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The potential of nonlinear dynamical systems serving as reservoirs has attracted much attention for
the physical realization of reservoir computing (RC). Here, we propose a hardware system working as a
reservoir with one simple form of nonlinearity that reflects the intrinsic characteristics of the materials.
We show that insufficient dynamics in such physical systems can perform like complex dynamical systems
with the assistance of external controls. Based on the idea of spatial multiplexing, this dynamical system
is studied under two frameworks. The correlation between structural adjustments of the reservoir and
system performance in processing various types of task is proposed. Our results are expected to enable the
development of material-based devices for RC.
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I. INTRODUCTION

Artificial neural networks (ANNs) have been actively
developed as the foundation of artificial intelligence (AI)
systems. ANNs can be grouped according to their architec-
ture into feedforward [1] and recurrent networks [2], mak-
ing them suitable for various tasks. Reservoir computing
(RC), a framework derived from recurrent neural-network
theory, has generated significant interest, owing to its many
advantages, such as the relatively small computational
burden of the training process, lack of a fading-memory
problem, and relatively simple physical implementation.
Generally, there are three parts in a RC implementation: an
input layer to feed the input signal to the reservoir, a reser-
voir to process input data, and an output layer to read out
the reservoir states and use them for training [3]. Through
RC, input data are mapped into a high-dimensional space
to facilitate the separation of states [4]. Generally, the out-
put signal, y, at time t can be extracted from a linear
combination with adjustable output weights, Wout, coupled
to reservoir states x at time t, expressed as

y(t) = fout[x(t)],

fout(x) = Woutx(t).
(1)
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Different from recurrent neural networks, the RC input and
reservoir weights do not need to be adjusted. Hence, the
training process can be simplified to the training of out-
put weights, such that it does not affect the node states.
Various reservoir-model architectures are proposed, such
as multilayer [5,6], parallel time delay [7], single-node
structures with time multiplexing [8], and growing echo-
state networks (ESNs) [9]. A physical RC scheme (Fig. 1)
was recently proposed [10], in which the reservoir part
could be any physical dynamical system serving as a
computational resource instead of a conventional recur-
rent network. This concept enables the development of
physical reservoir implementation, providing promising
candidates for next-generation AI paradigms [11]. Typi-
cal examples of dynamical systems serving as the reservoir
(Fig. 1) include dynamical memristors [12], neuromorphic
materials [13], and a soft body [14].

Criteria for the normal operation of physical dynamical
systems as reservoirs are studied [10]. One key criterion
is that the system should generate different responses with
trends similar to a given input signal, as shown by the dif-
ferent system states in Fig. 1. The nonlinear response of
a signal with its complex network or individual but rela-
tional dynamical response generates the required dynamics
for a RC. Such a large number of product sums of diverse
response signals improves the RC performance. Current
research on physical RCs relies heavily on software to
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FIG. 1. Concept of a physical RC. Reservoir can be replaced
with any physical system that responds differently to a given
input signal. Output signal is the linear combination of all sys-
tem states coupled to adjustable output weights. There can be
multiple output signals, depending on the specific task.

replicate nodes [8,15], imposing a burden on performance.
Reductions in signal conversion load and memory con-
sumption are required for hardware RCs.

The nonlinearity of the signal response of nanomate-
rials is proposed for information processing, where their
extremely small size allows the creation of a highly dense
and complex system for future neuromorphic information
processors [16,17]. Because the conductance of a nanoma-
terial is sensitive to an electrical potential difference, the
current-voltage (I -V) characteristics can be used to dis-
tinguish nonlinearity. Various nonlinear responses, such
as temperature-independent tunneling current through a
molecular monolayer that functionalizes nanoparticles [18]
and stochastic switching via ion movement dynamics [19],
are reported for such systems.

However, nanomaterials with a significant nonlinear
conversion capacity do not always show sufficient dynam-
ics, and they are not easy to control or observe. Therefore,
to examine the availability of a simple nonlinear I -V
response of materials [17,18,20,21], as well as its usage
in RC systems, we construct an electronic circuit working
as the nonlinear node and introduce an external control to
generate a dynamical response. In this study, we use a sin-
gle physical node constructed from an electronic circuit,
and a large number of virtual nodes are generated to form
a reservoir by time and spatial multiplexing.

Compared with other physical reservoir schemes, the
dynamics in our physical systems are more controllable
and simpler. The much lower external memory consump-
tion and signal processing complexity of our control allow
the construction of a parallel process for multiple devices,
so that a future information processing device can be
developed utilizing highly integrated nanomaterials. We

investigate the feasibility and effectiveness of the proposed
scheme by testing its performance in various tasks and
thereby gain insights into the physical realization of a RC.
The broader aim of this work is to an alternative RC sys-
tem, so that appropriate nanomaterials can be used for
building them.

