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The combination of machine learning and quantum computing has emerged as a promising approach for
addressing previously untenable problems. Reservoir computing is an efficient learning paradigm that uti-
lizes nonlinear dynamical systems for temporal information processing, i.e., processing of input sequences
to produce output sequences. Here we propose quantum reservoir computing that harnesses complex dis-
sipative quantum dynamics. Our class of quantum reservoirs is universal, in that any nonlinear fading
memory map can be approximated arbitrarily closely and uniformly over all inputs by a quantum reservoir
from this class. We describe a subclass of the universal class that is readily implementable using quantum
gates native to current noisy gate-model quantum computers. Proof-of-principle experiments on remotely
accessed cloud-based superconducting quantum computers demonstrate that small and noisy quantum
reservoirs can tackle high-order nonlinear temporal tasks. Our theoretical and experimental results pave
the path for attractive temporal processing applications of near-term gate-model quantum computers of
increasing fidelity but without quantum error correction, signifying the potential of these devices for
wider applications including neural modeling, speech recognition, and natural language processing, going
beyond static classification and regression tasks.
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I. INTRODUCTION

The ingenious use of quantum effects has led to a sig-
nificant number of quantum machine learning algorithms
that offer computational speedups [1,2]. While awaiting
the demonstration of these quantum algorithms on full-
fledge quantum computers equipped with quantum error
correction, quantum computing has transitioned from the-
oretical ideas to the noisy intermediate-scale quantum
(NISQ) technology era [3]. Hybrid quantum-classical algo-
rithms using short-depth circuits are particularly suitable
for implementation on NISQ devices. Many notable exper-
imental demonstrations of NISQ devices employ hybrid
algorithms for data classification [4] and quantum chem-
istry [5]. An on-going quest is to find interesting applica-
tions on quantum computers with increasingly lower noise
profile, but not reaching a low enough threshold to enable
continuous quantum error correction.

Here we propose a hybrid quantum-classical algorithm
that utilizes dissipative quantum dynamics as reservoir
computers (RCs) for temporal information processing
on gate-model NISQ quantum computers. The goal for
temporal information processing tasks, such as speech

*h.nurdin@unsw.edu.au

processing and natural language processing [6,7], is to
learn the relationship between input sequences and output
sequences. The RC framework uses an arbitrary but fixed
dynamical system (in this case systems with dynamics
described by state-space difference equations), the “reser-
voir,” to map sequential inputs into its high-dimensional
state space. Only a simple linear regression algorithm is
required to optimize the parameters of a readout function
to approximate target outputs. The use of a simple lin-
ear readout has connections to the biological concept of
mixed selectivity, as demonstrated in monkeys [8]. The
attractiveness of the RC scheme is that naturally occur-
ring dynamical systems (with some desired properties)
in physics and engineering can be exploited for tempo-
ral information processing without precise tuning of its
parameters, circumventing the expensive training cost in
alternative schemes, such as recurrent neural networks
with tunable internal weights [9]. The ease of RC imple-
mentation has brought forward many successful hardware
implementations of classical (i.e., not quantum mechani-
cal) RC schemes [10–12]. A spintronic RC achieved state-
of-the-art performance on a spoken digit recognition task
[13] and a photonic RC demonstrated high-speed speech
classification with a low error [14]. For theoretical devel-
opments, Gonon et al. [15] derived an approximation error
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upper bound for certain classical RCs on learning a class
of input-output maps (not necessarily fading memory maps
considered here). Information processing capacity of vari-
ous RC schemes has been investigated [16,17]. See Refs.
[18,19] for further interests and developments of RCs.

In this work, we employ dissipative quantum systems
as quantum reservoirs (QRs) to approximate nonlinear
input-output maps with fading memory. A map has fading
memory if its outputs depend increasingly less on inputs
from earlier times. These maps are important in a broad
class of real-world problems, including spoken digit recog-
nition [13] and neural modeling [20]. The use of quantum
systems as QRs was initially proposed in Refs. [21,22] to
harness disordered-ensemble quantum dynamics for tem-
poral information processing. This QR class is suitable
for ensemble quantum systems and a static (nontempo-
ral) version of Ref. [21] was demonstrated in NMR to
approximate static maps [23]. However, it remained an
open problem to show this QR class has the properties
required for reservoir computing. Chen and Nurdin [24]
addressed this problem by demonstrating that a variation
of the scheme proposed in Refs. [21,22] is universal for
nonlinear fading memory maps, meaning that given any
target nonlinear fading memory map, there exists a mem-
ber in the universal QR class whose outputs approximate
the target map’s outputs arbitrarily closely and uniformly
over the input sequences. This is a quantum analogue
of the universal function approximation property feed-
forward neural networks enjoy [25,26], but for nonlinear
fading memory mappings from input sequences to output
sequences. The notion of universality we adopt here was
previously established for classical RC schemes [20,27,28]
and the Volterra series [29]. In particular, Grigoryeva and
Ortega [28] proved this universality property for a form
of recurrent neural networks called echo-state networks
[30]. However, realizing these previous QR proposals in
the quantum gate model remains challenging due to the
large number of quantum gates required to implement the
dynamics via Trotterization.

The contribution of this work is twofold. Firstly, we
propose a class of QRs endowed with the fading mem-
ory and universality properties that is not implemented by
Ising Hamiltonians, circumventing the need for Trotteriza-
tion required in previous proposals. Secondly, we propose
a realization of a subclass of the universal QR class on
NISQ devices and present proof-of-principle experiments
on remotely accessed IBM superconducting quantum pro-
cessors [31], i.e., NISQ devices not yet equipped with
quantum error correction. The QR dynamics in this sub-
class can be implemented using arbitrary but fixed quan-
tum circuits, as long as they generate nontrivial dynamics.
This could be, for instance, quantum circuits that are clas-
sically intractable to simulate. The quantum circuits can be
of short lengths and can be implemented using parameter-
ized single-qubit and multi-qubit quantum gates native to

the quantum hardware, without the need for precise tuning
of their gate parameters. Our proof-of-principle experi-
ments show that QRs with a small number of qubits oper-
ating in a noisy environment can tackle complex nonlinear
temporal tasks, even under current hardware limitations
and in the absence of readout and process error mitiga-
tion techniques. This work serves as a theoretical and
experimental realization of applying near-term gate-model
quantum computers to nonlinear temporal information pro-
cessing tasks, opening an avenue for time series modeling
and signal processing applications of these devices.

The rest of this paper is organized as follows. In Sec. II
we introduce fading memory maps and describe two tem-
poral information processing tasks for these maps. In
Sec. III we introduce the RC framework and explain
conditions for which a RC defines a fading memory
map. In Sec. IV we present our QR proposal and the
universality result. We then propose a subclass of the
universal class suitable for implementation on current
noisy gate-model quantum computers. We conclude the
section by discussing invariance properties of the univer-
sal class under certain hardware imperfections. In Sec. V
we detail two hardware realizations of the aforemen-
tioned subclass of the universal one and present more
efficient versions of both schemes that could enable the
QR’s potential for more scalable temporal processing
on gate-model quantum devices. In Sec. VI we detail
our proof-of-principle experiments performed on cloud-
based IBM superconducting quantum devices. We provide
concluding remarks in Sec. VII. Detailed mathematical
derivations and experimental settings are provided in the
Appendices.

II. TEMPORAL INFORMATION PROCESSING

We consider an input-output (I/O) map M that maps
infinite input sequences u = {. . . , u−1, u0, u1, . . .} to infi-
nite output sequences y = {. . . , y−1, y0, y1, . . .}, where ul,
yl ∈ R for l ∈ Z and yl = M (u)l is the output at time l.
We write u|L:L′ = {uL, . . . , uL′ } and y|L:L′ = {yL, . . . , yL′ } to
denote the inputs and outputs during time l = L, . . . , L′.
In practice, such I/O maps can be realized by convergent
dynamical systems, that is, systems that forget their initial
condition (see Appendix A 1 for details). If such a dynam-
ical system with state xl is initialized at time l0 at the state
xl0 and given an input sequence {ul0 , ul0+1, . . .} and the sys-
tem outputs the sequence {yl0 , yl0+1, . . .}, then it realizes an
I/O map M for any initial condition xl0 as l0 →−∞.

Two challenging temporal information processing prob-
lems are posed to learn the I/O relationship given by
M based on the I/O pair u, y. The first is the multi-
step ahead prediction problem, in which we are given
inputs u|1:L and the corresponding outputs y|1:L. The first
LT < L input-output data pair (u|1:LT , y|1:LT ) is the train
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data. In the sequel, we use the input-output train data dur-
ing l = 5, . . . , LT. The reason for this is to remove the
transient response in the data; see Sec. VI B for a dis-
cussion. The goal is to use the train data to optimize the
parameters w of another I/O map M w, so that the outputs
y|LT+1:L = {yLT+1, . . . , yL}, where yl = M w(u)l, approxi-
mate the target outputs y|LT+1:L. The second problem is
the map emulation problem, that is, to optimize w of M w
to emulate M using k = 1, . . . , K different I/O train data
pairs (uk|1:L′ , yk|1:L′), so that the total number of train data
is KL′ (we will again use train data during l = 5, . . . , l =
L′ in Sec. VI B). When given a previously unseen input
uK+1|1:L′ , the task is for yK+1|1:L′ to approximate yK+1|1:L′ .

If an I/O map M has fading memory then its output at
time l′ becomes increasingly less dependent on input sam-
ples ul from much earlier times l� l′; see Appendix A 2.
In this work, we approximate nonlinear fading memory
I/O maps using RCs implemented by quantum dynami-
cal systems. We introduce conditions for which a reservoir
dynamical system defines a fading memory I/O map in the
next section.

