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Airlines today are faced with a number of large-scale scheduling problems. One such problem is the
tail-assignment problem, which is the task of assigning individual aircraft to a given set of flights, mini-
mizing the overall cost. Each aircraft is identified by the registration number on its tail fin. In this paper,
we simulate the quantum approximate optimization algorithm (QAOA) applied to instances of this prob-
lem derived from real-world data. The QAOA is a variational hybrid quantum-classical algorithm recently
introduced and likely to run on near-term quantum devices. The instances are reduced to fit on quan-
tum devices with 8, 15, and 25 qubits. The reduction procedure leaves only one feasible solution per
instance, which allows us to map the tail-assignment problem onto the exact-cover problem. We find that
repeated runs of the QAOA identify the feasible solution with close to unit probability for all instances.
Furthermore, we observe patterns in the variational parameters such that an interpolation strategy can be
employed, which significantly simplifies the classical optimization part of the QAOA. Finally, we empiri-
cally find a relation between the connectivity of the problem graph and the single-shot success probability
of the algorithm.
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I. INTRODUCTION

Real-world planning and scheduling problems typically
require heuristic algorithms, which is also the case for the
tail-assignment problem. The problem is to assign a set
of flights to a set of aircraft in order to create a feasible
flight schedule for an airline, while minimizing the overall
cost [1].

Recently, quantum computing hardware has reached the
regime where it is possible to run quantum algorithms,
which are hard to simulate on classical hardware, even con-
sidering the world’s largest supercomputer [2]. This moti-
vates the search for a heuristic quantum algorithm for solv-
ing the tail-assignment problem. A promising approach for
this is the quantum approximate optimization algorithm
(QAOA) [3], which is a heuristic hybrid quantum-classical
algorithm designed for solving combinatorial optimiza-
tion problems. Since the algorithm was first proposed by
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Farhi et al. [3] it has been an active area of research inter-
est [4–10], mainly because of its promising possibility
to run on a near-term noisy intermediate-scale quantum
(NISQ) device. An important open question is whether
a quantum computer, in general, can provide advantages
with regards to such classically hard combinatorial opti-
mization problems. Recent studies have indicated that
QAOA can have a quadratic Grover-type speed up for
state transfer and unstructured search problems [11,12].
Although these results are promising, the performance is
largely unknown for QAOA with respect to real-world
optimization problems.

Here we present results for QAOA when applied to
a real-world aircraft-assignment problem. We perform
numerical simulations of an ideal quantum computer to
investigate the performance of QAOA for solving the sim-
plified case of the tail-assignment problem where all costs
are equal to zero. This simplified case can be mapped onto
the exact-cover problem [13]. In this context, we note that
the solution of random instances of the exact cover and
of its restricted version exact cover by three sets on a
quantum annealer has been considered in Refs. [14–19].
QAOA for exact cover has recently been executed on a
two-qubit quantum computer in a proof-of-principle exper-
iment by some of the authors of the present paper, and
collaborators [20].
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The paper is organized as follows. In Sec. II, we intro-
duce the tail-assignment problem, and we explain how we
extract the exact-cover instances that we analyze in this
work. In Sec. III, we review the QAOA and explain how it
can be utilized to solve the exact-cover problem. Then, in
Sec. IV we present numerical results of the performance
of QAOA with respect to the tail-assignment-problem
extracted instances of exact cover for three different prob-
lem sizes. Specifically, we look at the dependence of the
success probability as a function of the algorithm itera-
tion level p and of the problem size. Finally, in Sec. V
we present what implications these results might have for
solving the tail-assignment problem.

II. THE TAIL-ASSIGNMENT PROBLEM

Airlines are confronted daily with several complicated
large-scale planning problems involving many different
resource types such as passengers, crew, aircraft, main-
tenance, and ground staff. The typical airline planning
process [21] is a sequential process, which starts with
the construction of a timetable, followed by a number of
aircraft and crew-planning steps. These steps are all large-
scale optimization problems and have different objectives,
but the overall goal is to maximize profit, safety, and crew
satisfaction while minimizing the potential for disruptions.
At the same time a large number of complex regulatory,
operational, and quality constraints must be satisfied.

The tail-assignment problem [1] is one of the fleet-
planning problems where the goal is to decide which indi-
vidual aircraft (or tail, from the aircraft-tail-identification
number) should operate each flight. A set of flights oper-
ated in sequence by the same aircraft is called a route.
In order for a route to be considered legal to operate,
it needs to satisfy a number of constraints. For exam-
ple, the buffer time between the arrival of a flight and
the departure of the next flight in the route (the turn
time) must be above a certain threshold, called the min-
imum turn time. The minimum turn time can depend on
the type of flights involved (domestic and international),
the airport, the time of day, and possibly even the indi-
vidual aircraft characteristics. Another type of constraint
is a destination restriction, which prohibits specific air-
craft from visiting certain airports, for example due to
limited engine thrust combined with short runways. Cur-
few restrictions are timed restrictions, typically limiting
noisy aircraft from operating during night hours at cen-
trally placed airports. Finally, routes must satisfy a number
of long- and short-term maintenance constraints. This typ-
ically means that the aircraft must regularly visit some
airports with a maintenance facility for long enough to
perform maintenance.

