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To ascertain the feasibility of large-scale quantum computing, the performance and quantum resource
of a practical quantum-computing situation needs to be analyzed. However, most of the analyses reported
so far have focused on the statistical examination that simply calculates the performance and resource
based on individual quantum-computing components. In this work, we propose an integrated analysis
methodology that models a large-scale fault-tolerant quantum-computing system based on three compo-
nents: algorithm, error correction, and device. Furthermore, to implement the proposed methodology, we
develop a quantum-computing software platform composed of three functional layers: compile, system,
and building block. By using our platform, we observe that it takes 8.78× 105 h, which is much longer
than previous estimations, for factoring a 512-bit integer with Shor’s factoring algorithm. We also discuss
whether the proposed platform can play a significant role in finding an optimal concatenation level and/or
code distance of quantum error-correcting code.
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I. INTRODUCTION

In recent decades, diverse quantum-computing compo-
nents from applications to physical devices have been
actively explored and developed. Some of them already
have theoretically optimal performance [1–6]. Gigantic IT
corporations have announced that they succeeded in the
development of dozens of qubit systems [7–9]. Even they
expect to see a thousand qubit system within ten years.
In addition, several startups began to develop quantum-
computing hardware and software [10]. It seems that the
era of quantum computing is gradually arriving.

So far, to assess the feasibility of large-scale quan-
tum computing [11], some efforts have been devoted to
investigating the amount of quantum resource needed [12–
18] and the expected performance [16,19–21]. Based on
such an analysis, the security of a conventional cryptog-
raphy against theoretically superfast quantum computing
has also been studied [22,23]. We believe that the anal-
ysis results reported so far are practically less accurate
because the analysis methodologies they applied were
theoretical statistical examinations based on the perfor-
mance data of individual quantum-computing components,
or some practical components are missed out. The statisti-
cal examination is nothing more than a simple arithmetic
calculation with the data from individual components, and
therefore some situations that may happen during quantum
computing cannot be exactly taken and considered.
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For practically accurate analysis, we need to take
account of a practical quantum-computing situation. To
this end, we first need to prepare quantum-computing com-
ponents that can be applied in practice. For example, a
quantum-computing algorithm has to be prepared as the
list of individual and physically implementable quantum
gates instead of a logical and abstract description itself.
For that, we write a quantum-computing program code
and then decompose (or compile) the code. By doing so,
we can prepare a quantum algorithm to be executed in
practice.

Second, provided that all quantum-computing com-
ponents are prepared for practical quantum computing,
we have to integrate all those components properly as
if we really execute the algorithm. In the integration,
we first associate algorithm qubits with physical qubits
(qubit mapping) and then control the application order
of algorithm gates in accordance with logical dependency
(gate scheduling). By the system synthesis, we are able to
implement a quantum algorithm for the given quantum-
computing system with a specific physical and logical
structure (or limitation).

The performance analysis based on the system synthe-
sis can deal with some dynamic situations that cannot be
treated with theoretical analysis methods applied in previ-
ous works. For example, qubit technologies such as super-
conductors and quantum dots allow interactions between
nearest-neighbor qubits only. Therefore, to execute a two-
qubit operation between distant qubits, a qubit must be
moved to the neighboring position of the other qubit. Here,
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the detailed sequence and the number of qubit movements
can only be exactly determined with the system synthesis,
not with the theoretical approach.

As we mention above, we think that it is possible
to analyze the performance and the quantity of quan-
tum resources for quantum computing more accurately by
taking the practical situation into consideration. In this
work, to perform such an analysis more efficiently, we
propose and build up a quantum-computing platform com-
posed of three functional layers with a well-defined role as
follows.

(a) Compile layer: decomposition of a quantum
algorithm into a sequence of quantum gates, called a
quantum-assembly code (or QASM).

(b) System layer: integration of a quantum algorithm
(quantum-assembly code) and building blocks under a tar-
get quantum-computing system architecture via a qubit
mapping and a gate scheduling.

(c) Building-block layer: implementation of logical
qubits and gates according to a chosen quantum error-
correcting code and a fault-tolerant scheme.

