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We derive upper bounds to free-space concentration of electromagnetic waves, mapping out the limits to
the maximal intensity for any spot size and optical-beam-shaping device. For sub-diffraction-limited opti-
cal beams, our bounds suggest the possibility for orders-of-magnitude intensity enhancements compared
with existing demonstrations, and we use inverse design to discover metasurfaces operating near these new
limits. We also demonstrate that our bounds may surprisingly describe maximal concentration defined by
a wide variety of metrics. Our bounds require no assumptions about symmetry, scalar waves, or weak scat-
tering, instead relying primarily on the transformation of a quadratic program via orthogonal-projection
methods. The bounds and inverse-designed structures presented here can be useful for applications from
imaging to three-dimensional printing.
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Free-space optical waves with large focal-point inten-
sities and arbitrarily small spot sizes—below the diffrac-
tion limit—are a long-sought goal [1–3] for applications
ranging from imaging [4–8] to three-dimensional (3D)
printing [9,10], for which nanostructured lenses have
enabled recent experimental breakthroughs [11,12]. In this
paper, we derive upper bounds to free-space concentra-
tion of electromagnetic waves, revealing the maximal
focal-point intensity possible (related to the well-known
“Strehl ratio” [13,14]) for a fixed source power and for
any desired spot size. For waves incident from any region
of space—generated by scattering structures, spatial light
modulators, or light sources of arbitrary complexity—we
show that the nonconvex-beam-concentration problem can
be transformed to a quadratic program [15] with easily
computable global optima. We also extend this approach
to derive the maximal intensity independent of the exit
surface of an incident wave. Our bounds simplify those
derived by Fourier analysis of prolate spheroidal wave
functions (PSWFs) [16–18] in the scalar one-dimensional
limit. By honing in on the two essential degrees of free-
dom—the field intensity at the focal point and its average
over a ring at the desired spot size—we further simply
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the beam-concentration problem to a rank-2 optimization
problem, resulting in analytical upper bounds in the far
zone. For very small spot sizes G, which are most desir-
able for transformative applications, we show that the
focal-point intensity must decrease proportional to G4, a
dimension-independent scaling law that cannot be over-
come through any form of wave-front engineering. The
bounds have an intuitive interpretation: the ideal field pro-
file at the exit surface of an optical-beam-shaping device
must have maximal overlap with the fields radiating from
a dipole at the origin yet be orthogonal to the fields emanat-
ing from a current loop at the spot-size radius. We compare
theoretical proposals and experimental demonstrations for
our bounds, and we find that there is a significant oppor-
tunity for order-of-magnitude intensity enhancements at
those small spot sizes. We use “inverse design” [19–
22], a large-scale computational-optimization technique,
to design metasurfaces that generate nearly optimal wave
fronts and closely approach our general bounds. By refor-
mulating the light-concentration problem under alternative
spot-size metrics, we show that the ideal field profiles for
all these metrics are nearly identical in the far zone, sug-
gesting that our analytical bounds, scaling laws, and ideal
field profiles may be even more general than expected.

It is now well understood that arbitrarily small spot sizes
are possible and that the diffraction “limit,” which is a
critical factor underpinning resolution limits in imaging
[4–8], photolithography [23–25], and other optical appli-
cations [26–29] (and is highly pertinent for applications
such as surface-enhanced Raman scattering [30–32] and
extraordinary optical transmission [33–35]), is not a strict
bound on the size of an optical focal spot, but rather is a
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soft threshold below which beam formation is difficult in
some generic sense (e.g., accompanied by high-intensity
side lobes). Although evanescent waves can be leveraged
to surpass the diffraction limit [36–40], they require struc-
turing in the near field. The possibility of sub-diffraction-
limited spot sizes without near-field effects was recog-
nized in 1952 by Toraldo di Francia [41]; stimulated by
results for highly directive antennas [42], he analytically
constructed successively narrower beam profiles with suc-
cessively larger side-lobe energies (i.e., energies outside
the first zero) in a scalar, weak-scattering asymptotic limit.
Subsequent studies [43–46] connected the theory of sub-
diffraction-limited beams to “superoscillations” in Fourier
analysis [47,48]; that is, band-limited functions that oscil-
late over length or time scales faster than the inverse of
their largest Fourier component. For one-dimensional and
two-dimensional (2D) scalar fields, superoscillatory wave
solutions have been explicitly constructed [45,49–51], and
in the one-dimensional case energy-concentration bounds
have been derived [18] by the theory of prolate spheroidal
wave functions [16,17]. For optical beams, the only known
bounds to focusing (apart from bounds on energy den-
sity at a point without considering spot sizes [52,53]) are
those derived in Refs. [54,55] (and recently in Ref. [56],
albeit with bounds on related but different quantities),
which use special-function expansions and/or numerical-
optimization techniques to discover computational bounds
that apply for weakly scattering, rotationally symmetric
filters in a scalar approximation. A bound that does not
require weak scattering was developed in Ref. [55], but
it still assumes rotational symmetry in a scalar diffraction
theory.

There has been further work toward mapping possible
field distributions and the structures that might achieve
them. Singular-value decompositions can be used to rig-
orously identify a basis for all possible “receiver” (e.g.,
image-plane) field solutions [57]. Then, given a known fea-
sible solution, one can use the equivalence principle via
physical polarizabilities to identify practical metasurfaces
that achieve such field distributions [58]. However, neither
of these approaches is able to identify among all possible
Maxwell solutions which ones are optimal.

Recent demonstrations [11,12,59–69] of complex
wavelength-scale surface patterns focusing plane waves
to sub-diffraction-limited spot sizes have inspired hope
that the previous trade-offs of large side-lobe energies
or small focal-point intensities might be circumvented or
ameliorated by strongly scattering media accounting for
the vector nature of light [62,65], as all previous [18,
45,54,55] asymptotic scaling relations and energy bounds
require assumptions of rotational symmetry, weak scat-
tering (except in Ref. [55]), and scalar waves. Such pos-
sibilities are especially enticing in the context of the
broader emergence of “metasurfaces” [70–73] enabling
unprecedented optical response. Given the importance of

polarization filtering and high-numerical-aperture lenses
to various imaging modalities, incorporation of the vector
nature of light is critical to identifying ultimate resolu-
tion limits [74–76]. Moreover, recent design strategies for
(diffraction-limited) metasurface lenses have shown that
it is critical to account for strong-scattering physics to
achieve high-efficiency structures [77,78], a conclusion
that extends to superresolving metalenses as well.