II. DESIGN SCHEME AND TESTING METHOD

In this section, we provide an overview of our design
scheme to clarify the concept of our physical reservoir. The
basic principle of our scheme is to build a dynamical sys-
tem based on the I -V curves of materials with a simple
external control. Two parameters (i.e., input gain, e, and
feedback gain, a) are introduced to increase the dynamics
and represent individual processing nodes in the reservoir.
The I -V curve-based model is defined by the following
functions:

Vin(t) = aVout(t − 1) + eut, (2)

Vout(t) =
Vin(t) + Vth[Vin(t) ≤ −Vth],
0[−Vth < Vin(t) < Vth],
Vin(t) − Vth[Vin(t) ≥ Vth],

(3)

where ut (random sequences within [−5,5]) are the input
signals, and Vth is the threshold voltage. t represents the
sequential number. Figure 2 shows the simulated results
of this model, where three I -V curves are generated from
three values of e and a, and the value of Vth is fixed. In this
model, the input gain, e, determines the slope of the curve,
and the feedback gain, a, affects the distribution around the
curve.

FIG. 2. Response function settings. Vth is the threshold voltage
and ut is the random input signal. I -V curves in black, red, and
green represent different values of e, which are reflected in the
different slopes. Larger e corresponds to a steeper slope. All three
curves have the same shape because they have the same value
of a.
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FIG. 3. Diagram of RC scheme. (a) Parallel-node structure.
Nodes in this scheme are parallel to each other and indepen-
dent. Different nodes are defined by different value pairs of a
and e. Each node also has self-feedback. Nodes are independent.
(b) Parallel-group structure. Nodes are divided into some groups,
which are parallel. Six nodes in each group have feedforward
from the previous node.

Next, we propose a RC system that offers tunable inter-
nal nonlinearity for each node. The nonlinearity needed is
shown for each node in Fig. 3. Figure 3(a) displays a dia-
gram of our first scheme: parallel node. Nodes are assigned
with different values of input gain, e, and feedback gain, a.
Hence, the nth node is defined by en and an. This separately
processes the input stream, u(t). The tth input fed into the
nth node can be read as

Vn
in(t) = anVn

out(t − 1) + enu(t). (4)

The transient-node state, Vn
out, which characterizes the

transient response to a certain input, can be expressed as

Vn
out(t) = f n

out[Vin(t)], (5)

where f n denotes the nonlinear transition function of the
nth node in the reservoir. During the nth-node process,
each input is fed into the node state by coupling it to the
same input gain, en, and the past-node state is fed by cou-
pling it to the same feedback gain, an. The output layer
reads out all of these transient states, in which the final out-
put can be obtained as the linear summation of the states
of all nodes weighted by an output weight. The output
weights are optimized using a training procedure to best
fit the output signal to the target signal.

In our second scheme (i.e., parallel group), another
external parameter, feedforward gain, is introduced to pro-
vide connections between nodes in the reservoir. The
node connection structure inside the reservoir is shown
in Fig. 3(b), where the nodes are divided into groups of
six. These groups are parallel, and we call it the parallel-
group structure. In each group, en and an serve as input
and feedback gains for the first node, respectively. For the
remaining nodes (2–6), an serves as the feedforward gain
coupled to the output from the previous node at the same
time sequence, and λ serves as the feedback gain. The input
voltage in each group can be formulated as

V6n+1
in (t) = a6n+1V6n+1

out (t − 1)

+ e6n+1u(t) (first node),

V6n+x
in (t) = a6n+xV6n+x−1

out (t) + e6n+xu(t)

+ λV6n+x
out (t − 1) (rest nodes). (6)

Although the input stream is processed sequentially, the
central idea of our design includes a solution based on a
parallel implementation. Such an implementation derives
from a spatial multiplexing research model [22]. Both
implementations are related to the ESN framework [23]
and satisfy the echo-state property. This system is rather
simple and lacks complex nonlinear dynamics, allowing
observation of the effects of parameter tuning and archi-
tectural changes. Our aim is to verify the effectiveness
of such simple dynamics (i.e., single nonlinear response
and independent feedback) during information processing.
Furthermore, such a parallel framework requires minimum
external memory because it needs to store only the pre-
vious state. The required external memory will not swell
under such parallel processing.

