth data
point within the ith data set, and is equal to Ca; =
YiiM0,iRo,i/ o, The complete parameter set used in the
inference for shear flow is ¥; = (xo, [Lo.i> Kbi> My 1> Oshii)-
The relation of the variables involved in the inference is
graphically shown in Fig. 9.

The prior distributions for the parameters are chosen to
follow a uniform distribution. In particular, p (xo | M;) =
U2, 0.7), p(uo| M) =UQ, 6) xN/m, plicy | M) =
U5, 10) x 10721, p(ni | M;) = U(0, 20), and p (o, |
M;) =U(0, 0.1). These bounds cover the range of exper-
imentally estimated values for ¢ and «; as summarized in
Appendix A of Ref. [2], while for 7}, we base the prior
on estimates of the membrane surface viscosity, ranging
between 0.05-0.8 x 107® Pasm [78,92].
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;"
M;, i=3,...,5
FIG. 9. Single-level Bayesian model M; used in the inference

with TTF data.

The posterior distribution p(9;|d;, M;), i =3,...,5,
is shown in Figs. 10(a)—10(c). The marginal distributions
of n}, and the two-dimensional projections of the poste-
rior along (xo,n),), (o, n,,), and (kp,7n}) show that all
TTF data sets contain information to identify a unimodal
posterior for ;. Additionally, the uncertainty in n}, is low

for i = 3,4, shown by the small spread of the marginal
distribution and the narrow regions of high likelihood
centered around 7}, &~ 8-9. On the other hand «; is uniden-
tifiable, as shown by the nearly flat marginal distributions
and high likelihood extending over the entire range of «;.
We find no evidence in the literature that «, has a signif-
icant effect on the TTF, which corroborates our Bayesian
inference results. Lastly, it is not clear whether x; and
o are identifiable from the TTF data. The posterior for
data set d4 has higher likelihood in the inner region of the
parameter space (see the corresponding marginal distribu-
tions and 2D projections along x( and ¢¢). In contrast, for
data sets d; and ds, high-likelihood regions appear at the
boundaries of the parameter space. Between data sets with
the same number of data points, d4 and ds, the highest
model evidence [Eq. (2)] corresponds to d4. This indicates
that the GP surrogate of the TTF can explain better the data
of d4 .

The conditional distributions of the model out-
put, p(y*V,|d;, M,) for i=3,...,5, are presented in
Figs. 10(d)-10(f). The expected value of the prediction
over yn,Ro passes through the experimental data of d;
and d4 [Figs. 10(d) and 10(e)], whereas it over predicts
ds [Fig. 10(f)]. In particular, the data points of ds lie on

®©  p(8,1dy.2,) © oy (851ds, )
u

f?ﬂL hand |

0 Kb?ﬂﬁ a_

il 4

.Tﬁ

%fﬂﬂ

0.2

10 20 30 40 10
ynoRo (UN/m)

FIG. 10. Summary of the single-level Bayesian inference based on the TTF data sets.
5. Figure descriptions follow Figs. 6(a) and 6(b). (d)~(f) Propagation of the uncertainty in ¥ to the pre-
5. The colored areas denote the 99% (blue), 90% (green), 75% (yellow), and 50% (red)

p|d, My, i=3,...,
diction of TTF, p(y™¥;|d;, M), i =3,...,

YnoRo (UN/m)

10 20 30 40
yYnoRo (UN/m)

20 30 40

(a)c) Posterior distributions

credible intervals. Circles correspond to the experimental data. The dashed line is the expected (mean) prediction.

034062-11



ATHENA ECONOMIDES et al.

PHYS. REV. APPLIED 15, 034062 (2021)

(=)

ax,new
1

tr,new

Y

____________________________

Stretching

Shear

O, = ( ORI .o 0w ). i =55

0 = (ORI .o oons (OwxsOins)

FIG. 11.

the edge of the 99% credible interval, reflecting that high-
likelihood regions of the posterior, Fig. 10(c), are at the
boundaries of the parameter space.

C. Hierarchical Bayesian inference

In this section we infer the RBC parameters xg, o, kp,
n; and statistical parameters oy, 0ax, O by constructing a
hierarchical Bayesian model Myg (Fig. 11). The complete
parameter set in Myg is & = (xo, iL0, Kb, 15> Oshs Tax, Otr)-
For the inference, we use two data sets from the stretch-
ing experiment, (y¥*,y") =d;, i=1,2, and three data
sets from the shear flow experiment, y?h =d,i=3,...,5
(Table II).