In this paper, we derive bounds on the maximal con-
centration of light that do apply in the fully vectorial,
strongly scattering regime, without imposing any sym-
metry constraints. Our derivation starts with the elec-
tromagnetic equivalence principle [79], which allows us
to consider the effects of any scatterer, modulator, or
light source as effective currents on some exit surface
(Sec. I A). The optimal beam-concentration problem is
nonconvex due to the requirement for a particular spot
size, but we use standard transformations from optimiza-
tion theory to rewrite the problem as a quadratic program
amenable to computational solutions for global extrema.
We subsequently bound the solution to the quadratic prob-
lem by a simpler and more general rank-2 optimization
problem (Sec. I A), and also develop bounds independent
of the exit surface via modal decomposition (Sec. I B).
The rank-2 bounds reduce to analytical expressions in
the far zone, and we compare the ideal field profiles
with various theoretical and experimental demonstrations
in Sec. II. We show that there is still opportunity for
orders-of-magnitude improvements, and we design meta-
surfaces approaching our bounds (Sec. III). We also inves-
tigate how our bounds on maximal intensity perform
under alternative spot-size metrics in Sec. IV. Finally,
in Sec. V, we discuss extensions of our framework to
incorporate metrics other than focal-point intensity, near-
field modalities, inhomogeneities, and new point-spread
functions.

I. GENERAL BOUNDS

A. Aperture-dependent bounds

Consider a beam generated by almost any means; for
example, an incident wave passing through a scatterer
with a complex structural profile [80–82], a light beam
shaped by precisely controlled spatial light modulators
[83–86], or a light source with a complex spatial emis-
sion profile [87–89]. The physics underlying the extent to
which such a beam is spatially concentrated in free space
is distilled to its essence by the electromagnetic equiva-
lence principle [79]: the propagating fields are uniquely
defined by their tangential values on any beam-generation
exit surface, forming effective surface currents that encap-
sulate the entire complexity of the field-generation pro-
cess. (The surface equivalence principle is the starting
point for diffraction theory [14] and was used recently
for metasurface-based wave-front shaping [58,90,91] and
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FIG. 1. Our framework establishes maximal light concentration for any zero-field contour, such as a circle. We derive two bounds:
one that incorporates the shape of the exit aperture (enabling comparison with the well-known Strehl ratio), while otherwise indepen-
dent of the beam-generation method, and a second that requires only a modal basis and is independent of the aperture. SLM, spatial
light modulator.

optimal antenna designs [92,93].) By this principle, the
beam-focusing problem is equivalent to asking what the
maximal spatial concentration of a beam generated by
electric and magnetic surface currents radiating in free
space is. We depict this distillation of the problem in
Fig. 1. We consider fields and currents at a single temporal
frequency ω (e−iωt time evolution) and simplify the expres-
sions to follow by encapsulating the electric and magnetic
fields (E, H) and currents (Keff, Neff) in six-vectors ψ and
ξ , respectively:

ψ =
(

E
H

)
, ξ =

(
Keff
Neff

)
. (1)

The fields ψ emanating from the effective currents ξ
distributed across the “exit” surface A are given by the con-
volution of the currents with �, the known 6 × 6 free-space
dyadic Green’s function [94]:

ψ(x) =
∫

A
�(x, x′)ξ(x′). (2)

Thus, the currents comprise the degrees of freedom deter-
mining the beam shape. As illustrated in Fig. 1, finding the
maximal focal intensity at a single point for any desired
focal-spot size now reduces to determining the optimal
effective currents. We assume equations such as Eq. (2)
can be solved by any standard electromagnetic discretiza-
tion scheme [95], and we write the matrix versions with the
same symbols but without position arguments. For exam-
ple, ψ = �ξ is the matrix equivalent of Eq. (2), where ψ
and ξ are vectors and � is a matrix. The total intensity
at any point in free space, summing electric and magnetic

contributions, is given by the squared norm of ψ :

I(x) = |ψ(x)|2 =
∫

A

∫
A
ξ †(x′′)�†(x, x′′)�(x, x′)ξ(x′)

= ξ †�†�ξ . (3)

We now formulate the maximal-concentration question
as a constrained optimization problem. The ideal optical
beam has maximal focal intensity at a point (set at x = 0),
zero field along some spot-size contour C, and a total prop-
agating power P not exceeding an input value of P0. In
Sec. IV we consider alternatives to a zero-field contour as
metrics of concentration, and thus we denote the optimiza-
tion problem with the zero-field contour as “OPZF.” Then,
the maximal focal intensity and the ideal effective currents
generating it solve the optimization problem denoted by

maximize
ξ

I(x = 0) = ξ †�
†
0�0ξ

subject to ψ(x)|C = �Cξ = 0 and P ≤ P0,
(4)

where subscripts 0 and C indicate that � and ψ are eval-
uated (in the appropriate basis) at the origin or at the
spot-size contour, respectively. (It does not violate any
physical laws to set all electric and magnetic components
to zero on a contour. If one wanted to require only a subset
of field components to be zero, then that could be achieved
by including only those components in the definition of
�C .) Attempting to directly solve Eq. (4) is infeasible: the
�

†
0�0 matrix is positive semidefinite (which is nonconvex

under maximization [96]), the equality constraint prevents
the use of Rayleigh-quotient-based approaches [97], and
the power constraint is difficult to write in a simple convex
form.
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We can bypass the nonconvexity of the optimization
problem, OPZF, through multiple transformations. First, to
simplify the power constraint, we replace it with a con-
straint on the intensity of the effective currents, normalized
such that their total intensity is 1: ξ †ξ = 1. We seek the
ideal beam, which has all of its intensity-generating power
in the direction of the maximal-intensity spot, validat-
ing this replacement. Second, we subsume the equality
constraint by considering only the effective currents that
satisfy zero field on C by construction. To this end, we
project the currents ξ onto the subspace of all currents that

generate zero field on C: ξ =
[

I − �
†
C
(
�C�

†
C
)−1

�C

]
ν =

Pν, where I is the identity matrix, the second term is the
orthogonal projection matrix [15,98] for �C , and the P
matrix projects onto the null space of �C (we assumed any
linearly dependent rows of �C have been removed such
that the inverse of �C�

†
C exists). By this projection, the

equality constraint, which sets the field to zero on C, is
satisfied for arbitrary effective currents ξ : �Cξ = �CPν =
(�C − �C) ν = 0. Finally, we simplify the quadratic figure
of merit encoding the total intensity at the origin, �

†
0�0,

by projecting it along an arbitrary polarization. As �0 is
a 6 × 6N matrix, where N is the number of degrees of
freedom of the effective currents, �

†
0�0 is a matrix with

rank at most 6, as dictated by the polarizations of the
electric and magnetic fields at the origin. Instead of incor-
porating all intensities, we project the field at the origin
onto an arbitrary six-component polarization vector μ to
obtain the following (scalar) expression: μ†ψ(x = 0) =
μ†�0Pν. The intensity at the origin in this polarization
is then given by

∣∣μ†ψ(x = 0)
∣∣2 = ν†P�

†
0μμ

†�0Pν, where
the inner matrix �

†
0μμ

†�0 is now of rank 1 (the polariza-
tion vector μ should have a fixed norm in order to compare
intensities along different polarizations on an equal foot-
ing). Rank-1 quadratic forms are particularly simple, as
evidenced here by the fact that we can define a vector γμ =
�

†
0μ such that the intensity at the origin simply reduces

to the inner product of vector quantities (Pν is a vector
of effective currents ξ satisfying the zero-field constraint),

ν†Pγμγ
†
μPν =

(
γ

†
μPν

)†
γ

†
μPν.

The above transformations yield the equivalent but now-
tractable optimization problem:

maximize
μ,ν

ν†Pγμγ †
μPν

subject to ν†Pν ≤ 1,
(5)

where ν represents arbitrary effective currents, P projects
them to satisfy the zero-field condition, and γμ rep-
resents the conjugate transpose of the Green’s func-
tion from the effective currents to the maximal-intensity
point. Equation (5) is equivalent to a Rayleigh-quotient

maximization, and the solution is therefore given by the
largest eigenvalue and corresponding eigenvector of the
generalized eigenproblem Pγμγ

†
μPν = λPν. Here, because

γμγ
†
μ is of rank 1, it is straightforward to show (see Sup-

plemental Material [99]) that the solution can be written
analytically, with maximal eigenvector ν = Pγμ/‖Pγμ‖
and maximal eigenvalue of γ †

μPγμ. Reinserting the trans-
formed variable definitions from above, we find the opti-
mal (unnormalized) effective currents are given by ξopt =
�

†
0μ− �

†
C
(
�C�

†
C
)−1

�C�
†
0μ. Then, we have that the μ-

polarized intensity at the origin, for any wave-front-
shaping device in any configuration, is bounded above by
the expression

I ≤ μ†
[
�0�

†
0 − �0�

†
C
(
�C�

†
C
)−1

�C�
†
0

]
μ. (6)

Equation (6) represents a first key theoretical result of
our work. Although it may have an abstract appearance,
it is a decisive global bound to the optimization prob-
lem, requiring evaluation of only the known free-space
dyadic Green’s function at the maximal-intensity point,
the zero-field contour, and the effective-current exit sur-
face. The matrix in the square brackets is a 6 × 6 matrix,
whose eigenvector with the largest eigenvalue represents
the optimal polarization for which the intensity is maxi-
mized. The structure of Eq. (6) has a simple physical basis:
the maximal intensity of an unconstrained beam would
simply focus as much of the effective-current radiation to
the origin, as dictated by the term �0�

†
0, but the constraint

requiring zero field on C necessarily reduces the intensity
by an amount proportional to the projection of the spot-size
field (�C) on the field at the origin (�0).

The transformations leading to Eq. (6) are exact, requir-
ing no approximations or simplifications. Thus, the opti-
mal fields, given by �ξopt, are theoretically achievable
Maxwell-equation solutions, and the bound of Eq. (6) is
tight: no smaller upper bound is possible. We find that
using a spectral basis [100] for the zero-field contour and
simple collocation [100] for the aperture plane suffices
for rapid convergence and numerical evaluation of Eq. (6)
within seconds on a laptop computer.

To simplify the upper bound and gain further physical
intuition, we can leverage the fact that the high-interest
scenario is small, sub-diffraction-limited spot sizes. The
zero-field condition—that is, �Cξ = 0 in Eq. (4)—is typi-
cally a high-rank matrix due to the arbitrarily large number
of degrees of freedom in discretizing the zero-field contour.
Yet in a spectral basis, such as Fourier modes on a circular
contour or spherical harmonics on a spherical surface, for
small spot sizes it will be the lowest-order mode, polarized
along the μ direction, that is most important in constrain-
ing the field. If we denote the basis functions as φi, then φ0
will be the prime determinant of the zero-field constraint
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for small spot sizes. Instead of constraining the entire field
to be zero along the zero-field contour, if we constrain
only the zeroth-order, μ-polarized mode, we will loosen
the bound but gain the advantage that the zero-field con-
straint is now of the form

(
φ

†
0�C

)
ξ = 0, a vector-vector

product with rank 1. Then the previous analysis can be
applied, with the replacement �C → φ

†
0�C . We can intro-

duce two new fields, physically motivated below, by the
definitions

ψ0 = �
†
0μ, (7)

ψ1 = �
†
Cφ0. (8)

Given these two fields, algebraic manipulations (see Sup-
plemental Material [99]) lead to an upper bound on the
maximal intensity,

I ≤ ψ
†
0ψ0 − |ψ†

0ψ1|2
ψ

†
1ψ1

, (9)

where the bound comprises a first term that denotes the
intensity of a spot-size-unconstrained beam and a second
term that accounts for the reduction due to imposition of
the spot-size constraint.

The fields in Eqs. (7) and (8) can intuitively explain the
bound of Eq. (9). Whereas �0 and �C generate fields in
the focusing region from currents in the aperture plane,
�

†
0 and �

†
C generate fields in the aperture plane from the

focusing region. By reciprocity [79], which relates �(x, x′)
to �(x′, x), the field ψ0 = �

†
0μ is related to the field ema-

nating from dipolar sources at the focal spot back to the
aperture plane (it is the conjugate of that field, with the
signs of magnetic sources and fields reversed—reciprocity
flips the signs of off-diagonal matrices of �). Similarly,
ψ1 = �

†
Cφ0 is related to the field emanating from the zero-

field contour back to the aperture plane. As illustrated in
Fig. 2, the bound of Eq. (9) states that the maximal focal-
spot intensity is given by the norm of the first field (focal
point to aperture) minus the overlap of that field with the
second field (zero-field region to aperture). The smaller
a desired spot size is, the closer these fields are to each
other, increasing their overlap and reducing the maximal
intensity possible. This intuition is furthered by our con-
sidering the optimal effective currents that would achieve
the bound of Eq. (9), which are given by (see Supplemental
Material [99])

ξopt = ξ0

(
ψ0 − ψ

†
1ψ0

ψ
†
1ψ1

ψ1

)
, (10)

where ξ0 = 1/
√
ψ

†
0ψ0 − |ψ†

0ψ1|2/ψ†
1ψ1 is a normaliza-

tion factor such that ξ †
optξopt = 1. Equation (10) demon-

strates that the ideal field on the exit surface should

Aperture

Focal spot

Ideal 
excitation 
field

FIG. 2. Reciprocity-based illustration of fields that determine
the maximal intensity of Eq. (9). By reversing the source and
measurement positions, we show that the ideal excitation field
on the aperture A maximizes overlap with ψ0 while requiring
zero overlap with ψ1 (ψ0 and ψ1 are fields emanating from
a point dipole at the origin and dipoles on the spot-size ring,
respectively).

maximize overlap with ψ0 while being orthogonal to ψ1.
For small spot sizes, these two fields are almost identical,
resulting in a significantly reduced maximal intensity.