Next, we realize the physical RC system with tunable
nonlinearity of a hardware system. Considering the simi-
larity of the I -V characteristic of diodes to the nonlinear
response of materials and its easier implementation, we
construct our physical system using an electronic circuit in
which the nonlinear response is realized with two antipar-
allel diodes (1S1585). This part is called the physical
nonlinear (NL) node. The output-to-input relation we need
is plotted in the top panel of Fig. 4, with an input voltage
range [−2.1, 2.1], and thus, an output voltage range [−1.5,
1.5]. The input range is defined between −2.1 and 2.1 V
due to the limitation of our hardware system (i.e., DAC
PCF8591), but some inputs will go beyond the range with
the effects of external control. To enable the node to return
to the normal range, we use a regression setting in our
hardware system, that is, if the input voltage exceeds the
defined range, the input voltage will return to zero; if not,
the input is its original value. The entire procedure of infor-
mation processing is shown in Fig. 4 under the control and
monitoring of the Ardunio Mega 2560 development board.

024030-3



SHAOHUA KAN et al. PHYS. REV. APPLIED 15, 024030 (2021)

FIG. 4. Schematic of physical realization. NL node with
output-to-input characteristics generates N virtual nodes via time
multiplexing, so that the entire input signal is processed N times.
Each input data item passing a node is coupled with the same
input gain. Next, it is fed into the node with the previous node
state coupled with the same feedback gain. Inputs are trans-
formed using a digital-to-analog converter (DAC) when fed
into the NL node and by an analog-to-digital converter (ADC)
to obtain output voltage from nodes. Training process is then
conducted using all collected digital data.

To save space, we draw on the concept of time multiplex-
ing [8], so that only one single NL node is used to create
our RC system. We define N individual virtual nodes by
generating N value pairs of a and e, which means that the
input signal is processed N times through the physical NL
node, whereas the e and a values are updated each time.
Thus, a single physical NL node serves as different virtual
nodes at different times. Owing to implementation under
one single physical node, compared with the parallel-node
scheme, the parallel-group scheme requires external mem-
ory for all output states from the ante nodes, V6n+x

out (t − 1),
to create the connection mentioned in Eq. (6).

Because the input and feedback gains have a direct
impact on the processing results, an optimization of their
values is necessary. Even if a and e are randomly selected,
an optimal range should be determined. We leverage a
mapping method that simultaneously displays the changes
in dynamics along both e and a. Parameter a ranges from 0
to 2.6, and parameter e ranges from 1.1 to 3.1, both having
a step of 0.2. For each pair of e and a, we feed an input
signal of 300 sequences randomly generated from −0.5 to
0.5 to our reservoir and calculate the variances of the node
states (300 output voltage values). A variance mapping
graph (Fig. 5) is then plotted for various parameter values.
A greater variance indicates richer dynamic characteris-
tics of the nodes because the output voltage distribution is
more scattered. Based on the distribution of variance, dif-
ferent ranges (i.e., shapes, colors, and their combinations)
are selected for testing in the benchmark nonlinear autore-
gressive moving average (NARMA2) task, introduced in

FIG. 5. Variance mapping. We calculate 14 × 11 groups of
variance of node states for this mapping graph; 14 because
parameter a ranges from 0 to 2.6 in increments of 0.2 and 11
because parameter e ranges from 1.1 to 3.1. After around 30 tests
under different ranges in the NARMA2 task, we determine the
parameter ranges that give the best performance (marked with
black parallelogram).

Sec. III, to help us adjust the range selection. After 30
tests under different ranges, we determine the parameter
ranges that give the best performance, as marked with a
black parallelogram in Fig. 5.

This method determines the values of input gain e and
feedback gain a under the parallel-node scheme. In the
parallel-group structure, parameters a and e have the same
ranges as those determined for the parallel-node struc-
ture. Parameter λ is 0.05, 0.1, 0.12, 0.12, and 0.12 for the
remaining five nodes in each group. Gradually increasing
the feedback parameter λ is helpful for remembering pre-
vious input information. These values are selected accord-
ing to several tests under the benchmark NARMA2 task.
Owing to the limitation of physical realization for find-
ing the precise range, we conduct limited groups of tests
to determine all parameters. However, we believe that the
ranges can be further improved.

III. PERFORMANCE ANALYSIS

After parameter ranges are determined, we test the per-
formance of our diode-based physical system. The results
of the following tasks become experimental data from our
hardware reservoir. The values of the parameters in all
tests, if not specified, are taken from the parameter ranges
discussed in Sec. II.

A. Features of output of node state

We first test the output features of our physical RC to
the input signal, u(t), comprising sequential random data
in the interval [0, 0.5]. This range is used for the input

024030-4



SIMPLE RESERVOIR COMPUTING CAPITALIZING. . . PHYS. REV. APPLIED 15, 024030 (2021)

(a) (b)

FIG. 6. Output features. (a) Sequential node states. This graph plots 10 node states out of 300 nodes along the time sequences from
our physical reservoir based on the scheme in Fig. 3(a). Input signal to this reservoir includes 4000 random data items, u(t), in the
interval [0, 0.5]. Output data are divided into either all positive or all negative based on the sign of the input gain, e. (b) Typical
input-to-output characteristics. Outputs of six nodes selected from 300 nodes. Negative part, caused by a negative sign of input gain e,
is supposed to be on the right side of the x axis, because u(t) is in the interval [0, 0.5]. However, it is flipped along the vertical axis for
a clear I -V curve.

signal because it is a common range used in NARMA
tasks, although it goes against our design principles, which
state that both positive and negative values should be used,
as in Fig. 2. To use both positive and negative sides of this
nonlinear response, we randomly set some of the e values
to be negative.