Now, let F denote the set of flights, T the set of tails, and
R the set of all legal routes. Denote by cr the cost of route
r ∈ R and by Cf the cost of leaving flight f unassigned.

The route cost can, for example, indicate how robust the
route is with respect to disruptions, what the fuel cost is
for the route, or a combination of several different criteria.
Let afr be 1 if flight f is covered by route r and 0 otherwise,
and let btr be 1 if route r uses tail t and 0 otherwise. The
decision variable xr is 1 if route r should be used in the
solution, and 0 otherwise. The variables uf and vt are 1 if
flight f is left unassigned or tail t is unused, respectively,
and 0 otherwise. The tail-assignment problem can now be
formulated as

minimize
∑

r∈R

crxr +
∑

f ∈F

Cf uf , (1)

subject to
∑

r∈R

afrxr + uf = 1, ∀ f ∈ F , (2)

∑

r∈R

btrxr + vt = 1, ∀ t ∈ T, (3)

xr, uf , vt ∈ {0, 1}. (4)

The objective (1) is to minimize the total cost of the
selected routes, subject to constraints (2) ensuring that
each flight is assigned to exactly one route and constraints
(3) ensuring that each tail is used at most once. Flights
can be left unassigned at a cost Cf , but that cost is typi-
cally very high compared to the route costs. Not using an
aircraft does not come with any penalty cost. The model
is an example of a set partitioning problem, which is
nondeterministic polynomial-time (NP) hard [22].

A. Solving the tail-assignment problem

Clearly, the number of legal routes for a tail-assignment
instance increases exponentially with the number of
flights. Since the model presented above requires all the
legal routes to be enumerated, it only works for small
instances. The solution method traditionally used for these
types of models is column generation [1]. Column gen-
eration starts from some initial solution and uses infor-
mation from the linear programming dual problem to
dynamically generate new variables (columns in the con-
straint matrix), which are known to potentially improve
the current solution. In the tail-assignment case, the prob-
lem of generating improving variables turns out to be a
resource-constrained shortest-path problem. Given mild
conditions on the variable-generation step, the column-
generation process can be shown to guarantee optimality
for the linear programming (LP) relaxation of the problem,
i.e., without the integrality conditions Eq. (4). To find an
optimal solution for the full problem including the integral-
ity conditions, column generation must be combined with
tree search. The combination of tree search and column
generation is often called branch and price [23].
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B. Instances’ extraction

For the purposes of this paper, given the cur-
rent capability of quantum computers, we focus on
tail-assignment instances where we artificially limit the
number of routes. The instances are originally solved using
a branch-and-price heuristic, and we randomly select a
number of routes from the set of all generated routes to
create instances of specific sizes. The solution we find by
the branch-and-price heuristic is always included, so we
know that all instances have a solution with all flights
assigned. This means that we can skip the uf variables in
the model. We also uniquely assign start flights for each
aircraft, which means that constraints Eq. (3) can be omit-
ted. Finally, in the remainder of this paper we focus on the
decision version of the tail-assignment problem where the
goal is to find any solution satisfying all the constraints,
disregarding the costs cr. This decision version of the set
partitioning problem is called the exact-cover problem, it
is known to be NP complete [24], and can be expressed as
the following optimization problem:

minimize 0 (5)

subject to
∑

r∈R

afrxr = 1, ∀ f ∈ F , (6)

xr ∈ {0, 1}, (7)

where the minimization on 0 is left to recall that this for-
mulation stems from the tail-assignment problem, where
we neglect the costs in Eq. (1). Despite the simplification
introduced, the exact-cover problem is still very relevant
for the study of tail-assignment as many airlines, includ-
ing, for example, Air France, consider the tail-assignment
problem to be a pure feasibility problem [25].

III. QAOA APPLIED TO THE TAIL-ASSIGNMENT
PROBLEM

A large class of NP-complete optimization problems
including the exact cover (and even many NP-hard prob-
lems) can naturally be expressed as the problem of finding
the ground state, or minimum energy configuration, of a
quantum Ising Hamiltonian [26]

ĤC =
∑

i<j

Jij σ̂
z
i σ̂

z
j +

n∑

i=1

hiσ̂
z
i . (8)

We refer to this quantum Ising Hamiltonian as a cost
Hamiltonian. In this section, we derive explicitly the cost
Hamiltonian corresponding to the exact-cover problem
expressed by Eqs. (6) and (7). Later, we recall the QAOA
algorithm, and in particular how it makes use of the cost
Hamiltonian for finding its minimum energy configuration.

