Enhancing Energy Product and Thermal Stability of SmFe₁₂ by Interstitial Doping

D. Odkhuu⁽⁰⁾,^{1,*} T. Ochirkhuyag,¹ and S. C. Hong⁽⁰⁾,[†]

¹Department of Physics, Incheon National University, Incheon 22012, South Korea ²Department of Physics, University of Ulsan, Ulsan 44610, South Korea

(Received 26 September 2018; revised manuscript received 5 January 2019; accepted 17 April 2020; published 29 May 2020)

Enhancing energy product and thermal stability at the same time while retaining the concentration of rare-earth (RE) elements in RE-3*d* compounds is desirable for permanent magnetic applications. Herein, all-electron electronic structure calculations are used to reveal possibilities of enhancing saturation magnetization ($\mu_0 M_s$) and uniaxial magnetic anisotropy (K_u) in ThMn₁₂-type SmFe₁₂ by carefully exploring substitutional and interstitial impurities. More specifically, an addition of only one N atom, among 2*p*-electron elements, per formula unit cell of SmFe₁₂ not only improves its structural stability but also enhances K_u by more than 2 times and $\mu_0 M_s$ up to 5%, which are superior to those of the currently known permanent magnetic materials. Our calculations further demonstrate that these permanent magnetic properties of SmFe₁₂ can also be enhanced by replacing Fe with Co, in agreement with an experiment [Y. Hirayama *et al.*, Scr. Mater. 138, 62 (2017)].

DOI: 10.1103/PhysRevApplied.13.054076

I. INTRODUCTION

Inclusion of rare-earth (RE) elements in 3d transition metals (TMs) makes them desirable permanent magnetic materials because of their large uniaxial magnetic anisotropy (K_{μ}) associated with the strong spin-orbit coupling (SOC) of 4f orbital shells [1,2]. However, RE elements, especially heavy RE elements, are very expensive and also detrimental to saturation magnetization (M_s) and Curie temperature (T_c) in 3d magnetic metals. Although there have been intensive research efforts to replace the 4f -3d compounds with RE-free magnets, no competitive magnetic materials have been identified thus far in terms of K_u . Instead, renewal of research targets seemingly resides in retaining or even enhancing M_s and K_u while reducing the atomic ratio of RE elements to 3d elements. In this context, ThMn₁₂-type RETM₁₂ compounds, where mainly RE = Sm or Nd and TM = Fe and/or Co, have been considered [3–13], owing to the reduced RE concentration with respect to the best permanent magnet Nd₂Fe₁₄B [14– 16]. In recent studies, for instance, simultaneous enhancements of K_u and $\mu_0 M_s$ (μ_0 is the vacuum permeability) as well as T_c have been reported in ThMn₁₂-type SmFe₁₂ by replacing up to 20% of Fe with Co [11], which are even superior to those of $Nd_2Fe_{14}B$ [14–16]. This is in sharp contrast to other TM substitutes, such as Ti, Mo, Cr, and V, where K_u and $\mu_0 M_s$ are greatly suppressed [4,5]. However, the thermal stability of ThMn₁₂-type phase, including Sm(Fe_{1-x}Co_x)₁₂, in bulk form is still insufficient for practical usage. In addition to the TM replacements, there have been several attempts to improve the stability of the ThMn₁₂ phase; for example, the presence of 2*p*-electron interstitial impurities stabilizes the ThMn₁₂ phase and also enhances $\mu_0 M_s$, where B, C, and N have been mainly utilized in most experiments undertaken thus far [17–21].

In this article, we report results of full-potential densityfunctional theory plus U (DFT+U) calculations and single-particle energy spectra analyses of simultaneous enhancements of K_u and $\mu_0 M_s$ in ThMn₁₂-type SmFe₁₂, which can be achieved by interstitial doping with N among 2p-electron elements (B, C, and N). It is further predicted that the presence of interstitial N dopant improves the structural stability in terms of the enthalpy of formation of the $ThMn_{12}$ phase. Moreover, in agreement with a recent experiment [11], the Co substitution for the Fe site in SmFe₁₂ can also enhance both K_{μ} and $\mu_0 M_s$, which depends on a precise substitutional site of the Co element. The underlying mechanism is discussed in connection with the doping-induced modification in large spin-orbitcoupled 4f -orbital states, orbital magnetism, and 4f - 2pand 4f -3d hybridizations.

II. COMPUTATIONAL METHODS

The density-functional Kohn-Sham equations are solved in a self-consistent manner using the full-potential

^{*}odkhuu@inu.ac.kr

[†]schong@ulsan.ac.kr

WIEN2k method [22]. This method deals with both the core and valence electrons accurately and is suitable for magnetic systems. The exchange-correlation interactions are treated with the generalized gradient approximation (GGA) [23]. We use the muffin-tin radii of 1.02 Å for Fe and Co, 1.27 Å for Sm, and 0.90 Å for B, C, and N atoms, and RK_{max} value of 7. Herein, K_u is determined as $K_u = E_a - E_c$, where E_a and E_c are the total energies with magnetization along the a and c axes, respectively. For the k-point summation, 1271 k points (or $11 \times 11 \times 21$ kpoint mesh) are used in the irreducible Brillouin zone (BZ). The convergence of K_u with respect to the number of k points is seriously checked. For the lattice and ionic coordinate relaxations, we employ the pseudopotential Vienna ab initio simulation package (VASP) [24] version 5.4.1. Energy cutoff of 600 eV, $7 \times 7 \times 13$ k-point mesh, and force criteria of 10^{-2} eV/Å are adopted. $4s^13d^7$, $4s^13d^8$, and $6s^25p^64f^6$ are treated as valence electrons for Fe, Co, and Sm, respectively. For both the VASP and WIEN2k methods, strongly correlated 4f electrons are treated with the Hubbard method, where the onsite Coulomb parameter U and Hund's exchange parameter J are chosen as 6 and 0 eV, respectively. The selection criterion of $U_{\rm eff}$ (U-J) parameter is based on comparison of magnetic properties, especially K_u , with available experimental data, as addressed in the following section.