The aim of this work is to estimate the most realistic and
accurate quantum-computing performance and resource
with the help of the platform we develop. For that, we
have to create a quantum-computing program of the quan-
tum algorithm we want to analyze, and at the same time,
configure a quantum-computing system by choosing a spe-
cific fault-tolerant protocol, the architectures of system and
quantum chip, and device performance. Then, the plat-
form analyzes the performance and the quantum resource
of the quantum-computing system running the quantum
algorithm.

With the proposed platform, it is possible to estimate
the performance of quantum-computing models in diverse

situations. First, we can see which quantum-computing
component affects the performance of quantum computing
most seriously. Second, we can see what happens in quan-
tum computing if an individual component is improved.
Third, it is also possible to see that a theoretically opti-
mal component really leads to optimal quantum computing
or rather works suboptimally in composition with other
components. Finally, this work provides numerical data
for theoretical conjectures in fault-tolerant quantum com-
puting (FTQC), i.e., a trade-off between reliability and
performance.

The remainder of this work is organized as follows.
Section II reviews related works. Section III overviews the
proposed quantum-computing framework and describes
how to configure and analyze quantum computing with
the framework. Section IV describes each layer of the
proposed framework in detail. Section V describes the
performance metric we evaluate in this work. The analy-
sis results are shown in Sec. VI, and Sec. VII discusses,
by exploiting the proposed framework, what happens in
quantum computing if an individual quantum-computing
component is improved. This work concludes with some
discussions in Sec. VIII.

II. RELATED WORKS

We review several quantum-computing frameworks dis-
cussing the performance and the quantum resource of
quantum computing. Table I briefly summarizes the works.

Quipper [13,24,27] and ScaffCC [17,25,26] are frame-
works for quantum compile and resource estimation of a
quantum algorithm. They basically compile a programmed
quantum algorithm into a sequence of quantum instruc-
tions composed of a quantum gate and target qubit(s).
From the compiled results, it is possible to statistically ana-
lyze the quantum resource such as the number of gates and

TABLE I. Summary of the related works. Note that “
�

” indicates that the component is partially applied. For example, the analyses
of Refs. [19] and [20] are based on only the dominant part of a quantum algorithm (T gate and quantum adder), not covering all
quantum gates. Besides, for the surface-code error correction, a two-dimensional qubit layout with nearest-neighbor qubit interaction
is basically assumed as microarchitecture.

Compile FTQC Microarchitecture System Analysis
(Qubit layout) Architecture and synthesis Criterion

Quipper [13,24] © X X X One time
ScaffCC [17,25,26]
Fowler et al. [19]

�
Surface

�
X One time

Jones et al. [20]
Van Meter et al. [21]
Reiher et al. [14] © Surface

�
X One time

QuRE [12,16] © Steane, Layout of physical qubits X One Time
Bacon-Shor,

Surface
Present work © Steane, Layouts of physical and logical qubits, © Fidelity 100%

Surface Communication bus, computing regions
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qubits. All the analysis results come from both the quantum
algorithm and the compile method.

Fowler et al. [19] approximated the quantum-computer
size and the execution time of Shor’s factoring algorithm
(N = 2000) with a surface-code quantum computing.
Their analysis method was a completely theoretical
approach based on the dominant part of the factoring
algorithm, a logical T gate. The execution time of the fac-
toring algorithm is only dependent on the T depth and the
performance of a logical T gate, and by a time-optimal
quantum-computing scheme [28] they applied, the logical
T gate is completed within a physical measurement time
(Mt), Tdepth ×Mt. Therefore, as they claimed, their estima-
tion on the running time of the factoring algorithm is much
shorter than previous reports.

Van Meter et al. [21] proposed a distributed quantum-
computing architecture and estimated the resource and the
performance of Shor’s factoring algorithm on the architec-
ture. Their analysis method focuses on a quantum adder
only. They calculated the execution time of the algorithm
by multiplying the running time of the quantum adder and
the depth of the adder, which is the quantity of how much
quantum adders are executed in series. The critical factor
of their analysis is the running time of a Toffoli gate, which
is the dominant gate of the quantum adder.

Jones et al. [20] proposed a layered quantum-computer
architecture in terms of fault-tolerant logical-gate imple-
mentation, but analyzed the quantum-computing time by
exactly following Ref. [21], but with an improved com-
ponent. They improved the performance of a Toffoli gate
within their quantum-dot-based quantum-computer archi-
tecture, and therefore reduced the quantum-computing
time more than Ref. [21] for the same factoring algorithm.