III. RESERVOIR COMPUTING

To approximate fading memory maps, a RC exploits
nonlinear dynamical systems to project the input ul into a
reservoir state xl at time l. A RC is governed by dynamics
f with state evolution xl = f (xl−1, ul). The dynamics of
the reservoir can be arbitrary but fixed as long as it satis-
fies some required properties, and never requires training.
We require the RC to satisfy the echo-state property [30] or
the convergence property [32], so that the RC asymptoti-
cally forgets its initial condition. The tunable parameters w
appear in a readout function hw, which combines the ele-
ments of xl into an output yl = hw(xl). For a sufficiently
long input sequence {ul0 , ul0+1, . . . , u0}, the effect of the
RC’s initial condition can be washed out. As discussed in
Sec. II, as l0 →−∞, the combination of convergent RC
dynamics f and the readout function hw produces an I/O
map M (f ,hw). After the washout, the readout parameters w
can be optimized using linear regression to minimize an
empirical mean squared error between y1:LT and y1:LT

. As
in previous works [20,27–29], we consider that M (f ,hw) has
the fading memory property.

Echo-state networks, one of the pioneering classical RC
schemes, have been numerically demonstrated to achieve
state-of-the-art performance in chaotic system modeling
[30]. Subsequent hardware realizations of RC proposals
exploit classical dynamical systems for real-time temporal
processing tasks that demand less energy or computa-
tional memory [10–14]. These experiments also suggest
empirically that, for certain tasks, such as spoken digit
recognition, the reservoir state dimension plays a role in
the RC’s task performance.

IV. UNIVERSAL QUANTUM RESERVOIR
COMPUTERS

We propose to use a QR, with a view towards possi-
bly taking advantage of fast quantum dynamics and its
exponentially large state space. A QR consists of N nonin-
teracting subsystems, each subsystem k has an nk number
of qubits so that the QR has n =∑N

k=1 nk qubits. The QR
density operator ρl at time l evolves according to

ρl = T(ul)ρl−1 =
N⊗

k=1

T(k)(ul)ρ
(k)
l−1, (1)

and the kth subsystem density operator ρ(k)l undergoes the
evolution

T(k)(ul)ρ
(k)
l−1

= (1− εk)[ulT
(k)
0 + (1− ul)T

(k)
1 ]ρ(k)l−1 + εkσk (2)

for input 0 ≤ ul ≤ 1. Here, 0 < εk ≤ 1, σk is an arbi-
trary but fixed density operator, and T(k)0 and T(k)1 are two
arbitrary but fixed completely positive trace-preserving
(CPTP) maps. Examples of such maps include some natu-
rally occurring noisy quantum channels, such as dephasing
or amplitude damping channels; see Ref. [33]. No pre-
cise tuning or engineering of the CPTP maps T(k)0 , T(k)1
is required for the QR scheme and it should not gener-
ate trivial dynamics (i.e., we should not choose T(k)0 =
T(k)1 ). They could potentially be classically intractable to
simulate CPTP maps. The QR dynamics given by Eqs.
(1)–(2) are convergent, meaning that they will asymptot-
ically forget their initial condition; see Appendix A 1 for
the proof. Given inputs {ul0 , ul0+1, . . . , u0} and l0 →−∞,
the convergence property ensures that the QR state ρ0
that evolves according to Eqs. (1)–(2) is determined by
{ul0 , ul0+1, . . . , u0} and T(k)0 , T(k)1 , but not by its initial state
ρl0 .

We obtain partial information about ρl by measuring
each qubit in the Pauli Z basis to obtain 〈Z(i)〉l = Tr(ρlZ(i))
for i = 1, . . . , n, where Z(i) acts on qubit i. We associate
the readout function (3) to the QR dynamics (1). The read-
out function (3) is a multivariate polynomial of degree R
in the variables 〈Z(ij )〉l. A simple linear form (R = 1) is
employed in our proof-of-principle experiments in Sec. VI.
The tunable readout parameters w = {wri1 ,...,rin

i1,...,in , wc} can
be optimized via linear regression. Equations (1) and (3)
define a QR implementing an I/O map M (T,hw) that depends
on the QR dynamics T and the readout function hw. We
show in Appendix A 2 that M (T,hw) has the fading memory
property. Now consider the class M of I/O maps M (T,hw)

arising from differing numbers of subsystems N , numbers
of qubits n, QR dynamics T(ul), readout parameters w, and
degree R of hw. Our main result shows that the class M
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is universal for approximating nonlinear fading memory
maps.

Theorem 1 (Universality). Let K([0, 1]) be the set of input
sequences {ul} with 0 ≤ ul ≤ 1 for l ∈ Z. For any nonlin-
ear fading memory map M and any δ > 0, there exists
M (T,hw) ∈M implemented by some QR such that, for all
u ∈ K([0, 1]), supl∈Z |M (u)l −M (T,hw)(u)l| < δ.

We remark that universality is a property of the QR
class M and not of an individual member of M. The
universality proof employs the Stone-Weierstrass theorem
[[34], Theorem 7.3.1]; see Appendix A 3 for the proof.
Besides the universality property, our proposed univer-
sal QR class exhibits invariance properties under certain
hardware imperfections; see Sec. IV B.

The readout function associated with the QR dynamics
(1) and (2) is

yl = hw(ρl)

=
R∑

d=1

n∑

i1=1

· · ·
n∑

in=in−1+1

∑

ri1+···+rin=d

w
ri1 ,...,rin
i1,...,in 〈Z(i1)〉

ri1
l

· · · 〈Z(in)〉rin
l + wc. (3)

A. A subclass implementable on noisy gate-model
quantum devices

With a limited number of qubits and other current quan-
tum hardware restrictions, not all QR dynamics of the form
(1)–(2) can be efficiently implemented. Here we describe
a subclass of the universal QR class implementable on
current gate-model quantum devices.

QRs in this subclass are governed by Eqs. (1)–(2)
with unitary evolutions T(k)j (ρ

(k)
l−1) = U(k)

j ρ
(k)
l−1U(k)†

j , j =
0, 1, where the unitaries U(k)

0 and U(k)
1 are arbitrary but

fixed. In practice, U(k)
j can be implemented by native

quantum gates of NISQ devices, possibly composed of
single-qubit and multi-qubit gates, each parameterized by
some gate parameter. These gate parameters can be chosen
arbitrarily but fixed and should not generate trivial dynam-
ics (e.g., we should not have U(k)

0 = U(k)
1 ); thus, precise

tuning of these parameters is not required. In Sec. VI A,
we suggest some natural choices of U(k)

j tailored for the
cloud-based IBM quantum devices [31]. The QR dynamics
in this subclass have a natural quantum circuit interpre-
tation; see Fig. 1. The state ρ(ul) encodes the input ul
as a classical mixture ρ(ul) = ul|0〉〈0| + (1− ul)|1〉〈1|,
meaning that we apply U(k)

0 ρ
(k)
l−1U(k)†

0 with probability ul,

and apply U(k)†
0 U(k)

0 U(k)
1 ρ

(k)
l−1U(k)†

1 U(k)†
0 U(k)

0 = U(k)
1 ρ

(k)
l−1U(k)†

1

with probability 1− ul. Let ρ(k)l−1 denote the QR’s kth sub-
system state after these operations. The state ρεk is a clas-
sical mixture ρεk = (1− εk)|0〉〈0| + εk|1〉〈1| that encodes

FIG. 1. Quantum circuit interpretation of the QR universal
subclass described in Sec. IV A. Here ρ(k)l−1 and σk are two quan-
tum registers (i.e., groups of qubits), whereas ρ(ul) and ρεk are

two single-qubit states. The unitaries U(k)
1 and U(k)†

0 act on ρ(k)l−1,
controlled by ρ(ul). The right-most operation (the SW) swaps the
states of ρ(k)l−1 and σk, controlled by ρεk .

the rate εk at which the kth subsystem forgets its initial
conditions. That is, with probability εk, the states ρ(k)l−1 and
σk are exchanged, equivalent to resetting the state ρ(k)l−1 to
the fixed density operator σk; otherwise, the state ρ(k)l−1 is
unchanged with probability 1− εk. We again associate the
readout function (3) to this QR subclass.

B. Invariance under stationary Markovian hardware
noise and time-invariant readout error

The QR dynamics (1) are invariant under stationary
Markovian noise. A stationary Markovian noise process
acting on the kth subsystem during some time interval
τ(l− 1) ≤ t ≤ τ l, where l is the time step and τ > 0, can
be modeled as a CPTP map T (k) for all l ≥ 0. The kth
subsystem’s dynamics (2) under this noise process is

ρ
(k)
l = (1− εk)[ulT (k) ◦ T(k)0 + (1− ul)T (k) ◦ T(k)1 ]ρ(k)l−1

+ εkT (k)(σk),

where T (k) ◦ T(k)j is again some CPTP map for j = 0, 1 and
T (k)(σk) = σ ′k is again some fixed density operator. The
resulting noisy dynamics again have the form (2) and the
form of QR dynamics (1) also remains unchanged. That is,
the universal family M is invariant and remains universal
under stationary Markovian noise. For hardware imple-
mentation of the QR subclass described in Sec. IV A, if
the hardware noise is stationary and Markovian then it acts
to replace U(k)

j ρ
(k)
l−1U(k)†

j with another CPTP map T
(k)
j (ρ

(k)
l−1).

The resulting noisy QR dynamics are again of the form (1).
The stationary Markovian noise model is the noise

model adopted in the IBM Qiskit simulator [35,36]. The
Qiskit noisy simulation approximates the hardware noise
as a CPTP map being applied after the application of a uni-
tary gate. The noise parameters are estimated during peri-
odic calibrations on the hardware. Between two calibra-
tions, the calibrated noise parameters remain unchanged
and the noisy simulation approximates the hardware noise
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by a stationary Markovian noise model. However, dur-
ing the experiments, the underlying hardware noise could
potentially be time varying. Considering these factors, the
agreement between our experimental and the Qiskit noisy
simulation results (see Appendix E 4 for the data) indi-
cate that the underlying hardware noise approximately
preserves the QR dynamics of the form (1) during the
experiments. If the underlying noise is nonstationary but
changes slowly, the QR output weights can be retrained
periodically using the most recently gathered data. This
remains a challenge to demonstrate on current cloud access
only NISQ devices, but may be possible on future NISQ
machines.