III. RESULTS AND DISCUSSION

The ThMn₁₂-type structure adopted for either SmFe₁₀ Co₂ or SmFe₁₂X (X = B, C, and N) is shown in Fig. 1. In this ThMn₁₂-type structure, two Sm atoms are located at the corner (denoted Sm_{a1}) and the center (denoted Sm_{a2}) in the Wyckoff position of 2*a*, and 24 Fe atoms occupy three inequivalent sites, denoted Fe_f, Fe_i, and Fe_j, in the Wyckoff positions of 8*f*, 8*i*, and 8*j*, respectively. In the optimized lattice, while the Fe_f site is equally separated by 3.22 Å from both Sm_{a1} and Sm_{a2}, the Sm_{a1}-Fe_i and Fe_i-Sm_{a2} (Sm_{a1}-Fe_j and Fe_j-Sm_{a2}) bond lengths are 3.06 and 4.98 Å (3.04 and 4.82 Å), respectively. Correspondingly,

FIG. 1. Atomic structure of ThMn₁₂-type SmFe₁₂ adopted in the present calculations. The larger pink spheres denote the Sm atoms at the Wyckoff position 2a, and the smaller white, gray, and black spheres are the Fe atoms at the Wyckoff positions 8f, 8i, and 8j, respectively.

three distinctive substitutional configurations are considered, namely Co_f , Co_i , and Co_j . In each configuration, as one can build various distribution patterns of Co, we find that the Co substitutes prefer a uniform distribution, rather than that of one closer to another, from the total energy minimization (Fig. S1 in Supplemental Material [25]).

The standard DFT fails to accurately describe the strongly localized 4f-orbital states due to the oversimplified treatment of electron correlations, where the 4f-orbital states are pinned right at the Fermi level (E_F). This is also the case for the present system, as seen in the spin- and orbital-projected density of states (PDOS) of the Sm atom in SmFe₁₂ (topmost panel in Fig. 2). On the other hand, the DFT+U approach provides a more realistic treatment for the 4f states, as this splits the f-orbital bands into lower and upper Hubbard bands [26,27]. It is obvious from the Sm PDOS in Fig. 2 that the spin-down 4f bands at E_F are separated into occupied and unoccupied states by an amount U_{eff} in DFT+U.

FIG. 2. PDOS of the *s*- (black), *p*- (red), *d*- (orange), and *f*-orbital (blue) states of the Sm atom in SmFe₁₂ from the standard DFT (topmost panel) and DFT+U method for different U_{eff} values. The Fermi level is set to zero in energy.

FIG. 3. (a) Optimized lattice parameters *a* and *c* and (b) saturation magnetization $\mu_0 M_s$ (left) and uniaxial magnetic anisotropy K_u (right) of SmFe₁₂ from the DFT+U method for different U_{eff} values. The corresponding experimental results measured at 200 and 300 K, taken from Ref. [11], are indicated by the horizontal dashed lines.

Nevertheless, in DFT+U it is ambiguous as to the proper choice of $U_{\rm eff}$ value. One practical way to determine $U_{\rm eff}$ is direct comparison with experimental data. With this in mind, we perform the DFT+U calculations of the structural and magnetic properties of $SmFe_{12}$ for different U_{eff} values. As shown in Fig. 3(a), the lattice parameters a and c, optimized using the VASP calculations, are almost independent of $U_{\rm eff}$ ranging from zero (DFT) to 6 eV. On the other hand, $K_u (\mu_0 M_s)$ obtained from WIEN2k calculations decreases (slightly increases) as U_{eff} increases [Fig. 3(b)]. For the standard DFT, while $\mu_0 M_s$ (1.63 T) is comparable with a measured value of 1.64 T at room temperature [11], our computed K_u (12.4 MJm⁻³) is overestimated roughly 1.5-2 times compared with an experimental value of 5.4-8.0 MJ m⁻³ measured at 300-200 K. The inclusion of the $U_{\rm eff}$ parameter reduces such discrepancies and results in K_u of 10.6 MJ m⁻³ and $\mu_0 M_s$ of 1.63 T at $U_{\rm eff} = 6$ eV, which we thus adapted for all calculations in the present study.

The optimized lattice parameters *a* and *c*, and volume *V* per formula unit (f.u.) cell of SmFe₁₂ and SmFe₁₀Co₂ compounds are listed in Table I for the Co_f, Co_i, and Co_j replacements. For SmFe₁₂, the calculated lattice constants *a* and *c* are 8.49 and 4.66 Å, respectively, in agreement with experimental results (8.44 and 4.81 Å) [4,11] and previous theoretical results (8.46–8.49 and 4.68–4.81 Å) [5,28]. These lattice parameters and volume do not change much (within 1%) upon Co insertion with similar atomic radii, as found in a recent experiment [11].

We next explore the structural stability of ThMn₁₂phase SmFe₁₂ upon Co addition. The phase stability against phase decomposition into end-member compounds can be described thermodynamically by the change in the Gibbs free energy [29,30]: $\Delta G(T, P, N_i) =$ $\Delta H(T, P, N_i) - T\Delta S(T, P, N_i) + P\Delta V(T, P, N_i)$, where *H* is the total energy of the system and *T*, *S*, *P*, and *V* are the temperature, entropy, pressure, and volume of the system, respectively. N_i is the number of atom species *i* in the system. In the present study, we follow the recipe proposed by Ong *et al.* [29,30], where the compositional phase diagram is constructed using the convex hull method. Since the $P\Delta V$ term is negligibly small and $\Delta G = \Delta H$ at T = 0 K, the phase stability can be formulated based on the enthalpy of formation:

$$H_f = \frac{H - \sum_k \mu_k N_k}{\sum_i N_i},\tag{1}$$

where μ_k and N_k are the chemical potential and the number of decomposable compounds k, respectively. μ_k is estimated as the total energy of the ground-state structure.