B. Modal-decomposition bounds

Alternatively, one might ask about maximal spatial con-
centration of light independent of the exit surface, simply
enforcing the condition that the light field comprises prop-
agating waves. For example, in a plane, what combination
of plane waves (or any other modal basis [101]) offers
maximal concentration? In this case, the formulation is
very similar to that of Eq. (4), except that now the field
ψ is given as a linear combination of modal fields: ψ =
Uc, where U is a modal-basis matrix (after appropriate
discretization) and c is a vector of modal-decomposition
coefficients. By analogy with �0 and �C , we can define
the field at zero and on the zero-field contour in the modal
basis as U0 and UC , respectively. Then, the bounds of
Eqs. (6) and (9) and the definitions of Eqs. (7) and (8) apply
directly to the modal-decomposition case with the replace-
ments �0 → U0 and �C → UC . For completeness, we can
write the general bounds as

I ≤ μ†
[

U0U†
0 − U0U†

C
(

UCU†
C
)−1

UCU†
0

]
μ. (11)

Equation (11) represents the second key general theoret-
ical result; as for Eq. (6), it appears abstract, but it is a
simple-to-compute global bound on the intensity via the
6 × 6 matrix in square brackets, which again has clear
physical meaning as the maximal unconstrained intensity
(from U0U†

0) minus the projection of that field onto the
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FIG. 3. Ideal field intensities in a plane (along any radial direc-
tion), determined by Eq. (11), for spot size G from 0.1λ to 0.5λ.
The intensity for all spot sizes is normalized to IG=0.5, the peak
intensity for G = 0.5. The inset shows the intensity profile for
G = 0.1λ on a logarithmic scale.

representation of a constant field along the zero contour
projected onto the modal basis (the second term).

The bound of Eq. (11) applies generally to any modal
basis and zero-field contour. For the prototypical case of
plane-wave modes and a circular zero-field contour in
the plane, one can find a semianalytical expression for
Eq. (11), with ideal field profiles shown in Fig. 3. If one
defines the maximal unconstrained intensity as I0 (which
is 3k2/16π given appropriate normalizations) then, as we
show in Supplemental Material [99], the maximal focus-
ing intensity for spot size R is given by a straightforward
though tedious combination of zeroth-order, first-order,
and second-order Bessel functions; in the small-spot-size
limit (kR � 1), the asymptotic bound is

I ≤ 13
13824π

(kR)4 I0. (12)

The maximal intensity must fall off at least as the fourth
power of the spot size, which is identical to the dependence
of the aperture-dependent bounds in the far field, which has
important ramifications for practical design, as we show in
the next section.

Our bounds share a common origin with those of an
“optical eigenmode” approach [102]: the quadratic nature
of power and momentum flows in electromagnetism. A
key difference appears to be the choice of the figure
of merit, as well as the purely computational nature of
the optical eigenmode approach [102,103], using com-
putational projections onto numerical subspaces. Above,
we showed that orthogonal projections and physically
motivated Fourier decompositions lead to analytical and
semianalytical bound expressions.

We show in Supplemental Material that, for scalar
waves in one dimension, our modal-decomposition bounds
coincide exactly with those derived by a combination of
Fourier analysis and interpolation theory [18,104]. If in the
one-dimensional case one were to stack U0 and UC in a sin-
gle matrix and multiply it by its conjugate transpose, then

the resulting matrix,
(

U0U†
0 U0U†

C
UCU†

0 UCU†
C

)
, is exactly the matrix

of sinc functions that defines the eigenproblem for which
PSWFs are the eigenvectors [105]. Thus, our modal-basis
approach can be understood as a vector-valued, multi-
dimensional generalization of the PSWF-based Fourier
analysis of minimal-energy superoscillatory signals.

II. OPTICAL BEAMS IN THE FAR ZONE

The bounds of Eqs. (6) and (9) allow arbitrary shapes for
the exit surface and the zero-field contour. The prototypi-
cal case of interest, for many applications across imaging
and 3D printing, for example, involves a beam of light
shaped or created within a planar aperture, or more gen-
erally within any half space where the exit surface can be
chosen to be a plane, and propagating along one direction,
with concentration measured by the spot size in a trans-
verse two-dimensional plane. Hence, the exit surface is an
aperture plane and the zero-field contour is a spot-size cir-
cle. A dimensionless concentration metric known as the
“Strehl ratio” [13,14] quantifies focusing in the far zone of
such beams, where diffraction effects can be accounted for
in the normalization.

In the far zone, with the focusing-aperture distance
much larger than the aperture radius and the wavelength of
light, the six electric and magnetic polarizations decouple,
reducing the response for any one to a scalar problem. As
we show in Supplemental Material [99], for any aperture-
plane polarization, the focal-point fieldψ0 of Eq. (7) is pro-
portional to e−ikz/z for propagation direction z and wave
number k = ω/c, while the zero-contour fieldψ1 of Eq. (8)
is proportional to the same factor multiplied by the zeroth-
order Bessel function J0; that is, ψ1 ∼ J0(krρ0/z)e−ikz/z,
where ρ0 is the spot-size radius and r is the radial position
in the aperture plane. These are the Green’s-function solu-
tions and require no assumptions about the symmetries of
the optimal fields. The evaluation of the overlap integrals
ψ

†
0ψ0, ψ†

0ψ1, and ψ†
1ψ1 in the aperture plane are integrals

of constants and Bessel functions. For any aperture shape,
we can find an analytical bound on the maximal focusing
intensity by evaluating the bound for the circumscribing
circle of radius R. Performing the integrations (see [99]),
we find Eq. (9) becomes

I ≤ k2R2

16πz2 − 1
4πρ2

0

[J1(kRρ0/z)]2

[J0(kRρ0/z)]2 + [J1(kRρ0/z)]2 .