A. Ising formulation of the exact-cover problem

Consider the formulation of the exact-cover problem
presented in Eqs. (6) and (7). By subtracting 1 from both
sides of Eq. (6) and squaring the expression an energy
function formulation is obtained:

E(s1, . . . , s|R|) =
|F|∑

f =1

( |R|∑

r=1

afrxr − 1

)2

. (9)

Here |R| and |F| denote the cardinality of R and F , respec-
tively. We see that all constraints are satisfied if the energy,
Eq. (9), is equal to zero.

By replacing the binary variables xr ∈ {0, 1} with spin
variables sr ∈ {−1, 1} as

xr = sr + 1
2

, (10)

and expanding the square of Eq. (9) we obtain the Ising
energy function for the exact-cover problem

E(s1, . . . , s|R|) =
|F|∑

f =1

( |R|∑

r=1

afr
sr + 1

2
− 1

)2

= +1
4

|F|∑

f =1

|R|∑

r=1

|R|∑

r′=1

afrafr′srsr′

+ 1
2

|F|∑

f =1

|R|∑

r=1

afrsr

( |R|∑

r′=1

afr′ − 2

)

+ 1
4

|F|∑

f =1

( |R|∑

r=1

afr − 2

)2

. (11)

By defining Jrr′ as

Jrr′ ≡ 1
2

|F|∑

f =1

afrafr′ , (12)

and hr as

hr ≡ 1
2

|F|∑

f =1

afr

( |R|∑

r′=1

afr′ − 2

)
, (13)

the Ising energy function becomes

1
2

|R|∑

r=1

|R|∑

r′=1

Jrr′srsr′ +
|R|∑

r=1

hrsr + const, (14)

where the constant is equal to 1
4

∑|F|
f =1

(∑|R|
r=1 afr − 2

)2
.

The sum of all the diagonal terms (i = j ) in the first sum
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is equal to Tr(J ) since s2
i = 1; because Jij is symmetric,

i.e., Jij = Jji, we can further simplify the expression and
write the Ising energy function as

E(s1, . . . , s|R|) =
∑

r<r′
Jrr′srsr′ +

|R|∑

r=1

hrsr + const, (15)

where we absorb 1
2 Tr(J ) into the constant. Finally, by pro-

moting the spin variables to Pauli spin matrices si → σ̂ z
i , a

cost Hamiltonian in the form of Eq. (8) is obtained.

B. The quantum approximate optimization algorithm

The QAOA starts from an initial quantum state, which
is taken as a superposition of all possible computational
basis states |+〉⊗n. The second step of QAOA is to apply in
an alternating sequence two parametrized noncommuting
quantum gates, Û(γ ) and V̂(β), that are defined as

Û(γ ) ≡ e−iγ ĤC , V̂(β) ≡ e−iβĤM , (16)

where ĤC is the cost Hamiltonian given by Eq. (8), and
ĤM ≡ ∑n

i=1 σ̂
x
i is a so-called mixing Hamiltonian. The

alternating sequence continues for a total of p times with
different variational parameters 	γ = (γ1, . . . , γp) with γi ∈
[0, 2π ] if ĤC has integer-valued eigenvalues, and 	β =
(β1, . . . ,βp) with βi ∈ [0,π ], such that the final variational
state obtained is

|ψp( 	γ , 	β)〉 ≡ V̂(βp)Û(γp) . . . V̂(β1)Û(γ1)|+〉⊗n. (17)

The parametrized quantum gates are then optimized in a
closed loop using a classical optimizer, see Fig. 1. The
objective of the classical optimizer is to find the optimal
variational parameters that minimize the expectation value
of the cost Hamiltonian

( 	γ ∗, 	β∗) = arg min
	γ , 	β

Ep( 	γ , 	β), (18)

where

Ep( 	γ , 	β) ≡ 〈ψp( 	γ , 	β)|ĤC|ψp( 	γ , 	β)〉. (19)

FIG. 1. Schematic representation of the QAOA. The quantum
processor prepares the variational state, depending on variational
parameters. The variational parameters ( 	γ , 	β) are optimized in a
closed loop using a classical optimizer.

Note that this requires, in principle, multiple state prepara-
tions and measurements. Once the best possible variational
parameters are found, they are used to create the state
|ψp( 	γ ∗, 	β∗)〉, using the quantum processor for the state
preparation. Then, one samples from this state by measur-
ing in the computational basis, and the cost of the config-
uration obtained in the measurement, given by Eq. (8), is
evaluated. The latter step is classically efficient.