In the Sm-Fe phase diagram, all Sm-Fe phases we studied, namely SmFe₂, SmFe₅, and SmFe₁₂, are not stable against α -Fe + bulk-Sm. Their enthalpies of formation are 5.78, 7.64, and 8.25 kJ mol⁻¹, respectively. This indicates that the SmFe₁₂ phase readily decomposes into intermetallic SmFe₅ phase and then SmFe₂ phase. A recent experiment reported the SmFe₂ phase as a competitive phase

TABLE I. Optimized lattice parameters *a* and *c* (Å) and volume V (Å $^{3}/f.u.$) of SmFe₁₂ and SmFe₁₀Co₂ compounds for the Co_{*j*}, Co_{*i*}, and Co_{*j*} replacements.

	Co _f			Co _i			Coj		
	a	С	V	a	С	V	a	С	V
SmFe ₁₂	8.49	4.66	168.3	8.49	4.66	168.3	8.49	4.66	168.3
SmFe ₁₀ Co ₂	8.51	4.67	169.2	8.49	4.65	167.6	8.48	4.67	167.7

to SmFe₁₂ [31]. Hence, for SmFe₁₂ and SmFe₁₀Co₂ compounds, we calculate the enthalpy of formation against α -Fe + SmFe₂ + *hcp*-Co decompositions, and results are presented in Fig. 4(a). In this convention, the obtained H_f of SmFe₁₂ is 3.84 kJ mol⁻¹, as its ThMn₁₂ phase is unstable in practice. On the other hand, the presence of the Co replacements improves the stability as H_f decreases in SmFe₁₀Co₂. In particular, the Co_f site, whose H_f is 0.44 kJ mol⁻¹, is more favored than the Co_i site by more than 2 kJ mol⁻¹ and the Co_j site by more than 1 kJ mol⁻¹. Similar results are also predicted for ThMn₁₂-phase NdFe₁₁Co [32].

Figure 4(b) shows the calculated $\mu_0 M_s$ of SmFe₁₂ and SmFe₁₀Co₂ for the Co_f, Co_i, and Co_j replacements. For SmFe₁₂, as mentioned above, the present computed result of $\mu_0 M_s$ (1.63 T) agrees fairly well with an experimental value of 1.64 T at room temperature [11]. With Co addition, $\mu_0 M_s$ is dependent on substitutional site: $\mu_0 M_s$ increases with Co_f and reaches 1.71 T for SmFe₁₀Co₂, while it tends to retain its value more or less for the Co_i and Co_j sites. In particular, our $\mu_0 M_s$ for the Co_f site, which is the most favorable substitutional site, exhibits a trend similar to that of experiments at room temperature, where $\mu_0 M_s$ increases from 1.64 T for SmFe₁₂ to 1.78 T for Sm(Fe_{0.8}Co_{0.2})₁₂ [11].

More remarkably, with this Co_f dopant site, in Fig. 4(c) we also find a similar trend for K_u enhancement as experiments at 200 (300) K from approximately 8 (5.4) MJm^{-3} for SmFe₁₂ to approximately 8.2 (6.2) MJm^{-3} for Sm(Fe_{0.8}Co_{0.2})₁₂ [11]. In our calculations, K_u increases from 10.6 MJ m⁻³ for SmFe₁₂ to 11.2 MJ m⁻³ for SmFe₁₀Co₂. Both the experimental magnetic anisotropy constants K_1 and K_2 increase as temperature decreases [cf. Fig. 3(c) in Ref. [11]]. In tetragonal symmetry, the uniaxial magnetic anisotropy can be expressed as $K_u =$ $K_1 \sin^2 \theta + K_2 \sin^4 \theta + K_3 \sin^4 \theta \cos 4\phi$, where K_1, K_2 , and K_3 are the magnetic anisotropy constants, θ is the polar angle between the magnetization vector and the easy axis (c axis in the present system), and ϕ is the azimuthal angle between the magnetization component projected onto the *ab* plane and the *a* axis. In most cases, the higher term K_3 is relatively small compared with K_1 and K_2 , and thus not often considered. For $\theta = \pi/2$, $K_u \approx K_1 + K_2$.

In Fig. 4(d), we show the calculated orbital magnetic anisotropy (ΔM_L) of SmFe₁₂ and SmFe₁₀Co₂ for the Co_f, Co_i, and Co_j replacements. Here, ΔM_L is defined as

FIG. 4. (a) Enthalpy of formation H_f , (b) saturation magnetization $\mu_0 M_s$, (c) uniaxial magnetic anisotropy K_u , and (d) orbital moment anisotropy ΔM_L of SmFe₁₂ and SmFe₁₀Co₂ compounds for the Co_f, Co_i, and Co_j replacements. Open symbols in (b) and (c) represent the corresponding experimental values at 200 and 300 K, taken from Ref. [11]. $\Delta M_L = (M_L)_c - (M_L)_a$, where $(M_L)_c$ and $(M_L)_a$ are the total orbital magnetic moments along the *c* and *a* axes, respectively, Overall, K_u and ΔM_L correlate well through the Bruno expression $K_u = (\xi/4\mu_B)\Delta M_L$ [33], where ξ is the strength of SOC.

