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Discrete-modulated continuous-variable quantum key distribution protocols are promising candidates
for large-scale deployment due to the large technological overlap with deployed modern optical commu-
nication devices. The security of discrete modulation schemes has previously been analyzed in the ideal
detector scenario in the asymptotic limit. In this work, we calculate asymptotic key rates against collective
attacks in the trusted detector noise scenario. Our results show that we can thus cut out most of the effect
of detector noise and obtain asymptotic key rates similar to those had we access to ideal detectors.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] is a key estab-
lishment protocol with the provable information-theoretic
security. Various QKD protocols with different advantages
have been proposed, analyzed, and implemented. See,
e.g., Refs. [3–6] for reviews. Continuous-variable (CV)
QKD protocols [7–10] have competitive advantages in
terms of massive deployment due to a significant over-
lap of devices used with those in the optical classical
communications. Many experiments of CVQKD on both
Gaussian modulation schemes such as Refs. [11–17] and
discrete modulation schemes like Refs. [18–22] have been
demonstrated.

On one hand, Gaussian modulation schemes are simpler
to analyze theoretically than discrete modulation schemes,
and they give secret key rates close to the theoretical limits
[23,24]. On the other hand, continuous modulation itself
is usually only approximated by a (relatively large) set
of discrete modulation settings. This approximation needs
to be taken into account during the full security analysis
(see, e.g., Refs. [25–27]). Moreover, as Gaussian modu-
lation schemes often require more resources in terms of
randomness and classical postprocessing resources, dis-
crete modulation schemes thus offer further simplification
of implementation. However, in previous experimental
demonstrations of discrete modulation schemes, either
only effective entanglement has been verified [18,20],
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which is a necessary precondition for QKD, or the secu-
rity has been established only against a restricted subset
of collective attacks [19,21]. By now, there are asymp-
totic security proofs against arbitrary collective attacks for
binary [28], ternary [29] as well as quaternary modulation
schemes and beyond [30,31]. Previous proofs for a gen-
eral discrete modulation scheme [30,31] investigate the
untrusted detector noise scenario where the imperfection
of detectors can be controlled by Eve (and thus one can
treat detectors as ideal). In reality, the amount of electronic
noise of an off-the-shelf homodyne detector in a CVQKD
experiment can be much higher than the channel excess
noise. As a result, the key rate in the untrusted detector
noise scenario drops very quickly to zero as the trans-
mission distance increases. However, since detectors are
securely located in Bob’s laboratory where Eve is unable
to access, it is reasonable to assume that Eve does not con-
trol detector imperfections especially those noise sources
that are on the electronic circuitry, which is more remote
from the quantum-mechanical part of the signal detection.

In this work, we extend our previous analysis [31] to
the trusted detector noise scenario where detector imper-
fections (detector inefficiency and electronic noise) are not
accessible to Eve. We remark that Gaussian modulation
schemes have been analyzed in the trusted detector noise
scenario [11,32–34] and it is known that the effects of elec-
tronic noise and detector inefficiency on the key rates are
not very significant in the trusted detector noise scenario
compared to the ideal detector scenario under realistic
experimental conditions. As we show in this work, this
observation also holds for discrete modulation schemes.
However, we emphasize that our analysis is not a trivial
application of the method used for Gaussian modulation
protocols and instead we adopt a different approach. The
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reason is that the previous method used in the Gaus-
sian modulation protocols relies on the fact [35,36] that
Eve’s optimal attacks for Gaussian modulation schemes
correspond to Gaussian channels, which make it easy to
decouple the trusted detector noise from the channel noise
when one looks at the covariance matrix. However, we
cannot assume Gaussian channels here since Gaussian
attacks are not expected to be optimal for discrete mod-
ulation schemes. In our analysis, based on a (commonly
used) quantum optical model of the imperfect detector,
we find its corresponding mathematical description in
terms of positive operator-valued measure (POVM) and
then use this POVM to construct observables correspond-
ing to quantities that are measured experimentally. These
observables are then used in our security proof. We also
point out the crucial difference between our analysis and
Ref. [37] for discrete modulation schemes: Our asymptotic
analysis is valid against arbitrary collective attacks while
Ref. [37] uses the Gaussian channel assumption and thus
its security analysis [37] is restricted to Gaussian collective
attacks.

Our main contributions of this work are finding a suit-
able POVM description of a noisy heterodyne detector and
revising our previous analysis [31] by using a new set of
constraints from this POVM in the numerical key-rate opti-
mization problem [38,39]. Similar to our previous analysis,
this method is applicable to both direct reconciliation and
reverse reconciliation schemes. Moreover, we study the
postselection of data [8] in the trusted detector noise sce-
nario. As a concrete example, we apply our method to
the quadrature phase-shift keying scheme with heterodyne
detection and focus on the reverse reconciliation scheme.
Our analysis here is still restricted to the asymptotic regime
against collective attacks and we make the same photon-
number cutoff assumption as in the previous works [30,31]
to truncate the infinite-dimensional Hilbert space in order
to perform the numerical calculation. From the numeri-
cal observation, we believe the results do not depend on
the choice of cutoff when it is appropriately chosen. We
direct the discussion about this assumption to Sec. III B of
Ref. [31] and leave it for future work to provide an analyt-
ical justification of this assumption beyond the numerical
evidences. To extend our analysis to the finite-key regime,
we remark that we have recently extended the numeri-
cal method of Ref. [39] on which our analysis is based
to include finite-key analysis [40]. However, there remain
some technical challenges to solve before we can apply this
method to this protocol and thus we leave the finite-key
analysis for future work.

The rest of paper is outlined as follows. In Sec. II, we
review the protocol and proof method in Ref. [31]. We then
present a trusted detector noise model and the correspond-
ing POVM description in Sec. III. In Sec. IV, we modify
the key-rate optimization problem to take trusted detector
noise into account. We discuss our simulation method in

Sec. V. We show the simulation results without postselec-
tion in Sec. VI and with postselection in Sec. VII. Finally,
we summarize the results and provide insights for future
directions in Sec. VIII. We present technical details in the
Appendices.

II. BACKGROUND

Our key-rate calculation in the trusted detector noise
scenario uses a similar proof method as in our previous
work [31]; that is, we numerically perform the key-rate
optimization problem [39] with a modified set of con-
straints. In particular, we discuss how to modify the key-
rate optimization problem in Sec. IV based on the POVM
description of a noisy heterodyne detector in Sec. III. To
help understand this modification, we first review main
ideas of the proof in Ref. [31].

For illustration, we focus on the quadrature phase-shift
keying scheme with heterodyne detection. We remark that
since the previous proof can be generalized to other dis-
crete modulation schemes beyond four coherent states at
the cost of more computational resources, our modified
analysis for the trusted detector noise scenario can also
be generalized in the same way. Moreover, one can apply
a similar idea presented in this paper to study the homo-
dyne detection scheme in the presence of trusted detector
noise.

A. Quadrature phase-shift keying protocol

To begin with, we review the quadrature phase-shift
keying (QPSK) scheme with heterodyne detection. The
quantum part of the protocol consists of many repetitions
of the following two steps: (1) Alice obtains a uniform
random number x ∈ {0, 1, 2, 3}, selects the state |αx〉 =
|αeixπ/2〉 from the set {|α〉 , |iα〉 , |−α〉 , |−iα〉} according
to the value of x, and sends it to Bob. (2) Bob applies
the heterodyne detection to the received state and obtains
a measurement outcome y ∈ C.

After the quantum-communication phase of the proto-
col, they proceed with the classical postprocessing part of
the protocol including announcement, sifting, parameter
estimation, key map (with discretization), error correction,
and privacy amplification. In particular, the parameter esti-
mation step is done according to the key-rate optimization
problem in Eq. (22) discussed later. As the classical part is
similar to other CVQKD protocols and is not the focus of
our discussion, we highlight only the key-map step below
for our discussion and skip the details of the remaining
classical postprocessing procedures here. We direct readers
to Ref. [31] for a more detailed description.

In the case of reverse reconciliation, for each mea-
surement outcome y written as y = |y|eiθ , where θ ∈
[−π/4, 7π/4), Bob obtains a discretized value z according
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to the following rule:

z =
⎧⎨
⎩

j , if θ ∈
[
(2j − 1)π

4
,
(2j + 1)π

4

)
and |y| ≥ �a

⊥, otherwise,
(1)

where j ∈ {0, 1, 2, 3} and �a is a postselection parame-
ter that needs to be optimized for the selected protocol
and experimental parameters [41]. A protocol without
postselection corresponds to setting �a = 0.

To perform the postselection of data in combination of
reverse reconciliation, Bob announces positions where he
obtains the value ⊥. After removing the positions related
to the value ⊥, Alice’s string �X consists of her random
number x’s in the remaining positions, and Bob’s raw key
string �Z consists of his discretized outcome z’s left. (Alter-
natively, they may choose to announce and keep positions
related to the value ⊥ and let the privacy amplification
subprotocol effectively remove those positions.) Alice and
Bob may decide to recast their strings to binary strings
before or during the error-correction step depending on
their choice of the error-correction code. For the consis-
tency of our presentation, we use the alphabet {0, 1, 2, 3}
and let X and Z denote the single-round version of �X and
�Z, respectively.