Furthermore, QR predicted outputs remain unchanged
under time-invariant readout error whenever a linear read-
out function is used [i.e., R = 1 in Eq. (3), which is
often employed in practice and in our proof-of-principle
experiments]. This is because time-invariant readout error
introduces a time-invariant linear transformation of the
measurement data and, if the output weights w

ri1 ,...,rin
i1,...,in and

wc are optimized via linear regression, the resulting QR
predicted outputs yl remain unchanged; see Appendix B
for the derivation.

V. REALIZATION OF A SUBCLASS ON CURRENT
QUANTUM HARDWARE

We present two implementation schemes of the subclass
described in Sec. IV A on current gate-model quantum
computers, such as on the IBM superconducting quantum
devices. The first scheme takes into account limitations of
some current hardware, and the second scheme employs
quantum nondemolition (QND) measurements to substan-
tially reduce the number of circuit runs required. We
further show that the QR’s convergence property leads to
more efficient versions of both schemes. Here, we focus
on n-qubit QRs with a single subsystem [N = 1 in Eq. (1)]
and drop the subsystem index k in Eq. (2). The case with
multiple subsystems (N > 1) is a straightforward exten-
sion. We may choose σ = |ψ〉〈ψ | with an easy to prepare
pure state |ψ〉. In all schemes, we initialize the QR circuits
in |0〉⊗n.

The first implementation follows from an earlier work
[[37], Sec. III] and is employed in our proof-of-principle
experiments (see Sec. VI). We consider NISQ devices that
allow pure state preparation. Instead of realizing Fig. 1
that requires mixed-state preparation, we efficiently imple-
ment QRs through Monte Carlo sampling. We construct
Nm circuits such that, for each circuit and at each timestep
l, we apply U0 and U1 with probabilities (1− ε)ul and
(1− ε)(1− ul), respectively; otherwise, the circuit is set in
|ψ〉 with probability ε. Therefore, for each Nm circuit and
each time l, implementing the input-dependent QR dynam-
ics T(ul) in Eq. (1) amounts to applying the gate sequence
realizing U0 or U1, or resetting the circuit in |ψ〉. As

Nm is increased, the average of all measurements gives a
more accurate estimate of the true expectation 〈Z(i)〉l. Fur-
thermore, some current NISQ devices do not allow qubit
reset, meaning that once a qubit is measured, it cannot
be reused for computation. To estimate 〈Z(i)〉l, we reini-
tialize Nm circuits in |0〉⊗n and reapply T(uk) from time
k = 1 to time k = l, and only measure Z(i) at the final
time l. Each of the Nm circuits is run for S shots at each
time l. To process a length-L input sequence under the pure
state and qubit reset limitations requires NmSL circuit runs
and NmS(1+ · · · + L) = NmS(L+ 1)L/2 applications of
T(ul).

If qubit reset is available, a more efficient scheme using
QND measurements [38] can be realized; see Appendix C
for the details. We no longer need to rerun the Nm circuits
from time 1 to estimate 〈Z(i)〉l. Instead we just run each
of the Nm circuits S shots, meaning that, for each circuit,
we perform a QND measurement of Z(i) at time l, con-
tinue running the circuit until the next measurement, and
so forth. QND measurements ensure information encoded
in ρl is retained from one timestep to the next. This scheme
requires NmSL applications of T(ul), but only NmS circuit
runs as opposed to NmSL runs in the first scheme. We
remark that a recent noisy quantum device is equipped with
the qubit reset functionality [39], and it will be interesting
to implement this scheme in such a device in a future work.

The QR’s convergence property (see Appendix A 1)
leads to more efficient versions of both schemes. Let M ≥
1 be a fixed integer and suppose that we want to estimate
〈Z(i)〉l at a sufficiently large time l (that depends on ε, i.e.,
the rate of forgetting the initial condition). Suppose that
we initialize Nm circuits in |0〉⊗n, and reapply and rerun
T(uk) from k = 1 as before. We then obtain the QR states
ρl−M at time l−M and ρl at time l. Thanks to the conver-
gence property, we can instead reinitialize the Nm circuits
in |0〉⊗n at time l−M and, from this time onwards, reap-
ply and rerun T(uk) according to inputs {ul−M+1, . . . , ul}.
At time l, we have the corresponding QR state ρ̃l. By the
convergence property (see Appendix C for the derivation),
we can make the difference between ρl and ρ̃l negligible
by choosing M appropriately based on ε. If we perform
repeated measurements on ρl and ρ̃l, the estimates of 〈Z(i)〉l
and 〈Z̃(i)〉l = Tr(ρ̃lZ(i))will also be close; see Appendix D.

The convergence property can be readily exploited on
current NISQ machines, leading to efficient versions of
both schemes. The first scheme now requires NmSL cir-
cuit runs but only NmSM applications of T(ul). The second
scheme now only needs NmS circuit runs and NmSM appli-
cations of T(ul), both are independent of the input length
L, enabling the QR’s potential for fast and scalable tem-
poral processing. In all schemes, it is possible and perhaps
advantageous to set S = 1 and run Nm circuits (possibly
in parallel if multiple copies of the same hardware are
available) for a sufficiently large Nm. The average of Nm
measurements estimates 〈Z(i)〉, whose estimation accuracy
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increases as Nm increases; see Appendix D for the anal-
ysis. Since qubit reset is not yet available on the IBM
superconducting quantum devices, we employ the first
implementation scheme in our proof-of-principle experi-
ments. It will be a future work of interest to realize these
more efficient protocols on gate-model quantum hardware.

VI. PROOF-OF-PRINCIPLE EXPERIMENTS

Five nonlinear tasks are chosen to carefully test differ-
ent computational aspects of the QR proposal. Tasks I–IV
have the fading memory property. Tasks I and II test the
QR’s ability to learn high-dimensional nonlinear maps.
Both tasks are governed by linear dynamics determined
by some matrix A and have the same form of nonlinear
output. The maximum singular value σmax(A) determines
the rate at which the dynamics forget their initial condi-
tion, while the sparsity of A reflects the pairwise correlation
of the reservoir state elements. Task I is described by a
dense matrix A with σmax(A) = 0.5 and task II is gov-
erned by A with 95% sparsity with σmax(A) = 0.99. Task
III tests the QR’s ability to learn nonlinear maps governed
by highly nonlinear dynamics. Task IV tests the short-term
memory ability and task V is a long-term memory map
for testing the capability of the QR beyond its theoretical
guarantee. For all experimental and numerical details, see
Appendix E.

We implement four distinct QRs from the subclass
described in Sec. IV A on three IBM superconducting
quantum processors [31]. Each QR consists of a single
subsystem [N = 1 in Eq. (1)] with a linear output func-
tion [R = 1 in Eq. (3)]. Hereafter, we drop the subsystem
index k. The 4-qubit and 10-qubit QRs are implemented
on the 20-qubit Boeblingen device; qubits with lower gate
errors and longer coherence times are chosen. The 5-qubit
Ourense and Vigo devices are used for two distinct 5-
qubit QRs. These 5-qubit quantum devices admit simpler
qubit couplings but lower gate errors than the 20-qubit
Boeblingen device; see Appendix E 5 for hardware specifi-
cations. Through comparison among the four QRs, we can
investigate the impact of the size of QRs, the complexity
of quantum circuits implementing the QR dynamics, and
the intrinsic hardware noise on the QRs’ approximation
performance.

A. Quantum circuits for QRs

We require the QRs to forget initial conditions for
approximating fading memory maps. Traditionally, initial
conditions are washed out with a sufficiently long input
sequence until reaching a steady state. Here we bypass the
washout by choosing σ = (|0〉〈0|)⊗n and U0 so that |0〉⊗n

is the steady state of Eq. (1) under ul = 1, meaning that
we can initialize the QR circuits in |0〉⊗n. Furthermore, U0
and U1 should be different and hardware efficient but suffi-
ciently complex to produce nontrivial quantum dynamics.

(a)

(b)

FIG. 2. Quantum circuit schematics for (a) U0(θ) and (b)
U1(φ) employed in proof-of-principle experiments, described by
Eq. (4) in Sec. VI A. Here jt and jc are the target and control
qubits, respectively. The unitaries U0(θ), U1(φ) consist of N0, N1
layers of highlighted gate operations, with each layer acting on a
different qubit pair (jt, jc).

We choose the circuit schematics [see also Figs. 2(a) and
2(b)]

U0(θ) =
N0∏

j=1

[U(jt)
3 (θ jt)CXjcjtU

(jt)
3 (θ jt)

†],

U1(φ) =
n⊗

i=1

U(i)
3 (φ0i

)

N1∏

j=1

[ n⊗

i=1

U(i)
3 (φji)CXjcjt

]
,

(4)

where θ jt = (θ0
jt , θ

1
jt , θ

2
jt) and φji = (φ0

ji , φ
1
ji , φ

2
ji) are gate

parameters, each independently and uniformly randomly
sampled from [−2π , 2π ]. Here U(i)

3 is an arbitrary rota-
tion on single qubit i [40] with inverse U(jt)

3 (θ jt)
† =

U(jt)
3 (−θ0

jt ,−θ2
jt ,−θ1

jt), and CXjcjt is the CNOT gate with
control qubit jc and target qubit jt. These quantum gates are
native to the aforementioned IBM superconducting quan-
tum processors, meaning that no further decomposition
into simpler gates is required to implement these chosen
gates [31]. The numbers of layers N0 and N1 are suffi-
ciently large to couple all qubits linearly while respecting
the coherence limits of these devices. Owing to the more
flexible qubit couplings in the Boeblingen device, circuits
implementing the 4-qubit and 10-qubit QRs have more
gate and random parameters than the 5-qubit QRs.

For the 4-qubit and 10-qubit QRs on the Boeblingen
device, we choose the number of layers N0 = N1 = 5 in
Eq. (4). For the 5-qubit Ourense QR, we implement a
simpler form of Eq. (4), given by

U0 =
4∏

j=1

CXjcjt , U1(φ) =
5⊗

i=1

U(i)
3 (φi).
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(a) (b)

FIG. 3. Qubit coupling maps of the IBM superconduct-
ing quantum processors. (a) The 20-qubit Boeblingen device.
(b) Both the 5-qubit Ourense and Vigo devices.