The success probability is defined as the probability
of finding the qubits in their ground-state configuration
|xsol〉 when performing a single-shot measurement of the
|ψp( 	γ , 	β)〉 state, i.e.,

Fp( 	γ , 	β) ≡ |〈xsol|ψp( 	γ , 	β)〉|2, (20)

where xsol = x1x2 . . . xn is the bit string corresponding to
the solution. Given this success probability we can ask the
following: what is the probability of having observed the
solution at least once after m repeated measurements? The
answer is given by

1 − [1 − Fp( 	γ , 	β)]m. (21)

Thus to have the probability (1 − ε) of observing the
solution, m has to be

m >
log ε

log [1 − Fp( 	γ , 	β)] . (22)

To fix the ideas, consider a fair coin. In order to have a
probability higher than 99.9% of observing head at least
once, one has to flip and “measure” the coin ten times.

In what follows, we apply this paradigm to solve the
exact-cover problem, by using the corresponding cost
Hamiltonian, expressed by Eq. (8) with Jij and hi given
by Eqs. (12) and (13), respectively.

IV. RESULTS

We examine instances for three different problem sizes
of the tail-assignment problem given in Table I, corre-
sponding to 8, 15, and 25 routes. As clear from Eq. (8),
this requires quantum processors with 8, 15, and 25 qubits,
respectively.

A. Energy landscape

Firstly, we can reduce the search space by noting that the
eigenvalues of both Hamiltonians ĤC and ĤM are integer

TABLE I. Information about the problem instances.

Routes Flights No. of instances No. of sol. per instance

8 77 10 1
15 77 9 1
25 278 10 1
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valued. As a consequence, the expectation value Eq. (19)
has even symmetry, i.e., Ep( 	γ , 	β) = Ep(−	γ , − 	β). This
symmetry allows us to restrict the domain of each γi to
γi ∈ [0,π ].

To highlight the difficulty of finding the best varia-
tional parameters we can visualize the landscape of the
expectation value E1(γ ,β), as well as the corresponding
success probability F1(γ ,β), as a function of γ and β, for
p = 1, by evaluating them on a fine grid [0,π ] × [0,π ].
Figure 2 shows the simulation result for one of the 25 route
instances. The variational parameters resulting in the low-
est expectation value, (γexp,βexp), and those resulting in
the highest success probability, (γsucc,βsucc), are approx-
imately the same. In fact |γexp − γsucc| � 0 and |βexp −
βsucc| � 0.047. Note that this is not obvious, since QAOA
only minimizes the expectation value, and does not explic-
itly maximize the success probability; a low expectation
value does not necessarily translates onto a high success
probability. For example, consider a variational state that
is a linear combination of low-energy excited eigenstates
of the cost Hamiltonian. This state could potentially have
a low expectation value while the success probability is
zero. Similarly, a variational state that is a linear combina-
tion of the ground state with high-energy eigenstates could
have a high success probability, while the cost Hamiltonian
expectation value is large. However, in the limit p → ∞,
100% success probability is always achieved [3]. For our
problem, it is clear from Eq. (9) that the minimum energy
of the first excited state is at least 1, so if we find an aver-
age cost, which is lower than 1 for our variational state,
we know that the ground state is a part of this state. The

(a) (b)

(c) (d)

FIG. 2. Simulation results for one of the 25 route instances
as a function of γ and β for p = 1. (a),(b) Expectation value
E1(γ ,β). (c),(d) Success probability F1(γ ,β).

corresponding plots for one of the 8 and 15 route instances
are shown in Appendix A, Fig. 5 and Fig. 6. We note that
all figures have qualitatively similar shape and that the
optimal variational parameters for p = 1 are located in the
same region.

B. Low iteration levels: patterns in optimal variational
parameters

Before we look at the performance of QAOA, we search
for patterns in the optimal variational parameters for low
iteration levels of the QAOA algorithm, namely up to p =
5. Patterns in the optimal variational parameters have been
observed before in the context of MaxCut in Ref. [27],
where it was shown that if a pattern exists it is possi-
ble to use different heuristics that can drastically speed
up the classical optimization part of QAOA. This can
potentially help us simulate the solution of our instances
for intermediate p level beyond p = 5, namely for
5 < p ≤ 20.