Figure 6(a) displays the sequential states of eight
selected nodes from 300. All states having the same
abscissa use the same input value, but each node responds
differently. Figure 6(b) shows the relation between output
and input, which is similar to that of the I -V curves (Fig. 2),
where the slopes in both the graphs reflect feedback
gain a. However, unlike Fig. 2, the input gain, e, is not
fixed in this case.

B. Results of NARMA2 task

Here, we report the performance of our physical reser-
voir on the NARMA task [24], which is a widely used and
effective benchmark for RC, when evaluating the reser-
voir’s ability to duplicate a higher-order dynamical model
constructed from current and previous inputs. Generally,
the NARMA2 and NARMA10 tasks require different opti-
mal parameter settings [8,25]. NARMA10, as a higher-
order dynamical system, is a fairly difficult target to train
for. Hence, we use the NARMA2 task as our bench-
mark. The parameters in this paper are set by observing
the performance for the NARMA2 task. NARMA2 is a
second-order nonlinear model defined as

y(t + 1) = 0.4y(t) + 0.4y(t)y(t − 1) + 0.6u(t)3 + 0.1.
(7)

The input signal, u(t), is a sequence of random digits in
the interval [0, 0.5] generated by a random function, and
the model output, y(t), serves as the target. We train the
system’s output signal by selecting the output weights to
render the signal as close as possible to the target one.
Output weights, Wout, are determined from training data
using ridge regression. The predicted signal is calculated as
ŷ(t) = XtestWout Details of the training and testing process
are given in the Appendix.

We introduce the normalized-mean-square error (NMSE)
to quantify the deviation between the target and predicted
signals, expressed as

�E = 1
N

∑
t [ŷ(t) − y(t)]2

σ 2(y)
. (8)

A total of 300 nodes are used for all schemes to perform
this task. Figure 7 shows the testing results for the parallel-
node and -group structure reservoirs. Black lines reflect
the NARMA2 model serving as the target signal in this
prediction task. We train the output weights during the
training step and use them to calculate the prediction sig-
nal from the testing data (shown in red). Green lines in
the inset are the testing results for the standard ESN (spec-
tral radius: 0.99; input weight interval: [−1,1]; activation
function: tanh function); see the settings in the Appendix.
Performance is reflected by the reproducibility of the pre-
diction to the target. To assess the performance, the �E,
defined by Eq. (7), is introduced to evaluate the deviation
between the target and calculated values. The parallel-
group structure [Fig. 7(b)] has a smaller �E value, and
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(a) (b)

FIG. 7. Performance in NARMA2 task. Results for (a) parallel-node and (b) parallel-group structures. Red line is the trained predic-
tion signal, and black line is the supervisor signal (NARMA2 model). Green lines in the inset are testing results from ESN code. �E
is used to reflect the extent of deviation between predicted and target values.

thus, outperforms the parallel-node structure in this pre-
diction task. Not surprisingly, the standard ESN obtains
an obviously smaller �E. However, if we were to replace
the activation function in this programmed ESN with the
I -V response used in our physical schemes, the �E would
increase to 0.121.

C. Short-term memory capacity

A well-known feature of RC is its fading (short-term)
memory, meaning that the current reservoir state contains
information from recent past inputs, but it is unrelated to
older ones. The short-term memory capacity (STMC) is
introduced to reflect the correlation between the current
reservoir states (at time t) and past inputs [at time (t−k)],

ranging from zero to one. The STMC in RC networks is
defined to be represented by the squared correlation coef-
ficient of the target testing signal, yk, and the fitted signal,
ŷk, as proposed by Jeager [26]. Based on this definition,
we obtain STMCs for higher-order target signals [27],
where the nonlinear target function is a Legendre polyno-
mial of a time-delayed input. Specifically, target signal yq

k
is constructed from the kth delayed original input signal
[u(t−k)], according to the qth order of Legendre polyno-
mials (see the Appendix). The fitted signal, ŷq

k , is trained
using ridge regression by reservoir-state X, and the proce-
dure is the same as that used in the NARMA2 task. Under
the same nonlinear order, q, r(y, ŷ)k is used to calculate the
degree of correlation between the optimally trained output

(a) (b) (c)