B. Review of security-proof method

1. Source-replacement scheme

The first step of our security proof is to apply the
source-replacement scheme [42–45] to obtain an equiv-
alent entanglement-based scheme for the given prepare-
and-measure protocol. Then we proceed to prove the
security of the entanglement-based scheme.

Given Alice’s state ensemble {|αx〉 , px} (where px = 1
4

for this protocol) for her preparation in the prepare-and-
measure scheme, Alice effectively prepares a bipartite state
|�〉AA′ in the source-replacement scheme, which is defined
as

|�〉AA′ =
3∑

x=0

√
px |x〉A |αx〉A′ , (2)

where {|x〉} is an orthonormal basis for register A. Then
Alice sends the register A′ to Bob via an insecure
quantum channel and keeps register A for her measure-
ment described by the POVM M A = {M A

x = |x〉〈x| : x ∈
{0, 1, 2, 3}}. The quantum channel that maps register A′
to Bob’s register B is described by a completely positive
(CP) trace-preserving (TP) map, EA′→B and is assumed to
be under Eve’s control. Thus, Alice and Bob’s joint state

ρAB before their measurements is

ρAB = (idA ⊗ EA′→B)(|�〉〈�|AA′), (3)

where idA is the identity channel on Alice’s system A.
When Alice performs a local measurement using her

POVM {M A
x } on register A and obtains an outcome x,

she effectively sends the coherent state |αx〉 to Bob. Bob’s
received state ρx

B conditioned on Alice’s choice of x is

ρx
B =

1
px

TrA[ρAB(|x〉〈x|A ⊗ 1B)]. (4)

Bob applies his POVM M B = {M B
y } to register B to

obtain his measurement outcomes. In the case of untrusted
detector noise (or ideal heterodyne detector), the POVM
of the heterodyne detection is {Ey = (1/π)|y〉〈y| : y ∈
C}, where |y〉 denotes a coherent state with complex
amplitude y.

2. Key-rate optimization

The next step is to formulate the key-rate optimiza-
tion problem for the entanglement-based scheme. One can
rewrite the well-known Devetak-Winter formula [46] into
the following form: [38,39]

R∞ = min
ρAB∈S

D
(
G(ρAB)‖Z[G(ρAB)]

)
− ppassδEC, (5)

where δEC is the actual amount of information leak-
age per signal pulse in the error-correction step,
D(ρ‖σ) = Tr(ρ log2 ρ)− Tr(ρ log2 σ) is the quantum rel-
ative entropy between two (subnormalized) density oper-
ators ρ and σ , G is a CP, trace nonincreasing map for
postprocessing and Z is a pinching quantum channel for
accessing results of the key map. The set S contains all
density operators compatible with experimental observa-
tions. A more detailed discussion about the map G can be
found in Appendix A of Ref. [31]. For the reverse reconcil-
iation scheme, we can express the cost of error correction
δEC by

δEC = H(Z)− βI(X; Z), (6)

where H(Z) is the Shannon entropy of the raw key Z, β is
the reconciliation efficiency of the chosen error-correction
code, and I(X; Z) is the classical mutual information
between X and Z.

Before we review the set of constraints as well as G and
Z maps for the quadrature phase-shift keying scheme, we
start with basic definitions. Given the annihilation opera-
tor â and creation operator â† of a single-mode state with
the usual commutation relation [â, â†] = 1, we define the
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quadrature operators q̂ and p̂ , respectively, as

q̂ = 1√
2
(â† + â), p̂ = i√

2
(â† − â). (7)

They obey the commutation relation [q̂, p̂] = i1. To utilize
the second-moment observations 〈q̂2〉 and 〈p̂2〉 to constrain
ρAB, we previously defined the following two operators
n̂ = 1

2 (q̂2 + p̂2 − 1) = â†â and d̂ = q̂2 − p̂2 = â2 + (â†)2

[31]. The relation between these observables and the het-
erodyne detection POVM is highlighted in Sec. IV A.

For the untrusted detector noise (or ideal heterodyne
detector) scenario, the key-rate optimization problem [31]
is

minimize D
(G(ρAB)‖Z(G(ρAB))

)

subject to

Tr[ρAB(|x〉〈x|A ⊗ q̂)] = px〈q̂〉x,

Tr[ρAB(|x〉〈x|A ⊗ p̂)] = px〈p̂〉x,

Tr[ρAB(|x〉〈x|A ⊗ n̂)] = px〈n̂〉x,

Tr[ρAB(|x〉〈x|A ⊗ d̂)] = px〈d̂〉x,

Tr[ρAB] = 1,

TrB[ρAB] =
3∑

i,j=0

√
pipj 〈αj |αi〉|i〉〈j |A,

ρAB ≥ 0,

(8)

where the index x runs over the set {0, 1, 2, 3} and
〈q̂〉x, 〈p̂〉x, 〈n̂〉x, and 〈d̂〉x denote the corresponding expec-
tation values of operators q̂, p̂ , n̂, and d̂ for the conditional
state ρx

B, respectively.
As indicated in Fig. 1, the protocol can perform posts-

election of data. To perform postselection, we define the
region operators in Ref. [31] as

Rj = 1
π

∫ ∞
�a

∫ (2j+1)π/4

(2j−1)π/4
r|reiθ 〉〈reiθ | dθ dr (9)

for j ∈ {0, 1, 2, 3}. The area of integration for each operator
corresponds to a region shown in Fig. 1.

The postprocessing map G in the reverse reconciliation
scheme is given by G(σ ) = KσK† for any input state σ ,
where the Kraus operator K is

K =
3∑

z=0

|z〉R ⊗ 1A ⊗ (
√

Rz)B, (10)

where {|0〉R , |1〉R , |2〉R , |3〉R} is the standard basis for reg-
ister R. The pinching quantum channel Z is given by

A0

A1

A2

A3

Im(y)

Re(y)
Δa

FIG. 1. Key map for quadrature phase-shift keying scheme
in terms of Bob’s measurement outcome y ∈ C. Each colored
region Aj corresponds to a discretized key value j . The measure-
ment outcome in the central disk with a radius �a is discarded
during the postselection of data and is mapped to the symbol ⊥.

projections {|j 〉〈j |R ⊗ 1AB : j ∈ {0, 1, 2, 3}} as

Z(σ ) =
3∑

j=0

(|j 〉〈j |R ⊗ 1AB)σ (|j 〉〈j |R ⊗ 1AB). (11)

III. NOISY HETERODYNE DETECTION

In this section, we present one physical model for
a noisy heterodyne detector and give the corresponding
POVM description. We start with a slightly more general
model and then we make a simplification for the ease of
calculation at the end of this section. This simplified model
then reduces to a model commonly used in the literature.

A. Trusted detector noise model

As a heterodyne detector consists of two homodyne
detectors and a beam splitter, we consider imperfections in
each homodyne detector. A homodyne detector may have
nonunity detector efficiency and also have some amount
of electronic noise, which is the additional noise intro-
duced to the measured data by its electronic components.
In an experiment, one is able to measure the amount of
electronic noise and the value of detector efficiency by a
calibration routine. To model a realistic homodyne detec-
tor with nonunity detector efficiency and some amount of
electronic noise, we use a quantum optical model, which is
used in Refs. [11,32–34,37], although the source of this
electronic noise is in the actual electronics part of the
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detector. An alternative view of the electronic noise is that
we can think about the detector as being a perfect detec-
tor followed by some classical postprocessing of the data,
which adds noise. One should note that in a trusted device
scenario, the characterization of the actual noise should
be experimentally verified. Our physical model is chosen
for convenience of calculating the POVM of the actual
measurement. We depict this physical model of a noisy
heterodyne detector in Fig. 2. In this diagram, we con-
sider a more general case where two homodyne detectors
have different imperfections. We label the efficiency of the
homodyne detector used for q quadrature measurement as
η1 and its electronic noise as ν1 (expressed in shot-noise
units). Similarly, the efficiency of the homodyne detector
used for p quadrature measurement is labeled as η2 and its
electronic noise is labeled as ν2.