Note that the above-mentioned Refs. [19–21] focused on
the dominant parts of the factoring algorithm only, which
can be found out from the theoretical foundation of the
algorithm. Therefore, for the performance analysis, they
did not need to decompose the algorithm fully into the
individual quantum gates. We believe such approaches are
applicable due to the well-known structure of the factoring
algorithm and the system-oriented surface-code architec-
ture. In other words, their approach may not be applied to
analyze other less-studied and more complicated quantum
algorithms, and/or FTQC based on concatenated quan-
tum error-correcting codes. In this regard, we can say that
Reiher et al. [14] may be general because they hired a
quantum compiler and therefore took other quantum algo-
rithms. Reiher et al. [14] estimated the quantum resource
and the quantum-computing time for quantum simula-
tions of several complex chemical systems. They analyzed
the performance of the algorithm by considering all the
quantum instructions decomposed by a compiler and the
surface-code fault-tolerant quantum-computing protocol.

Unlike the above-mentioned works, the toolbox QuRE
[12,16] covers Steane code and Bacon-Shor code besides

surface code for the first time. Besides, QuRE takes most
of the quantum-computing components such as compile,
physical qubit layout, and device performance. In this
regard, we believe this toolbox performed the analysis
based on more quantum-computing components than used
previously. However, their analysis method did not con-
sider the practical execution of quantum computing. They
just applied a statistical examination based on the individ-
ual quantum-computing components. For example, their
estimation to the algorithm execution time is defined as the
number of quantum gates and the execution time of each
gate,

∑
1/gparallel ×N g × gt. Note that gparallel denotes the

amount of gates g executed in maximally parallel and gt is
the execution time of the gate. Therefore, it is difficult to
comment on whether their analysis results may coincide
with a practical situation.

III. CONFIGURATION OF
QUANTUM-COMPUTING SYSTEM

We overview the structure and functionality of the pro-
posed quantum-computing platform and describe how to
perform the analysis by configuring a quantum-computing
system. We also describe which schemes and protocols are
currently supported by the platform.

A. Overview of platform

The proposed quantum-computing platform deals with
programming, compile, computer architecture, fault-
tolerant scheme, and device. To this end, it is composed
of three functional layers: compile, system, and building
block. Each layer has a well-defined role and provides sev-
eral options to conduct their functions. All the layers are
closely related to each other. Figure 1 shows the data flow
between the layers.

The compile layer deals with programming and compil-
ing a quantum algorithm. A quantum algorithm is written
in a high-level programming language, and is compiled
into the sequence of the quantum instructions, called a
quantum-assembly code. Figure 2 shows the input and out-
put of the compile layer. In the present work, we hire
an open-source quantum-computing compiler ScaffCC [17,
25,26] that supports programming language Scaffold [29].
The details about quantum compile, quantum gates, and a
quantum-assembly code is described in Sec. IV A. Why we
exploit ScaffCC for large-scale quantum computing is also
discussed in that section.

The system layer carries out a system synthesis, which
integrates a quantum algorithm, a quantum-computer
system architecture, and building blocks. Besides, this
layer treats almost everything required to run a quan-
tum algorithm on a target quantum-computer system. For
example, by performing the system synthesis, the quan-
tum algorithm is reconfigured for the target quantum-
computing system architecture. Figure 3 describes the
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(b)

(a)

FIG. 1. Data flow over the layers. (a) For the performance
analysis, the compile layer and the building-block layer respec-
tively provide a quantum-assembly code and the performance of
logical operations to the system layer. The system layer then per-
forms the performance analysis via the system synthesis. (b) The
platform can be used to perform practical quantum computing.
For that, user input data flow sequentially from the most top layer
to the bottom layer, in each layer, the data is properly translated
suited for the next layer. Finally, a control signal to manipulate
physical devices according to the user input has to be generated
in the bottom layer.

input and output of the system layer. For the perfor-
mance analysis, the inputs to the system layer are the
quantum algorithm, fault-tolerant protocols, and quantum
device in the proper format, and the output is the estimated
performance and the quantity of the quantum resource.