(13)
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Equation (13) provides a general bound for any aperture-
focus separation distance z and spot-size radius ρ0. The
dependence on kR/z and related quantities is charac-
teristic of any far-zone beam, and can be divided out
for a separation-distance-independent bound. The Strehl
ratio accounts for this dependence in circularly symmet-
ric beams by dividing the focal-point intensity by that of
an Airy disk, which is the diffraction-limited pattern pro-
duced by a circular aperture. Within the Strehl ratio is
a normalized spot-size radius, ζ0 = kRρ0/z, which equals
the Airy-pattern spot size multiplied by a normalized spot
size G between 0 and 1. We can generalize the Strehl
definition beyond the Airy pattern: instead, divide the
maximal intensity, Eq. (9), by the intensity of an uncon-
strained focused beam (without the zero-field condition),
which is simply ψ†

1ψ1 (which conforms to the usual Airy
definition for a circular aperture). Thus, S = I/Imax = 1 −
|ψ†

0ψ1|2/
√
ψ

†
0ψ0ψ

†
1ψ1. By this definition, the Strehl ratio

Smax of the optimal-intensity beam of Eq. (13) is given by

Smax = 1 − 4
ζ 2

0

[J1(ζ0)]2

[J0(ζ0)]2 + [J1(ζ0)]2 . (14)

A diffraction-limited Airy beam occurs for ζ0 equaling the
first zero of J1, in which case Smax = 1. As ζ0 decreases
below the first zero of J1, the second term of Eq. (14)
increases from zero, reducing Smax. Although we arrive at
Eqs. (13) and (14) from Eq. (9), the bound derived from
loosening the constraints and solving the rank-2 optimiza-
tion problem, our numerical results show that in the far
zone, the full-rank optimization problem of Eq. (5) that is
bounded above by Eq. (6) has exactly the same solution

(the equivalence is not exact for noncircular apertures, but
even then the discrepancy practically vanishes for spot size
G � 1). Physically, this means that in the far zone, maxi-
mally focused beams are symmetric under rotations around
the propagation axis for any spot size, such that only their
first Fourier coefficient is nonzero on the spot-size ring.
From a design perspective, this equivalence implies that
the bound of Eq. (14) is physically achievable, and that the
corresponding Maxwell field exhibits the largest possible
intensity for a given spot size.

Figure 4(a) plots the intensity bound, Eq. (9), for a vari-
ety of exit-aperture shapes and from the near zone to the
far zone, with a generic spot size G = 0.55. The bound is
normalized by the far-zone bound for a circumscribing cir-
cle of radius R in Eq. (13) (effectively scaling by z2, the
square of the aperture-focus distance) to account for the
quadratic power decay. In each case the far-zone bound is
larger than that of the near zone or the mid zone, suggest-
ing that the far-zone bounds of Eqs. (13) and (14) may be
global bounds at any distance. For each case, the maximal
intensity is bounded above by the bound for the circum-
scribing circle (solid black line), while the optimal field
profiles are highly dependent on the aperture shapes (inset
images).

Figure 4(b) plots the far-zone bound Smax as a function
of spot size G (blue curve), and compares various theoreti-
cal results from the literature [12,64,103,106–109]. (Many
of the references include experimental results; for fair com-
parison and to exclude experimental errors, we use either
their simulated G and S values or reconstruct them with
our own simulations as detailed in Supplemental Material
[99].) For relatively large spot sizes (G > 0.7), theoretical
proposals for amplitude filters [106] or phase filters [107]

Amplitude-only filter
Phase-only filter

Optimized 
pupil filter

, Eq. (14)

≈ 3×

≈ 5×

Superoscillatory 
lens

~         as    0

Supercritical 
lens

Superoscillatory 
optical needle

Amplitude-
modulated

 mask

(b)(a)
Upper bound, Eq. (13)

= 0.55

Normalized spot sizeAperture-focus distance

M
ax

im
um

 in
te

ns
ity
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hl
 ra

tio

Near zone Far zone

FIG. 4. (a) Intensity bounds for various aperture shapes (normalized to far-zone bound IFZ, Eq. (13)). The bounds are largest in the
far zone, where the optimal field profiles (inset images) are highly dependent on the aperture shape. Equation (13) is the general bound
of the circumscribing circle for each shape, represented by the dashed line. (b) Maximal Strehl ratio [Eq. (14)] compared with that
for previous designs, including an amplitude-only pupil filter [106], phase-only pupil filter [107], an optimized pupil filter [103], a
superoscillatory lens [12], a superoscillatory optical needle [64], a supercritical lens [108], and an amplitude-modulated mask [109].
The inset shows that despite our allowing for arbitrary diffractive optical elements, our bound (blue line) is smaller than the bound in
Ref. [54] (dashed black line), which requires rotation symmetry in the scalar and weak-scattering limit.
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can closely approach the limits, although embedded in the
proposals is a weak-scattering assumption that may be dif-
ficult to achieve in practice. (The key reason they fall short
of the bound is that they do not allow for multiple scat-
tering to redistribute energy in the exit plane.) For small
spot sizes, on the other hand, the maximal Strehl ratio
decreases rapidly. A Taylor expansion of Eq. (14) reveals
the asymptotic bound (see Supplemental Material [99]),

Smax = ζ 4
0 /192, ζ0 � 1, (15)

which represents a severe restriction—halving the spot size
results in a 16-fold decrease in maximal focal intensity.
This fundamental limit suggests that extremely small spot
sizes are impractical from both power-consumption and
fabrication-tolerance perspectives. The quartic dependence
is independent of dimensionality (in Supplemental Mate-
rial [99] we show that the same dependence arises for a
focal sphere, as well as for focal points in 2D problems)
and can be explained generally: for small enough spot
sizes, the zero-contour field will always have a maximum
at the origin and thus all odd powers in a Taylor expan-
sion around the origin must be zero. The first nonconstant
field dependence in the expansion is quadratic, and since
the overlap quantities in the intensity bound are themselves
quadratic in the field, the general intensity dependence on
spot size always results in an a ζ 4

0 scaling law for small spot
sizes. (While this is reminiscent of the quartic dependence
between the transmission through a a subwavelength hole
in a conducting screen and the hole size [110], we show in
Supplemental Material [99] that their physical origins are
unrelated.)