FIG. 8. Memory-capacity performance of hardware schemes. Results for (a) parallel-node and (b) parallel-group structures. r(y, ŷ)k
represents the fraction of variance explainable in one signal by another. r(y, ŷ)q sums all delayed r(y, ŷ)k (k from 0 to 10). (c) r(y, ŷ)q

results for two schemes. Degree q (1 to 10) represents the target signal given by qth-order Legendre polynomials.
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(a) (b) (c)

FIG. 9. MC performance of programmed ESN (a) with hyperbolic tangent function and (b) with I -V response as the activation
function. (c) MC to different orders of target signal (i.e., r(y, ŷ)q) for these two ESNs.

signal, ŷk, and the target signal, yk. MCq, summed over all
MCk with the same q, signifies how much of the delayed
input signal can be recovered from ŷk. The input signal,
ut(t), here, is the same random sequence as that used in
the NARMA2 task, but mapped from its original range
[0, 0.5] to [−1, 1], which is the standard input range for
a memory-capacity task. Under the same order of nonlin-
earity, a STMC ranging between zero and one represents
the correlation coefficient of the trained output and target
signals. This is the k-delay STMC and is expressed as

r(y, ŷ)
q
k = cov2(yq

k , ŷk)

σ 2(yq
k )σ 2(ŷk)

. (9)

The STMC of the same order of the nonlinear target is the
sum of all delayed STMCs:

r(y, ŷ)q =
∞∑

k=1

r(y, ŷ)
q
k . (10)

Figures 8(a) and 8(b) show the STMCs for the parallel-
node and -group structures, respectively, both with 300
nodes. Although their total memory capacities are not high,
the parallel-group structure suppresses memory decline,
especially against forgetting the two prior memory spans.
The curves in Fig. 8(c) are the r(y, ŷ)q results of the
two structures. The MC r(y, ŷ) of the second scheme is
improved, and the higher-order target is better remem-
bered.

FIG. 10. Schematic of the isolated-word recognition process. M × 13 features are extracted separately for each of the 500 audio
signals, where M is the number of segmented frames. After principal component analysis, all coefficient matrixes with different sizes
are organized into the same size of 13 × 13 (i.e., 169 coefficients) for one speech sample. Reservoir of N nodes would give a reservoir
state of 500 × 169 × N data items. We rearrange the reservoir state into 500 cells (each given the same label) and use them for training
and testing sets. Detailed description of this classification process is given in Fig. 11.
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(b)(a)
1st

Nth

2Nth

xth

(N+1)th

(25N+x)th

FIG. 11. Classification pro-
cess using KNN model. (a) 500
output cells with N rows and
169 columns. After identifying
training subsets, each row with
169 variables is projected to
a point in 169-dimensional
space. Rows or observations
with the same label are pro-
jected to points of the same
color and shape. (b) Simplified
schematic of the KNN model.
This illustration represents
two-dimensional (2D) space for
easier understanding, but the
actual space is 169-dimensional,
and the coordinates come from
169 variables.

For comparison, we measure the memory capacity of
our programmed ESNs with 300 nodes. The activation of
one is a hyperbolic tangent function [Fig. 9(a)], and the
other one uses the I -V response we use in our physical
schemes [Fig. 9(b)]. Both ESNs demonstrate significant
abilities to remember inputs after a longer time, compared
with our hardware systems. However, they perform poorly
in the memory-capacity-to-higher-order target.

D. Testing the accuracy of speech recognition

An isolated-word recognition task is performed to fur-
ther analyze their performances. Five hundred audio files
comprising ten English spoken words (“zero” to “nine”)
are downloaded from the internet [28]. These audio files
are recorded from five people (three men and two women),
and each word is repeated ten times by the same speaker.
Preprocessing, feature extraction, and training procedures
are performed using MATLAB 2019a. See the Appendix for
a complete description.

Figure 10 shows a general flowchart of this task. Five
hundred feature vectors are extracted from 500 audio files
input into the reservoir. Five hundred output cells are col-
lected from the reservoir for training and testing, where
each cell consists of N vectors processed by N nodes
(N = 50 for this task). A k-nearest-neighbor (KNN) classi-
fier combined with 20-fold stratified cross validation real-
izes the training and testing of samples. The KNN classifier
is trained by specifying the distance metric as Euclidean,
the distance weighting function as squared inverse, and
the number of neighbors as k. The best performance is

obtained when k = 58 for the parallel-node structure, 36
for the parallel-group structure, and nine for the ESN, as
applied to the fitcknn function in MATLAB. All samples are
divided into 20 disjointed subsamples (folds) chosen ran-
domly, but with the same size. The training and testing
process is repeated 20 times, each with a different assign-
ment of subsamples as the testing set, and the remaining
subsamples use the training set. Training data are mapped
into 169-dimensional space based on their 169 predictor
variables represented by the colored points in Fig. 11(b),
and testing data, represented by black points, are used
for classification. According to the calculated distances
between each testing point and all other training points,
the class with the largest weighted value is specified as the
predicted class. In this case, each speech cell has 50 pre-
dicted labels; the most frequent label is the final class for
this speech cell. The final accuracy rate is calculated as the
average of these 20 cross validations.