In order to find the optimal variational parameters,
one possible approach consists of a grid-search method.
However, evaluation of the cost-Hamiltonian expecta-
tion value on a fine grid for higher dimensions quickly
becomes computational expensive due to the large search
space [0,π ]p × [0,π ]p . Therefore, we discard the grid-
search method and resort to another optimization rou-
tine for finding good variational parameters for 1 ≤
p ≤ 5. This optimization routine is still exhaustive but
more computational efficient. It distributes several ran-
dom start points in the variational parameter landscape,
and runs the gradient-based Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [28] for every start point from
which it records the global optimum. We provide rel-
evant details in Appendix B. In Fig. 3 we present the

0
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0.96

0

0.02

0.04

0.74

0.85

0.96

0

0.02

0.04

0.74

0.85

0.96

FIG. 3. Optimal QAOA variational parameters ( 	γ ∗, 	β∗) for
the 8 route instances, for 3 ≤ p ≤ 5. The pattern is visualized
by plotting the optimal variational parameters where each gray
dashed line connects the variational parameters for one 8 route
instance.
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optimal variational parameters ( 	γ ∗, 	β∗) from p = 3 up to
p = 5 for the 8 route instances. We observe that a per-
sistent pattern shows up, and that both γi and βi tend to
increase slowly with i = 1, 2, . . . , p . An analogous anal-
ysis for the 15 route instances, shown in the Appendix
in Fig. 7, yields a qualitatively similar result. For the
25 route instances, it is not possible to perform this anal-
ysis, because for p > 1 performing an exhaustive search
becomes too computationally expensive.

C. Intermediate iteration levels: analysis of success
probability

Based on the patterns found in the previous section,
we now use an interpolation-based strategy, introduced
in Ref. [27], in order to study the performance of inter-
mediate p-level QAOA. This strategy consists in pre-
dicting a good starting point for the variational param-
eters search at level p + 1 for each individual instance
based on the best variational parameters found at level p
for the same instance. From the produced starting point
we run the gradient-free Nelder-Mead method [29,30],
which is reported in Ref. [27] to work equally well
as the BFGS method, for this heuristic strategy. The
Nelder-Mead algorithm is implemented in MATLAB version
R2019b using the fminsearch function. Furthermore,
in order to force the Nelder-Mead algorithm to terminate
after sufficiently many iterations, we set the two stopping

criteria – maximum number of function evaluations and
iterations – both to 60p . We furthermore make the assump-
tion that a pattern in the variational parameters also exists
in each of the 25 route instances, and we therefore use
the interpolation strategy mentioned above for each of
these instances as well, as an educated guess. We base this
assumption on the qualitatively similar shape of the expec-
tation value landscape that the three different problems
sizes investigated had for p = 1.

We use the aforementioned interpolation strategy for
finding good local optimal variational parameters up to
p = 10 for all the instances. The success probability as a
function of iteration level p averaged over all the instances
for the three different problem sizes is plotted in Fig. 4(a).
Moreover, we select one instance from each problem
size, for which we perform simulations up to p = 20. In
Fig. 4(b) we plot the success probability for these three
instances. The corresponding variational parameters 	γ ∗
and 	β∗ are provided in Appendix A, Fig. 8. It is observed
that the success probability increases with the parame-
ter p in both the averaged and the single-instance cases,
reaching almost 100% for the instances where we use high
iteration level p = 20.

From the results in Figs. 4(a) and 4(b) we also note
that the 25 route instances are easier to solve than the
15 route instances, in the sense that the success prob-
ability is higher for the former instances at any given
iteration level p of the algorithm. This fact can seem

(a) (b)

(d)(c)

FIG. 4. (a) Average success probability as a function of the iteration level p using the best found variational parameters for the
three different problem sizes. Error bars in the figure represent the standard deviation of the average success probability. (b) Success
probability Fp( 	γ ∗, 	β∗) as a function of p for one selected instance from each problem size. (c) Graph representation of the three
instances shown in (b). (d) Probability that a measurement of the state |ψp( 	γ ∗, 	β∗)〉 will yield a certain cost (or equivalently, eigenvalue
of the cost Hamiltonian) for the iteration levels p = 0, 1, 2, where p = 0 is the initial or “random” state |+〉⊗n.
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counterintuitive, as one could naively think that larger
instances correspond to harder problems. We perform fur-
ther analysis in order to explain this apparent contradiction.

We start by representing each instance as a graph, by
identifying Jij in Eq. (12) with an adjacency matrix. In this
way, each vertex in the graph represents a route and two
vertices are connected by an edge if they share a flight.
The valency of a vertex, i.e., the number of incident edges
to the vertex, indicates how many “clauses” the vertex is
contained in, or in other words how many other vertices
it has to compete with. In Table II we list the average
valency of each vertex for the three problem sizes. We
note that the 15 instances have more than twice the aver-
age valency compared to the 25 route instances. This is
also visualized in Fig. 4(c), where the graph connectiv-
ity for one instance of each problem size is represented.
It is clear that the connectivity for the 15 instances is the
most dense. Establishing a general connection between
the hardness of the instances and their valency is beyond
the scope of our paper. However, such a connection is
known to exist in some specific contexts, e.g., for exact
cover by three sets [31,32]. This hints to the fact that such
a connection might exist also for our instances, despite
the fact that they are not in the form of exact cover by
three sets. To elucidate further why denser graphs are
more difficult to solve with the QAOA we recall, follow-
ing Refs. [3] and [9], that the expectation value Eq. (19)
can be expressed as a sum of expectation values involving
all possible subgraphs. Subgraphs are obtained by starting
from an edge 〈ij 〉 of a graph, e.g., the type of graph given
in Fig. 4(c), and “walking” along the graph at most p steps
away from that edge, for a given iteration level p . Indicat-
ing with fg( 	γ , 	β) the contribution to the expectation value
from subgraph g, and with wg the corresponding subgraph
occurrence, it is possible to rewrite the expectation value
as Ep( 	γ , 	β) = ∑