In Myg, the distribution of parameters entering both the
stretching and TTF surrogates are controlled by the hyper-
parameter vector ¥, shown with orange in Fig. 11. Here
n; is an input only to the TTF surrogate, and along with
Osh, 1S controlled by the hyperparameter vector ¥, denoted
with blue, thus sharing information between all TTF data
sets. Similarly, the distribution of o, and oy, is described
by ¥,, denoted with green. The parameters ¥ are related to
the hyperparameters ¥ = (¥, ¥, ¥,) through the prior
probability distribution p (¥ | ¥). Details for the distribu-
tions used in this study and the obtained hyperparameter
distribution p (¢ |d, Myg) can be found in Appendix F
and Fig. 20. .

After inferring p(¢ | d, Mpyg), a new distribution of
computational and statistical parameters ¥"°" can be

Directed acyclic graph for the hierarchical Bayesian model Mpyp used in this study. Details are given in Sec. III C.

computed, shown by the arrows in Fig. 11 from v,
¥, and V¥, towards ¥"°%. The distribution for ¥V,
p (™Y d, Myp), is shown in Fig. 12. The RBC param-
eters xop, o, and n; are well identified, shown by the
unimodal 1D and 2D marginal distributions for xg, wo,
and 7). This can be explained from the results of the
single-level models, where the parameters controlling the
static RBC response, x( and ¢, are identified well through
the stretching data, while # that controls the dynamic

X0

xoim% Ve [

Mo

*
Mo,
D i [

Kp
|-

*

Nm

Osh

Oax A
0.2
0.0

Otr

FIG. 12. Posterior distribution for 4" from the hierarchi-
cal Bayesian inference. Figure description follows Figs. 6(a)
and 6(b).
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FIG. 13. Propagation of the uncertainty in 9"V using Myp
to make predictions of (a) the axial and transverse extensions
of a RBC under stretching and (b) the TTF of a RBC in shear
flow. The colored areas denote the 99% (blue), 90% (green), 75%
(yellow), and 50% (red) credible intervals. Circles correspond
to all the experimental data. The dashed line corresponds to the
expected (mean) prediction.

response is identified well through the TTF data. On the
other hand, «;, remains unidentifiable in Myg, similar to
the inference by the single-level models.

We can now use Myp to make predictions for any quan-
tity of interest, by evaluating the conditional distribution
p ™™V | d, Myg), using Eq. (4). In Fig. 13 we present the
predictions for the RBC extensions in stretching and the
TTF in shear flow, described by the mean prediction of
Myg and the respective credible intervals.

IV. DISCUSSION

A. Comparison of posterior distributions and expected
values of RBC parameters

We combine multiple, heterogeneous experimental data
sets with the RBC model under the single-level Bayesian
and HB frameworks. We compare six Bayesian models:
two single-level models from the stretching extensions,
three single-level models from the TTF data, and a hier-
archical model using all data sets. Using these models,
we can now address issues and concerns raised in the

(a) (b)

TABLE III. EV and SD of the RBC model parameters, as esti-
mated from the Bayesian models of the inference. The SD is
reported in parentheses as a percentage of the respective expected
value.

Model X0 wo (UN/m)  kp, (1071°7) n
M, 0.453 (2) 3.745 (7) 4.682 (46)

M, 0.387 (2) 3.444 (3) 2.684 (48)

M; 0.384 (36) 4.581(22) 6.032(40) 8.571 (33)
M,y 0418 (32) 4.357(23) 6.032(40) 8.472(36)
M 0.395(37) 3.707 (33) 5.792(42) 10.124 (38)
Myus  0.405(3) 3.777(17)  3.801 (43)  8.446 (33)

Introduction, namely, the variation of RBC parameter val-
ues among studies in the literature, discrepancies between
experimental data sets, uncertainty in the predictions of the
RBC model, and transferability of the predictions of the
RBC model between different setups.

In Fig. 14 we show the marginal distribution of the RBC
parameters from all Bayesian models, and in Table 111 we
give the corresponding expected values (EVs) and stan-
dard deviation (SDs). We observe that the models using
the stretching data, M, and M,, yield highly certain
predictions for xo and o with peaked marginal distribu-
tions [Figs. 14(a) and 14(b)] and thus small SDs, between
2%—7%. On the other hand, models M3—Ms, using the
TTF data, yield larger SDs around the EVs, between
20%—-30%, also seen in the wide marginal distributions
of xo and o in Figs. 14(a) and 14(b). Models M3-M5
give a unimodal marginal distribution for 7}, [Fig. 14(d)],
with EV around 8-10 and SD between 33%—38%. Lastly,
we conclude that «;, cannot be identified from either the
stretching extensions or the TTF data, as the respective
SDs denote high uncertainty in its EV, ranging within
40%—50%.