Since our treatment for each homodyne detector in
this heterodyne setup is the same, we take one homo-
dyne detector (shown in each dashed box in Fig. 2) as an
example and treat the other one similarly by using its cor-
responding efficiency and electronic noise. An imperfect
homodyne detector with its efficiency ηj < 1 and elec-
tronic noise νj ≥ 0 (for j = 1 or 2) can be modeled by a
beam splitter placed before a perfect homodyne detector
with the following specification. (1) The ratio of transmis-
sion to reflection of this beam splitter is ηj : 1− ηj . (2)
One input port of this beam splitter is the signal pulse
and the other input port is a thermal state used to model

FIG. 2. Physical model for a noisy heterodyne detector. The
homodyne detector for the q quadrature measurement has detec-
tor efficiency η1 and electronic noise ν1. The homodyne detector
for the p quadrature measurement has detector efficiency η2
and electronic noise ν2. The notation ρth(n̄) stands for a ther-
mal state with a mean photon number n̄. In particular, n̄1 =
ν1/[2(1− η1)] and n̄2 = ν2/[2(1− η2)] (see main text for more
explanations). Beam splitters are 50:50 unless specified other-
wise. Each homodyne detector inside a gray box is ideal. Each
dashed box encloses the physical model for a noisy homodyne
detector. LO stands for local oscillator.

electronic noise, which is equivalent to sending one mode
of a two-mode squeezed vacuum state (EPR state) to the
beam splitter. Each quadrature’s variance of this ancillary
thermal state is related to the value of electronic noise
νj . More specifically, it is [1+ νj /(1− ηj )]N0 [11], where
N0 = 1/2 denotes the shot-noise variance. In Fig. 2, we
choose to parametrize the thermal state in terms of its mean
photon number as n̄j = νj /[2(1− ηj )] instead of the vari-
ance of each quadrature, which is convenient for writing
of expressions in later sections [47]. We note that this way
of modeling electronic noise is valid when ηj �= 1. Fur-
thermore, we assume ηj �= 0. That is, we consider the case
ηj ∈ (0, 1), which is the case of a realistic detector of our
interest.

In the next section, we derive the POVM correspond-
ing to this detector model. We then choose to consider a
simplified scenario where these two homodyne detectors
are identical for the purpose of illustration and the ease of
numerical calculation. That is, we later assume they both
have the same detector efficiency η1 = η2 =: ηd and the
same electronic noise ν1 = ν2 =: νel.

B. POVM description

We use the Wigner function formulation to find the
POVM {Gy : y ∈ C} corresponding to this noisy hetero-
dyne detector model. When two homodyne detectors give
two real numbers qs and ps for q and p quadrature mea-
surements, we label the outcome as y = qs + ips. By con-
sidering Tr(ρGy) for an arbitrary input density operator ρ

to the noisy heterodyne detector, we are able to find the
Wigner function WGy of the POVM element Gy as

WGy (γ ) = 1√
η1η2π

2
π

1√
1+ 2(1−η1+ν1)

η1

1√
1+ 2(1−η2+ν2)

η2

× exp
{−2[Re(γ )− 1√

η1
Re(y)]2

1+ 2(1−η1+ν1)

η1

}

× exp
{−2[Im(γ )− 1√

η2
Im(y)]2

1+ 2(1−η2+ν2)

η2

}
. (12)

By comparing this Wigner function with that of a displaced
squeezed thermal state, we can identify that the POVM
element Gy is a projection onto a displaced squeezed ther-
mal state up to a prefactor 1/(

√
(η1η2)π). We give a full

derivation of this Wigner function and the explicit param-
eters for displacement, squeezing, and thermal state mean
photon number in terms of detector parameters η1, η2, ν1,
and ν2 in Appendix A.

For the rest of the paper, we restrict our discussion to a
simpler scenario where we assume both homodyne detec-
tors have the same imperfection for the ease of numerical
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calculation and for the purpose of illustration. We dis-
cuss how to perform the calculation in the general case in
Appendix B. In this simple case, we set η1 = η2 = ηd and
ν1 = ν2 = νel in Eq. (12). This equation is simplified to be

WGy (γ ) = 1
ηdπ

2
π

1

1+ 2(1−ηd+νel)
ηd

exp

⎡
⎣−2|γ − y√

ηd
|2

1+ 2(1−ηd+νel)
ηd

⎤
⎦ .

(13)

One can observe that it is the Wigner function of a dis-
placed thermal state apart from the prefactor 1/(ηdπ).
Therefore, the POVM element Gy in this case is a scaled
projection onto a displaced thermal state. More precisely,

Gy = 1
ηdπ

D̂
(

y√
ηd

)
ρth

(
1− ηd + νel

ηd

)
D̂†
(

y√
ηd

)
,

(14)

where D̂(y/
√

ηd) is the displacement operator with the
amount of displacement y/

√
ηd and ρth[(1− ηd + νel)/ηd]

is a thermal state with the mean photon number (1− ηd +
νel)/ηd, which can be expressed in the photon-number
basis as

ρth(n̄) =
∞∑

n=0

n̄n

(1+ n̄)n+1 |n〉〈n|. (15)

Later in Sec. IV, we need to express operators defined
in terms of POVM elements Gy’s in the photon-number
basis for the numerical key-rate calculation. Analytical
expressions of matrix elements 〈m|Gy |n〉 are known in the
literature [48] and shown in Appendix B.

Let us end this section with a few remarks about the
simplification considered here. Firstly, as we later define
operators involving integrals of POVM elements Gy’s and
need to find their matrix representations in the photon-
number basis for the numerical key-rate calculation, we are
able to find efficiently computable analytical expressions
for these operators under this simplification. Without this
simplification, one may need to perform some numerical
integrations. We emphasize that the principles presented in
this work also hold for the general case and we choose to
present results based on this simplified case for the ease of
calculation. Secondly, with this simplification, our detector
model is then optically equivalent to the detector model
used in other works [32,34]. Thirdly, if two homodyne
detectors in the heterodyne detection scheme do not have
the same imperfection, one can instead use the POVM in
the general case by following the procedure outlined in
Appendix B 2 despite being more numerically challenging.

IV. KEY-RATE OPTIMIZATION PROBLEM

We start with a reformulation of the optimization prob-
lem in Eq. (8) in the untrusted detector noise scenario,

which serves as a basis for our modification in the trusted
detector noise scenario. The purpose of this reformulation
is that once we substitute the POVM of the noisy hetero-
dyne detector in place of the one for the ideal heterodyne
detector, we can easily formulate the optimization prob-
lem in the trusted detector noise scenario. Specifically,
we change Bob’s POVM {M B

y } from the ideal heterodyne
detection {Ey = 1

π
|y〉〈y|} to the POVM description of the

noisy heterodyne detection {Gy} found in Eq. (14). More-
over, compared with our previous work [31], some con-
straints are modified to match with how data are processed
in a typical experiment.

A. Reformulation of the optimization problem in the
untrusted detector noise scenario

We reconsider the key-rate optimization problem in the
untrusted detector noise scenario by rewriting region oper-
ators in Eq. (9) and observables in Eq. (8) in terms of the
POVM of an ideal heterodyne detector {Ey}. In the case
of ideal heterodyne detection, the POVM description of
Bob’s measurement {M B

y } is M B
y = Ey = (1/π)|y〉〈y|, the

projection onto a coherent state |y〉. By writing y = reiθ in
the polar coordinate and integrating over the correspond-
ing region Aj , we obtain Eq. (9). If we rewrite Eq. (9) in
terms of M B

y , we see region operators Rj ’s are defined by

Rj =
∫

y∈Aj

M B
y d2y, (16)

where the region of integration Aj in the complex plane is
shown in Fig. 1 and d2y = dRe(y)dIm(y).

From the heterodyne detection, we obtain a probability
density function P(y) for the outcome y ∈ C. [We obtain
such a probability density function for each conditional
state ρx

B. While it is more proper to denote this conditional
probability density function as P(y|x), for simplicity of
notation in this section, we use P(y).] When the heterodyne
detector is ideal, this probability density function is the
Husimi Q function. In particular, as discussed in our previ-
ous work [31], the expectation values of operators q̂, p̂ , n̂,
and d̂ defined in Sec. II B are related to the Q function via

〈q̂〉x = 1√
2

∫
(y + y∗)Qx(y)d2y,

〈p̂〉x = i√
2

∫
(y∗ − y)Qx(y)d2y,

〈n̂〉x =
∫

(|y|2 − 1)Qx(y)d2y,

〈d̂〉x =
∫

[y2 + (y∗)2]Qx(y)d2y,

(17)

where the subscript x labels the conditional state ρx
B.
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In general, one may be interested in a quantity like∫
f (y, y∗)P(y)d2y where f (y, y∗) is a real-valued func-

tion on y and y∗ such that the integral converges. Such
a quantity can be described as the expectation value of an
observable that is defined in the following way:

Ô =
∫

f (y, y∗)M B
y d2y (18)

since

Tr[ρ Ô] =
∫

d2y f (y, y∗)Tr(ρM B
y )

=
∫

d2y f (y, y∗)P(y). (19)

In other words, operators constructed in this way corre-
spond to expectation values

∫
f (y, y∗)P(y)d2y obtained

in an experiment. By comparing Eq. (19) to Eq. (17)
and identifying P(y) by Qx(y), we observe the following
choices of f (y, y∗) for q̂, p̂ , n̂, and d̂:

q̂←→f (y, y∗) = y + y∗√
2

,

p̂ ←→f (y, y∗) = i(y∗ − y)√
2

,

n̂←→f (y, y∗) = |y|2 − 1,

d̂←→f (y, y∗) = y2 + (y∗)2.

(20)

We remark that this way of defining these observables
corresponds to the antinormally ordered expansion of oper-
ators [49,50].