g wgfg( 	γ , 	β). Since the contribution to the
expectation value is different for each subgraph, the higher
the number of important subgraphs (with a significant wg)
is, the harder it is to make the cost close to zero for a given
iteration level p , since the QAOA needs to make each indi-
vidual term in the sum small. Since the average valency of
a graph contributes to the number of subgraphs, this results
in a lower success probability for the 15 route instances, as
[as we show in Fig. 4(c) and Table II] those possess higher
average valency.

TABLE II. Valency of the graphs. The first column in the
table is the number of routes. The second column is the average
valency of a vertex taken as an average over all the instances. The
corresponding standard deviation is given in the third column.

Routes Mean Standard deviation

8 5.15 0.24
15 12.62 0.42
25 5.54 0.77

Finally, in Fig. 4(d) we visualize how the probability
of measuring a certain cost, or equivalently an eigen-
value of the cost Hamiltonian, given the state |ψp( 	γ ∗, 	β∗)〉,
changes for each iteration p = 0, 1, 2 of QAOA using the
best found variational parameters for one of the 25 route
instances. It is clear that the effect of iterating QAOA
is that the probability of configurations with lower cost
increases. This validates the effectiveness of QAOA in pro-
ducing output configurations corresponding to low-energy
states of the cost Hamiltonian, when the iteration level p is
increased. In particular, for p = 2 a peak at the zero-cost
configuration appears clearly, corresponding to a success
probability of 8.97%. This results in only 74 measurements
needed, in order to have a probability greater than 99.9%
of measuring the solution at least once.

In order to benchmark the effectiveness of QAOA in
solving this problem against other quantum algorithms, in
Appendix C we compare the time to solution of QAOA
with that of quantum annealing, and find that QAOA out-
performs quantum annealing for all the 8 and 15 route
instances.

Finally, noise and imperfection in practical experimen-
tal implementations on a quantum computer will induce
departures from the obtained success probabilities, and it
is an open question whether realistic hardware will still
be able to produce the good solution, with satisfactory
success probability. Although a complete study of the
effect of noise is beyond the scope of the present paper,
in Appendix D we characterize the effect of a simple
depolarizing noise model, to study how noise affects the
performance of QAOA. As expected, we find that with
noise an optimal value of p exists. Beyond that value
of p , the success probability starts to decrease, due to
the larger effect of decoherence when the gate sequence
becomes longer. However, for the optimal p , the success
probability is only halved, still pointing to relevance of the
use of QAOA for solving this problem even in realistic
experimental conditions.

V. CONCLUSIONS

In conclusions, we simulate the solution of instances of
the exact-cover problem that stem as a reduction of the
tail-assignment problem to the case where the goal is to
find any solution satisfying all the constraints, using the
QAOA.

Our results indicate that these instances can be solved
satisfactorily by means of QAOA, yielding relative high
success probabilities even for low iteration level of the
algorithm. For instance, for the 25-qubit case, we obtain
a success probability of 8.97% for p = 2 in the single-
measurement scenario. This corresponds to a success prob-
ability of 99.9% for 74 repeated measurements. This low
iteration level translates into a low circuit depth needed
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for the implementation of this algorithm, corroborating
feasibility on a near-term quantum device.

Moreover, we observe patterns for the variational
parameters ( 	γ , 	β), which allow for a substantial simpli-
fication of the classical optimization problem of finding
the best variational parameters, despite the fact that the
problem instances are extracted from a real-world problem.

Our analysis reveals nontrivial properties in the con-
nectivity of the instances considered, i.e., the 15-qubit
instances are more connected than the 25-qubit ones. A
thorough study of the connectivity and graph type that are
relevant for the tail-assignment problem in the context of
complex quantum networks [33,34] is beyond the scope of
the present paper, but stems as an interesting perspective.
Another interesting question is whether the implementa-
tion of the QAOA algorithm on hardware with restricted
connectivity would still yield nontrivial success probabil-
ities, as shown in Ref. [35] for MaxCut on three regular
graphs.