We note how different types of experiments, as well as
how different data sets of the same experiment type, can
lead to differences in the posterior distribution and EVs of

(d)

Mo (UN/m)

0.72 3 4 5 6

5 10
*
Nm

15 20

FIG. 14. Marginal posterior probability distributions from the results of the single-level and hierarchical models for the RBC
parameters (a) xo, (b) wo, (¢) ks, and (d) 5. Solid black lines represent the hierarchical model, p (9"" | d, Mpyg). Dashed blue
lines represent single-level models for stretching, p (9;|d;, M;), i = 1,2. Dotted red lines represent single-level models for TTF,
p(ﬂi|d5Mi)5 i=3a'-'55'

034062-13



ATHENA ECONOMIDES et al.

PHYS. REV. APPLIED 15, 034062 (2021)

the RBC parameters. The HB framework provides a solu-
tion to this issue as we no longer need to choose among
data sets for the calibration of a model, but rather use all
data sets to estimate a probability distribution for a general
parameter set p ("% | d, Myg). This distribution is broad
enough to explain all experimental data, as seen in Fig. 13.
The EVs of the RBC parameters from the distribution of
9" are shown in the last line of Table III.

B. Transferability of distributions between
experimental setups

We assess the transferability of the model by comparing
its output with experimental data that have not been used
during the inference process. We first present the propaga-
tion of uncertainty from the single-level Bayesian model of
TTF to the prediction of the RBC extensions in stretching.
This propagation is possible as the parameters that enter
the stretching surrogate are a subset of those entering the
TTF. We then test the predictive capability of the TTF and
the hierarchical model on two previously unseen quanti-
ties, namely the inclination angle of RBCs in shear flow
and the thickness of RBCs at rest.

When propagating the uncertainty of the parameters
¥; to obtain predictions y"*V of a different quantity of
interest, the error term o; is scaled with respect to
max(y"")/ max(y,). Taking a relative error magnitude
instead of an absolute is necessary as the new quantity of
interest does not necessarily have the same units, or order
of magnitude as that used in the inference.

1. Stretching prediction

We first demonstrate the results of three uncertainty
propagation computations for the prediction of the stretch-
ing extensions y**, y". The propagation is performed using

(@) p (yneW’Stldg, ﬂS)

(b) p (ynew,st|d4’ %4)

Eq. (4) with the parameter distributions obtained from
each of the single-level Bayesian models of TTF, M;, i =
3,...,5. The results are presented in Fig. 15.

In all cases the mean prediction is a reasonable approx-
imation of the data. However, all propagations are charac-
terized by large uncertainty, especially at large Fey. This
can be explained by the uncertainty of the three single-
level models, in the EV of xy. In this RBC model, the
nonlinear regime of the force-extension curve is controlled
by x¢. The posterior distributions of the single-level TTF
models have a large uncertainty in xy, shown by the large
SDs in Table III, which leads to the wide confidence
intervals seen in Fig. 15. We therefore conclude that the
nonlinear regime of the force-extension curve cannot be
predicted well from the information included only in the
TTF data.

The extension at low forces (linear force-extension
regime) is controlled by g, as larger wo imply stiffer
cells and thus smaller extensions. The confidence inter-
vals at low forces are narrower than at large forces, sug-
gesting that the linear regime is predicted with higher
certainty.

Comparing the single-level predictions with the predic-
tion of Myg in Fig. 13(a), we find that the predictions of
the single-level models are inferior to those from Myg. In
the latter, all data points are included in the 90% CI, and
the uncertainty of the prediction at large F; is smaller and
does not increase with Fey, as in Fig. 15. The HB model
therefore gives a better approximation of the data for both
extensions and has smaller prediction uncertainty.

2. Inclination angle prediction

When RBCs tank tread, they acquire an inclination angle
¢ [Fig. 3(b)] that varies with the applied shear rate and sol-
vent viscosity [80]. Here we attempt to predict the mean

(c) D (ynew, st dS’ %5)

0-05 50 100 150 0 50 100 150 0 50 100 150
Fext (PN) Fext (PN) Fext (pN)
FIG. 15. Propagation of uncertainty from single-level models of TTF to the prediction of RBC extensions in stretching. The black

dotted line represents the expected (mean) value. The colored areas denote the 99% (blue), 90% (green), 75% (yellow), and 50% (red)
credible intervals. Circles correspond to all experimental data of stretching [17,74].
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inclination angle by propagating the parameter distribu-
tions of the Bayesian models of TTF and Mysg, using
Eq. (4). The predictions are compared to the fitted func-
tions in Fig. S8 of Ref. [80] for n, = 23.9 mPas. The
propagation is performed using a GP surrogate for ¢, com-
puted from the same set of simulations used to construct
the TTF surrogate.

In Fig. 16(a) we show one of the three propagations from
the TTF models, as a representative case, corresponding to
p(y™¥ | ds, M;), and in Fig. 16(b) we show the prop-
agation from the hierarchical model p (y"“? | d, Mysg).
We observe that the predictions of the Bayesian models
capture the general trend of decreasing ¢ with increasing
shear rate; however, the mean predictions under predict
the experimental data. Additionally, the experimental data
are included in the 99% CI of the Myg, as opposed
to Ms.