B. Revised optimization problem in the trusted
detector noise scenario

In Ref. [31], we chose observables {Ô} = {q̂, p̂ , n̂, d̂}
by using M B

y = Ey in Eq. (18) for the untrusted detector
noise scenario. In this work, we change to a new set of
observables {q̂, p̂ , n̂+ d̂/2+ 1, n̂− d̂/2+ 1}, which gives
the same key rates as the old one since the last two observ-
ables in this new set are linear combinations of observ-
ables n̂ and d̂ as well as the identity operator. This new
set of observables corresponds to the set of {f (y, y∗)} =
{√2Re(y),

√
2Im(y), 2Re(y)2, 2Im(y)2} [51]. The sole

purpose of this change compared with Ref. [31] is to make
the data postprocessing in an agreement with the typical
classical postprocessing in an experiment. That is, in an
experiment, when a heterodyne detection gives two real
numbers qs and ps which we set Re(y) = qs and Im(y) =
ps, one usually computes variances of Re(y) and Im(y) by
computing the expectation values of Re(y)2 and Im(y)2 in
addition to expectation values of Re(y) and Im(y).

In the trusted detector noise scenario, we need to substi-
tute M B

y in Eqs. (16) and (18) by Gy . To distinguish opera-
tors defined in this way from the first and second moment
of quadrature operators q̂ and p̂ , we call first-moment
observables F̂Q and F̂P and second-moment observables
ŜQ and ŜP. More explicitly, they are defined as

F̂Q =
∫

y + y∗√
2

Gyd2y,

F̂P =
∫

i(y∗ − y)√
2

Gyd2y,

ŜQ =
∫ (

y + y∗√
2

)2

Gyd2y,

ŜP =
∫ [

i(y∗ − y)√
2

]2

Gyd2y.

(21)

Then the revised key-rate optimization problem becomes

minimize D(G(ρAB)‖Z[G(ρAB)])

subject to

Tr[ρAB(|x〉〈x|A ⊗ F̂Q)] = px〈F̂Q〉x,

Tr[ρAB(|x〉〈x|A ⊗ F̂P)] = px〈F̂P〉x,

Tr[ρAB(|x〉〈x|A ⊗ ŜQ)] = px〈ŜQ〉x,

Tr[ρAB(|x〉〈x|A ⊗ ŜP)] = px〈ŜP〉x,

Tr[ρAB] = 1,

TrB[ρAB] =
3∑

i,j=0

√
pipj 〈αj |αi〉|i〉〈j |A,

ρAB ≥ 0,

(22)

where the index x runs over the set {0, 1, 2, 3} and the Kraus
operator for the postprocessing map G has the same form
as in Eq. (10) but now with the region operators defined in
terms of Gy’s in Eq. (16).

In Appendix B, we discuss how to represent these
operators in the photon-number basis. Combining with
the photon-number cutoff assumption [i.e., ρAB = (1A ⊗
�N )ρAB(1A ⊗�N ), where N is the cutoff photon num-
ber and �N is the projection onto the subspace spanned
by the photon-number states from 0 to N photons], we
can directly solve this key-rate optimization problem in
Eq. (22) numerically. We direct readers to Sec. IV B of
Ref. [31] for the discussion about the numerical algorithm
for the optimization problem and its performance.

V. SIMULATION METHOD

In an experiment, the expectation values shown in the
optimization problem in Eq. (22) can be obtained from
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some suitable postprocessing of noisy heterodyne detec-
tion results. Without doing experiments, we perform sim-
ulations of a corresponding experiment with a noisy het-
erodyne detector to obtain those expectation values. With
these values specified, one can solve the key-rate opti-
mization problem using a numerical convex optimization
package to obtain numerical results. We emphasize that our
security-proof technique does not depend on the specific
channel model used for the simulation.

A. Channel model for simulation

To understand how the protocol behaves in the trusted
detector noise scenario, we simulate the quantum channel
by using a realistic physical channel in an honest imple-
mentation of the protocol. A realistic physical channel in
the context of the optical fiber communication can be mod-
eled by a phase-invariant Gaussian channel with the trans-
mittance ηt and excess noise ξ . In a typical fiber for optical
communication, the attenuation coefficient is 0.2 dB/km
and thus ηt = 10−0.02L for a distance L in kilometers. The
excess noise ξ is defined as

ξ = (�qobs)
2

(�qvac)2 − 1, (23)

where (�qvac)
2 = N0 = 1/2 is the variance in q quadrature

of the vacuum state and (�qobs)
2 is the observed variance

in q quadrature of the measured signal state. As the value
of ξ is normalized with respect to the vacuum variance,
the channel excess noise ξ is reported in the shot-noise
units (SNU) and independent of different conventions of
defining quadrature operators.

Apart from the shot noise, there are several contribu-
tions to the total noise in the measurement data such as
preparation noise, detector noise, and noises introduced in
the fiber due to Raman scattering. As we treat the detec-
tion noise as trusted, we assume all other contributions are
under Eve’s control. In other words, all additional noises
beyond the shot noise except for the detector noise become
a part of the effective quantum channel regardless of the
physical origin of each noise component, and they con-
tribute to the value of the excess noise ξ . In the literature,
the value of the excess noise ξ is commonly reported at
the input of the quantum channel, which corresponds to
measuring (�qobs)

2 at the output of Alice’s lab. By choos-
ing this convention of reporting the value of excess noise,
we may alternatively imagine that this effective quantum
channel first introduces the amount of excess noise ξ to
the signal state at the input of the channel and the rest of
this quantum channel is then lossy but noise-free. Under
this channel model, a coherent state |α〉, after transmitting
through this quantum channel, becomes a displaced ther-
mal state centered at

√
ηtα with its variance 1

2 (1+ ηtξ) for
each quadrature.

B. Simulated statistics

From our simulation, the simulated state σ x
B conditioned

on the choice of x is a displaced thermal state whose
Wigner function is

Wσ x
B
(γ ) = 1

π

1
1
2 (1+ ηtξ)

exp

[
−|γ −

√
ηtαx|2

1
2 (1+ ηtξ)

]
. (24)

When Bob applies his heterodyne measurement described
by the POVM {Gy}, the probability density function P(y|x)
for the measurement outcome y conditioned on Alice’s
choice x is

P(y|x) = 1
π
(
1+ 1

2ηdηtξ + νel
) exp

[
− |y −

√
ηdηtαx|2

1+ 1
2ηdηtξ + νel

]
.

(25)

The observables defined in Eq. (21) have the following
expectation values from the simulation:

〈F̂Q〉x =
√

2ηdηtRe(αx),

〈F̂P〉x =
√

2ηdηtIm(αx),

〈ŜQ〉x = 2ηdηtRe(αx)
2 + 1+ 1

2
ηdηtξ + νel,

〈ŜP〉x = 2ηdηtIm(αx)
2 + 1+ 1

2
ηdηtξ + νel.

(26)

C. Estimation of error-correction cost

We estimate the cost of error correction from the sim-
ulated statistics. From the probability density function
P(y|x) shown in Eq. (25), we can obtain the joint probabil-
ity distribution P̃(x, z) for Alice’s choice X = x and Bob’s
discretized key value Z = z by the following integral:

P̃(z|x) =
∫ ∞

�a

dr r
∫ [(2z+1)/4]π

[(2z−1)/4]π
dθP(reiθ |x). (27)

Since P̃(x) = px = 1
4 , we then obtain the joint probability

distribution P̃(x, z) = P̃(z|x)P̃(x). Using the definition of
I(X; Z) in terms of P̃(x, z), we can approximate the cost
of error correction by Eq. (6) for the reverse reconciliation
scheme considered in this work. When �a is not zero, that
is, in the presence of postselection, the sifting factor ppass
is the sum of P̃(x, z) over x, z ∈ {0, 1, 2, 3}. We then renor-
malize the probability distribution before plugging it in the
definition of I(X; Z).

For the purpose of illustration, we choose the error-
correction efficiency β to be 95% for our simulations,
which is around typical values for the state-of-the-art
error-correction codes (see, e.g., Ref. [52]).
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VI. KEY RATE IN THE ABSENCE OF
POSTSELECTION

In this section, we present results when no postselection
is performed, that is, �a = 0. We make two comparisons.
The first one is to compare key rates in the trusted and
untrusted detector noise scenarios. The second one is to
analyze how different imperfections in detectors affect key
rates in the trusted detector noise scenario.

A. Comparison between trusted and untrusted
detector noise scenarios

For this comparison, we supply the same set of simu-
lated data from Eq. (26) to the optimization problem for
the untrusted detector noise scenario in Eq. (8) and the one
for the trusted detector noise scenario in Eq. (22). For sim-
ulation, we choose parameters ηd = 0.719, νel = 0.01 from
Ref. [14] for illustration. The result is shown in Fig. 3.