To implement different QR dynamics on the 5-qubit Vigo
device, we choose

U0(θ) =
3∏

j=1

[R(jt)y (θ jt)CXjcjtR
(jt)
y (θ jt)

†],

U1(φ) =
5⊗

i=1

R(i)x (φi).

Here R(i)y and R(i)x are rotational Y and X gates on qubit i,
respectively. Both gates are special instances of the arbi-
trary single-qubit rotational gate U(i)

3 with one (free) gate
parameter and the other two fixed constants. For all QRs,
natively coupled control and target qubits for CNOT gates
are chosen, meaning that a CNOT gate can be directly
applied to the qubit pair without additional gate opera-
tions. See Fig. 3 for the device qubit coupling maps and
Appendix E 2 for the QR quantum circuit details.

B. Experimental implementation

In this section we report on experiments demonstrating
the first implementation scheme described in Sec. V. We
choose a sufficiently large Nm = 1024 and ε = 0.1 for a
moderate short-term memory. To estimate 〈Z(i)〉l at time l,
each of the Nm circuits implementing the QRs on the Boe-
blingen device and the 5-qubit QRs are run for S = 1024
and S = 8192 shots, respectively. These shot numbers are
chosen according to circuit execution times of the devices.

We apply the four QRs to the five nonlinear tasks on the
multistep ahead prediction and map emulation problems.
To implement the same washout as for the QRs for each
target map, we inject a constant input sequence ul = 1 of
length 50 followed by train and test inputs uniformly ran-
domly sampled from ul ∈ [0, 1]. This change in the input
statistics leads to a transitory target output response. We
remove the associated transients by discarding the first
four target input-output data and the corresponding QR
experimental data; see Appendix E 3 for all data. For the
multistep ahead problem, train and test time steps run from

l = 5 to LT = 23 and LT + 1 = 24 to L = 30, respectively.
For the map emulation problem, K = 2 train input-output
pairs running from l = 5 to L′ = 24 are used, followed
by one unseen test input-output pair with the same time
steps. The number of train and test data in our proof-of-
principle experiments is limited by the length of quantum
circuits allowed on the IBM quantum processors. Further-
more, these cloud-based quantum processors are shared
among users, making continuous experiments infeasible
and durations of experiments lengthy. Yet our work indi-
cates that, despite these current limitations, NISQ devices
can demonstrate learning of input-output maps, and sup-
ports the QR as a viable intermediate application of NISQ
machines on the road to full-fledged quantum devices
equipped with quantum error correction.

To harness the flexibility of the QR approach, a mul-
titasking technique is used, in which the four QRs are
evolved and the estimates of 〈Z(i)〉l for all time steps
are recorded once, whereas the readout parameters w are
optimized independently for each task. That is, fixed QR
dynamics, with fixed gate parameter values, are exploited
for multiple tasks simultaneously. We evaluate and com-
pare the task performance of QRs using the normalized
mean squared error (E) between prediction y|LT+1:L and
target y|LT+1:L, computed as

E =
L∑

l=LT+1

|yl − yl|2/	2
y ,

where μ = 1/(L− LT)
∑L

l=LT+1 yl and 	2
y =

∑L
l=LT+1

(yl − μ)2. While the success of the experimental demon-
stration of hybrid quantum-classical algorithms often
requires error mitigation techniques to reduce the effect
of decoherence [41,42], we remark that our results are
obtained without any process or readout error mitiga-
tion.

C. QR task performance

As the number of qubits increases, the 10-qubit Boeblin-
gen QR is expected to perform better than other QRs. For
the multistep ahead prediction problem, we observe that
two qubits in the 10-qubit Boeblingen QR experienced sig-
nificant time-varying deviations between the experimental
data and simulation results on the Qiskit simulator; see
Appendix E 4 for a discussion. To remedy this issue, we
set the corresponding elements of w to be 0s. The result-
ing 10-qubit Boeblingen QR (with E < 0.08) outperforms
other QRs with a smaller number of qubits on the first
four tasks, and achieves an almost two-fold performance
improvement on tasks II and III; see Table I for all Es
on the multistep ahead prediction problem. The 10-qubit
Boeblingen QR predicted outputs follow the target out-
puts relatively closely, as shown in Fig. 4(a). The 5-qubit
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TABLE I. Es on the multistep ahead prediction.

10-qubit 4-qubit 5-qubit 5-qubit
Task Boeblingen Boeblingen Ourense Vigo

I 0.051 0.088 0.24 0.070
II 0.072 0.12 0.68 0.22
III 0.043 0.10 0.25 0.081
IV 0.079 0.092 0.34 0.11
V 0.47 0.41 2.3 0.20

Ourense QR admits very simple dynamics, whereas the
5-qubit Vigo QR has more gate operations and gate param-
eters. The 5-qubit Ourense QR is outperformed by the
5-qubit Vigo QR in all tasks. Considering that the Ourense
and Vigo devices have similar noise characteristics and
the same qubit coupling map, this suggests that the QR
performance can be improved by choosing a more com-
plex quantum circuit, in the sense of having a longer gate
sequence.

The 10-qubit Boeblingen QR performs better on all
tasks than the 5-qubit QRs except on task V. This could
be due to the impact of the higher noise level in the Boe-
blingen device and the fact that the output sequence is
generated by a map that is not known to be fading mem-
ory; see Appendix E 5 for the hardware specifications. Our
universal class of QRs can exploit the property of spatial
multiplexing as initially proposed in Ref. [22]; also see
Ref. [24] and Fig. 5 for an illustration. Outputs of distinct
and noninteracting 5-qubit QRs can be combined linearly
to harness the computational features of both members.
Since the combined Ourense and Vigo devices have ten
qubits overall as with the 10-qubit Boeblingen QR but with

FIG. 5. The spatial multiplexing schematic. The same input
sequence is injected into two distinct 5-qubit QRs. The internal
states Tr(ρlZ(i)) of the two QRs are linearly combined to form a
single output.

lower noise levels, it would be meaningful to combine
the 5-qubit Vigo and Ourense QRs via spatial multiplex-
ing on the map emulation problem. The results of this
multiplexing is summarized in Table II.

The combination of two 5-qubit QRs as discussed
above achieves E = 0.20, 0.13, 0.16, 0.25, 0.20 for the five
tasks without any readout or process error mitigation. The
predicted multiplexed QR outputs corresponding to the
unseen inputs follow the target outputs relatively closely,
as shown in Fig. 4(b). Without spatial multiplexing, the
5-qubit Ourense or the 5-qubit Vigo QR shows a worse
performance in the first four tasks; see Table II. The spatial
multiplexed 5-qubit QR combines computational features
from the constituent QRs and can achieve comparable per-
formance to the individual members as well as gaining an
almost two-fold performance boost on tasks II and III. We

(a) (b)

FIG. 4. The QR’s predicted outputs for (a) the multistep prediction problem and (b) the map emulation problem. Rows and columns
in (a) correspond to different tasks and QRs, respectively. The first column in (b) corresponds to the multiplexed QR.
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TABLE II. Es on the map emulation.

Multiplexed 5-qubit 5-qubit
Task QR Ourense Vigo

I 0.20 0.26 0.32
II 0.13 0.27 0.23
III 0.16 0.46 0.26
IV 0.25 0.30 0.36
V 0.20 1.1 0.17

anticipate that spatial multiplexing of QRs with more com-
plex circuit structures and a larger number of qubits can
lead to further performance improvements.

VII. CONCLUSION

We propose a class of quantum reservoir computers
endowed with the universality property that is imple-
mentable on available noisy gate-model quantum hardware
for temporal information processing. Our approach can
harness arbitrary but fixed quantum circuits native to noisy
quantum processors, without precise tuning of the circuit
parameters. Our theoretical analysis is supported by proof-
of-concept experiments on current superconducting quan-
tum devices, demonstrating that small-scale noisy quantum
reservoirs can perform nontrivial nonlinear temporal pro-
cessing tasks under current hardware limitations, in the
absence of readout and process error mitigation techniques.
We also detail more efficient implementation schemes of
our QR proposal that could enable the QR’s potential for
fast and scalable temporal processing. It is a future work of
interest to realize these more efficient protocols on quan-
tum hardware. Our work indicates that quantum reservoir
computing can serve as a viable intermediate applica-
tion of NISQ devices on the road to full-fledged quantum
computers.

Our approach is scalable in the number of qubits
by offloading exponentially costly computations to noisy
quantum systems and utilizing classical algorithms with
a linear (in the number of qubits) computational cost to
process sequential data. Moreover, when implemented on
NISQ devices, the microsecond timescale for the evolu-
tion of the quantum reservoir suggests its potential for
real-time fast signal processing tasks. Guided by our the-
ory, we applied the spatial multiplexing technique initially
proposed in Ref. [22], and demonstrate experimentally
that exploiting distinct computational features of multiple
small noisy quantum reservoirs can lead to a computa-
tional boost. As NISQ hardware becomes increasingly
accessible and the noise level is continually reduced, we
anticipate that the quantum reservoir approach will find
useful applications in a broad range of scientific disciplines
that employ time series modeling and analysis. We are also
optimistic for useful applications to be possible even with

a noise level above the threshold for continuous quantum
error correction.
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APPENDIX A: UNIVERSALITY FOR
APPROXIMATING NONLINEAR FADING

MEMORY MAPS

We first define notation for the rest of this section.
Let K([0, 1]) be the set of infinite sequences u =
{. . . , u−1, u0, u1, . . .} such that ul ∈ [0, 1] for all l ∈ Z. Let
K+([0, 1]) and K−([0, 1]) be subsets of K([0, 1]) for which
the indices are restricted to Z

+ = {1, 2, . . .} and Z
− =

{. . . ,−2,−1, 0}, respectively. For any complex matrix A,
‖A‖p = Tr(

√
A†A

p
)1/p is the Schatten p-norm for some

p ∈ [1,∞). For any operator T, the induced operator norm
is ‖T‖p−p = supA∈Cn×n,‖A‖p=1 ‖T(A)‖p . Let D(2n) denote
the set of 2n × 2n density operators.