3. Equilibrium shape prediction

We now examine the prediction of the RBC resting
shape with respect to the measurements of Evans and Fung
[56]. The comparison of the resting shapes is based on
the thickness of the membrane H, along the radial direc-
tion. The experimental thickness is described by Evans and
Fung [56] as

212 A
H<r>=<1—ﬁ) (Co+Czﬁ+C4ﬁ)a ©)

where r is the radial distance from the center, R is the RBC
radius, and Cy, C,, C4 are constants estimated experimen-
tally [56]. We use the values from Ref. [56] corresponding
to the case of a RBC submerged in an isotonic solution.
The comparison between the experimental data and the

(a) (b)
20

15
S
10

10. 20 30 40 10. 20 30 40
YnoRo (UN/m) YnoRo (UN/m)

FIG. 16. Propagation of uncertainty for the prediction of the
mean inclination angle of a single RBC in shear flow. (a) Predic-
tion from the single-level model of TTF p(y“ew’¢ld4, My). (b)
Prediction from the hierarchical model p (y"¥ | d, Mysg). The
black dotted line represents the expected (mean) value. The col-
ored areas denote the 99% (blue), 90% (green), 75% (yellow),
and 50% (red) credible intervals. Circles are generated from the
fit of experimental data of the inclination angle [80]—see the text
for details.

simulations is performed using the average deviation of the
simulated RBC thickness with respect to the experimental
thickness, as given by Eq. (6). The average thickness devi-
ation is used as an indicator for the goodness of the resting
shape prediction.

Given a fixed stress-free shape, we find that the resting
shape of the RBC depends only on the FvK number, as
seen in Fig. 17. At large FvK =& 400, strain energy dom-
inates over bending, and the resting shape has a closer
resemblance (and thus smaller deviation) to the experimen-
tal biconcave shape. This is expected, as the stress-free
shape used in this study is a discretization of the bicon-
cave shape of Eq. (6), on a triangulated mesh. On the
other hand, as the bending modulus increases (FvK num-
ber decreases), the dimples of the RBC become shallower,
leading to a flattened RBC at FvK & 20, and thus larger
deviations of the thickness from Eq. (6). The average thick-
ness deviation with respect to the FvK number is fitted
with a one-dimensional GP (details in Appendix E), and
the mean of the GP is shown with a line over the simulation
points in Fig. 17.

The results of the uncertainty propagation are shown
in Fig. 18. The TTF Bayesian models M3, My, Ms;
predict the largest average thickness deviation, with EVs
at 0.031, 0.032, and 0.035 wm, respectively. The stretch-
ing Bayesian models M, M, and the HB model Myg
predict lower EVs, at 0.030, 0.020, and 0.026 um, respec-
tively. An explanation for this outcome is that the stretch-
ing data include the resting shape of the RBC, corre-
sponding to the data point where Fey = 0. Therefore,
the parameter distributions obtained from the stretching
Bayesian models are generated taking into account the
resting shape of the RBC. This can also be seen in the
respective marginal distributions of «; [dashed blue lines
in Fig. 14(c)], where higher probability is given to smaller
values of «p, thus limiting the flattening effects of «; on

©
o
=

deviation (um)
o o
o o
N w

Average thickness

0 100 200 300 400
FvK

FIG. 17. GP surrogate for the deviation of the RBC thickness
at rest from the shape of Evans and Fung [56]. Circles correspond
to the simulation results. Line corresponds to the prediction of the
GP surrogate.
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Average thickness deviation (um)

FIG. 18. Predictions of the average thickness deviation. Solid
(black) line corresponds to the prediction from the hierarchi-
cal model p (y"“*1|d, Myg). Dashed (blue) lines correspond
to the predictions from the single-level models of stretch-
ing p(y"“|d;, M,), i = 1,2. Dotted (red) lines correspond
to the predictions from the single-level models of the TTF
py™™|d;, M), i=3,...,5.

the resting shape. This result also demonstrates that if the
stress-free shape is biconcave then the bending modulus of
the RBC cannot be realistically estimated, as a “perfect”
resting shape would correspond to x, = 0 J, and as such,
strengthens the usage of a stress-free shape other than the
resting one [53,54].

V. CONCLUSIONS

This study presents a systematic investigation of the
incorporation of experimental data in the calibration of the
most frequently used computational model of the red blood
cell. We justify the need to revise existing practices that
rely on calibration of the model parameters without provid-
ing cross-experimental validation. We present a systematic
Bayesian inference framework using classical and hierar-
chical models to remedy the RBC model calibration. We
consider the calibration stage as an important part of the
whole modeling process. We combine multiple data sets
originating from different experimental setups using a hier-
archical Bayesian model. The hierarchical Bayesian model
accommodates information from all data sets in the infer-
ence of the model’s parameters. Lastly, we propagate the
parameter uncertainties in forward predictions to test the
transferability of the model.