Perhaps the most important region of the figure is
for intermediate values of the spot size (0.1 � G � 0.7),
where it is possible to meaningfully shrink the spot size
below the diffraction limit without an overwhelming sac-
rifice of intensity. This is the region that recent designs
[12,64,103,108,109] have targeted (especially 0.5 < G <

0.7) with a variety of approaches, including superoscil-
latory lenses or needles and optimized pupil filters. Yet
as seen in Fig. 4(a), these designs mostly fall dramati-
cally short of the bounds. The best result by this met-
ric is the “optimized pupil filter” of Ref. [103], whose
quadratic-programming approach comes within a fac-
tor of 5 of the bound, and demonstrates the utility of
computational-design approaches for maximal intensity.
The other designs fall short of the bounds by factors of
100–1000, offering the possibility for significant improve-
ment by judicious design of the diffractive optical ele-
ment(s).

The inset in Fig. 4(b) compares our analytical bound of
Eq. (14) with the computational bounds of Ref. [54], which
used special-function expansions to identify upper limits to
the intensity as a function of spot size for scalar, rotation-
symmetric waves in the weak-scattering limit. Perhaps

surprisingly, despite our allowing for far more general opti-
cal setups and for vector waves without any symmetry or
weak-scattering assumptions, our bounds are 3 to 5 times
smaller than those of Ref. [54]. (An analytical bound coin-
ciding with Eq. (14) was derived in Ref. [55], albeit under
the assumption of rotational symmetry in a scalar approxi-
mation and without the other general results herein.) Note
conversely, however, that our approach is also prescriptive,
in the sense that it identifies the exact field profiles that can
reach our bounds.

We can also characterize the effective currents on the
aperture that achieve the bound in Eq. (14). For spot
sizes close to the diffraction limit (G = 1), the currents
are maximally concentrated around the aperture rim and
decrease toward the center, where the amplitude is close
to zero. This is because small, localized spots require
large transverse wave-vector components, which origi-
nate from the currents around the rim. As the spot size
decreases, those edge currents are partially redistributed to
the center to create the interference effects giving rise to
sub-diffraction-limited spots.

Given the feasibility of achieving sub-diffraction-
limited waves, it is important to contextualize the recent
work of Miller [57] (see Sec. 5.5 therein), who used a
singular-value-decomposition approach to identify possi-
ble field patterns that can be generated. In that work, it
is shown that sub-diffraction-limited Gaussian field pro-
files require exponentially large input powers, and it is
suggested that therefore sub-diffraction-limited focusing is
essentially impossible. The key distinction our work makes
is loosening the requirement for a Gaussian field profile,
instead imposing only spot-size constraints on the field
without reference to any desired profile. This more gen-
eral problem has feasible, sub-diffraction-limited solutions
whose input powers scale only polynomially with the spot
size.

As discussed above, our bounds, both in the general case
of Eq. (6) and in the optical-beam case of Eq. (13), are
tight in the sense that they are achievable by fields that are
solutions of Maxwell’s equations, given by ψ = �ξopt. Yet
as shown in Fig. 4, theoretical designs for sub-diffraction-
limited beams have fallen far short of the bounds. A natural
question, then, is whether realistic material patterning and
designs can generate the requisite fields to achieve the
bounds.

III. INVERSE-DESIGNED METASURFACES

We use “inverse design” to discover refractive-index
profiles that can approach the concentration bounds.
Inverse design [19–22] is a large-scale computational-
optimization technique, mathematically equivalent to
backpropagation in neural networks [111–113], that
enables rapid computation of sensitivities with respect to
arbitrarily many structural or material degrees of freedom.
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Given such sensitivities, standard optimization techniques
[114] such as gradient descent (used here) can be used
to discover locally optimal structures, often exhibiting
orders-of-magnitude better performance [115,116] than
structures with few parameters designed by hand or brute
force.

For some target wavelength λ, we consider metasur-
faces with thicknesses of 1.9λ and widths (diameters)
ranging from 10λ to 23λ, equivalent to films with thick-
nesses on the order of 1 μm and widths on the order of
dozens of microns for visible-frequency light. We con-
sider two-dimensional scattering (i.e., metasurfaces that
are translation invariant along one dimension) to reduce
the computational cost and demonstrate the design princi-
ple. Dimensionality has only a small effect on the bounds;
in Supplemental Material [99], we show that the 2D
equivalent of Eq. (14) is

S2D
max = 1 − 4

ζ0

sin2 ζ0

sin 2ζ0 + 2ζ0
. (16)

For the design variables, we allow the permittivity at every
point on the metasurface to vary (i.e., “topology opti-
mization” [19,21]), and we generate two types of designs

(depicted in Fig. 5): binary metasurfaces, in which the per-
mittivity must take one of two values(chosen here as 1 and
12), and grayscale metasurfaces, in which the permittivity
can vary smoothly between two values as in gradient-index
optics [117].

The optical figure of merit F that we use to discover
the optimal design is not exactly the zero-point intensity of
Eq. (4), as the zero-field constraint is difficult to implement
numerically. Instead, for a desired spot size G, we subtract
a constant α times the field intensity at the points ±G from
the origin:

F = |ψ(0)|2 − α
[|ψ(−G)|2 + |ψ(G)|2] . (17)

This is a penalty method [118] that can enforce arbitrarily
small field intensities (with sufficiently accurate simula-
tions) by increasing the constant α over the course of
the optimization. We take the electric field polarized out
of the plane, such that ψ can be simplified to a scalar
field solution of the Helmholtz equation, which we solve
by the finite-difference time-domain method [119,120].
Adjoint-based sensitivities are computed for every struc-
tural iteration via two computations: the “direct” fields
propagating through the metasurface, and “adjoint” fields

(e) (f) (g)

(b)

(c)

(d)

(a)

FIG. 5. (a) Inverse-designed metasurfaces, with grayscale (gradient index, red circles) and binary (blue circles) material distribu-
tions, approach the 2D bounds (black line) of Eq. (16) for a variety of spot sizes. The similar 3D bound of Eq. (14) is included for
comparison with Fig. 4. Three specific designs, highlighted with a cross in (a), are shown in (b)–(d), along with their intensity profiles
on the focal plane (blue line) and those achieving the 2D bounds (dashed red line), normalized relative to the diffraction-limited inten-
sity for each case. (e)–(g) Field intensity (normalized to the incident intensity) and phase profiles near the exit surface (2λ from the
metasurface) for the corresponding designs in (b)–(d) compared with those achieving the 2D bounds. The focal distance is set to 50λ,
and the metasurfaces have widths L = 23λ for G = 0.99 and 0.52 and L = 10λ for G = 0.21.
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that emanate from the maximal-intensity and zero-field
locations, with phases and amplitudes of the exciting cur-
rents determined by the derivatives of Eq. (17) with respect
to the field.