Consider an input-output map M that maps an infi-
nite input sequence u ∈ K([0, 1]) to a real infinite output
sequence y ∈ K(R). We say that M is w-fading memory if
there exists a decreasing sequence w = {w0, w1, . . .} with
liml→∞ wl = 0 such that, for any u, v ∈ K−([0, 1]), we
have |M (u)0 −M (v)0| → 0 whenever supl∈Z− |w−l(ul −
vl)| → 0. Here M (u)l = yl is the output sequence at time
l. We also require M to be causal and time invariant
as in Ref. [24], meaning that the output of M at time
l depends only on the input up to and including time l,
and its outputs are invariant under time shifts. Now we
are interested in approximating M with a time-invariant
fading memory map M produced by a quantum reservoir
computer.

1. The convergence property

Since M is fading memory, the map M must also forget
its initial condition ρ0. This is the convergence property
[32] or the echo-state property [30]. We give a precise
definition here.

Definition 1 (convergence). —An input-dependent CPTP
map T is convergent with respect to input u ∈ K([0, 1])
if there exists a sequence {δl; l ≥ 0} of positive numbers
with liml→∞ δl = 0 such that, for all u ∈ K+([0, 1]) and
any two density operators ρj ,l (j = 1, 2) satisfying ρj ,l =
T(ul)ρj ,l−1, it holds that ‖ρ1,l − ρ2,l‖1 ≤ δl for l ≥ 0. If a
QR dynamic T is convergent, we call the QR a convergent
system.

Lemma 1. The QR dynamics given by Eqs. (1) and (2) are
convergent with respect to inputs u ∈ K([0, 1]).
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First we show that each subsystem governed by Eq. (2)
is convergent. For any ρ, σ ∈ D(2n), ul ∈ [0, 1], and εk ∈
(0, 1], we have

‖T(k)(ul)(ρ − σ)‖1

= (1− εk)‖[ulT
(k)
0 + (1− ul)T

(k)
1 ](ρ − σ)‖1

≤ (1− εk)‖ρ − σ‖1

≤ 2(1− εk), (A1)

where the last inequality follows from Ref. [[33], Theorem
9.2] and the convex combination ulT

(k)
0 + (1− ul)T

(k)
1 is

again a CPTP map. Now let ρ1,0 and ρ2,0 be two arbitrary
initial density operators; using inequality (A1) L times, we

have

‖ρ1,L − ρ2,L‖1 =
∥∥∥∥

(←−∏
L
l=1T(k)(ul)

)
(ρ1,0 − ρ2,0)

∥∥∥∥
1

≤ (1− εk)
L‖ρ1,0 − ρ2,0‖1

≤ 2(1− εk)
L,

where
←−∏L

l=1T(k)(ul) is the time composition of T(k)(ul)

from right to left.
Second, we show that QR dynamics (1) are convergent

by showing that T(ul) =
⊗N

k=1 T(k)(ul) is again conver-
gent when the subsystems are initialized in a product state.
We apply the same argument as in Ref. [[43], Lemma 5].
Consider two CPTP maps T(1)(ul) and T(2)(ul) of the form
(2). Let ρ1,0 ⊗ σ1,0 and ρ2,0 ⊗ σ2,0 be two arbitrary initial
product states. Then T(1)(ul)⊗ T(2)(ul) is again convergent
with respect to all u ∈ K([0, 1]):

‖ρ1,L ⊗ σ1,L − ρ2,L ⊗ σ2,L‖1 ≤
∥∥∥∥

(←−∏
L
l=1T(1)(ul)⊗ T(2)(ul)

)
(ρ1,0 ⊗ σ1,0 − ρ2,0 ⊗ σ1,0)

∥∥∥∥
1

+
∥∥∥∥

(←−∏
L
l=1T(1)(ul)⊗ T(2)(ul)

)
(ρ2,0 ⊗ σ1,0 − ρ2,0 ⊗ σ2,0)

∥∥∥∥
1

=
∥∥∥∥

(←−∏
L
l=1T(1)(ul)

)
(ρ1,0 − ρ2,0)

∥∥∥∥
1
‖σ1,L‖1 +

∥∥∥∥

(←−∏
L
l=1T(2)(ul)

)
(σ1,0 − σ2,0)

∥∥∥∥
1
‖ρ2,L‖1

≤ 2(1− ε1)
L + 2(1− ε2)

L.

Repeating this argument N times shows that the QR
dynamics T(ul) =

⊗N
k=1 T(k)(ul) are again convergent.

2. The fading memory property

Associate the readout function (3) to the QR dynamics
given by Eqs. (1) and (2). This defines an I/O map M (T,hw).
This I/O map is causal, meaning that its output yl depends
only on ul′ for l′ ≤ l. Furthermore, it is time invariant,
meaning that yτ+l = M (T,hw)(Sτ (u))l for all τ ∈ Z, where
Sτ (u) = {. . . , uτ−1, uτ , uτ+1, . . .} shifts the input sequence
by τ . By causality and time invariance, it suffices to con-
sider the outputs yl of M (T,hw)(u)l for l ≤ 0 and left-infinite
inputs u ∈ K−([0, 1]); see Refs. [24,27,29] for details.

For any u ∈ K−([0, 1]) and any initial condition ρ−∞,

M (T,hw)(u)0 = hw

[(−→∏∞
j=0T(u−j )

)
ρ−∞

]
,

where
−→∏∞

j=0T(u−j ) = limN→∞ T(u0) · · · T(ul−N ) and the
limit is pointwise. We can restate the fading memory prop-
erty in terms of continuity of M (T,hw) with respect to a
certain norm. Given a null sequence w (i.e., a decreasing

sequence w with liml→∞ wl = 0) and any u ∈ K−([0, 1]),
define a weighted norm ‖u‖w = supl∈Z− |ul|w−l. The
map M (T,hw) is w-fading memory if it is continuous in
(K−([0, 1]), ‖ · ‖w).

Definition 2 (fading memory). —Given a null sequence
w, the set of w-fading memory maps is the set of
all continuous functions C(K−([0, 1]), ‖ · ‖w) defined on
(K−([0, 1]), ‖ · ‖w).

Lemma 2. For any null sequence w, M (T,hw) induced by
the QR described by Eqs. (1)–(3) is w-fading memory.

Using the same argument as in Ref. [[24], Lemma 3], it
follows that M (T,hw) is w-fading memory if the CPTP map
T(k)(ul) of each subsystem k is continuous with respect
to ul ∈ [0, 1] for all k = 1, . . . , N . If fact, we show that
T(k)(ul) is uniformly continuous. Let x, y ∈ [0, 1] and A ∈

024065-10



TEMPORAL INFORMATION PROCESSING. . . PHYS. REV. APPLIED 14, 024065 (2020)

C
2nk×2nk . Then

‖T(k)(x)− T(k)(y)‖1−1

= sup
A∈C2nk×2nk ,‖A‖1=1

‖[T(k)(x)− T(k)(y)]A‖1

= (1− εk)|x − y| sup
A∈C2nk×2nk ,‖A‖1=1

‖T(k)0 (A)− T(k)1 (A)‖1

≤ (1− εk)|x − y|(‖T(k)0 ‖1−1 + ‖T(k)1 ‖1−1)

≤ 2(1− εk)|x − y|,

where the last inequality follows from Theorem 2.1 of
Ref. [44]. We remark that Lemma 3 of Ref. [24] is stated
with respect to the Schatten p = 2 norm, but the same
argument holds for the Schatten p = 1 norm.

3. The universality property

Now consider the family M of maps M (T,hw). We state
our main universality result.

Theorem 2 (universality). For any null sequence w, the
QR class M is dense in C(K−([0, 1]), ‖ · ‖w). That is,
given any w-fading memory map M ∈ C(K−([0, 1]), ‖ ·
‖w) and any δ > 0, there exists M (T,hw) ∈M such that, for
all u ∈ K−([0, 1]), supl∈Z− |M (u)l −M (T,hw)(u)l| < δ.

We apply the Stone-Weierstrass theorem to show that
M is dense in C(K−([0, 1]), ‖ · ‖w). It has been shown that
the space (K−([0, 1]), ‖ · ‖w) is a compact metric space
[[27], Lemma 2]. We now state the Stone-Weierstrass
theorem.

Theorem 3 (Stone-Weierstrass). Let E be a compact met-
ric space and let C(E) be the set of real-valued continuous
functions defined on E. If a subalgebra A of C(E) contains
the constant functions and separates points of E, then A is
dense in C(E).

The fact that the family M forms a polynomial algebra
follows from Lemma 5 of Ref. [24] and the observa-
tion that, for any QR dynamics T1(ul) =

⊗N1
k=1 T(k)1 (ul)

and T2(ul) =
⊗N2

k=1 T(k)2 (ul), where each T(k)1 , T(k)2 has the
form (2), we again find that T(ul)(ρ1 ⊗ ρ2) = T1(ul)ρ1 ⊗
T2(ul)ρ2 is of the form (1). Furthermore, T(ul) = T1(ul)⊗
T2(ul) is again convergent when initialized in a product
state of the subsystems. Therefore, the family M forms a
polynomial algebra consisting of w-fading memory maps.

Constant functions can be obtained by setting w
ri1 ,...,rin
i1,...,in= 0 in Eq. (3). It remains to show that M separates

points in K−([0, 1]). That is, for any distinct u, v ∈
K−([0, 1]) with ul �= vl for at least one l, we need to find
a map M (T,hw) ∈M such that M (T,hw)(u)0 �= M (T,hw)(v)0.
We show that we can construct a single-qubit quantum
reservoir with this property.