To understand the enhanced $\mu_0 M_s$ on Co addition, we show the local spin magnetic moment (m_s) and charge difference $(\Delta \Omega)$ with respect to the nominal charge of $SmFe_{12}$ and $SmFe_{10}Co_2$ with the Co_f replacement in Figs. 5(a) and 5(b), respectively. The nominal charges of the Fe, Co, and Sm atoms are 8, 9, and 16 e, respectively. In an ideal case, the spin moment of the individual Sm is 6 μ_B for the $4f^{6}$ orbitals in the high-spin state according to Hund's first rule. The present Sm moment ($-5.23 \mu_B$) of SmFe₁₂ is found to be somehow smaller in magnitude because of its charge depletion to the Fe sites. Furthermore, the magnetic moments of the Fe_f , Fe_i , and Fe_i sites are 1.76, 2.50, and 2.28 μ_B , respectively. The Fe_f and Fe_i atoms gain 0.26 and 0.13 e_i , respectively, while the Fe_i site loses -0.10 e. This charge redistribution results in the reduced moment of the Fe_f site and the enhanced moment of the Fe_i site with respect to the bulk Fe moment (2.2 μ_B). The antiparallel coupling of the Sm 4f to the Fe 3d moments is mediated by the Sm 5d orbitals, whose spin is parallel to the 4f but antiparallel to the 3d through their orbital hybridizations [34].

The presence of the Co_f replacement, whose spin magnetic moment is 1.38 μ_B , reduces the Sm moment (-5.13 μ_B) in magnitude [Fig. 5(a)]. On the other hand, the Co_f atom accumulates a charge of 0.50 *e* mainly from its neighboring Fe_f (0.10 *e*/atom) and 4 Fe_j (0.03 *e*/atom) atoms. This in turn enhances the Fe_f (2.1 μ_B) and Fe_j (2.4 μ_B) moments, and thus $\mu_0 M_s$ increases. Moreover, the orbital moment contribution of the Sm to $\mu_0 M_s$ is substantial. We find notable m_L values of 2.18 and 2.25 μ_B for the Sm 4*f* orbitals of SmFe₁₂ and SmFe₁₀Co₂, respectively, antiparallel to the spin moment. The antiparallel orientation of the orbital angular momentum (*L*) to the spin angular momentum (*S*) is according to Hund's third rule for the less-than-half-filled Sm 4*f* shell. In contrast, those of the Fe sites are rather small, less than 0.05 μ_B .

To elucidate the origin of large K_u and its further enhancement by the Co replacement, we analyze the atomresolved K_u and ΔM_L in Figs. 5(c) and 5(d), respectively. For SmFe₁₂, the Sm, Fe_f, Fe_i, and Fe_j atoms have K_u contributions of +9.80, -0.21, -0.03, and +0.12 meV to the total K_u of +9.32 meV/f.u. Those of SmFe₁₀Co₂ (+11.82 meV/f.u.) are +11.12, -0.09, +0.04, +0.10 meV, respectively, while the Co_f has K_u of -0.16 meV. The obtained ΔM_L values of the Sm atom are 0.22 and 0.35 μ_B for SmFe₁₂ and SmFe₁₀Co₂, respectively. On the other hand, the contributions from the Fe and Co sites to ΔM_L

FIG. 5. Atom-resolved (a) spin magnetic moment m_s , (b) charge difference $\Delta\Omega$, (c) magnetic anisotropy K_u , and (d) orbital moment anisotropy ΔM_L of SmFe₁₂ and SmFe₁₀Co₂ compounds.

FIG. 6. Schematic diagrams representing (a) octahedron surrounded by the Sm(2a) and Fe(8j) atoms and (b) 2b site of 2p-dopant atom (X) at the center of octahedron in ThMn₁₂-type SmFe₁₂. The larger pink and black spheres denote the Sm and Fe atoms, respectively. The smaller blue sphere denotes the 2p-dopant atom. (c) Optimized lattice parameters a (open circles) and c (filled circles) and (d) the enthalpy of formation H_f of $SmFe_{12}X_k$ as function of k concentration for X = B (green), C (orange), and N (blue).

are insignificant, of the order of $10^{-3} \mu_B$. The spin-orbit effect as a physical origin of anisotropic phenomena is thus simply justified with the inherently large SOC of the Sm 4*f* orbitals.

As the relative energy levels of the Sm 4f orbitals are determinant for K_u , one might speculate to explore the possible engineering of K_u through 4f - 2p hybridization. We here consider B, C, and N elements as interstitial impurities in $SmFe_{12}$, as they have been utilized in most experiments undertaken thus far [17-21]. For each dopant, the most favorable interstitial site is determined as the 2b site in our total energy calculations, as illustrated in Figs. 6(a) and 6(b). Experiments also reported that 2p dopants occupy the interstitial 2b site [17–21]. Furthermore, it has been experimentally shown that $SmFe_{12}$ can accommodate 2pdopants, for the case of N, up to 1 atom/f.u. and still retain the Th Mn_{12} structure [35,36]. The optimized lattice parameters a and c and volume V of $SmFe_{12}X_k$ as function of k are shown in Fig. 6(c) for X = B, C, and N. The presence of X dopants does not change much the lattice constant a(reduced less than 1%), but enhances the lattice constant cby approximately 4%–5% at k = 1 (and hence the volume by approximately 2.5%-4%).