The results for three RC systems are listed in Table I.
The accuracies for the parallel-node and -group structures
(both having 50 nodes) are 81% and 83.6%, respectively,
and those for the standard ESN programming are 66.8%
with 50 nodes and 72.6% with 200 nodes. When we
change the spectral radius (SP, an eigenvalue of the net-
work weight matrix with the largest absolute value) in
the defined ESN, the accuracy under 50 nodes reaches
81.6%. To evaluate the contribution of the reservoir to per-
formance, we test it in accordance with the procedure in
Fig. 9, but without the reservoir. The testing accuracy is
74% (68%–80%), which represents the contribution from
the preprocessing and postprocessing of data.

TABLE I. Cross-validation results of three different reservoir structures.

System ESN (ρ(W) = 0.99) ESN (ρ(W) = 0.19) Parallel-node RC Parallel-group RC

Accuracy 66.8% (52%–80%) 81.6% (68%–92%) 81% (64%–92%) 83.6% (76%–92%)
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IV. DISCUSSION AND CONCLUSION

The motivation for this work is to find a suitable method
for using the inherent nonlinear responses of materials to
construct suitable dynamical systems for physical RCs. We
demonstrate the use of a simple nonlinear I -V response and
a simple external control to increase its internal dynam-
ics. This opens the door to using molecular devices as
processors.

Conventional RCs have several important properties,
such as varied dynamical responses, fading memory, and
nonlinear transformations, which are reflected by param-
eters such as input scaling, spectral radius, and sparsity.
In our scheme, we reduce the RC to only two parameters:
feedback gain a and input gain e. These two parameters
can be used to adjust nonlinearity, control the dynamics
of nodes, and generate virtual nodes. Their values have a
significant effect on the final performance. Owing to the
limitations of physical implementation, we find the opti-
mal range for these values based on a limited number
of trials. However, this does not affect our understand-
ing of the relationship between dynamic properties and
final performance. We hope to develop a practical method
for finding the optimal range of parameters in future
studies.

Effective reservoirs are generally considered to be nec-
essary for achieving richly varied signals, which are
ensured by a sparse interconnectivity of all nodes. How-
ever, in this work, we show that a scheme that uses
independent nodes in the reservoir can work well for the
isolated-word recognition task. An accuracy of 83.6% is
achieved with only 50 nodes, indicating the potential of
using basic nonlinearity. Moreover, we show that this kind
of nonlinear response is more suitable for a structure with
regular connections between nodes. The parallel-group RC
outperforms the standard ESN with an activation func-
tion of the I -V response in a NARMA task, and it has
a larger memory capacity for higher-order target signals.
The standard ESN has a high STMC and, therefore, has
a low �E in the NARMA2 task. However, its improve-
ment to STMC for a higher-order nonlinear target (q ≥ 3)

is quite limited. The performance of these schemes in the
speech-recognition task is inconsistent with that of previ-
ous tasks. Although the pre- and postprocessing of speech
information plays a positive role in this task, our physical
schemes need only a small number of nodes to improve
the accuracy rate. Our physical reservoir does not require
an increased number of nodes to show higher accuracy
in the recognition task, whereas the standard ESN does.
Nevertheless, the highest accuracy for this ESN (obtained
with 200 nodes) is still lower than that of our physical
reservoir with 50 nodes. Notably, the standard ESN that
performs well in the NARMA task performs poorly in
our isolated-word recognition task. When the ESN reaches
an accuracy of 81.6% (under a spectral radius of 0.19),

the performance in the NARMA task becomes worse
(�E = 0.0778). This demonstrates that, for tasks such as
the isolated-word recognition task, the extraction of current
information is important, and information from the previ-
ous state may undermine the characteristics of the current
information. Therefore, although increasing the number of
nodes in the ESN facilitates the extraction of information
features, it can improve only the recognition accuracy to a
level similar to the contribution of pre- and postprocessing.
These results can be used to develop heuristics for building
specific physical reservoirs and selecting the training and
testing method for a specific task.

We use a single electronic circuit to generate numerous
nodes as the reservoir, where the signals are serially fed
into it. Processing under the sequential feeding of input
is slow. However, in our schemes, nodes or node groups
have an independent parallel architecture, which facilitates
the fabrication of parallel hardware of physical nodes to
compensate for the scaling of the total computation time
with the number of virtual nodes. For the parallel-node
structure, because the response is instantaneous and deter-
mined only by the most recent output and the current input,
there is no need to access memory to extract the collected
output states. In the parallel-group scheme, the memory is
accessed only once for each current input calculation to
read the state of the previous node.