Consider a single-qubit quantum reservoir with a linear
readout function (n = 1, R = 1, N = 1). For the rest of this
proof, we drop the subsystem index. This quantum reser-
voir consists of one system qubit and one ancilla qubit
denoted as ρa. Choose the dynamics

ρl = T(ul)ρl−1

= (1− ε){ulTra[e−iH (ρl−1 ⊗ ρ0
a)e

iH ]

+ (1− ul)Tra[e−iH (ρl−1 ⊗ ρ1
a)e

iH ]} + εKI/2,
(A2)

where ρ j
a = |j 〉〈j | for j = 0, 1, Tra denotes the partial trace

over ancilla ρa, and ε ∈ (0, 1). The map KI/2 is a CPTP
map defined as KI/2(X ) = Tr(X )(I/2) for any X ∈ C

2×2.
The Hamiltonian H is of the Ising type H = J (X (0)X (1) +
Y(0)Y(1))+ α∑1

j=0 Z(j ), where X (j ), Y(j ), and Z(j ) are the
Pauli X , Y, and Z operators on qubit j , with j = 0 being
the ancilla qubit.

The matrix representation of the CPTP map (A2) is

T(ul) = |00〉〈00| + (1− ε)

⎛

⎜⎜⎝

0 0 0 0
sin2(2J )(2ul − 1) cos2(2J ) 0 0

0 0 cos(2J ) cos(2α) − cos(2J ) sin(2α)
0 0 cos(2J ) sin(2α) cos(2J ) cos(2α)

⎞

⎟⎟⎠ . (A3)

We order an orthogonal basis for C
2×2 as {I , Z, X , Y}.

The matrix representation of the CPTP map (A2) is given
by Eq. (A3). Since Eq. (A2) is convergent, we can choose
any initial condition ρ−∞ = |0〉〈0| with the correspond-
ing vector representation ρ∞ = (1/2)(1, 1, 0, 0). Taking a

linear readout function, for u ∈ K−([0, 1]), the quantum
reservoir implements

M (T,hw)(u)0 = 2w1

[(−→∏∞
j=0T(u−j )

)
ρ−∞

]

2
+ wc,
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where [·]2 is the second element of the vector correspond-
ing to Tr(Zρ0)/2.

Now given two distinct inputs u, v ∈ K−([0, 1]), sup-
pose that u0 �= v0. Then choose J such that cos2(2J ) = 0
and, therefore,

M (T,hw)(u)0 −M (T,hw)(v)0 = 2w1(1− ε)(u0 − v0) �= 0.

Suppose that u0 = v0, and note that, in general,

M (T,hw)(u)0 = w1 sin2(2J )(1− ε)
∞∑

j=0

[(1− ε) cos2(2J )]j (2u−j − 1).

Choose ε ∈ (0, 1) and J such that (1− ε) cos2(2J ) ∈
(0, 1− ε). Then the above is a convergent power series and
the subtraction is well defined:

M (T,hw)(u)0 −M (T,hw)(v)0 = 2w1 sin2(2J )(1− ε)

×
∞∑

j=0

[(1− ε) cos2(2J )]j (u−j − v−j ).

The above is a power series of the form

f (θ) = 2w1 sin2(2J )(1− ε)
∞∑

j=0

θ j (u−j − v−j ),

where f (θ) has a nonzero radius of convergence
and is nonconstant since θ = (1− ε) cos2(2J ) ∈ (0, 1−
ε) and (1− ε) sin2(2J ) ∈ (0, 1− ε). Furthermore, since
we assume that u0 = v0, we have f (0) = 0. Invoking
Theorem 3.2 of Ref. [45], there exists β > 0 such that
f (θ) �= 0 for all |θ | ≤ β, θ �= 0. This concludes the proof
for the separation of points. The universality of M now
follows from the Stone-Weierstrass theorem.

APPENDIX B: INVARIANCE UNDER
TIME-INVARIANT READOUT ERROR

The QR outputs are invariant under time-invariant read-
out error whenever a linear readout function is used. That
is, when R = 1 in Eq. (3), the QR predicted outputs yl
remain unchanged under time-invariant readout error. Let
B = {|i〉} be the computational basis for an n-qubit sys-
tem, with i = 1, . . . , 2n. The readout error is characterized
by a measurement calibration matrix A whose i, j th ele-
ment Ai,j = Pr(i | j ) is the probability of measuring the
state |i〉 ∈ B given that the state is prepared in the state
|j 〉 ∈ B.

We employ the readout error correction method
described in Ref. [4]. For an n-qubit QR, at each time step
l, we execute 2n calibration circuits with each circuit ini-
tialized in one of the 2n computational basis elements. The

outcomes are used to create the measurement calibration
matrix Al. The readout error at time step l is corrected by
applying the pseudoinverse of Al to the measured outcomes
from the experiments.

For all experiments, the measurement outcomes are
stored as the count of measuring each basis elements in B.
Let vl = (v1

l , . . . , v2n

l , 1), where vi
l is the count of measur-

ing |i〉 ∈ B at time step l. Let zl = (〈Z(1)〉l, . . . , 〈Z(n)〉l, 1),
where 〈Z(i)〉l is the finite-sampled approximation of 〈Z(i)〉l
for i = 1, . . . , n. Then we have zl = vlB, where B is a linear
transformation. After applying the readout error correc-
tion, we have z′l = vlA+l B, where A+l is the pseudoinverse
of Al. To optimize the readout function parameters w, col-
lect all measurement data in a matrix v = (v�1 , . . . , v�L )

�
so that z = (z�1 , . . . , z�L )

� = vB, where L is the sequence
length. The linear output of the quantum reservoir com-
puter is y = vBw, where w includes the bias term wc.
Append a corresponding row and column to A†

l to account
for the bias term. Suppose that the readout error is time
invariant. Then A+ = A+l for l = 1, . . . , L. The quantum
reservoir computer output after readout error correction
is y′ = vA+Bw′. Assume that A+ has all rows linearly
independent. Then ordinary least squares yields Bw′ =
ABw. Now given test data with readout error correc-
tion, vtestA+Bw′ = vtestA+ABw = vtestBw. Therefore, the
QR predicted outputs are invariant under time-invariant
readout error.

APPENDIX C: EFFICIENT IMPLEMENTATIONS
OF A SUBCLASS ON GATE-MODEL QUANTUM

COMPUTERS

We detail the second (more efficient) implementation
scheme described in Sec. V and show how the QR’s con-
vergence property leads to more efficient versions of both
schemes in Sec. V. As in Sec. V, we consider QRCs
with a single subsystem [N = 1 in Eq. (1)] and drop the
subsystem index k in Eq. (2). For multiple subsystems,
the efficient implementation is simply applied on each
subsystem.

If qubit reset is available, we can implement the second
scheme in Sec. V based on QND measurements [38]. In
this scheme, to estimate 〈Z(i)〉l, we no longer need to reini-
tialize and rerun the Nm circuits from time 1. Instead, for
each Nm circuit, we perform a QND measurement of Z(i)

at time l, continue running the circuit until the next QND
measurement, and so forth. QND measurements ensure the
information encoded in ρl is retained from one timestep to
the next. To process a length-L input sequence, each Nm
circuit is run S shots so that the average of NmS measure-
ments at time l estimates 〈Z(i)〉l. That is, this scheme needs
NmSL applications of T(ul), but only NmS circuit runs com-
pared to NmLS runs in the first scheme (see Sec. V). This
presents a substantial saving as the number of circuit runs
is independent of the input sequence length L.
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FIG. 6. Quantum circuit implementing the QND measure-
ments by coupling ancilla qubits |0〉⊗n with the QR system qubits
|ψ〉l−1.

To explain QND measurements, we first show that direct
measurement of Z on a “system” qubit is equivalent to
coupling the qubit with an ancilla qubit via CNOT and mea-
suring Za, the Pauli Z operator acting on the ancilla qubit
“a” [33]. To see this, let |ψ〉sys = α|0〉sys + β|1〉sys be the
state of the system qubit. Prepare the ancilla qubit at the
ground state |0〉a. We write

CNOT = |0〉〈0|sys ⊗ Ia + |1〉〈1|sys ⊗ Xa,

where Ia and Xa are the identity and Pauli X operators act-
ing on the ancilla qubit. The system and ancilla state after
applying CNOT is

|〉 = CNOT|ψ〉sys ⊗ |0〉a = α|00〉 + β|11〉.
Measurement of Za on the ancilla qubit is described by
the projectors P+ = Isys ⊗ |0〉〈0|a and P− = Isys ⊗ |1〉〈1|a.
Therefore, the probabilities and postmeasurement system
states are

Pr(+) = 〈|P+|〉 = |α|2,

Tra(P+|〉〈|P+)
Pr(+) = |0〉〈0|sys,

Pr(−) = 〈|P−|〉 = |β|2,

Tra(P−|〉〈|P−)
Pr(−) = |1〉〈1|sys,

where Tra(·) is the partial trace over the ancilla qubit.
Now for an n-qubit QR, we associate each system qubit

in the QR with its ancilla qubit. All n ancilla qubits are pre-
pared in the ground state. Suppose that, when restricted to
pure state preparation, we have drawn Nm circuits using
Monte Carlo sampling. For each of the Nm circuits and
each time step l, we apply the aforementioned ancilla-
coupled measurement of Z(i) for each system qubit in the
QR. After measuring the n ancilla qubits, we reset and
reprepare them in the ground state for measurements at the
next time l+ 1; see Fig. 6.

In Fig. 6, |ψ〉l−1 denotes the state of the system (QR)
qubits and |0〉⊗n denotes the ancilla qubits initialized in the
ground state. Here we have grouped the system and ancilla
qubits and represent them using single wires. The unitary
operator U′l is U0 or U1 with probabilities (1− ε)ul and
(1− ε)(1− ul), and U(l) = U′lC, where C is a product of n
CNOT gates each acting on the ith system-ancilla qubit pair.

Measuring Z(i)a on the ith ancilla qubit and resetting it at
each time step l = 1, . . . , L is equivalent to having L ancilla
qubits associated to the ith system qubit and measuring Z(i)a,l
(i.e., the lth ancilla qubit associated to the ith system qubit).
The resulting QR dynamics are

T(ul)ρl−1 = (1− ε)[ulT0 + (1− ul)T1]ρl−1 + εσ ,

where Tj (ρl−1) = TrA[Uj Cρl−1 ⊗ (|0〉〈0|)⊗nC†U†
j ] for j =

0, 1, and TrA(·) is the partial trace over all n ancilla qubits
denoted by “A.”