Figure 6(d) displays the enthalpy of formation of $\text{SmFe}_{12}X_k$ as function of k for X = B, C, and N. Here,

the enthalpy of formation H_f is calculated against α -Fe+ $SmFe_2 + N_2$ decompositions through $H_f = H(SmFe_{12}X_k)$ $-H(\text{SmFe}_2) - 10 \times H(\text{Fe}) - k \times H(X),$ where Η $(SmFe_{12}X_k)$, $H(SmFe_2)$, H(Fe), and H(X) are the total energies of $SmFe_{12}X_k$, $SmFe_2$, Fe, and X atoms in their ground-state phases (i.e., α -Fe, α -rhombohedral boron, graphitic carbon, and N2 molecule), respectively. Our calculations show that, in contrast to C, B and N improve stability of the ThMn₁₂ phase. In particular, H_f of SmFe₁₂N_k decreases with k and changes its sign from positive to negative, reaching -4.9 kJ mol^{-1} at k = 1. The negative H_f means the favorable formation of the single-crystalline Th Mn_{12} structure against the phase separation into the intermetallic SmFe₂ and α -Fe decompositions. Note that SmFe₁₂N might decompose into the SmN and FeN phases at an elevated temperature, according to the ternary phase diagram of Sm-Fe-N compounds provided in the Materials Project Database [37,38]. Nevertheless, it should be emphasized that the Sm₂Fe₁₇ phase, which is unstable under ambient conditions, has been achieved in the $Sm_2Fe_{17}N_3$ form [39–42]. One can thus expect the same situation for the present system.

In Table II, we present the calculated $\mu_0 M_s$ and K_u of SmFe₁₂X for X = B, C, and N. Most remarkably, among the X dopants, only N enhances both $\mu_0 M_s$ and

TABLE II. Saturation magnetization $\mu_0 M_s$ (T), uniaxial magnetic anisotropy K_u (MJ m⁻³), theoretical energy product $(BH)_{\text{max}}$ (MGOe), and hardness parameter κ of SmFe₁₂X compounds for X = B, C, and N. The corresponding results for SmFe₁₂ are also shown for comparison.

	$\mu_0 M_s$	K _u	(BH) _{max}	к
SmFe ₁₂	1.63	10.6	67.1	2.24
SmFe ₁₂ B	1.63	-31.6	66.5	
SmFe ₁₂ C	1.60	-33.5	63.4	
SmFe ₁₂ N	1.72	28.1	74.2	3.46

 K_u simultaneously. More specifically, SmFe₁₂N exhibits $\mu_0 M_s$ as high as 1.72 T, which is an approximately 5% enhancement compared with that (1.63 T) of SmFe₁₂. Indeed, the enhancement of $\mu_0 M_s$ by an interstitial N is quite typical in other RE-included magnets; for example, NdFe₁₂N [6,17,18] and Sm₂Fe₁₇N₃ [39,40], where the quantitative increments are 5% and 12%, respectively. Furthermore, in recent studies of ThMn₁₂-type NdFe₁₂, the presence of N is shown to enhance $\mu_0 M_s$ most among the other 2*p* dopants including B and C [7,8].

Figures 7(a) and 7(b) show the atom-resolved m_s and $\Delta\Omega$ of SmFe₁₂X for X = B, C, and N. The N dopant enhances the Fe_f (2.08 μ_B) and Sm (-5.11 μ_B) moments, which in SmFe₁₂ are 1.78 and -5.23 μ_B , more than the

B dopant (1.91 and $-5.19 \ \mu_B$) and the C dopant (1.83 and $-5.61 \ \mu_B$). This in turn yields the largest $\mu_0 M_s$ of SmFe₁₂N among the SmFe₁₂X compounds. From the charge analyses in Fig. 7(b), while the charge of the Fe_i site remains almost unchanged, significant charge transfer occurs from the Sm, Fe_f, and Fe_j sites to the X dopants. This is because of the larger electronegativities of 2*p* elements (2.04–3.44) than Sm (1.17) and Fe (1.83). Moreover, the induced moment (0.12 μ_B) of the N dopant is parallel to the Fe moments, in contrast to the negative spin moments of the B ($-0.14 \ \mu_B$) and C ($-0.18 \ \mu_B$) dopants.

To a certain extent, the enhancement in $\mu_0 M_s$ of SmFe₁₂N could also be partly correlated to a volume expansion upon N insertion [41]. Our fixed volume calculations show that $\mu_0 M_s$ of SmFe₁₂ with an enhanced volume of 2.5%, which corresponds to the optimized volume (172.34 Å³/f.u.) of SmFe₁₂N, is 1.68 T [Fig. S2(a) [25]]. This volume-only induced enhancement (0.04 T) is essentially a half of the total enhancement of 0.08 T on N insertion. On the other hand, as shown in Fig. S2(b) [25], K_u dependence on volume exhibits a trend opposite to that of $\mu_0 M_s$, where K_u decreases from 10.6 to 9.5 MJ m⁻³ with a 2.5% enhancement in volume. This reduced K_u can be presumably associated with the lowered tetragonal distortion c/a, from 0.55 for SmFe₁₂ to 0.57 for SmFe₁₂N.

FIG. 7. Atom-resolved (a) spin magnetic moment m_s , (b) charge difference $\Delta\Omega$, (c) magnetic anisotropy K_u and (d) orbital moment anisotropy ΔM_L of SmFe₁₂X compounds for X = B, C, and N.

In our prediction, ThMn₁₂-phase SmFe₁₂N exhibits an extremely large K_u of 28.1 MJ m⁻³ (Table II), which is more than 2 times larger than that $(10.6 \text{ MJ} \text{ m}^{-3})$ of SmFe₁₂. In low-temperature experiments of NdFe₁₂, an addition of 1 N atom/f.u. was reported to enhance K_u by more than 2 times, from 6.75 MJ m^{-3} for NdFe₁₂N_{0.5} [17] to 18 MJ m⁻³ for NdFe₁₂N₁₅ [18]. It should also be noted that an order-of-magnitude enhancement in K_u was reported for Sm₂Fe₁₇ when doped with N in both experiment [39] and previous theory [42]. Our prediction for SmFe₁₂N would thus agree at least qualitatively with the results of low-temperature experiments. However, practical K_u (or enhancement) at an elevated temperature would possibly be smaller than prediction, as both K_1 and K_2 dramatically decrease with temperature [11]. In addition, the theoretical energy product $(BH)_{max}$, defined as $(BH)_{\rm max} = (1/4)\mu_0 M_s^2$, and hardness parameter κ , $\kappa =$ $(K_u/\mu_0 M_s^2)^{1/2}$, of SmFe₁₂ and SmFe₁₂X compounds are also presented in Table II.