Our successful solution with QAOA of small-size
instances of exact cover extracted from tail assignment
motivates further studies, such as the use of QAOA for
solving instances with multiple feasible solutions, where
costs are reintroduced, and where the number of consid-
ered routes is larger, towards tackling real-world instances.

It remains an open question how the performance
of QAOA compares with existing classical algorithms
for solving large instances of the exact-cover problem
extracted from the tail-assignment problem. However, we
expect that current known methods as branch and bound,
cutting planes, or branch and cut [36] will perform well on
these small instances. Further investigations are needed in
order to compare the scaling in terms of time complexity of
QAOA fixing a target success probability (i.e., the required
iteration level p) and standard classical methods, when the
size of the problem increases.

While finalizing this work, we became aware of an
alternative method for the optimization of the variational
parameters, that makes use of the Gibbs objective func-
tion, defined as − log〈e−ηĤC〉, where η > 0, instead of
the expectation value Eq. (8) [37]. This approach is
expected to be superior because the Gibbs objective func-
tion rewards lower-energy states, which increases the suc-
cess probability. We leave the use of this approach for
optimization of the variational parameters in our problem
to further study.
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(a) (b)

(c) (d)

FIG. 5. Simulation results for one of the 8 route instances
as a function of γ and β for p = 1. (a),(b) Expectation value
E1(γ ,β). (c),(d) Success probability F1(γ ,β).

APPENDIX A: ADDITIONAL FIGURES

This Appendix contains additional figures that are men-
tioned in the main text. Figures 5 and 6 shows the expec-
tation value E1(γ ,β) and the corresponding success prob-
ability F1(γ ,β), as a function of γ and β for one of the 8
and 15 route instances.

Figure 7 illustrates the optimal QAOA parameters for
the 15 route instances.

Figure 8 shows the variational parameters 	γ ∗ and 	β∗ that
are used in Fig. 4(b).

(a) (b)

(c) (d)

FIG. 6. Simulation results for one of the 15 route instances
as a function of γ and β for p = 1. (a),(b) Expectation value
E1(γ ,β). (c),(d) Success probability F1(γ ,β).
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FIG. 7. Optimal QAOA variational parameters ( 	γ ∗, 	β∗) for the
15 route instances, for 3 ≤ p ≤ 5. The pattern is visualized by
plotting the optimal parameters where each gray dashed line
connects the optimal variational parameters of one particular
instance.

APPENDIX B: NUMERICAL SIMULATIONS

The numerical simulations for the exhaustive search
method is done in MATLAB version R2019b where the
MultiStart function is used to search thoroughly
for the optimal variational parameters. MultiStart
attempts to find multiple local minimums to the objective
function by starting from various points in the variational
parameter landscape. When run, it distributes start points
to multiple processors (cpus) that run in parallel. From a
start point it runs a local solver and when the solver reaches

1 5 10 15 20
0

0.02

0.04

0.06
8
15
25

1 5 10 15 20
0.7

0.8

0.9

1
8
15
25

FIG. 8. The best found 	γ ∗ and 	β∗ for the three instances shown
in Fig. 4(b).

a stopping criterion it terminates and the obtained minima
from the solver is stored in an array. When MultiStart
runs out of start points it stops, and the array with mini-
mums from the solver is sorted by the objective function
value in ascending order. The parameters where the objec-
tive function is the lowest is then returned as output. As
local solver we use the BFGS algorithm [28] which is
implemented as fmincon in MATLAB. The number of ran-
dom start points is chosen to be 4 × 103. This number is
empirically determined by running the simulations a few
times for this value and observing that the minimum of
the objective function always converges to the same value
and gives the same parameters. As mentioned, the solver
stops when the solver’s stopping criteria is met. Two exam-
ples of such criterion’s are the function tolerance and the
step tolerance. The first one, the function tolerance, is a
lower bound on the change in the value of the objective
function during a step, that is if |Fp( 	γ , 	β)− Fp( 	γ ′, 	β ′)| <
FunctionTolerance, the iteration ends. The second
one, the step tolerance, is such that if the solver attempts
to take a step that is smaller than | 	γ − 	γ ′|2 + | 	β − 	β ′|2 <
StepTolerance, the iteration ends. Both StepToler-
ance and FunctionTolerance are set to their default values,
which is 10−6.