We observe that the examined RBC model has enough
flexibility to fit experimental data of various types. When
employing single-level Bayesian inference, the predictions
are accurate and the predictive uncertainties are small
(indicating confidence in the prediction), if the predicted
data are included in the inference. However, if the prop-
agation is performed on data that are not included in
the inference, the predictions are not always an accurate
approximation for the data. Hence, in contrast to existing

studies and calibration practices, the present work intro-
duces a hierarchical Bayesian inference to obtain a gen-
eral probability distribution for the parameters that bridge
across multiple heterogeneous experimental data sets.

The traditional approach for the search of optimal RBC
model parameters relies on performing a one-at-a-time cal-
ibration of each model parameter to a particular set of data.
This approach, however, does not assess the predicting
capabilities of the model on new or unseen data, nor pro-
vides a measure of the uncertainty in the predictions of the
computational model. The HB framework provides a rem-
edy to this problem through a rigorous and reproducible
procedure. The need for explicit weighting of different
experiments when inferring the model parameters is cir-
cumvented in the HB framework, as all data sets have an
equal contribution to the parameter inference. Another fea-
ture of the HB framework is that it is easily extendable in
terms of including more data sets. Finally, the unique fea-
ture provided by the framework is the prediction of unseen
experiments with prediction uncertainty.

In conclusion, our results indicate that the transferability
of the computational model strongly depends on the choice
and handling of the experimental data. The accuracy of the
predictions reflects the relevance of the physical mecha-
nisms governing the experimental data used to infer the
model parameters. By comparing single-level and hierar-
chical Bayesian models, we conclude that the latter give
the best compromise of mean prediction and model uncer-
tainty. Moreover, differences between experimental mea-
surements are addressed through the HB framework, as the
uncertainty of the parameters in the HB model incorporates
the diversity of the experimental data. As such, the current
practice of using different parameters to fit a particular set
of data is rendered obsolete.

We believe that the results and lessons learned from the
present study go beyond the specific RBC model. They
reflect the need to properly incorporate experimental data
and make them an integral part of a modeling process that
can provide predictions with quantified uncertainties.
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APPENDIX A: SIMULATION DETAILS

(Note that in the following we omit the units when
giving values in the simulation system to ease text read-
ability.) The basic mass, length, and energy scales in the
simulation are set by specifying p® = 10, R}’ = 6, and
kpT® = 0.1, where p® is the mass density of the fluid,
Rés) the radius of a sphere having the same area as the RBC,
and kgT® the thermal energy. Through these, we define
the length, mass, and time conversion factors between the
physical [superscript “(p)”] and simulation [superscript
“(s5)”] systems as

U, =RY/RY =5.463 x 107" m,
Uy = U p®/p® =1.630 x 107 kg,
Ur = (2 UpkgT® JkgTP)1? = 1.091 x 1075 s;

assuming that the RBC has an area Ag’ ) =135 pum? and
volume ¥, =94 um? [56], the water density at room
temperature is p? = 1000 kg/m> and kzT® = 4.087 x
1072 J. The effective RBC length is Rg’) =3.278 um,
computed from Ry = [4o/(47)]"/?. The DPD number den-
sity is ngy = 10 and the mass of a single DPD parti-
cle is m = 1, as computed from p = mn,. For the RBC
membrane, we use a mesh with N, = 2562 vertices. The
total membrane mass is M,, = pAy, assuming a two-
dimensional membrane surface, and the mass of each
membrane particle is m,, = M,,/N,.

The DPD dissipative kernel power is set to £ = 0.125.
The relation between the solvent viscosity and the DPD
parameters « and y is estimated in advance based on dou-
ble Poisecuille flows in a domain of 20 x 22 x 20, with
periodic boundary conditions in x and z, and planar walls in
v [94]. We find that the empirical relation ar./kgT = 100,
with ». = 1 the cutoff radius, can be used to simultane-
ously maintain Ma < Re < 0.1 and to keep the fluid in the
Newtonian regime for the Re and Ca ranges used in this
study, similarly to previous studies [95,96]. The speed of
sound is estimated through the relation ¢> = dp/dp, with
the equation of state taken from the numerical results of
Groot and Warren [57].

The TTF of the RBCs in the shear flow simulations is
estimated in two ways. In the first way the TTF is esti-
mated by taking the average of the Fourier transform of the
individual membrane particle positions in time. We assume
that the leading frequency of the averaged Fourier trans-
form corresponds to the TTF. In the second way the TTF
is estimated using bead tracking by taking the inverse of

the average time required for each membrane particle to
complete one full revolution. All simulations satisfy the
conditions that the difference between the two TTF com-
putations is less than 5%, and that the TTF has converged
over time to a stationary value.