As we can see from this figure, the key rate of the
untrusted detector noise scenario drops quickly at a short
distance less than 20 km even though the electronic noise is
only 0.01 SNU, which is a low value compared to detectors
used in many other CV experiments. On the other hand,
the key rate in the trusted detector noise scenario extends
to much longer distances, which exhibits a similar behav-
ior as the results shown in Ref. [31] when the detector is
treated as ideal. One explanation for this behavior is that
in Ref. [31], we observe that the key rate for the QPSK
scheme drops quickly when the channel excess noise ξ

is large. Since the value of ξ is reported at the input of
the quantum channel while the value of νel is measured at

ef
f

FIG. 3. Secure key rate versus the transmission distance for
untrusted detector noise (black diamonds) and trusted detec-
tor noise (red stars) scenarios. The excess noise is ξ = 0.01 at
the input of the quantum channel. Parameters for detector are
ηd = 0.719, νel = 0.01 [14]. The error-correction efficiency is
β = 0.95. The coherent state amplitude is optimized via a coarse-
grained search over the interval [0.5, 0.9] with a step size of 0.05
and the channel transmittance is ηt = 10−0.02L for each distance L
in kilometers. The effective channel excess noise in the untrusted
detector scenario is shown with the y axis on the right. At 20 km,
the effective channel excess noise ξeff is roughly 0.045.

Bob’s side, to treat νel as a part of channel excess noise in
the untrusted detector noise scenario, one needs to define
the effective value of ξ to include the value of νel. For
the effective value ξeff, the electronic noise νel needs to be
scaled by a factor of 1/ηt (in addition to 1/ηd), which is
large for slightly long distances as ηt becomes small. As a
result, the redefined value ξeff of ξ is quite large as shown
in Fig. 3 and this behavior of key rate is then expected. By
the observation made from this figure, it is not surprised
that for a larger value of electronic noise, the key rate in
the untrusted detector noise scenario would drop to zero at
an even shorter distance.

B. Detector imperfection in the trusted detector noise
scenario

To guide the experimental implementation of the QPSK
scheme, we may be interested in the robustness of the
protocol in the presence of detector inefficiency and elec-
tronic noise in the trusted detector noise scenario. For this
purpose, we investigate the effects of different levels of
detector efficiency and electronic noise on the key rate. For
curves in Figs. 4 and 5, our simulation uses the same chan-
nel model but different detector imperfections, that is, in
Eq. (26), the same values of channel parameters ηt and ξ

but different values of detector efficiency ηd and electronic
noise νel (as specified in the captions) for different curves.

In Fig. 4, we choose values of ηd and νel for a homodyne
detector from two experiments [12,14] and compare these
results with the ideal detector. For the comparison, we opti-
mize α via a coarse-grained search for each distance. We

el

el

el

FIG. 4. Secure key rate versus transmission distance for differ-
ent detector imperfections reported in experiments in a compar-
ison to the ideal detector. Other parameters are the excess noise
ξ = 0.01, error-correction efficiency β = 0.95, and the trans-
mittance ηt = 10−0.02L for each distance L in kilometers. For
each distance, the coherent-state amplitude α is optimized via a
coarse-grained search in the interval [0.5, 0.9] with a step size of
0.05. Black curve with diamond markers is for the ideal hetero-
dyne detector; red curve with star markers is for the detector used
in Ref. [14]; cyan curve with square markers is for the detector
used in Ref. [12].
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el

el

(a)

(b)

FIG. 5. Secure key rate versus transmission distance for dif-
ferent detector imperfections with the excess noise ξ = 0.01. For
both plots, the coherent-state amplitude is optimized via a coarse-
grained search over the interval [0.5, 0.9] with a step size 0.05
and β = 0.95. (a) Comparison of key rates between two values
of the electronic noise when the detector efficiency is set to be
ηd = 0.7 for both curves. The difference of two curves is also
plotted with the secondary y axis on the right. (b) Comparison
of key rates for different values of detector efficiency when the
electronic noise is νel = 0.05.

see that with a noisy heterodyne detector, the key rate drops
moderately from the key rate of using an ideal detector.
The amount of decrease is like a constant prefactor in the
key rate. As the detector is noisier, the key rate becomes
lower as expected.

To show that different values of electronic noise have
little impacts on the secure key rates in the trusted noise
scenario, we compare key rates with two choices of the
electronic noise value in Fig. 5(a) while we fix the value of
detector efficiency ηd to be 0.7. As the key-rate difference
is relatively small between the curve with νel = 0.05 and
that with νel = 0.08, we also plot the difference of key rate
(that is, the key rate with νel = 0.05 minus the key rate with
νel = 0.08) in the same figure. (Note that the nonsmooth-
ness in the curve of difference is due to the coarse-grained
search for the coherent state amplitude in the presence of
the numerical performance issue discussed in Ref. [31].)
We observe that when the electronic noise is trusted,
its impact on the secure key rates is insignificant. This
result eases the requirements of a detector in a CVQKD

FIG. 6. Secure key rate versus the detector efficiency ηd for
a fixed value of total transmittance η := ηtηd = 0.3155. This
figure studies the trade-off between the key rate and the amount
of trusted loss. Other parameters are the excess noise ξ = 0.01,
the electronic noise νel = 0.01, and the error-correction effi-
ciency β = 0.95. We include two curves for different choices of
coherent-state amplitude α.

experiment with the QPSK scheme. Similarly, we investi-
gate the effects of detector efficiency in Fig. 5(b). In partic-
ular, we fix the value of electronic noise νel to be 0.05 SNU
and plot four choices of detector efficiency between 0.5
and 0.8. We see the key-rate curves are close to each other.

In Fig. 6, we investigate the trade-off between trust-
ing the detector efficiency and lumping it together with
the channel transmittance, similar to a scenario studied
in Ref. [53] for discrete-variable systems. For the fixed
amount of total transmittance η := ηtηd, it is interesting
to see how trusting different values of detector efficiency
affects the key rate. We observe that when the value of the
product of channel transmittance ηt and detector efficiency
ηd is fixed, if the detector efficiency ηd is lower, mean-
ing that if more contribution to the total transmittance η is
trusted, then the key rate is higher. This observation is sim-
ilar to the observation made for discrete-variable systems
in Ref. [53].

To summarize, in a discrete modulation experiment, if
one is able to obtain accurate values of ηd and νel by a
suitable calibration procedure and able to maintain a low
level of the effective channel excess noise ξ to a value
like 0.01, then the QPSK scheme is able to extend to a
distance beyond 100 km in the asymptotic regime. We
remark that the optimal amplitude for the QPSK scheme
in the trusted detector noise scenario is around 0.75 corre-
sponding to a mean photon number of around 0.56, similar
to the optimal amplitude in the ideal or untrusted detec-
tor noise scenario reported in our previous work [31]. This
mean photon number is much lower than that for Gaussian
modulation schemes.

VII. KEY RATE WITH POSTSELECTION

In this section, we investigate the effects of postselection
in the trusted detector noise scenario. As demonstrated
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(a) (b)

FIG. 7. (a) Secure key rate versus postselection parameter �a
for L = 50 km. (b) Secure key rate versus postselection param-
eter �a for L = 75 km. For both plots, the channel excess noise
is ξ = 0.01 and the error-correction efficiency β = 0.95. The
coherent state amplitude is optimized via a coarse-grained search
in the interval [0.6, 0.8] with a step size of 0.05. Parameters for
detectors are ηd = 0.552 and νel = 0.015 from Ref. [12].

in our previous analysis [31], postselection of data can
improve the key rate of the QPSK scheme in the untrusted
detector noise scenario. Postselection is simple to imple-
ment in an experiment. It not only improves the key rate
but also reduces the required volume of data postprocess-
ing. Thus, it is advantageous to include a postselection
step in the protocol. As expected, we show here that
this advantage also exists in the trusted detector noise
scenario.

In Fig. 7, we search for the optimal postselection param-
eter for different transmission distances and take the dis-
tances L = 50 km and L = 75 km as examples. For this
figure, we also optimize the choice of coherent-state ampli-
tude via a coarse-grained search. The x axis in each plot is
the postselection parameter �a. We observe the optimal
value of the postselection parameter �a is around 0.6 for
both L = 50 km and L = 75 km. We also observe that the
optimal choice of the postselection parameter �a does not
change significantly for different distances.

In Fig. 8, we show the key rate as a function of transmis-
sion distance for two scenarios: with or without postselec-
tion. Since the optimal postselection parameter does not
change significantly for different distances, we optimize
the postselection parameter �a via a coarse-grained search
in a restricted interval. For this figure, we fix the coherent
state amplitude to be 0.75 and the channel excess noise ξ to
be 0.01. We see postselection can indeed improve the key
rate. The percentage of improvement compared to the key
rate without postselection is roughly between 5% to 8%
and the probability of being postselected is around 70% to
80%. Thus, postselection can reduce the amount of data for
postprocessing by around 20% to 30% while improving the
key rate.