Although real molecular devices will have nonidealities,
such as noise and variability of characteristics, we think
that the inherent properties of molecules can correspond to
the randomness in our parameter selection, which would
make the reservoir states more separable. A similar point of
view is also proposed for a physical RC comprising a mem-
ristor array [12]. Noise that occurs during signal processing
may degrade its performance by violating the rules of
processing, but it may still be possible to utilize. For exam-
ple, we have previously investigated a nanomaterial device
with a noise-assisted nonlinear signal response, which is
a promising approach for decreasing energy consumption
through informational signal processing and transference
[21]. However, based on current research, we believe that
materials with stable and adjustable I -V properties, such as
a nanoparticle bridge with temperature-dependent proper-
ties [18], are a more appropriate choice. The results of this
work can be used for the development of single-molecule
devices for informational processing and the application of
nanomaterials to physical RCs.
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APPENDIX

Training procedure for NARMA2 task

This section describes the training process for the
NARMA2 task. The input signal, u(t), is a sequence of
T = 4000 digits randomly generated in the interval [0,
0.5]. By substituting the input sequence into the NARMA2
model [Eq. (6)], we can obtain the target signal, y(t). If the
input signal is fed into the reservoir with N = 300 nodes,
they will respond to the input signal, producing 300 vectors
of node states. Each vector contains 4000 data items, which
include the output voltages of each physical node recorded
at 4000 time steps. This 4000 × 300 matrix is the reser-
voir state, X out. A total of 100 data items in each vector are
used to initialize the reservoir, 2000 data items are used for
training, and the remaining 1900 are used for testing.

With a 300 × 1 output weight matrix, the output sig-
nal can be calculated using matrix multiplication. Dur-
ing the training process, the optimal output weights (i.e.,
those that render the output signal as close as possi-
ble to the target signal) are determined. We use ridge
regression, which is essentially an improved least-squares
estimation method, to train the output signal. The aim of
least-squares estimation is to minimize the objective func-

tion,
∑

[

ytrain −
(

β0 +
N∑

i=1
βiXtraini

)]2

, so the coefficients

can be obtained by choosing β = (XT
trainXtrain)

−1X T
trainytrain.

Ridge regression addresses the problem of multicollinear-
ity by estimating regression coefficients as

β = (X T
trainXtrain + kI)−1X T

trainytrain, (A1)

where k is the ridge parameter and I is the identity matrix. k
is 22, 5, 0.6, and 1, respectively, for the parallel-node struc-
ture, parallel-group structure, standard ESN with hyper-
bolic tangent function, and ESN with I -V response. The
output weight matrix, Wout, is β1:N × 1. To test the perfor-
mance of this system, we apply the optimal output weights
determined during the training stage to the testing data and
obtain the predicted signal, ŷ(t) = β0 + XtestWout.

Supplementary information for memory-capacity task

The process of memory-capacity measurement is sim-
ilar to the NARMA2 task, except that the target sig-
nal is obtained by Legendre polynomials instead of the
NARMA2 model. The expressions of the Legendre poly-
nomials of orders 1–10 are listed in Table II.

For a given delay, k, the input variable, x, in the Legen-
dre polynomials is replaced by u(t−k). The reservoir still
receives u(t) as its input signal. This means that the reser-
voir state, X, is the response under input sequence u(t). The
aim is to fit the target signal given by the sequence u(t−k).
The training and testing process is exactly the same as that
for the NARMA2 task, but the ridge parameter in ridge

TABLE II. Legendre polynomials.

q Pq(x)

1 x

2
1
2
(3x2 − 1)

3
1
2
(5x3 − 3x)

4
1
8
(35x4 − 30x2 + 3)

5
1
8
(36x5 − 70x3 + 15x)

6
1
16

(231x6 − 315x4 + 105x2 − 5)

7
1

16
(429x7 − 693x5 + 315x3 − 35x)

8
1

128
(6435x8 − 12012x6 + 6930x4 − 1260x2 + 35)

9
1

128
(12155x9 − 25740x7 + 18018x5 − 4620x3 + 315x)

10
1

256
(46189x10 − 109395x8 + 90090x6 − 30030x4

+ 3465x2 − 63)

regression training is taken as one for all schemes in this
task.

Procedure for speech-recognition task

This task uses the extracted features of Mel-frequency
cepstral coefficients (MFCCs) and linear classification
using KNN, as described below.

We download our dataset from a website [28,29] that
hosts a large number of audio files with words (i.e., dig-
its “zero” to “nine”) spoken by various speakers. We
randomly pick 500 audio files (three male speakers and
two female speakers) as our dataset. Each spoken digit is
recorded 10 times in the dataset (i.e., 100 samples for each
speaker and 500 samples in total).