APPENDIX B: LOCAL AREA COMPRESSIBILITY

There seems to be considerable uncertainty regarding
the strength of the stretch (local area) modulus k,. Compu-
tational studies from Refs. [26,83,85,88,89] have assumed
a weakly compressible membrane. Weak local compress-
ibility can be justified as the phospholipid plasma mem-
brane can accommodate local area changes by a reorgani-
zation of the lipid distribution on the membrane [83]. Other
analytical [87] and computational studies [33,86,91,97]
have assumed both local and global area incompressibil-
ity. Yazdani et al. [33] demonstrated that increasing the
resistance to local area dilatation increases the TTF of
tank-treading RBCs. Our preliminary studies for tank-
treading RBCs corroborate this result as we have also
observed a systematic increase in the TTF by increasing
C from 1 to 2000, the latter corresponding to the case
k, = K4. The TTF computed from our simulations within
the specified region of dimensionless numbers is not able
to capture the lower TTF values of the experimental data
for C = 2000. We have therefore used C = 1 to avoid the
introduction of an additional parameter, noting however
that further studies are needed to elucidate the effect of
local area compressibility.

APPENDIX C: VISCOSITY RATIO IN SHEAR
FLOW DATA SETS

There exist multiple experimental studies that provide
measurements for the TTF of single RBCs in simple shear
flow. However, each TTF data set is reported at a different
solvent viscosity n,. Considering the uncertainty regarding
the cytoplasmic viscosity at room temperature 7; ~ 7—10
mPas [26,78,80,98,99] and its variability among RBCs,
there is a range of possible A corresponding to each TTF
data set, shown in Fig. 19. We perform simulations at a
single A = 0.32, which lies within the possible A range
of data sets [75,76,79,80], denoted with red squares in
Fig. 19. However, the cell used in Ref. [76] reports a large
surface area (see Table II), possibly corresponding to a
reticulocyte, and is thus not considered in our study.

APPENDIX D: EXTRACTION OF TTF DATA
FROM THE LITERATURE
The sources of the TTF data sets used in the inference,

Fig. 2(b), are as follows.

(i) Data set d3 taken from Fig. 4 of Ref. [75] for , =
31 mPas.
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FIG. 19. Possible range for A in the shear flow experiments,
due to the uncertainty in the cytoplasmic viscosity at room tem-
perature (n; ~ 7—-10 mPas). The y axis denotes the data set
origin, in the format “AuthorYear(n,),” with n, in mPas.
Square (red) markers correspond to data sets considered in the
UQ. Gray markers correspond to data sets with large cell sur-
face areas. Dashed line corresponds to simulations, performed at
A =0.32.

(ii) Data set d4 taken from the mean values® of donor 3
from Refs. [79,80].

(iii) Data set ds taken from the mean values™ of donors
1 and 2 from Refs. [79,80].

*Note for d4 and ds. The data from Ref. [79] are a subset
of the data given in Ref. [80]: the former corresponds to
the data of donor 3, while the latter to the collective data of
donors 1, 2, 3. We digitize the data of Fig. 4(b) of Ref. [79]
and Fig. S11 of Ref. [80] (for n, = 28.9 mPas.) We iden-
tify and separate the data of donor 3 from the collective
data of donors 1, 2, 3. Two independent data sets are gen-
erated: (i) donor 3, and (ii) donors 1 and 2. As all other
data sets used in our inference correspond to mean values
of the data, we compute the local mean values of the TTF
and the shear rate, as plotted in Fig. 2(b).

APPENDIX E: SURROGATE MODELS

1. Mathematical background

We denote by ty; = (¢1,...,%) the vector of M
observed outputs of the computational model " with input
x® and parameters 9, i = 1,..., M. We denote by z the
GP. Assuming that the observations can be represented by
the GP and an additive error term, we write

t=2z() + €, i=1,....M, (ED)
where ¢; = {x?, 9.} and the ¢; are independent random
variables following NV'(0, 7 1).

Let Dyq1 = {t1,. .., ts, 81, - -, 831} The prediction

tu+1 of the GP model for a new input &,, ; given the

TABLE IV. Construction of GP surrogates. Here N, denotes
the total number of simulations performed for each setup. The
“inputs” denote the quantities varied in each setup.