We end this section with a remark on the postselec-
tion pattern. The postselection pattern (see Fig. 1) studied
in this work is a simple, intuitive, and convenient choice

FIG. 8. Comparison of key rates with or without postselection.
Detector parameters are from Ref. [12] where ηd = 0.552 and
νel = 0.015. The difference of two curves is also plotted with the
secondary y axis on the right. Other parameters are the channel
excess noise ξ = 0.01, the coherent-state amplitude α = 0.75,
and the error-correction efficiency β = 0.95. The postselection
parameter is optimized via a coarse-grained search in the interval
[0.45,0.7] with a step size 0.05.

when we evaluate the region operators. However, it is not
necessarily the optimal way to postselect data [8,54]. It is
an interesting future work to investigate other patterns of
postselection.

VIII. SUMMARY AND FUTURE DIRECTIONS

We provide a method to analyze the asymptotic secu-
rity of a discrete modulation scheme of CVQKD in the
trusted detector noise scenario where both nonunity detec-
tor efficiency and electronic noise are trusted. In particular,
we find the POVM elements corresponding to a noisy
heterodyne detector. As we demonstrate our method on
the quadrature phase-shift keying scheme, we show that
when the detector imperfection is trusted, the key rates
are similar to the one with the ideal heterodyne detector
studied previously [31]. Our analysis in this work eases
the requirements of an experimental implementation of the
discrete modulation scheme as the detector imperfection is
usually a major source of noise.

We point out the limitations in the current work. First,
the analysis in this work is still restricted to the asymptotic
scenario. We notice that there is a recent work on the finite-
key analysis of binary modulation protocol [55]. However,
the key rate there was very pessimistic and one expects
that quadrature-shift keying schemes will have much bet-
ter performance. It remains an open question to provide a
finite-key analysis of general discrete modulation beyond
binary modulation. As we recently extend the underlying
numerical method used in this security analysis to finite-
key regime [40], we hope to perform the finite-key analysis
for discrete modulation schemes, especially the protocol
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studied in this work. However, there remain technical chal-
lenges to solve before such an analysis can be carried out
and thus we leave the finite-key analysis for future work.
The second limitation is the same photon-number cutoff
assumption used in Refs. [30,31]. While numerical evi-
dences show that our results are stable when the cutoff
photon number is chosen appropriately, we plan to have a
more rigorous analysis on the effects of truncation beyond
numerical evidences in future work. Thirdly, we present
simulation results in a simple scenario where two homo-
dyne components are treated as identical. This scenario is
commonly assumed in previous studies of Gaussian mod-
ulation schemes. In the simple scenario, we are able to
provide simplified expressions for region operators and
observables used in the key-rate optimization problem.
However, our principles presented in this paper work for
the general case where two detectors are not identical. To
handle the general case, one may perform the numerical
integration of POVM element Gy’s to find necessary oper-
ators in the photon-number basis from the photon-number
basis representation of each POVM element Gy shown in
Appendix B 2. It may become numerically demanding to
perform these integrals. Alternatively, one may attempt to
simplify expressions analytically similar to what we have
done for the simple case. It remains as a technical ques-
tion to efficiently compute the matrix elements of operators
defined in terms of Gy in the photon-number basis, which
we expect can be solved. Nevertheless, this current limi-
tation does not affect the principles and methodology we
present in this work about the treatment of trusted detector
noise. It is also expected that observations in the general
case will be similar to observations we make here in the
simple case.

Finally, we remark on the generality of our method of
treating trusted detector noise. If a different physical model
of a detector is adopted (which needs to be verified exper-
imentally), we expect that a similar method as described
here can be used to find a correct POVM description for
the given physical model and then this POVM can be used
in the security analysis.
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APPENDIX A: DERIVATION OF NOISY
HETERODYNE DETECTION POVM VIA WIGNER

FUNCTIONS

1. Basic Wigner functions

As we use the Wigner function approach for our deriva-
tion, we recall useful expressions from Ref. [56] for later
references.

To calculate Tr(FG) for two operators F and G in terms
of their Wigner functions WF and WG, the overlap formula
is

Tr(FG) = π

∫
d2α WF(α)WG(α). (A1)

We can easily generalize the formula to multimode cases.
The input-output Wigner functions under a beam-splitter
transformation whose transmittance is η are related by

Wout(α, β) = Win(
√

ηα +
√

1− ηβ,
√

1− ηα −√ηβ).
(A2)

We list Wigner functions of some quantum states that are
relevant for our discussions here. The Wigner function of
a vacuum state |0〉 is

W|0〉(γ ) = 2
π

e−2|γ |2 . (A3)

The Wigner function of a thermal state ρth(n̄) with the
mean photon number n̄ is

Wρth(n̄)(γ ) = 2
π

1
1+ 2n̄

e−2|γ |2/(1+2n̄). (A4)

The Wigner function of a displaced thermal state (DTS)
ρDTS(α, n̄) := D̂(α)ρth(n̄)D̂†(α) with the amount of dis-
placement α is

WρDTS(α,n̄)(γ ) = 2
π

1
1+ 2n̄

e−2|γ−α|2/(1+2n̄). (A5)

We notice that if we set α = 0, it reduces to Eq. (A4).
It is also useful to note the Wigner functions of a

squeezed thermal state (STS) and of a displaced squeezed
thermal state (DSTS). Let Ŝ(ξ) denote the squeezing oper-
ator with a squeezing parameter ξ . For our discussion, we
restrict ξ ∈ R. For a squeezed thermal state ρSTS(ξ , n̄) :=
Ŝ(ξ)ρth(n̄)Ŝ†(ξ), its Wigner function reads [see, e.g., Eq.
(4.13) of Ref. [57] ]

WρSTS(ξ ,n̄)(γ ) = 2
π

1
1+ 2n̄

× exp
{
−2

[
e2ξ Re(γ )2 + e−2ξ Im(γ )2

1+ 2n̄

]}
.

(A6)

The Wigner function of a displaced squeezed thermal
state ρDSTS(α, ξ , n̄) := D̂(α)Ŝ(ξ)ρth(n̄)Ŝ†(ξ)D̂†(α) can be
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FIG. 9. A concise but equivalent view of the noisy heterodyne
detector model depicited in Fig. 2. Input modes are labeled in
terms of Wigner functions.

similarly written as

WρDSTS(α,ξ ,n̄)(γ ) = 2
π

1
1+ 2n̄

× exp
{
−2

[
e2ξ Re(γ − α)2 + e−2ξ Im(γ − α)2

1+ 2n̄

]}
.

(A7)

2. Derivation

As the physical model of a noisy heterodyne detector
is presented in Fig. 2, our goal here is to find the cor-
responding POVM elements that correctly produce the
probability density function P(y) of obtaining an outcome
y ∈ C for an arbitrary input state ρ to the detector. In
our trusted noise model, the homodyne detector for the q
quadrature measurement has its detector efficiency η1 and
electronic noise ν1, which is related to a thermal state of
the mean photon number n̄1 = ν1/[2(1− η1)]. Similarly,
the homodyne detector for the p quadrature measurement
has its detector efficiency η2 and electronic noise ν2, which
corresponds to a thermal state with the mean photon num-
ber n̄2 = v2/[2(1− η2)]. Figure 9 shows a compact but
equivalent representation of Fig. 2 with Wigner functions
associated to input modes. In this setup, for an output
state Wout(α, β, γ , ω) at the step labeled in Fig. 9, we

measure the q quadrature of the mode α and p quadra-
ture of the mode β with two ideal homodyne detectors,
and discard the rest modes γ and ω. The Wigner func-
tion of an ideal homodyne detector for the q quadrature
measurement that produces a measurement outcome Re(y)

is WHRe(y)
(α) = [1/(

√
2π)]δ(Re(α)− Re(y)/

√
2) where δ

is the Dirac delta function and similarly, the one for the
p quadrature measurement with a measurement outcome
Im(y) is WHIm(y)

(α) = [1/(
√

2π)]δ(Im(α)− Im(y)/
√

2).
The factors of

√
2 are included such that we can red-

erive the ideal heterodyne detector POVM {Ey : y ∈ C} in
the limit of unity detector efficiency and zero electronic
noise. To discard modes γ and ω that are not measured,
we perform the integration over variables γ and ω.