The building-block layer is associated with the qubits
and gates in the quantum algorithm. Since this work
basically assumes fault-tolerant quantum computing, the
qubits, and gates described in the algorithm correspond
to logical qubits and gates encoded in a quantum error-
correcting code. In this regard, the main functionality of

FIG. 2. Input and output in the compile layer. By a compile, a
programmed quantum algorithm is decomposed into a quantum-
assembly code. For the compile, a compile algorithm and target
gates have to be determined beforehand. Target gates can be var-
ied according to quantum-computing type such as fault-tolerant
quantum computing or nonfault-tolerant (physical) computing.
The selection of target gates can also be influenced by a qubit
technology.

FIG. 3. Input and output of the system layer. Quantum-
assembly code and the performance of logical building blocks
are passed from the compile layer and the building-block layer,
respectively. A quantum-computer architecture describes the lay-
out of logical and physical qubits and a communication bus
over qubits. A system synthesis algorithm describes how to
integrate a quantum algorithm (quantum-assembly code) and a
quantum-computer architecture via a qubit mapping and a gate
scheduling.

the layer is to assemble physical qubits and gates to imple-
ment logical qubits and gates. Figure 4 shows the input
and output of the building-block layer. In terms of the
performance analysis, the output of the building-block
layer is the performance of logical quantum operations,
time and fidelity. Note that the proposed platform sup-
ports [[7, 1, 3]] Steane code and a double-defect-based
surface code. In Sec. IV C, we describe the fault-tolerant
logical-gate protocols in detail.

B. Configuration of quantum computing

We describe how to configure quantum computing with
the proposed platform. As mentioned above, it is possible
to configure quantum computing by selectively choosing
specific protocols or the properties of a physical device.
For example, you can configure the Steane-code-based

FIG. 4. Input and output in the building-block layer. To make
logical qubits and gates, a quantum error-correcting code should
be determined first. Besides, to derive the performance of logical
operations, the properties of a physical device, time and fidelity,
have to be considered. Then, based on the physical device prop-
erty and the fault-tolerant quantum-computing scheme, logical
operations with a specific performance are generated.
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TABLE II. List of protocols and layouts currently supported by the framework. In the compile layer, we choose a compile type and
a target gate set. The compile type is the format of a quantum-assembly code. The compile type is closely related to the mapping type
and qubit layout. A specific qubit layout can be chosen within a selection. In the building-block layer, the scheme for a fault-tolerant
quantum computing is determined. According to the scheme, the protocol for each fault-tolerant logical operation is fixed.

Layer Options Values

Compile Compile type Structured code, nonstructured code
Target gate set {X , Z, H , S(S†), T(T†), RZ(θ), CNOT},

{X , Z, H , S(S†), T(T†), CNOT}
System Mapping type Structured, nonstructured

Qubit layout (Nonstructured) All-to-all, 1D, 2D, Arbitrary
(Structured) All-to-all, (1D, 1D), (1D, 2D), (2D, 2D)

Building FTQC scheme Steane code, surface code
Block Device Time, fidelity

fault-tolerant quantum computing to run Shor’s factoring
algorithm. For that, we first write a quantum program code
of the factoring algorithm and then compile to generate a
quantum-assembly code. At the same time, we build up
logical building blocks with the chosen quantum error-
correcting code and quantum device. The following task
is to determine a quantum-computer architecture of a spe-
cific physical and/or logical qubit layout. Suppose that all
of a quantum algorithm, an error-correcting code, a device,
and a system architecture are prepared. Then, it is time to
perform the system synthesis. After the system synthesis,
we see the analysis results. Note that it is also possible to
choose physical nonfault-tolerant quantum computing by
assuming a high-fidelity quantum-computing device (see
Sec. VII B).

In Table II, we show the options our platform cur-
rently supports. In the table, the compile type and the
mapping type (with qubit layout) completely depend on
the type of quantum-assembly code, structured code, and
nonstructured code. A structured quantum-assembly code
is processed by a structured system mapping method for
a structured quantum-computer architecture. Similarly, a
nonstructured quantum-assembly code is taken by a non-
structured system mapping method for a nonstructured
(monolithic) quantum-computer architecture. The details
of the structured and nonstructured quantum-assembly
codes is described in Sec. IV A.