Setup Niim Inputs Output(s)
Equilibration 100 (x0, FVK) Ey
Stretching 300 (x0, FVK, F™) Dy, D
Shear flow 200 (x0, FVK, n,, Ca) v*, ¢

data D, is arandom variable that follows the conditional
distribution

P (1 | Dags) = Ntygr | mz(Dagsr), 02 D)1,
(E2)

where

m,(Dyr11) = Ky Cof tar,
+ M+1~M (E3)

2 T el
0 Dyry1) = e — Ky Cop Kargns

where the ith element of k4 is given by k(§;,83,.1)
fori=1,...,M and k is the kernel function. The kernel
is a user-defined function that reflects the property that
points which are close in the input space are expected to
have more strongly correlated outputs. The scalar cy/4;
is defined as cy41 = k(&yr41584r11) + B~'. The elements
of the covariance matrix Cy, are given by (Cy);j =
k(;i,;j) + ,B_I(Sij fori,j =1,...,M, where §; is the Kro-
necker delta function. Usually, the kernel function depends
on a set of hyperparameters that define its properties. The
values of the hyperparameters, as well as the value for 3,
are learned through an optimization process such that the
likelihood of t;, is maximized [66].

2. Construction of GPs

The GPs are built from a set of training points, corre-
sponding to a set of simulations with preselected parame-
ters chosen to form a LH. The LHs are constructed with the
MaxPro design criterion [81]. The number of simulations
in each LH along with their respective inputs and outputs
are listed in Table [V.

To construct a GP, we need to first specify the form
of the covariance matrix. We use a covariance matrix
composed of the sum of two functions. The first is a func-
tion modeling white noise, while the second is chosen
to be one of the following functions: squared exponen-
tial, Matern with v = 5/2, and Matern with v = 3/2. For
the GP of each quantity of interest (equilibrium thickness
deviation, axial and transverse extensions, TTF, and incli-
nation angle), we choose the function yielding the smallest
training and prediction errors (see the next paragraph).
Specifically, we choose the Matern function with v = 5/2
for the GPs of the axial and transverse extensions, TTF, and
inclination angle. In turn, for the equilibrium thickness, we
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opt to use the Matern function with v = 3/2. The GPs are
constructed using the open-source library 1ibgp [100].

The training of the GPs is performed using all LHs
points. After the training is completed, we compute the
average training error E,, as the L' norm between the
GP prediction and the simulation output, averaged from
all LHs points. For the chosen covariance functions, E; =
0.04%—1.61%.

In addition, we perform a cross-validation study where
90% of the simulation data are used to train the GPs (train-
ing data set), and the remaining 10% is used to evaluate the
accuracy of the GP predictions (testing data set). This type
of testing is used to examine whether the GP is over fitting
the simulation output. The average prediction error E, is
computed similarly to E;, but now using only the GP pre-
dictions and simulation outputs of the testing data set. The
process in repeated 100 times and statistics are collected,
yielding £, = 0.28%-3.47%.

APPENDIX F: HIERARCHICAL BAYESIAN
INFERENCE

1. Mathematical background

In the hierarchical Bayesian framework, the data are
grouped into separate data sets, reflecting different exper-
imental types, conditions, or laboratory of origin. We
denote the collection of data sets as d = {di,...,dy,}.
Each d; = (d;1,...,din;) € RV is the data vector cor-
responding to the data set i, and d;; corresponds to
input conditions x;; fori=1,...,Nyandj =1,...,N;.
The observable variable of the model that corresponds
to data d; is denoted by y, and the collection of all
observables as y.

Our goal is to obtain samples from the posterior distri-
bution, p (¥; |y, Mug), where d = {y,,...,yy},

P15 M) = [ PO 19.5. M) p (8 15. M) 9.
(F1)
The dependency assumptions from Fig. 1 allow us to sim-

plify p(¥; | ¥,y, M) = p(: | ¥,y;, M), and Eq. (F1) can
be rewritten using Bayes’ theorem as

. (y; 19, ¥, Mup) p(%; | ¥, Muyg)
8,15, M :fp i
POy, M) p(y; | ¥, Mug)

xp| ;’, Mug) dy.
Sincep(yi | 01'7 wa MHB) = P(y, | ﬂia MHB): Eq (FZ) sim-
plifies to
p(¥; |y, Mug) = p(y; | ¥;, Mug)

« /P(l‘}i | ¥, Mug)
p(y; | ¥, Mup)

(F2)

p(¥ |y, Mug) dy.
(F3)

Finally, the posterior distribution in Eq. (F1) can be
approximated as

P19 Mus) = p % | P, Myg)

Ns = py | vY, Mup)’
(F4)

p(®; |y, Mug) ~

where ¥® ~ p(¥ |y, Myg) for k=1,...,N, and N,
is sufficiently large. Thus, in order to obtain ¥; sam-
ples, we first have to sample the probability distribution
p(¥ |y, Mug), which, according to Bayes’ theorem, is
equal to