We first use the audioread function in MATLAB to read
data from each audio file and return the sampled data
obtained at a sampling rate of 8 kHz. Then, we use the
MFCC function to extract the log energy and MFCCs of
each signal. The extraction process is performed frame
by frame, every 30 ms with an overlap of 75%. The log
energy and MFCCs are calculated in each frame. The first
coefficient in the coefficient vector is replaced with the
log energy value, so that each coefficient vector includes
13 coefficients. This method is widely used to extract
parameters in speech-recognition tasks, including delta and
delta-delta coefficients. We perform three trials using our
reservoir system under the same settings. One is done using
MFCCs and log energy; one is done using MFCCs, delta,
and log energy; and one is done using MFCCs, delta,
delta-delta, and log energy. The results of these trials show
that the accuracy decreases with an increasing number of
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parameters. We believe that isolated words are not com-
plicated enough to extract many parameters. Hence, we
extract only MFCCs and log energy as the features in this
task.

We notice that log energy is not on the same scale as
MFCC, which may bias the classifier. Thus, we normalize
the features by subtracting the mean and dividing the stan-
dard deviation of each column. After MFCC extraction, we
have M × 13 coefficients for each audio file. Because the
length of each sampled speech is different, M is not fixed.
To reduce dimensionality and normalize the size of coeffi-
cients of each speech signal, principal component analysis
is used to organize the coefficients extracted from each
audio file into a matrix of the same size (i.e., 13 × 13).
Before inputting these data into the reservoir, we rearrange
each 13 × 13 matrix into a row vector of 169 elements,
labeled with its spoken word (digits “zero” to “nine”). The
input data are hence a 500 × 169 matrix, which is fed into
the reservoir row by row after the row minimum and maxi-
mum values are mapped to [−0.5, 0.5]. This normalization
is necessary, because, in this task, all parameters take posi-
tives values. Recall that, when we choose parameters based
on the NARMA2 task, the range of the input signal for
the NARMA task is [0, 0.5], and the input gain, e, is ran-
domly assigned a plus or minus sign within the selected
range. Next, the output from the reservoir with 50 nodes is
rearranged into 500 50 × 169 submatrices, where the rows
represent the observations, and the columns represent the
predicted variables. After the features and their labels are
collected, they are used to train the classifiers.

Ten classes (labels), representing ten speech targets
(digits “zero” to “nine”) are trained using the KNN
algorithm (fitcknn function in MATLAB). The hyperparam-
eters for the KNN classifier include the number of nearest
neighbors, the distance metric used to compute the distance
to the neighbors, and the weight of the distance metric. In
this task, the number of neighbors is set to k (k = 58 for the
parallel-node structure, 36 for the parallel-group structure,
and 11 for the ESN, optimized for the best performance),
and the metric for the selected distance is the squared-
inverse-weighted Euclidean distance. An n-fold (n = 20)
stratified cross validation is used in the KNN classifier to
reduce the error caused by the selection of training data
and testing data.

To decrease the sensitivity of model performance to data
partitioning, 500 output submatrices are divided randomly
into 20 disjointed subsamples, each consisting of 25 sub-
matrices. The training and testing process is repeated 20
times, with a different set of subsamples as the testing set
each time. The remaining subsamples are used as the train-
ing set. This training of 20 classifiers under different com-
binations of training subsets continues until each subset
is predicted. All 25 000 rows of observations are mapped
onto 169-dimensional space based on their 169 predictor
variables as the relative coordinate value. We calculate

the squared-inverse-weighted Euclidean distances between
each testing point and all other training points and rank
them in ascending order by the KNN model. Next, for the
KNN, the class with the largest weighted value is spec-
ified as the predicted label. The most-frequent label in
one submatrix with 50 labels is used as the final class for
this speech cell. The final accuracy rate is the average of
prediction results of these 20 trained classifiers. The accu-
racies of the parallel-node and -group structures are 81%
(64%–92%) and 83.6% (76%–92%), respectively, and that
of the ESN, which performs much better in the NARMA2
task, is only 66.8% (52%–80%) for this task.

Parameter settings in ESN systems

Most parameters for our ESN are fixed (activa-
tion function, tanh function; spectral radius, 0.99; input
weight interval, [−1,1]; node connection weight interval,
[−0.99, 0.99]). Input scaling is introduced in the speech-
recognition task to normalize the input signal within the
interval [−0.5, 0.5], which is consistent with the input
scale in our physical RC systems. Input scaling is not used
in the NARMA2 task because the input signal, u(t), is gen-
erated within the range of [0, 0.5], and the same signal,
u(t), is used for all physical systems and the ESN system.
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