APPENDIX C: COMPARISON: TIME TO
SOLUTION OF QUANTUM ANNEALING

VERSUS QAOA

In this Appendix, we compare the time to solution of
the quantum-annealing (QA) algorithm with that of the
QAOA. In quantum annealing we start from the same ini-
tial state as the QAOA, which is in fact the ground state
of the mixing Hamiltonian that we use in QAOA, but
with a minus sign in front, Ĥ QA

M ≡ −ĤM = −∑
σ̂ x

i . By
adiabatically changing from the mixing Hamiltonian to
the cost Hamiltonian the system remains in its instanta-
neous ground state throughout the evolution, and end up
in the ground state of the cost Hamiltonian. For a linear
time dependence, the quantum-annealing Hamiltonian is
given by

Ĥ(t) = t
T

ĤC +
(

1 − t
T

)
Ĥ QA

M , 0 ≤ t ≤ T, (C1)

where ĤC is the cost Hamiltonian, Ĥ QA
M is the quantum-

annealing starting Hamiltonian, and T is the total annealing
time. It is known that rather than running the algorithm adi-
abatically, it can be advantageous to run the algorithm for a
shorter time (nonfully adiabatically). On the one hand, this
yields to a finite probability to excite higher-energy states
and decreases the success probability on a single run; on
the other hand, since the annealing time T is shorter, one
can then increase the number of repetitions, yielding an
increase of the total success probability, on several runs.
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Therefore, one can define the time to solution (TTS), which
is a measure of how quickly the algorithm can find the
optimal solution. The time to solution for QA is defined
by [38]

TTSQA(T) = T
log(1 − pd)

log[1 − FGS(T)]
,

where pd is the target success probability that we fix to
99%, and FGS(T) is the ground state population after run-
ning the algorithm for a time T. The optimal TTSQA(T) is
thus given by the time T that minimize

TTSopt
QA = min

T>0
TTSQA(T).

Following the spirit of Ref. [27], it is possible to inter-
pret the sum of the optimal variational parameters of the
QAOA as the total “annealing” time that is used, in order
to sequentially evolve the system under the action of each
of the two Hamiltonians, Tp = ∑p

i=1(|γ ∗
i | + |β∗

i |). Thus,
the time to solution for QAOA is

TTSQAOA(p) = Tp
log(1 − pd)

log[1 − Fp( 	γ ∗, 	β∗)]
,

where Fp( 	γ ∗, 	β∗) is given by Eq. (20). Analogously as for
QA, the optimal TTSQAOA(p) is given by

TTSopt
QAOA = min

p>0
TTSQAOA(p).

We would of course like Tp to be as small as possible,
therefore we subtract all the optimal β∗ values by π . We
can do this since ψp( 	γ , 	β) is π periodic in β up to a global
phase. This π -shifted value of β is the value that one would
obtain, if one would choose to use the quantum-annealing

100 101 102100

101

102

FIG. 9. The optimal time to solution for QAOA and QA. The
fact that the markers are below the dashed diagonal line means
that QAOA outperforms QA in the time required to achieve a
99% success probability.

mixer Hamiltonian (i.e., the one with a minus in front of
the summation), instead of the mixer commonly used for
the QAOA.

We run the QA algorithm for all the 8 and 15 route
instances for different total annealing times T and record
the optimal TTS that we find. In Fig. 9 we plot the
TTSopt for both algorithms, and find that the TTSopt

QAOA

is smaller than TTSopt
QA for all the instances. For the

15 route instances, QAOA is one order of magnitude
faster in achieving 99% success probability. It should be
noted that the linear annealing schedule chosen here is
a restricted form of quantum annealing and that some of
the performance gap might be addressed by optimizing
the annealing schedule within a practical family of curves
(similar to the optimization of the QAOA).

APPENDIX D: DEPOLARIZING NOISE

In this Appendix we perform a simple study of how
depolarizing noise affects the performance of QAOA. We
model the depolarizing noise as random uncorrelated Pauli
X , Y, or Z operations using the error gate

E = (1 − η)I + η

3
(X + Y + Z), (D1)

where η is the probability that an error occurs, that we
fix to 1%. This error gate acts on each individual qubit
between the applications of the cost and mixing Hamilto-
nian, see Fig. 10(a). We then repeat the circuit sufficiently
many times to get a statistical average over the noise. In
Fig. 10(b) we plot the success probability with noise for
the same 8 and 15 route instances as shown in Fig. 4(b).
A trade-off appears between the level of iteration of the
algorithm p , and the success probability. In particular, we
observe that for p > 6 the success probability starts to
decrease for the 8 route instance, while for the 15 route
instance it levels off, indicating that the gain of increasing
one level p equals the decrease due to the noise. This is

Level p

...
...

(a) (b)

FIG. 10. (a) After each application of the cost and mixing
Hamiltonian of the QAOA an error gate E given by Eq. (D1)
is independently applied to every qubit. (b) Success probability
with noise for one of the 8 and 15 route instances.
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expected, as faulty gates decrease the fidelity of the pre-
pared state with the best theoretically found variational
state. However, the resulting success probabilities at p = 6
are roughly halved with respect to the noiseless case.
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