Figure 5 depicts the results for many inverse-designed
metasurfaces. Figure 5(a) compares the bound of Eq. (16)
(black line; the nearly identical 3D bound is in grey) with
the computed Strehl ratio of unique optimal designs for
spot sizes ranging from 0.21 to 1; strikingly, the designed
metalenses closely approach the bound for all spot sizes,
with the best designs achieving 90% of the maximal inten-
sity possible. In Figs. 5(b)–5(d) three specific designs
are shown alongside the resulting field profiles in their
focal planes (we provide a full list of permittivity values
at each grid point of these three metasurface designs in
Supplemental Material [99]). The intensity does not per-
fectly reach zero but is forced to be significantly smaller
than the peak intensity through the penalty constant α
in Eq. (17). The field intensities and phases on the exit
surface (2λ from the metasurface) corresponding to the
three designs are shown in Figs. 5(e)–5(g). Figure 5(e)
shows good qualitative agreement with the ideal field
profiles achieving the 2D bounds, and even for smaller
spot sizes the designed metasurfaces achieve the intensity
redistributions—exhibited by local intensities larger than
1—required to approach the bounds [Figs. 5(f) and 5(g)].
It is difficult to explain exactly how the computation-
ally designed metasurface patterns achieve nearly optimal
focusing; for spot sizes close to 1, the variations in material
density suggest an effective gradient-index-like profile that
offers lenslike phase variations across the device width,
although the scattering effects of the front and rear sur-
faces render such explanations necessarily incomplete. The
depicted design with G = 0.21 exhibits to our knowledge
the smallest spot size of any theoretical proposal to date.

IV. ALTERNATIVE SPOT-SIZE METRICS

To this point, we have considered the problem of max-
imizing the field intensity subject to a spot size defined
by the field equaling zero around a prescribed contour. Of
course, this is not the only metric one might consider. In
this section, we consider two alternative definitions of the
spot size that do not require the field to go to zero anywhere
and that enforce “concentration” through other charac-
teristics of an optical beam. The two properties that we
consider are the full width at half maximum (FWHM) of
the beam, a commonly used metric for experimental mea-
surements [12,59,63,64,67], and the local wave number
(as measured by the spatial variations in the field), whose
maximization was an impetus for early work in super-
oscillations [43–48]. We show that with these constraints,
the corresponding field-concentration problems can be for-
mulated as nonconvex, quadratically constrained quadratic
programs (QCQPs) whose global bounds can be found

computationally in reasonable (polynomial) time. For the
canonical far-zone scenario considered in Sec. II, we com-
pare the optimal beams for the three metrics—a zero-field
contour, a FWHM spot size, and a minimal local wave
vector—and we find that the beams are nearly identical.
These numerical experiments suggest that the intensities
and optimal-beam profiles found by our analytical bounds
for the zero-field-contour metric may describe optimal
beams across a wide swath of possible “concentration”
metrics.

For each of the alternative metrics we consider, we
retain the objective of maximizing the intensity at the
origin and replace the zero-field-contour constraint with
a constraint on another property. As a first alternative,
we impose a constraint that requires the average field
intensity to fall to its FWHM value within a prescribed,
sub-diffraction-limited contour C. The average field value
around the contour is given by 1/|C| ∫C |ψ(x)|2 dx =
ξ †

[
(1/|C|) ∫C �†�

]
ξ , where |C| denotes the perimeter

of contour C. We denote this optimization problem as
“OPFWHM,” which is written as

maximize
ξ

I(x = 0) = ξ †�
†
0�0ξ

subject to ξ †
[

1
|C|

∫
C
�†�

]
ξ ≤ 1

2
ξ †�

†
0�0ξ ,

ξ †ξ ≤ 1,

(18)

where the objective represents the intensity at the origin,
the first constraint requires the FWHM to occur within
the contour C, and the second constraint is the power
normalization.

As a second alternative, we consider one of the early
definitions of “superoscillations”: a signal comprising spa-
tial frequencies up to some maximum k can have a “local,”
position-dependent wave number kloc(x), as measured by
spatial variations in the field, that is larger than k by
an arbitrary extent [45]. To define kloc, one could use a
gradient-based expression such as −i∇, yet the resulting
operator would not be Hermitian, limiting its viability.
Instead, we use the negative Laplacian, a positive-definite
real-symmetric operator (for fields that decay sufficiently
fast), normalized by the field intensity at the origin:
kloc(x) =

√
−∇2|ψ(x)|2/|ψ(0)|2. For a plane wave eik·x,

the local wave number equals that of the plane wave; that
is, kloc(x) = |k|. Thus, an alternative way to define a tightly
confined beam would be to require the local wave num-
ber at the origin to be at least as large as some kloc,min
that is much larger than the free-space wave number ω/c;
that is, kloc,min 	 ω/c. In this optimization-problem for-
mulation, denoted by “OPkloc ,” we now use the constraint
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k2
loc(x = 0) ≥ k2

loc,min:

maximize
ξ

I(x = 0) = ξ †�
†
0�0ξ

subject to ξ † [−∇2 (
�†�

)∣∣
x=0

]
ξ ≥ k2

loc,minξ
†�

†
0�0ξ ,

ξ †ξ ≤ 1,
(19)

where in the kloc constraint we have moved the field nor-
malization |ψ(0)|2 to the right-hand side, such that the
quadratic nature of the problem is readily apparent.

The two alternative optimization problems, OPFWHM
and OPkloc , both comprise nonconvex quadratic objectives
subject to two quadratic constraints (one convex and one
nonconvex in each case). It is not possible (to our knowl-
edge) to identify analytical bounds for such objectives.
However, one can use semidefinite relaxation (SDR), a
now-standard technique [121] in optimization theory, to
“relax” the problem from a quadratic one for variables ξ
of size N to a linear one in a much larger space of dimen-
sion N 2, for which interior-point methods can find global
optima [114]. Typically, such relaxations lead to bounds
that may be “loose” (i.e., unattainable), but it is known
in QCQP theory [122] that for complex-variable quadratic
problems with three or fewer constraints, SDR bounds are
“tight” (i.e., , attainable) due to a duality gap that is strictly
zero. Thus, we can use SDR to compute exact bounds and
field profiles for problems OPFWHM and OPkloc .

We briefly summarize the application of SDR to prob-
lems OPFWHM and OPkloc . Each problem is of the form

maximize
ξ

ξ †Aξ

subject to ξ †Bξ ≤ 0,

ξ †ξ ≤ 1.