With the proposed platform, a quantum-computing sys-
tem model is configured by following the below steps.
The first is to specify the type of quantum computing,
a fault-tolerant quantum computing or a nonfault-tolerant
physical quantum computing. In general, such a choice is
closely depending on the size of a quantum algorithm and
the performance of the physical device. Needless to say, a
larger quantum algorithm requires the more reliable qubit
and gate. If you decide a fault-tolerant quantum comput-
ing, you also need to choose a quantum error-correcting
code. The platform currently supports [[7, 1, 3]] Steane
code and double-defect surface code. According to the
size of a quantum algorithm (equivalently KQ [41] of the

algorithm) and the reliability of a physical device, the con-
catenation level for the Steane code or the code distance
for the surface code is determined.

The chosen quantum-computing type affects quantum
compile. More precisely, a set of the target quantum gates
for a compile completely is closely related to the quantum-
computing type. For example, the RZ(θ) gate for an arbi-
trary rotational angle θ is very exploited in a quantum
algorithm. However, an error-corrected logical version of
such a rotational gate cannot be generally implemented in
a fault-tolerant manner. Only a few special angles such as
π/2 and π/4 are allowed. Therefore, to realize the logical
rotational gate, we have to decompose the RZ(θ) gate into
a sequence of H , S, and T gates that can be implemented
in a fault-tolerant manner.

The second step is to make a quantum-computing pro-
gram and compile it into a quantum-assembly code. As
mentioned above, for the compile, target quantum gates
determined in the previous step need to be selected. As of
writing this paper, the proposed platform exploits open-
source programming language Scaffold and compiler Scaf-
fCC. You can see how to make a Scaffold program in Ref.
[29] and how to use ScaffCC compiler in Refs. [17,26].
In Sec. IV A, we show a simple example of a Scaffold
program and the associated quantum-assembly code. Note
that ScaffCC decomposes an arbitrary one-qubit gate into
a sequence of H , S, and T by exploiting the compile
algorithm gridsynth [3] or sqct [30].

The third step is to choose a quantum-computing archi-
tecture, in particular, the qubit layout and the qubit connec-
tivity. Our platform takes not only a simple regular one- or
two-dimensional lattice but also a hierarchically structured
qubit array. In the structured layout, a communication bus
is considered to make an efficient interaction between dis-
tant qubits. Figure 11 shows an example of hierarchically
structured quantum-computing architectures. In the case
of the Steane-code quantum computing, the qubit con-
nectivity seriously affects the performance of a quantum
computing due to the limited local qubit interaction. We
show such a limitation raises highly nontrivial temporal
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overhead in Sec. VI C. On the other hand, the surface-code
quantum-computing scheme is fundamentally established
based on local qubit interaction on the two-dimensional
lattice. Figure 14 shows a quantum-computing architecture
for a surface-code quantum computing.

If the configuration is completed, we perform the inte-
gration of all the prepared components via the system
synthesis. In the system synthesis, an algorithm qubit is
mapped to physical qubit(s) and the execution sequence of
algorithm gates based on the qubit mapping is determined.
In doing so, the quantum algorithm is reformulated for
the target quantum-computer architecture. By processing
each instruction of the reformulated quantum algorithm,
the platform evaluates the performance (circuit depth, exe-
cution time, fidelity, KQ) of a quantum algorithm and the
required quantum resources (qubits).

C. Analysis of quantum computing

We briefly mention what performance items are
appraised by the platform, but the detailed analysis method
is described in Sec. V. The platform first inspects the
quantities of qubits and gates. Those figures are usu-
ally analyzed by a quantum-compile framework [13,17].
But, our framework examines such quantities with the
consideration for fault-tolerant quantum computing and
a quantum-computer system architecture. During the sys-
tem synthesis, the quantity of ancilla qubits used to distill
high-fidelity magic states is also taken into consideration.
Therefore, it is possible to estimate the temporal and spatial
overhead caused by factors that are veiled in a quan-
tum algorithm, and therefore we believe our estimation
nearly coincides with the resource to perform real quantum
computing.