We now show that the measured observables Z(i)a,l com-
mute at different times as required by QND. More gener-
ally, we show that Za,l =

⊗n
i=1 O(i)

a,l (l = 1, . . . , L), where,
for each i, we have O(i)

a,l = I (i) (the identity operator on the
ith qubit) or O(i)

a,l = Z(i)a,l , are QND observables. Firstly, we
have the commutator [Za,k, Za,j ] = 0 for all k, j = 1, . . . , L.
Denote the evolved observables in the Heisenberg picture
by

Za(l) = U(1)† · · ·U(l)†Za,lU(l) · · ·U(1) = U†
l:1Za,lUl:1,

where Ul:1 = U(l) · · ·U(1). For k, j = 1, . . . , L with j < k,
we have

[Za(j ), Za(k)]

= U†
j :1Za,j Uj :1U†

k:1Za,kUk:1 − U†
k:1Za,kUk:1U†

j :1Za,j Uj :1

= U†
j :1Za,j U†

k:j+1Za,kUk:1 − U†
k:1Za,kUk:j+1Za,j Uj :1

= U†
k:1[Za,j , Za,k]Uk:1

= 0,

where in the second-to-last equality we have used the
fact that Za,j commutes with the future unitary oper-
ations Uk:j+1. If j > k, applying the same argument
as above shows that [Za(j ), Za(k)] = −[Za(k), Za(j )] = 0.
The commutativity of Za(j ) and Za(k) for all j , k ≥ 1
means that the sequence {Za(j ), j = 1, 2, . . .} has a joint
probability distribution and constitutes a classical stochas-
tic process. QND measurements on the sequence gives a
realization of this stochastic process.

The QR’s convergence property (see Appendix A 1)
leads to more efficient versions of both schemes in Sec. V.
Let M , ρl, ρl−M , and ρ̃l be as given in Sec. V. By the
convergence property [Eq. (A1)], we have

‖ρl − ρ̃l‖1 ≤ (1− ε)M‖ρl−M − (|0〉〈0|)⊗n‖1 ≤ 2(1− ε)M .
(C1)

The difference between ρl and ρ̃l can be made negligible
by choosing M appropriately based on ε. If we perform
repeated measurements on ρl and ρ̃l, then the finite-sample
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estimates of 〈Z̃(i)〉l = Tr(ρ̃lZ(i)) and 〈Z(i)〉l = Tr(ρlZ(i))
will also be close; see Appendix D. Using the convergence
property, the first scheme in Sec. V requires NmSL circuit
runs but only NmSLM applications of T(ul). When L > M ,
a substantial saving in the number of applications of T can
be obtained (for timesteps l > M ) compared to the previ-
ous quadratic dependence on L. The second scheme now
only requires at most NmSM applications of T(ul) and NmS
circuit runs, both are independent of the input sequence
length L. This provides a path for fast and large scale
temporal processing using QRs.

APPENDIX D: MONTE CARLO ESTIMATION

For all schemes described in Sec. V, we can set S = 1
and run Nm Monte Carlo sampled circuits (possibly in par-
allel if many copies of the same hardware are available) for
a sufficiently large Nm. We show that the average of all Nm
measurements at time l estimates 〈Z(i)〉l and its variance
vanishes as Nm tends to infinity.

First consider estimating 〈Z(i)〉l by reinitializing each Nm
circuit in |0〉⊗n and rerunning them from time 1 to time l
according to inputs {u1, . . . , ul}. Recall that

〈Z(i)〉l = Tr(Z(i)ρl) = Tr[Z(i)T(ul) · · · T(u1)(|0〉〈0|)⊗n],

where T(uk) is the input-dependent CPTP map defined
in Eq. (1) for k = 1, . . . , l. Define independent discrete-
valued random variables Xk such that

Pr(Xk = 0) = (1− ε)uk,

Pr(Xk = 1) = (1− ε)(1− uk),

Pr(Xk = 2) = ε.

To implement the QR, for each time k, we independently
sample Nm random variables Xk,j (j = 1, . . . , Nm) from the
same distribution as Xk. Define

Tx =

⎧
⎪⎨

⎪⎩

T0 if x= 0,
T1 if x= 1,
Kσ if x= 2,

where Kσ (ρ) = σ is a constant CPTP map that sends any
density operator ρ to the constant density operator σ in
Eq. (2). The random CPTP maps TXk,j follow the same
distribution as Xk,j and are independent for each k and j .
Furthermore, E[TXk,j ] = T(uk).

For the j th circuit, we implement a sequence of (ran-
dom) CPTP maps TXl,j · · · TX1,j so that at time l, the

(random) QR state is

ρXl,j = TXl,j · · · TX1,j (|0〉〈0|)⊗n,

where Xl,j = (X1,j , . . . , Xl,j ). For each j th circuit, we mea-
sure Z(i) and denote its random outcome by Z(i)l,j . Note
that, for j = 1, . . . , Nm, the Z(i)l,j are independent (but
not necessarily identically distributed) random variables
taking values ±1 (eigenvalues of Z(i)) with conditional
probabilities (conditional on the random variables Xl,j )

Pr(Z(i)l,j = z | Xl,j ) = Tr(ρXl,j P(i)z ), z = ±1,

where the P(i)±1 are the projectors such that Z(i) = P(i)+1 −
P(i)−1. Consider the average of all Nm measurement out-
comes; by the law of total expectation,

1
Nm

Nm∑

j=1

E[Z(i)l,j ]

= 1
Nm

Nm∑

j=1

E{E[Z(i)l,j | Xl,j ]}

= 1
Nm

Nm∑

j=1

E[Tr(Z(i)ρXl,j )]

= 1
Nm

Nm∑

j=1

Tr{Z(i)E[TXl,j ] · · ·E[TX1,j ](|0〉〈0|)⊗n}

= 1
Nm

Nm∑

j=1

Tr[Z(i)T(ul) · · · T(u1)(|0〉〈0|)⊗n]

= Tr(ρlZ(i))

= 〈Z(i)〉l.

Therefore, the finite-sample estimate is unbiased. More-
over, using the fact that

E[(Z(i)l,j )2] =
∑

z=±1

z2Pr(Z(i)l,j = z) = 1,

the variance of the average of Nm measurements is

Var
[

1
Nm

Nm∑

j=1

Z(i)l,j

]
= 1

N 2
m

Nm∑

j=1

Var[Z(i)l,j ]

= 1
Nm
(1− 〈Z(i)〉2l ).

Using the convergence property to estimate 〈Z(i)〉l for a
sufficiently large l (that depends on ε), we reinitialize Nm
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(a)

(b)

FIG. 7. Quantum circuits for the (a) 10-qubit QR and (b) 4-qubit QR on the Boeblingen device.

circuits at time l−M and run the circuits according to
inputs {ul−M+1, . . . , ul}. Let 〈Z̃(i)〉l = Tr(Z(i)ρ̃l), where

ρ̃l = T(ul) · · · T(ul−M+1)(|0〉〈0|)⊗n.

In this setting, for the j th circuit, we implement a sequence
of (random) CPTP maps TXl,j · · · TXl−M+1,j so that the (ran-
dom) QR state at time l is

ρX̃l,j = TXl,j · · · TXl−M+1,j (|0〉〈0|)⊗n,

where X̃l,j = (Xl−M+1,j , . . . , Xl,j ). Let Z̃(i)l,j be the random
outcome of measuring Z(i). The conditional probabilities
are

Pr(Z̃(i) = z | X̃l,j ) = Tr(ρX̃l,j P(i)z ), z = ±1.

A similar argument as above shows that the average of all
Nm measurements satisfies

E

[
1

Nm

Nm∑

j=1

Z̃(i)l,j

]
= 〈Z̃(i)〉l,

Var
[

1
Nm

Nm∑

j=1

Z̃(i)l,j

]
= 1

Nm
(1− 〈Z̃(i)〉2l ).

The convergence property and Eq. (C1) ensure that the bias
(in mean) vanishes exponentially fast,

∣∣∣∣E
[

1
Nm

Nm∑

j=1

Z̃(i)l,j

]
− 〈Z(i)〉l

∣∣∣∣ = |Tr[Z(i)(ρ̃l − ρl)]|

≤ ‖ρ̃l − ρl‖1

≤ 2(1− ε)M ,

where we have used the fact that, for any Hermitian
matrix A, |Tr(Z(i)A)| ≤ σmax(Z(i))‖A‖1, with σmax(Z(i)) =

(a) (b)

FIG. 8. Quantum circuits for the (a) 5-qubit Ourense QR and (b) 5-qubit Vigo QR.
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(a) (b)

FIG. 9. Full washout, train, and test input-output sequences for (a) the multistep ahead prediction problem and (b) the map emulation
problem. The first rows in (a) and (b) show the input sequences.

1 denoting the maximum singular value of Z(i). This shows
that the bias can be exponentially suppressed by choosing
M appropriately based on ε, so that the estimates of 〈Z̃(i)〉l
and 〈Z(i)〉l are also close.

APPENDIX E: EXPERIMENTAL AND
NUMERICAL DETAILS

1. Nonlinear temporal processing tasks

We give detailed descriptions of the five nonlinear
temporal processing tasks. Tasks I and II are governed
by linear reservoirs with polynomial readout [27,29],
described by

xl = Axl−1 + cul, yl = h(xl),

where A ∈ R
2000×2000 and c ∈ R

2000. To have short-term
or fading memory, we rescale the maximum singular value
σmax(A) = 0.5 for task I and σmax(A) = 0.99 for task II,
meaning that task II retains the initial condition and past
inputs for a longer time duration. The sparsity of A deter-
mines the pairwise correlation between reservoir state
elements. We set A to be a full (dense) matrix for task
I and 95% sparse for task II. The readout function h
is a degree-two polynomial in the state elements. Task
III is a recently proposed classical reservoir computing
model that achieves good performance in chaotic system

modeling [27], described by

xl = p(ul)xl−1 + q(ul), yl = wTxl,

where p(ul) =
∑4

j=0 Aj uj
l and q(ul) =

∑2
j=0 Bj uj

l are
matrix-valued polynomials in the input ul, Aj ∈ R

700×700
⊕

R
700×700, and Bj ∈ R

700×1 ⊕
R

700×1. For task III, We
rescale σmax(Aj ) <

1
3 for all j so that it exhibits short-term

memory. Task IV is a Volterra series with kernel order
5 and memory 2, commonly applied to model responses
of nonlinear systems in control engineering [29]:

yl = wc +
5∑

i=1

2∑

j1,...,ji=0

wj1,...,ji
i

i∏

k=1

ul−j k .