From atom-decomposed K_u and ΔM_L in Figs. 7(c) and 7(d), the Bruno model is approximately satisfied. The calculated values of K_u (ΔM_L) of the Sm atom are -37.8 (-0.67), -39.4 (-0.70), and 28.7 meV (0.48 μ_B) for SmFe₁₂B, SmFe₁₂C, and SmFe₁₂N, respectively. Even though the contribution of the Sm atom to K_u is dominant, the contribution of the Fe_j site, which is first nearest neighbor to the X dopant with a separation of 1.90–1.92 Å, to the X-induced changes in K_u cannot be ignored. For example, for SmFe₁₂N, the Fe_j site has K_u of 0.34 meV, which is almost 4 times larger than that (0.09 meV) for SmFe₁₂. The other two Fe_f and Fe_i sites, which are separated from N by 3.22 and 3.88 Å, retain K_u almost as those in SmFe₁₂.

Figure 8 provides PDOS of the Sm 4f and X 2p orbital states for SmFe₁₂, SmFe₁₂B, and SmFe₁₂N compounds. Only the X p_z orbital state is emphasized as the changes of the other orbital states upon 4f - 2p hybridization are insignificant (Fig. S3 in the Supplemental Material [25]). Apparently, for $SmFe_{12}$, the six 4*f* orbitals are filled only by the minority-spin electrons (\downarrow) in the high-spin state, while the majority-spin states (\uparrow) are completely empty (hence, the Sm site spin moment of $-5.23 \mu_B$). Obviously, as produced by the 4f - 2p hybridization in SmFe₁₂N, the PDOS peak states of the Sm f_0 and N p_z states around E_F are most prominent, as indicated in the inset in Fig. 8. Thereby, these newly developed $\uparrow f_0$ bands below E_F and $\downarrow f_0$ bands above E_F should be involved for SOC pairs that provide an additional positive contribution to K_{u} . This applies oppositely for SmFe₁₂B, as the empty $\downarrow f_0$ band disappears. Instead, the occurrence of the $\downarrow f_{\pm 1}$ peak states around 1 eV, as a result of the Sm 4f -B 2p hybridization, enhances negative contribution by $\langle \downarrow f_0 | \downarrow$ $f_{\pm 1}$ and/or $\langle \downarrow f_{\pm 2} | \downarrow f_{\pm 1} \rangle$. Moreover, the \uparrow Fe_j $d_{xz,vz}$ and \uparrow Fe_{*j*} $d_{x^2-y^2}$ peak states of SmFe₁₂N across E_F , which are not present for SmFe₁₂ and SmFe₁₂B, are also responsible for enhanced K_u at the Fe_i site [43]. This argument is more clearly supported by PDOS analyses of the Fe_f , Fe_i , and Fe_i sites in the Supplemental Material (Figs. S4–S6 [25]).

Finally, *ab initio* molecular dynamics (AIMD) simulation is used to investigate the structural stability and magnetization of SmFe₁₂N at an elevated temperature. Figures 9(a) and 9(b) show the AIMD fluctuations of the total energy (ΔE) and spin magnetization (Δm_s), with respect to those of the first time step at 0 K, of SmFe₁₂ and SmFe₁₂N during the AIMD simulation time of 5000 fs with 10 000

FIG. 8. Orbital-resolved PDOS of the Sm 4*f* and X 2*p* (X = B and N) states of SmFe₁₂B (solid red line) and SmFe₁₂N (solid blue line). The same for SmFe₁₂ are also shown in the dashed black line. The inset in the leftmost panel shows the same PDOS of Sm f_0 orbital states in the reduced energy and state scale ranges around the Fermi level for better readability. The Fermi level is set to zero in energy.

ionic steps for given temperatures 0, 300, and 500 K. All the AIMD calculations are performed with the Γ -point BZ integration at constant volume. For SmFe₁₂, while the total energy is enhanced with temperature, Δm_s decreases and reaches approximately $-2 \mu_B/f.u.$, which corresponds to roughly -0.28 T if the contribution of the orbital magnetic moments is fixed, at 500 K. Experiment reported that $\mu_0 M_s$ decreases from 1.63 T at 300 K to about 1 T at 500 K [11]. On the other hand, when temperature increases from 0 to 500 K, the total energy of SmFe₁₂N is lowered by 0.07 eV/f.u. and the total magnetization is reduced by up to

FIG. 9. AIMD fluctuations of the total energy ΔE and spin magnetization Δm_s of (a) SmFe₁₂ and (b) SmFe₁₂N for given temperatures 0, 300, and 500 K. (c) Schematic diagram representing the relative displacement of the N dopant (blue sphere) on the FeN plane to the Sm atom (pink sphere) after the AIMD simulation period of 5 ps for 0, 300, and 500 K.

2 μ_B /f.u. [Fig. 9(b)]. Such an energy gain is mainly associated with the relocation of the N dopant atoms at elevated temperatures. As indicated in Fig. 9(c), the N atom relocates from its original 2*b* position by 0.5–0.8 Å after the AIMD simulation period of 5 ps at 300–500 K, while the other atoms displace within 0.4 Å. The ThMn₁₂ phase is still maintained even at 500 K, although there is a tenuous phonon vibration during the AIMD steps.