(20)

The first idea in SDR is to rewrite terms of the form ξ †Aξ
as Tr

(
Aξξ †

)
, and then define the positive-semidefinite,

rank-1 matrix X by X = ξξ †, such that ξ †Aξ = Tr (AX).
Then Eq. (20) is equivalent to

maximize
ξ

Tr (AX)

subject to Tr (BX) ≤ 0,

Tr X ≤ 1,

X � 0, rank X = 1.

(21)

The objective and constraints in Eq. (21) are all linear in X
except for the constraint rank X = 1. The “relaxation” of
SDR denotes dropping this rank-1 constraint, leaving a lin-
ear program whose solution represents an upper bound (for
our maximization problem) for the original quadratic pro-
gram. By the QCQP theory for fewer than four constraints,
as discussed above, this bound is tight.

Figure 6 compares the analytical bounds of the zero-field
optimization problem, OPZF, with the computational SDR
bounds for the alternative optimization problems,OPFWHM
and OPkloc . Each bound is computed for many sub-
diffraction-limited values of a different parameter: OPZF
with respect to the zero-field spot size, OPFWHM with
respect to the FWHM spot size, and OPkloc with respect to
the local wave vector (all normalized relative to the respec-
tive values for a diffraction-limited beam; seeSupplemental
Material [99]). There is no simple mapping between these
three parameters, but we can measure those parameters
for the optimal beams of each of the three optimization
problems, and Figs. 6(a)–6(c) show the results. One can
see that the optimal beams for the three different problems
exhibit nearly identical parameters. This suggests that the
beams themselves might be very similar, and this is con-
firmed in Fig. 6(d), which shows the optimal beams for the
three metrics that all exhibit a normalized zero-field spot

OP k locOP FWHMOP ZF

Normalized zero-field spot size
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tio
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Normalized FWHM spot size Normalized local wave vector

(b) (c)

Normalized radial position

= 0.61
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FIG. 6. Optimal beam characteristics for three concentration metrics: OPZF [Eq. (4), blue lines], OPFWHM [Eq. (18), red circles],
and OPkloc [Eq. (19), black crosses] refer to the optimization problems with constraints on the zero-field spot size G, FWHM spot
size, and local wave vector, respectively. (a)–(c) Bounds versus spot-size radius, FWHM, and local wave vector at the focal point,
kloc(x = 0), respectively (all normalized to those of a diffraction-limited beam). (d) Optimal beam intensity profiles (normalized to
the peak intensity at the origin, I0) with zero-field spot size G = 0.61 for the three different optimization problems, showing nearly
identical beam profiles, especially around the central peak.
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size G = 0.61, and from which it is clear that the beams
themselves are nearly identical, especially near the origin
and up to the first zero. In this region, the relative differ-
ence between each pair of the beams is less than 1%. This
striking similarity suggests two conclusions: first, the opti-
mal beam profiles are “robust,” in the sense that changing
the concentration definition may result in nearly equivalent
beams, and second, our analytical bounds may describe
even the optimal concentration that is possible as defined
by a wide variety of metrics. (Of course, one can con-
coct metrics that must have different bounds; e.g., if the
objective is the maximal intensity subject to small intensity
within some “window” that represents a field of view, then
certainly the corresponding bounds must depend on the
size of the window. However, our analytical expressions
would still almost certainly represent upper bounds, since
they would represent the limit of a very small window.)

V. SUMMARY AND EXTENSIONS

We have established bounds on the maximal concentra-
tion of free-space vector electromagnetic waves. We have
derived bounds for any desired zero-field contour, either
incorporating an aperture as in Eqs. (6), (9), and (14) or
dependent only on a modal basis, as in Eqs. (6) and (12).
By a suitable transformation of the light-concentration
problem, we obtain analytical bounds in multiple regimes
(small spot sizes, far zone, etc.), providing insight into
the ideal excitation field as well as revealing a dimension-
independent quartic spot-size scaling law. Using inverse
design, we have theoretically proposed optimal metasur-
face designs approaching these bounds. We have also
demonstrated that the ideal beam profiles under alterna-
tive spot-size metrics are nearly identical to those for the
zero-field-contour metric in the far zone.

Looking forward, there are a number of related ques-
tions and application areas where this approach can be
applied. One may further explore other field-concentration
metrics. For example, we can ask if it is feasible to spec-
ify certain target Maxwell fields on a contour. We show in
Supplemental Material [99] that the problem of maximiz-
ing the focal intensity given a target field profile on some
contour can be reduced to a complex-variable QCQP with
one constraint. As explained in the previous section, such
problems can be solved in polynomial time by SDR. In this
way, we obtain exact, global bounds and physically attain-
able fields. One may also be interested in metrics other
than focal-point intensity. One common metric, a minimal-
energy metric for a fixed focal-point intensity [18,104], is
equivalent to a focal-point maximization metric under con-
straints of fixed energy, as can be shown by comparing the
Lagrangian functions of each. Other metrics, potentially
focusing on minimizing energy within a specific region
(e.g., the field of view) can be seamlessly incorporated into
the approach developed here.

We have considered the medium through which light
propagates to be free space (or any homogeneous material,
which simply modifies the speed of light in the medium),
but our results apply directly to any inhomogeneous back-
ground by using the corresponding Green’s function in
Eq. (6). For near-field imaging with the image plane near
some scattering medium, our approach can identify the
optimal resolution. It can also potentially be applied to
random media [123], where the Green’s function can be
appropriately modified through ensemble averaging, to
potentially identify optimal concentration within complex
disordered media.

One can also explore bounds to other related phenom-
ena such as space-time focusing [124,125] or superdi-
rectivity [42,126]—directivity greater than that obtained
with the same antenna configuration uniformly excited.
Just as achieving sub-diffraction-limited beams relies on
a delicate interference of propagating waves, superdirec-
tivity requires structured antenna arrays with finely tuned
excitation amplitudes. Superdirective antennas suffer from
diminished efficiency and large side-lobe energies [126],
and the bound techniques developed herein may provide
deeper insight or generalized bounds for such phenomena.

Finally, we can expect that the bounds here can be
used as a family of potential point-spread functions across
imaging applications. Various emerging techniques at the
intersection of quantum optics, metrology, and parameter-
estimation theory [127,128] suggest the possibility for
imaging with resolution improvements beyond the clas-
sical Rayleigh limit and Airy disk. A combination of
the sub-diffraction-limited point-spread functions provided
here and quantum measurement theory may yield even
further improvements.
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