For the first three tasks, elements of A, Aj , B, and w are
uniformly randomly sampled from [−1, 1]. The constant c
and coefficients of the readout function h are also sampled
from the same distribution. The same applies to the kernel
coefficients wj1,...,ji

i and wc in task IV.
Task V is a missile moving with a constant velocity in

the horizontal plane, a continuous-time long-term memory
nonlinear map [46] described by

ẋ1 = x2 − 0.1 cos(x1)(5x1 − 4x3
1 + x5

1)− 0.5 cos(x1)u,

ẋ2 = −65x1 + 50x3
1 − 15x5

1 − x2 − 100u,
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FIG. 10. The full target output sequences, the train and test output sequences of the four QRs for each task on the multistep ahead
prediction problem. Each column corresponds to each n-qubit QR output and each row corresponds to each task.

with y = x2. The missile dynamics is simulated using the
(4, 5) Runge-Kutta formula in MATLAB, with a sampling
time of τ = 1/80 for 1 s.

2. Quantum circuits for QRs

We detail the circuits implementing the QR dynamics
in our proof-of-principle experiments presented in Sec. VI.
The quantum circuits for the 4-qubit and 10-qubit Boeblin-
gen QRs are shown in Fig. 7. The quantum circuits for the
5-qubit Ourense and 5-qubit Vigo QRs are shown in Fig. 8.

3. Full input-output sequential data

Since we bypass the washout for QRs by initializing
them in the state |0〉n, this is equivalent to washing out their
initial conditions with a length Lw constant input sequence
ul = 1. The same washout has been applied to all nonlin-
ear tasks. We have checked that Lw = 50 is enough for all
tasks to reach steady states given the same initialization
x0 = 0. Particular caution has been taken to washout task
IV, in which we set ul = 1 for l = −2,−1. For each tar-
get map, we discard the first four input-output sequence
data points, and the corresponding QR experimental data,
to remove the transitory output response due to the change
in input statistics. In Fig. 9, we show the full washout,
train, and test input-output target sequences for both the

multistep ahead prediction and the map emulation prob-
lems. In Fig. 10 we plot the full target output sequences,
the train and test QR outputs on the multistep ahead pre-
diction problem. In Fig. 11 we plot the full target output
sequences, the train and test QR outputs on the map emu-
lation problem. In all figures, the transitory responses are
indicated by dotted lines.

4. Measurement and simulation data

We simulate the four QRs using the IBM Qiskit simu-
lator under ideal and noisy conditions. The noise models
used are obtained from the device calibration data. We
fetch the updated device calibration data each time a job
is executed on the hardware. The circuits simulated are
the same as the circuits employed for the experiments
and so is the number of shots. For the multistep ahead
prediction problem, the 10-qubit Boeblingen QR experi-
enced a significant deviation from simulated results on
qubits Q = 1, 8 (see Fig. 12), resulting in larger E =
0.26, 0.29, 0.068, 0.15, 6.1 for the four tasks. After setting
the readout parameters w1 = w8 = 0 for Q = 1, 8, this
issue was circumvented at the cost of using a fewer number
of computational features. The resulting 10-qubit Boeblin-
gen QR still achieves performance improvement over other
QRs with a smaller number of qubits on the multistep
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(a) (b)

FIG. 11. The full target output sequences, the train and test output sequences of the QRs for each task on the map emulation problem.
(a) The two train output sequences and (b) the test output sequence. The columns (from left to right) correspond to the multiplexed
5-qubit QRs, 5-qubit Ourense QR, and the 5-qubit Vigo QR. Each row corresponds to each task.

ahead prediction problem in the first three tasks. A time-
invariant readout error in qubit i linearly transforms the
expectation 〈Z(i)〉l. The QR predicted outputs are invari-
ant under time-invariant readout errors when using linear
regression to optimize w, wc as derived in Appendix B.
However, for the 10-qubit Boeblingen QR, the deviations
in qubits Q = 1, 8 are time varying. On the other hand,
the 5-qubit Vigo device experienced almost time-invariant
deviations in qubit Q = 0, as shown in Figs. 12 and 13, but
this does not affect the performance of this QR noticeably.
The experimental results of the 5-qubit Ourense QR follow
the noisy simulation results closely. For the map emu-
lation problem, the experimental results of both 5-qubit
QRs follow the simulated results closely, with an almost
time-invariant shift in Q = 0 for the 5-qubit Vigo QR.

5. Hardware specifications

The experiments are conducted on the IBM 20-qubit
Boeblingen (version 1.0.0), 5-qubit Ourense (version
1.0.0), and 5-qubit Vigo (version 1.0.0) superconducting
quantum processors [31]. The gate duration for an arbitrary
single-qubit rotation gate U3 [40] is τU3 ≈ 71.1 ns for all
qubits, whereas the CNOT gate durations differ for different
qubits.

See Fig. 7 for the 4-qubit and 10-qubit Boeblingen QR
quantum circuits. The circuits are chosen such that both
QRs have the same number of layers in U0 and U1. In this
setting, the maximum duration of a circuit executed on the
Boeblingen device is the same for both QRs. As stated in

the main text, the chosen qubits for the 4-qubit QR and the
10-qubit QR on the Boeblingen device are Q = 0, 1, 2, 3
and Q = 0, 1, 2, 3, 5, 6, 7, 8, 10, 12. These qubits are cho-
sen due to their longer coherence times, shorter CNOT gate
durations, and smaller gate and readout errors. During the
experiment, the maximum readout error is 10−2 and the
maximum U3 gate error implemented is 10−3. The max-
imum CNOT gate error implemented is 4.3× 10−2 and
the maximum CNOT gate duration is τCNOT ≈ 427 ns. We
assume that commuting gates can be executed in parallel.
We choose N0 = N1 = 5 numbers of layers for U0 and U1
in the 4-qubit and 10-qubit Boeblingen QRs. The maxi-
mum length of any input sequence (including the transient)
for the multistep ahead prediction and the map emula-
tion problems is L = 30. Therefore, the maximum numbers
of U3 gate executions and CNOT gate executions is 5L =
5× 30 = 150. The maximum duration of a circuit exe-
cuted on the Boeblingen device is 150× (τU3 + τCNOT) ≈
150× (71.1+ 427) = 74.7μs, within the coherence times
(T1, T2) for most qubits chosen.

In Fig. 8 we show the quantum circuits for the 5-
qubit Ourense and 5-qubit Vigo QRs. Owing to the more
restricted qubit couplings in these 5-qubit devices, the
circuits for the 5-qubit QRs are simpler than those of
the 4-qubit and 10-qubit Boeblingen QRs. To combine
different computational features for the spatial multiplex-
ing technique, we choose circuits that are sufficiently
different for these two 5-qubit QRs. In particular, the
5-qubit Vigo QR consists of single-qubit rotational Y
gates in U0 and single-qubit rotational X gates in U1.
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FIG. 12. Input sequence, and experimental and simulation results for each qubit of the four QRs at each time step l = 1, . . . , 30 for
the multistep ahead prediction problem.

On the other hand, the 5-qubit Ourense QR uses arbi-
trary single-qubit rotational gates U3 only in the circuit
implementing U1.

The 5-qubit Ourense device achieves the same order of
magnitude in readout errors, coherence times, and CNOT
gate durations as the 20-qubit Boeblingen device, but
lower CNOT gate errors. For the Ourense device, the max-
imum U3 gate error and readout error implemented are
0.9× 10−3 and 4.1× 10−2, and the maximum CNOT gate
error implemented is 8× 10−3, a lower error compared to
the Boeblingen device. The maximum CNOT gate duration
implemented is τCNOT ≈ 576 ns. For the 5-qubit Ourense
QR, the circuit implementing U0 is longer than that for U1.
The U0 circuit consists of four CNOT gates, and the maxi-
mum duration of a circuit executed for the 5-qubit Ourense

QR is 4L× τCNOT ≈ 70 μs, also within the coherence
limits of most qubits.

The 5-qubit Vigo device is similar to the 5-qubit
Ourense device. They have the same qubit couplings and
share similar noise profile and hardware specifications.
Rotational X and Y gates are used on this device, with
gate duration τ = 35.5 ns. The maximum single-qubit gate
error implemented is 0.8× 10−3 and the maximum read-
out error implemented is 7.8× 10−2. The maximum CNOT
gate error and gate duration implemented are 1.3× 10−2

and τCNOT ≈ 462.2 ns, respectively. For this QR, U0 is
the longer circuit consisting of three layers of single-qubit
rotation Y gates and two layers of CNOT gates. There-
fore, the maximum duration of a circuit implemented is
(3τ + 2τCNOT)L = (3× 35.5+ 2× 462.2)× 30 ≈ 31 μs.

024065-19



CHEN, NURDIN, and YAMAMOTO PHYS. REV. APPLIED 14, 024065 (2020)

(b)

(a)

FIG. 13. Experimental and simulation results for each qubit i = 0, . . . , 4 and each time step l = 1, . . . , 24 for the map emulation
problem. Three input sequences are used in this problem, labeled as inputs I, II, and III. Row i in a subfigure corresponds to the
experimental data for the ith input sequence. Column j corresponds to the experimental data for the j th qubit. (a) The experimental
data for the 5-qubit Ourense QR. (b) The experimental data for the 5-qubit Vigo QR.
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