IV. CONCLUSION

In summary, using first-principles calculations and single-particle energy spectral analyses, we have predicted enhancements of $\mu_0 M_s$ and K_u in ThMn₁₂-type SmFe₁₂ by an interstitial doping with 2p-electron elements. In terms of the structural stability and energy product, the presence of an interstitial N dopant is most desirable. Furthermore, our calculations provide insights into the recent experiments concerning the enhanced $\mu_0 M_s$ and K_u of SmFe₁₂ by replacing the Fe site with Co. These results would thus suggest a viable route for enhancing simultaneously structural phase stability and intrinsic hard magnetic properties by carefully replacing Fe with 3d elements and interstitial dopants in ThMn₁₂-type compounds. We hope that our prediction inspires subsequent experimental and theoretical investigations of high-efficiency permanent magnetic materials with the ThMn₁₂ structure.

ACKNOWLEDGMENTS

This work is supported by Future Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016M3D1A1027835) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20192010106850, development of magnetic materials for IE4 class motor).

- K. H. J. Buschow in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1984).
- [2] J. M. D. Coey, J. M. Cadogan, and D. H. Ryan, in Nd-Fe Permanent Magnets: Their Present and Future Applications, edited by I. V. Mitchell (Elsevier Applied Science, London/New York, 1985).
- [3] S. F. Cheng, V. K. Sinha, Y. Xu, J. M. Elbicki, E. B. Boltich, W. E. Wallace, S. G. Sankar, and D. E. Laughlin, Magnetic and structural properties of SmTiFe_{11-x}Co_x alloys, J. Magn. Magn. Mater. **75**, 330 (1988).
- [4] F. J. Cadieu, H. Hegde, A. Navarathna, R. Rani, and K. Chen, High-energy product ThMn₁₂ Sm-Fe-T and Sm-Fe permanent magnets synthesized as oriented sputtered films, Appl. Phys. Lett. **59**, 875 (1991).

- [5] C. N. Xian, H. S. Qiang, W. Yu, and S. Jiang, Phase stability and site preference of Sm(Fe, T)₁₂, J. Magn. Magn. Mater. 233, 169 (2001).
- [6] T. Miyake, K. Terakura, Y. Harashima, H. Kino, and S. Ishibashi, First-principles study of magnetocrystalline anisotropy and magnetization in NdFe₁₂, NdFe₁₁Ti, and NdFe₁₁TiN, J. Phys. Soc. Jpn. 83, 043702 (2014).
- [7] Y. Harashima, K. Terakura, H. Kino, S. Ishibashi, and T. Miyake, Nitrogen as the best interstitial dopant among X = B, C, N, O, and F for strong permanent magnet NdFe₁₁TiX: First-principles study, Phys. Rev. B 92, 184426 (2015).
- [8] T. Fukazawa, H. Akai, Y. Harashima, and T. Miyake, Firstprinciples study of intersite magnetic couplings in NdFe₁₂ and NdFe₁₂X (X = B, C, N, O, F), J. Appl. Phys. **122**, 053901 (2017).
- [9] Y. Hirayama, Y. Takahashi, S. Hirosawa, and K. Hono, $NdFe_{12}N_x$ hard-magnetic compound with high magnetization and anisotropy field, Scr. Mater. **95**, 70 (2015).
- [10] W. Korner, G. Krugel, and C. Elsasser, Theoretical screening of intermetallic ThMn₁₂-type phases for new hardmagnetic compounds with low rare earth content, Sci. Rep. 6, 24686 (2016).
- [11] Y. Hirayama, Y. K. Takahashi, S. Hirosawa, and K. Hono, Intrinsic hard magnetic properties of $\text{Sm}(\text{Fe}_{1-x}\text{Co}_x)_{12}$ compound with the ThMn₁₂ structure, Scr. Mater. **138**, 62 (2017).
- [12] C. Skelland, T. Ostler, S. C. Westmoreland, R. F. L. Evans, R. W. Chantrell, M. Yano, T. Shoji, A. Manabe, A. Kato, M. Ito, M. Winklhofer, G. Zimanyi, J. Fischbacher, T. Schrefl, and G. Hrkac, Probability distribution of substituted titanium in RT₁₂ (R = Nd and Sm; T = Fe and Co) structures, IEEE Trans. Magn. **54**, 2103405 (2018).
- [13] T. Fukazawa, H. Akai, Y. Harashima, and T. Miyake, First-principles study of spin-wave dispersion in Sm(Fe_{1-x}Co_x)₁₂, J. Magn. Magn. Mater. **469**, 296 (2019).
- [14] S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, and H. Yamauchi, Single crystal measurements of anisotropy constants of R₂Fe₁₄B (R = Y, Ce, Pr, Nd, Gd, Tb, Dy and Ho), Jpn. J. Appl. Phys. 24, L972 (1985).
- [15] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and S. Hirosawa, Magnetic properties of rare-earth-ironboron permanent magnet materials, J. Appl. Phys. 57, 4094 (1985).
- [16] J. F. Herbst, R₂Fe₁₄B materials: Intrinsic properties and technological aspects, Rev. Mod. Phys. 63, 819 (1991).
- [17] Y. C. Yang, X. D. Zhang, L. S. Kong, Q. Pan, and S. L. Ge, New potential hard magnetic material - NdTiFe₁₁N_x, Solid State Commun. **78**, 317 (1991).
- [18] M. Akayama, H. Fujii, K. Yamamoto, and K. Tatami, Physical properties of nitrogenated $RFe_{11}Ti$ intermetallic compounds (R = Ce, Pr and Nd) with ThMn₁₂-type structure, J. Magn. Magn. Mater. **130**, 99 (1994).
- [19] D. P. F. Hurley and J. M. D. Coey, Gas-phase interstitially modified intermetallics $R(Fe_{11}Ti)Z_{1-\delta}$. I. Magnetic properties of the series $R(Fe_{11}Ti)C_{1-\delta}$: R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, J. Phys.: Condens. Matter 4, 5573 (1992).
- [20] J. Yang, P. Oleinek, D. Eckert, M. Wolf, and K.-H. Muller, Effect of interstitial carbon on the structural and magnetic

properties of Nd(Fe, M)₁₂ C_y (M = Ti, V, Mo), J. Magn. Magn. Mater. **214**, 44 (2000).