For any input state ρ to the detector, one can in prin-
ciple obtain the underlying probability density function
P(y) = Tr(ρGy) for every measurement outcome y ∈ C.
As the correct POVM element Gy needs to produce the
observed probability density function P(y) = Tr(ρGy),
this requirement in terms of Wigner functions becomes
P(y) = π

∫
d2αWρ(α)WGy (α), where Wρ is the Wigner

function of the input state ρ and WGy is the Wigner func-
tion of the operator Gy , by the overlap formula in Eq. (A1).
In Fig. 9, we know the mathematical description of mea-
surements on the right, but the description of the state
Wout is unknown. On the other hand, we want to find
the description of the measurement directly acting on the
input state and the Wigner function description of the input
state and those of ancillary modes on the left are either
assumed to be given or known. To connect these known
descriptions on the two sides of this diagram to find the
desired Wigner function of the POVM element Gy that
acts on the input state directly, we start from the right-
hand side of this diagram with an unknown four-mode state
Wout and the known measurements on these modes, per-
form inverse beam-splitter transformations from right to
left of this diagram and finally obtain WGy by integrating
over variables other than α. By starting with the multi-
mode overlap formula for P(y) on the right-hand side of
the diagram and performing the process as described, we
obtain

P(y) = π4
∫

d2α

∫
d2β

∫
d2γ

∫
d2ω

1
π2 Wout(α, β, γ , ω)WHRe(y)

(α)WHIm(y)
(β)

= π2
∫

d2α Wρ(α)

∫
d2βW|0〉(β)

∫
d2γ Wρth(n̄1)(γ )WHRe(y)

(
√

η1
α + β√

2
+
√

1− η1γ )

×
∫

d2ωWρth(n̄2)(ω)WHIm(y)
(
√

η2
α − β√

2
+
√

1− η2ω). (A8)
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The next step is to substitute the Wigner function of the
vacuum state in Eq. (A3) and that of the thermal state in
Eq. (A4) and then to perform the integrals over variables
β, γ , and ω. We first integrate over the variable ω. The
relevant integral that involves the variable ω is

∫
d2ωWρth(n̄2)(ω)WHIm(y)

(
√

η2
α − β√

2
+
√

1− η2ω)

= 1
π
√

π

1√
(1− η2)(1+ 2n̄2)

× exp
{
−

η2[Im(β)+ 1√
η2

Im(y)− Im(α)]2

(1+ 2n̄2)(1− η2)

}
. (A9)

Next, we perform the integral related to the variable γ .
Since Eq. (A9) does not involve the variable γ , we do not
need to plug it back to solve the integral that involves the

variable γ . This integration shown in Eq. (A10) is actually
similar to the integration that we just did in Eq. (A9).

∫
d2γ Wρth(n̄1)(γ )WHRe(y)

(
√

η1
α + β√

2
+
√

1− η1γ )

= 1
π
√

π

1√
(1− η1)(1+ 2n̄1)

× exp
{
−

η1
[
Re(β)− 1√

η1
Re(y)+ Re(α)

]2

(1+ 2n̄1)(1− η1)

}
.

(A10)

Finally, we integrate over the variable β. We now
need to substitute results of Eqs. (A9) and (A10)
back to Eq. (A8). The prefactor is simplified to be
(1/π3)[1/

√
(1− η1)(1+ 2n̄1)(1− η2)(1+ 2n̄2)]. Except

this prefactor, we perform the following integral:

∫
d2βW|0〉(β) exp

{
−

η1

[
Re(β)− 1√

η1
Re(y)+ Re(α)

]2

(1+ 2n̄1)(1− η1)

}
exp

{
−

η2

[
Im(β)+ 1√

η2
Im(y)− Im(α)

]2

(1+ 2n̄2)(1− η2)

}

= 2

√
(1+ 2n̄1)(1+ 2n̄2)(1− η1)(1− η2)

[1+ (1− η1)+ 4n̄1(1− η1)][1+ (1− η2)+ 4n̄2(1− η2)]

× exp
{−2η1

[
1√
η1

Re(y)− Re(α)
]2

1+ (1− η1)+ 4n̄1(1− η1)
+
−2η2

[
1√
η2

Im(y)− Im(α)
]2

1+ (1− η2)+ 4n̄2(1− η2)

}
. (A11)

Finally, by putting the prefactor back and expressing the final expression in a format of Gaussian functions, we obtain the
following result:

WGy (α) = 1√
η1η2π

2
π

1√
1+ 2(1−η1)(1+2n̄1)

η1

1√
1+ 2(1−η2)(1+2n̄2)

η2

× exp
{−2

[
1√
η1

Re(y)− Re(α)
]2

1+ 2(1−η1)(1+2n̄1)

η1

+
−2

[
1√
η2

Im(y)− Im(α)
]2

1+ 2(1−η2)(1+2n̄2)

η2

}
. (A12)

By substituting in n̄1 = ν1/[2(1− η1)] and n̄2 = ν2/

[2(1− η2)], we derive Eq. (12) after a straightforward
simplification.

3. POVM elements

a. General case

As we derive the Wigner function of an arbitrary POVM
element Gy corresponding to the detector model in Fig. 2,
we next show that the POVM elements Gy’s are projec-
tions onto displaced squeezed thermal states up to a scaling

factor. To see this, we make the following definitions:

λj := (1− ηj )(1+ 2n̄j )

ηj
= 1− ηj + νj

ηj
for j = 1, 2,

n̄het :=
√

(1+ 2λ1)(1+ 2λ2)− 1
2

,

ξhet := 1
4

ln
[

1+ 2λ2

1+ 2λ1

]
,

αhet := 1√
η1

Re(y)+ i√
η2

Im(y). (A13)
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With these choices of parameters αhet, ξhet, and n̄het, Eq. (A12) can be rewritten as

WGy (γ ) = 1√
η1η2π

2
π

1
1+ 2n̄het

exp
{
−2

[
e2ξhetRe(γ − αhet)

2 + e−2ξhet Im(γ − αhet)
2

1+ 2n̄het

]}
. (A14)

By comparing the Wigner function of Gy in Eq. (A12)
and the Wigner function of a displaced squeezed
thermal state in Eq. (A7), we can identify Gy =
[1/(
√

η1η2π)]ρDSTS(αhet, ξhet, n̄het) for the choices of
parameters αhet, ξhet, and n̄het in Eq. (A13). Therefore, each
Gy is a scaled projection onto a displaced squeezed ther-
mal state with the displacement αhet, squeezing parameter
ξhet and the mean photon number of the initial thermal state
before squeezing and displacement n̄het.

b. Simple case

If η1 = η2 = ηd and ν1 = ν2 = νel, it is easy to verify
that Eq. (A12) reduces to Eq. (13). Then one can identify
each POVM element Gy is the projection onto a dis-
placed thermal state with a prefactor 1/(ηdπ) in Eq. (14).
An alternative view is to look at the parameters αhet, ξhet,
and n̄het in Eq. (A13). In particular, since λ1 = λ2, the
amount of squeezing ξhet becomes zero. Thus, by neglect-
ing squeezing in the POVM elements of the general case,
one can also conclude each POVM element is proportional
to the projection onto a displaced thermal state. One can
further verify that the displacement is αhet = y/

√
ηd and

the mean photon number of the initial thermal state n̄het
becomes (1− ηd + νel)/ηd.

APPENDIX B: PHOTON-NUMBER BASIS
REPRESENTATION OF OPERATORS

In this appendix, we show how to represent region oper-
ators as well as observables needed for the optimization
problem in Eq. (22) in the photon-number basis. By the
same discussion in Appendix B of Ref. [31], under the
photon-number cutoff assumption, we need only to find
�N Ô�N for an operator Ô with a cutoff photon number N .
Thus, we are interested in finding the expression 〈m| Ô |n〉
for 0 ≤ m, n ≤ N for each relevant operator Ô. When these
operators are represented in this finite-dimensional Hilbert
space spanned by {|n〉 : 0 ≤ n ≤ N }, we can then proceed
with numerical optimization to calculate the key rate.

In Appendix B 1, our discussion is restricted to the sim-
plified scenario that we use in the main text for presenting
simulation results; that is, we set η1 = η2 = ηd and ν1 =
ν2 = νel. Under this scenario, we present formulae that can
be efficiently evaluated in MATLAB. We then discuss the
general case where the imperfections in two homodyne
detectors are not necessarily the same in Appendix B 2.
For the general case, we provide the matrix representa-
tion of the POVM elements Gy’s and leave the evaluation

of region operators and observables for the optimization
problem to be done numerically.

1. Simple case

In this simple case where two homodyne detectors in the
heterodyne detection scheme have the same imperfection,
the POVM element Gy given in Eq. (14) in the photon-
number basis is expressed as [48]

〈m|Gy |n〉 = 1
ηdπ

exp
[
− |y|2

ηd(1+ n̄d)

]
n̄m

d

(1+ n̄d)n+1

×
(

y∗√
ηd

)n−m (m!
n!