Py ¥, Mug) p(¥ | Mug)
p(y | Mug)

p@ 1y, M) = , (F5)

where p (¥ | Myg) is the prior probability density function
on ¥ and p (¥ | Myp) is the normalizing constant. Exploit-
ing the dependency assumption of Fig. 1 (main text) we
see that

N
P19, Mug) = [ [p (i1 ¥, Mug),

i=1

(F6)

and the likelihood of the ith data set can be expressed
according to the total probability theorem as

P, 1%, Mug) = / P, 19 M) p (¥ | ¥, Mug) d,.
(F7)

TABLE V. Prior distributions in the HB model. The elements

of the hyperparameter vector ¥ are Yy 1, Y2, Yigls Yig2s
1//;(;,,1, wa,ZJ 1//n,*;,,la Ipﬂ;,,zv wo'sh,la wash,Za ‘(/foax,la wo'ax,2) Ip‘o'nﬂ,]a 1//17{1-,2‘

Values for o, Wu?,l, Yy, are expressed in uN/m, and for «y,
wkb,la W/q,,z in 10_ 0 J

Priors for ¢

Yot ~U0.2,0.7)
1/fx0,2 ~ u(09 0'5)
Vg1 ~ U2, 6)
1/f/1.0,2 ~ M(O, 4)

‘(/flch,l Nu(lsa 10)
Vi, 2 ~ U0, 8.5)
Vg1 ~ U0, 20)
V2 ~ U0, 20)
Vot ~ U0, 0.1)
Vog2 ~ U, 0.1)
Vou,t ~ U0, 0.5)
Vou2 ~ U, 0.5)

Vo1 ~ U(0, 0.5)
Vor2 ~ U(0, 0.5)

Priors for &

p(xO | 'l,) = U(on,l, Ipxo,l + 1/[)(0,2)

p(//LO | 1/’) = U(lﬁuo,l, 1)ﬁ,u.o,l + ¢M0,2)

p(Kb | ]/,) = u(lljkb,la 1//161),1 + wkb,2)

P(ﬂ; | '/,) = U(lﬂn,’;,l, 1%7:1,1 + 1%7;,,2)

p(Ush | ¢) = u(llfash,la 1/jcrsh,l + 1//0511,2)

p(aax | W) = U(WGax,ls wgax,l + WUaX,Z)

p(otr | ‘./,) = u(‘(/fmr,l’ wﬂtrql + 1//(711',2)
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FIG. 20. Posterior distribution for the hyperparameters of the hierarchical model, p (¢ | d, Myg). Marginal distribution with respect
to each parameter (diagonal). Two-dimensional projections of the posterior colored by the probability density [black (white) denotes
high (low) density] (below diagonal). Samples from the posterior distribution coloured by the log likelihood [red (blue) denotes high
(low) log likelihood] (above diagonal). For tiles in the columns of v/, », the x-axis range is given at the bottom of the figure. For tiles
in the rows of v, |, the y-axis range is given at the right of the figure.

Here we introduce the model M; that corresponds to
the model describing only the ith data set; see Fig. 1.
The posterior distribution of this model will be used as
an instrumental density for important sampling. Under
the modeling assumption p(y; | ¥;, Mug) = p(y; | ¥, M)
(see Ref. [49]) and using Bayes’ theorem, Eq. (F7) is
written as

P(yl | wn MHB)
_ /p(l‘h |yi, Mi) p(y; | M)

p:| M)
or, equivalently, as
P | ¥, Mug)

=p; I/Vl)/

p (% | ¥, Myg) db;,
(F8)

p( z|¢ MHB)

¥ |y, M) dd;.
2, M) p(ily )

(F9)

Finally, Eq. (F7) can be approximated as

p(y; I M) a“ P(“}(k)H/f,MHB)
p(y; | ¥, Mup) =~ — -
" N, ; p@F | M)

(F10)

where 1‘},@ ~p@;|y, M, for k=1,...,N,; and N; is
sufficiently large. Note that, in general, N; can be differ-
ent for each data set y;. The advantage of this approach
is that the likelihoods p (y; | 9;, M), i =1,...,N, which
are the most expensive part of the computations, are not
reevaluated for each .

2. Inference setup

The sampling of all obtained distributions is performed
using the sampling algorithm BASIS [64], through the
korali software [47]. In all inferences we used 50 000
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and 8% equal to 0.02 and 0.01 for the respective data sets
ds, d4, and ds. The inference for the hyperparameters of
the hierarchical model is run with BI = 10, COV . = 0.3,
and B = 0.03. The prior p (¥ | ¥) for each of the elements
in ¥ is assumed to follow a uniform distribution with lower
and upper bounds as listed in Table V. The hyperparame-
ters ¥ are assumed to follow a uniform prior distribution
as given in Table V. The inference of the new, general set
of parameters obtained from the HB model, "%, is run
with BI = 10, COVpx = 0.3, and 8% = 0.04.
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