- [21] S. A. Nikitin, I. S. Tereshina, V. N. Verbetsky, and A. A. Salamova, Transformation of magnetic phase diagram as a result of insertion of hydrogen and nitrogen atoms in crystalline lattice of RFe₁₁Ti compounds, J. Alloy. Comp. **316**, 46 (2001).
- [22] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, *WIEN2k, An Augmented Plane Wave* + *Local Orbitals Program for Calculating Crystal Properties* (Techn. Universitat Wien, Vienna, 2001).
- [23] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46, 6671 (1992).
- [24] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558(R) (1993).
- [25] See supplemental material at http://link.aps.org/supple mental/10.1103/PhysRevApplied.13.054076 for the detailed energetics, magnetic properties, and electronic structure analyses.
- [26] P. Larson, I. I. Mazin, and D. A. Papaconstantopoulos, Calculation of magnetic anisotropy energy in SmCo₅, Phys. Rev. B 67, 214405 (2003).
- [27] T. Pandey, M.-H. Du, and D. S. Parker, Tuning the Magnetic Properties and Structural Stabilities of the 2-17-3 Magnets $Sm_2Fe_{17}X_3$ (X = C, N) by Substituting La or Ce for Sm, Phys. Rev. Appl. 9, 034002 (2018).
- [28] P. Delange, S. Biermann, T. Miyake, and L. Pourovskii, Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach, Phys. Rev. B 96, 155132 (2017).
- [29] S. P. Ong, L. Wang, B. Kang, and G. Ceder, Li-Fe-P-O₂ phase diagram from first principles calculations, Chem. Mater. 20, 1798 (2008).
- [30] S. P. Ong, A. Jain, G. Hautier, B. Kang, and G. Ceder, Thermal stabilities of delithiated olivine MPO₄ (M = Fe, Mn) cathodes investigated using first principles calculations, Electrochem. Commun. **12**, 427 (2010).
- [31] I. Dirba, Y. Harashima, H. Sepehri-Amin, T. Ohkubo, T. Miyake, S. Hirosawa, and K. Hono, Thermal decomposition of ThMn₁₂-type phase and its optimum stabilizing elements in SmFe₁₂-based alloys, J. Alloys Compd. 813, 152242 (2020).
- [32] Y. Harashima, K. Terakura, H. Kino, S. Ishibashi, and T. Miyake, First-principles study on stability and magnetism of NdFe₁₁M and NdFe₁₁MN for M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, J. Appl. Phys. **120**, 203904 (2016).
- [33] P. Bruno, Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transitionmetal monolayers, Phys. Rev. B 39, 865 (1989).
- [34] T. Miyake and H. Akai, Quantum theory of rare-earth magnets, J. Phys. Soc. Jpn. 87, 041009 (2018).
- [35] G. Wiesinger and G. Hilscher, *Magnetism of Hydrides in Handbook of Magnetic Materials* (Elsevier, Amsterdam, 2008).
- [36] I. S. Tereshina, N. V. Kostyuchenko, E. A. Tereshina-Chitrova, Y. Skourski, M. Doerr, I. A. Pelevin, A. K. Zvezdin, M. Paukov, L. Havela, and H. Drulis, ThMn₁₂type phases for magnets with low rare-earth content:

Crystal-field analysis of the full magnetization process, Sci. Rep. **8**, 3595 (2018).

- [37] A. Jain, G. Hautier, C. Moore, S. P. Ong, C. Fischer, T. Mueller, A. Persson, and G. Ceder, A high-throughput infrastructure for density functional theory calculations, Comput. Mater. Sci. 50, 2295 (2011).
- [38] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, The materials project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013) (access via http://materialsproject.org).
- [39] M. Katter, J. Wecker, C. Kuhrt, L. Schultz, and R. Grossinger, Magnetic properties and thermal stability of $Sm_2Fe_{17}N_x$ with intermediate nitrogen concentrations, J. Magn. Magn. Mater. **117**, 419 (1992).

- [40] K. Koyama and H. Fujii, Nitrogen gas–solid reaction process and basic magnetism of the interstitially modified rare-earth 3d transition-metal nitrides $R_2Fe_{17}N_3$ (R = Y, Ce, Nd, Sm) and $Y_2Co_{17}N_3$, Phys. Rev. B **61**, 9475 (2000).
- [41] L. Steinbeck, M. Richter, U. Nitzsche, and H. Eschrig, Ab initio calculation of electronic structure, crystal field, and intrinsic magnetic properties of Sm₂Fe₁₇, Sm₂Fe₁₇N₃, Sm₂Fe₁₇C₃, and Sm₂Co₁₇, Phys. Rev. B 53, 7111 (1996).
- [42] M. Ogura, A. Mashiyama, and H. Akai, Role of N in the permanent magnet material $Sm_2Fe_{17}N_x$, J. Phys. Soc. Jpn. **84**, 084702 (2015).
- [43] D. S. Wang, R. Wu, and A. J. Freeman, Firstprinciples theory of surface magnetocrystalline anisotropy and the diatomic-pair model, Phys. Rev. B 47, 14932 (1993).