)1/2

× L(n−m)
m

[
− |y|2

ηdn̄d(1+ n̄d)

]
, (B1)

where we define n̄d = (1− ηd + νel)/ηd for ease of writ-
ing and L(j )

k (x) is the generalized Laguerre polynomial of
degree k with a parameter j in the variable x. In particular,
the diagonal entries are simplified to be

〈n|Gy |n〉 = 1
ηdπ

exp
[
− |y|2

ηd(1+ n̄d)

]

× n̄n
d

(1+ n̄d)n+1 Ln

[
− |y|2

ηdn̄d(1+ n̄d)

]
, (B2)

where Lk(x) = L(0)

k (x) is the Laguerre polynomial of
degree k in the variable x. For ease of writing
later, we define Cm,n = [1/(πη

(n−m)/2+1
d )](m!/n!)1/2[n̄m

d /(1
+ n̄d)

n+1].

a. Region operators

Our goal here is to write region operators Rj =∫
y∈Aj

Gyd2y in the photon-number basis. For simplicity,
we work out the expressions in the absence of postse-
lection. To include the postselection, one may numeri-
cally integrate over the discarded region and subtract this
result from the expression without postselection since this
numerical integration is efficiently computable in MAT-
LAB. We first consider off-diagonal elements (i.e., m �=
n). In this case, we plug the expression of 〈m|Gy |n〉 in
Eq. (B1) into the definition of Rj in Eq. (16), write it in
the polar coordinate with y = reiθ and perform the integra-
tion over the phase θ to obtain the following expression:
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〈m|Rj |n〉 =
∫ ∞

0
dr r

∫ (2j+1)π/4

(2j−1)π/4
dθ 〈m|Greiθ |n〉

= Cm,n
i[ei(m−n)(2j−1)π/4 − ei(m−n)(2j+1)π/4]

m− n

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

[
− r2

ηdn̄d(1+ n̄d)

]
rn−m+1. (B3)

Performing the integral over the variable r, we obtain the result in terms of Taylor series expansion of a simple function:
∫ ∞

0
dr exp

[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

[
− r2

ηdn̄d(1+ n̄d)

]
rn−m+1

= 1
2

[ηd(1+ n̄d)][(n−m)/2]+1�

(
n− m

2
+ 1

)
fm

(
n̄d, n− m,

n− m
2

)
, (B4)

where � is the gamma function and fm(a, α, k) is defined as the Taylor series coefficients of the function below in the
variable t as

(1− t)−α+k
[

1−
(

1+ 1
a

)
t
]−(k+1)

=
∞∑

n=0

fn(a, α, k)tn. (B5)

We note that the Taylor series coefficients here can be quickly found in MATLAB.
Now, we consider the diagonal entries of Rj (i.e., m = n). By substituting y = reiθ in Eq. (B2), we note that this

expression does not depend on θ . Thus, it is easy to see 〈n|R0 |n〉 = 〈n|R1 |n〉 = 〈n|R2 |n〉 = 〈n|R3 |n〉 . The integration
over the phase θ gives a factor of π/2. We proceed the integration over variable r and obtain

〈n|Rj |n〉 = π

2
1

ηdπ

∫ ∞
0

dr r exp
[
− r2

η(1+ n̄d)

]
n̄n

d

(1+ n̄d)n+1 Ln

[
− r2

ηdn̄d(1+ n̄d)

]

= 1
4

n̄n
d

(1+ n̄d)n

(
1+ 1

n̄d

)n

= 1
4

. (B6)

To include postselection, the common integral in the case m �= n becomes
∫ ∞

�a

dr exp
[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

[
− r2

ηdn̄d(1+ n̄d)

]
rn−m+1

= 1
2

[ηd(1+ n̄d)][(n−m)/2]+1�

(
n− m

2
+ 1

)
fm

(
n̄d, n− m,

n− m
2

)

−
∫ �a

0
dr exp

[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

[
− r2

ηdn̄d(1+ n̄d)

]
rn−m+1, (B7)

where the second term is efficiently computable numerically. The case for m = n follows similarly.

b. First-moment observables

We then proceed to evaluate the matrix elements of F̂Q and F̂P. In the photon-number basis, the matrix elements are

〈m| F̂Q |n〉 =
∫

y + y∗√
2
〈m|Gy |n〉 d2y

= Cm,n√
2

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

[
− r2

ηdn̄d(1+ n̄d)

]
rn−m+2

∫ 2π

0
dθ e−i(n−m)θ (eiθ + e−iθ ),

〈m| F̂P |n〉 =
∫

i(y∗ − y)√
2
〈m|Gy |n〉 d2y

= iCm,n√
2

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

[
− r2

ηdn̄d(1+ n̄d)

]
rn−m+2

∫ 2π

0
dθ e−i(n−m)θ (e−iθ − eiθ ). (B8)
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As F̂Q is a Hermitian operator, we can first find entries 〈m| F̂Q |n〉 for m ≤ n. Then for m > n, we simply set 〈m| F̂Q |n〉 to
be the complex conjugate of 〈n| F̂Q |m〉. From the integration over θ , the nonzero entries for m ≤ n are

〈m| F̂Q |m+ 1〉 =
√

2πCm,m+1

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(1)

m

(
− r2

ηdn̄d(1+ n̄d)

)
r3

= π√
2

Cm,m+1[(1+ n̄d)ηd]2fm(n̄d, 1, 1). (B9)

By a similar procedure for F̂P, we have

〈m| F̂P |m+ 1〉 = −
√

2iπCm,m+1

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(1)

m

[
− r2

ηdn̄d(1+ n̄d)

]
r3

= − iπ√
2

Cm,m+1[(1+ n̄d)ηd]2fm(n̄d, 1, 1). (B10)

c. Second-moment observables

Next, we evaluate the matrix elements of ŜQ and ŜP. In the photon-number basis, they are

〈m| ŜQ |n〉 =
∫ (

y + y∗√
2

)2

〈m|Gy |n〉 d2y

= Cm,n

2

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

(
− r2

ηdn̄d(1+ n̄d)

)
rn−m+3

∫ 2π

0
dθ e−i(n−m)θ (eiθ + e−iθ )2,

〈m| ŜP |n〉 =
∫ (

i(y∗ − y)√
2

)2

〈m|Gy |n〉 d2y

= −Cm,n

2

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(n−m)

m

[
− r2

ηdn̄d(1+ n̄d)

]
rn−m+3

∫ 2π

0
dθ e−i(n−m)θ (e−iθ − eiθ )2. (B11)

Again, since ŜQ and ŜP are Hermitian operators, we only need to define the upper triangular part and then set the lower
triangular part using the Hermitian property. The relevant integrals are simplified to be

〈m| ŜQ |m〉 = 2πCm,m

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
Lm

[
− r2

ηdn̄d(1+ n̄d)

]
r3

= πCm,m[ηd(1+ n̄d)]2fm(n̄d, 0, 1),

〈m| ŜQ |m+ 2〉 = πCm,m+2

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(2)

m

[
− r2

ηdn̄d(1+ n̄d)

]
r5

= πCm,m+2[ηd(1+ n̄d)]3fm(n̄d, 2, 2).

(B12)

For ŜP, we have

〈m| ŜP |m〉 = 2πCm,m

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
Lm

[
− r2

ηdn̄d(1+ n̄d)

]
r3

= πCm,m[ηd(1+ n̄d)]2fm(n̄d, 0, 1),

〈m| ŜP |m+ 2〉 = −πCm,m+2

∫ ∞
0

dr exp
[
− r2

ηd(1+ n̄d)

]
L(2)

m

[
− r2

ηdn̄d(1+ n̄d)

]
r5

= −πCm,m+2[ηd(1+ n̄d)]3fm(n̄d, 2, 2).

(B13)
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2. General case

We consider the general case where two homodyne
detectors may have different imperfections. In this case,
each POVM element Gy is given in Eq. (A14). Given
the POVM Gy = [1/(

√
η1η2π)]ρDSTS(αhet, ξhet, n̄het), its

matrix elements are given by Eq. (5.2) of Ref. [58] with
the prefactor 1/(

√
η1η2π) as

〈m|Gy |n〉 = 1√
η1η2

Q(0)√
m!n!

min(m,n)∑
k=0

k!
(

m
k

)(
n
k

)
Ãk

×
(

B̃
2

)(m−k)/2 (
B̃∗

2

)(n−k)/2

× Hm−k[(2B̃)−1/2C̃)]Hn−k[(2B̃∗)−1/2C̃∗],
(B14)

where H� is the Hermite polynomial of order �. With sim-
ple substitutions, one may verify that these parameters
Ã, B̃, C̃, and Q(0) are defined in terms of λ1, λ2, αhet in
Eq. (A13) as

Ã := 1− λ1 + λ2 + 2
2(λ1 + 1)(λ2 + 1)

,

B̃ := −|λ1 − λ2|
2(λ1 + 1)(λ2 + 1)

,

C̃ := Re(αhet)

max(λ1, λ2)+ 1
+ i

Im(αhet)

min(λ1, λ2)+ 1
,

Q(0) := 1
π

1√
(λ1 + 1)(λ2 + 1)

× exp
[
− Re(αhet)

2

max(λ1, λ2)+ 1
− Im(αhet)

2

min(λ1, λ2)+ 1

]
.

(B15)

As indicated in Eqs. (5.3) and (5.4) of Ref. [58], the
choice of square roots of B̃ is as B̃1/2 = iei(ϕ/2)|B̃|1/2 and
(B̃∗)1/2 = (B̃1/2)∗, where ϕ = 0 if λ1 ≤ λ2 and ϕ = π if
λ1 > λ2. We note that n̄het and ξhet are defined in terms of
λ1 and λ2 and one may rewrite these parameters in terms of
n̄het, ξhet, and αhet to make the matrix elements more explic-
itly depend on the parameters of the displaced squeezed
thermal states.

From the expression of 〈m|Gy |n〉 in Eq. (B14), one can
apply the definition of region operators Rj ’s in Eq. (16)
to find 〈m|Rj |n〉 by numerical integration. Similarly, from
the definitions of first- and second-moment observables
in Eq. (21) in terms of POVM elements Gy’s, one can
numerically obtain a representation of these operators in
the photon-number basis.
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