The platform examines the expected quantum-computing
execution time (circuit depth, fidelity, KQ, and so on) of a
quantum algorithm based on a quantum-computer archi-
tecture, fault-tolerant protocols, and a physical device. By
applying the properties of a physical device and fault-
tolerant protocols, we deduce the performance of logical
gates and quantum error correction (QEC). Besides, from
the system synthesis, we are able to obtain the execution
time of a quantum algorithm, in particular, a single-round
execution, by applying the performance of logical gates
and error correction above. Our framework goes further
for a more detailed analysis. The fidelity of quantum com-
puting also can be calculated, and by reflecting the fidelity,
it is possible to estimate the execution time of a quantum
algorithm achieving a fidelity of 100%. In doing so, we
can fairly compare fault-tolerant quantum computing and
nonfault-tolerant quantum computing.

Besides the above mentioned, the framework can gen-
erate various performance data. Based on the obtained
data, we can estimate the temporal and spatial overhead
of quantum computing. For example, as mentioned above

limited local interaction between nearest-neighbor qubits
sometimes requires additional qubit movements to per-
form a two-qubit CNOT gate locally. The quantity of such
qubit movements corresponds to the temporal overhead.
The platform evaluates such a temporal overhead as a
ratio of SWAP gates to total quantum gates. As shown in
Sec. VI C, quantum computing requires highly nontrivial
temporal overhead.

IV. PROPOSED QUANTUM-COMPUTING
FRAMEWORK

A. Compile layer

Quantum compile is a process that decomposes a quan-
tum algorithm into a sequence of quantum gates. Here
a quantum algorithm is in entirely programmed form
by using a high-level abstract programming language.
Recently, several research groups have developed pro-
gramming environments for quantum computing by modi-
fying conventional classical programming languages such
as PYTHON and C/C++ [11,18,24,27,29,31,32].

It is well known that an arbitrary quantum algorithm can
be decomposed into the combination of one-qubit rota-
tional gates and two-qubit CNOT gates [33]. The target
quantum gates for a compile can be varied according to
a situation. For example, the set of H , T, and CNOT is
de facto standard for universal fault-tolerant quantum com-
puting. But, to reduce the complexity in compile or to
provide flexibility to a programmer, one usually adds more
quantum gates to target gates. Furthermore, according
to qubit technologies, physically implementable quantum
gates slightly differ [33,34]. In this work, we utilize two
sets of quantum gates {X , Z, H , S(S†), T(T†), RZ(θ), CNOT}
and {X , Z, H , S(S†), T(T†), CNOT}. The difference between
both is the RZ(θ) gate. As we mention before, the rotational
gate for an arbitrary angle θ can not be implemented in a
fault-tolerant manner, and therefore in this work, the for-
mer is exploited for a physical quantum computing and the
latter is used for fault-tolerant quantum computing.

The output of quantum compile, the sequence of quan-
tum instructions composed of a quantum gate and target
qubit(s), is called a quantum-assembly code. The quantum-
assembly code is a sort of intermediate representation of
a quantum algorithm between a mathematical description
and a physical machine instruction description [17,35,36].
A standard format for a quantum-assembly code does not
exist, and therefore a specific representation and a structure
of such slightly differ according to the literature. For exam-
ple, a quantum instruction to apply a Hadamard gate to a
qubit q is represented as “Hadamard q” or “H(q).” Besides,
a certain quantum-assembly code has its own structure.
For example, Open QASM by IBM [36] provides a con-
ditional statement “if . . . then. . . else” usually supported
by classical conventional programming languages.
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The proposed platform currently hires open-source
quantum compiler ScaffCC [17,26]. It compiles a quantum-
computing program written in quantum-computing pro-
graming language Scaffold [29]. A Scaffold program
consists of one main module and multiple submodules (see
Fig. 7). A module generally works as a function or a pro-
cedure of conventional programming languages such as
C/C++, PYTHON and so on. It is composed of instructions
calling quantum gates and/or other modules. The execu-
tion of a Scaffold program begins with the first instruction
of the main module and terminates by conducting the last
instruction of the module.

Previously, we mention that some quantum-assembly
codes have unique features in their structure. So does the
quantum-assembly code made by ScaffCC. The compiler
generates a hierarchically structured quantum-assembly
code, in which a quantum algorithm is composed of one
main module and multiple submodules. A module con-
sists of performing quantum gates and/or other modules.
In the previous paragraph, we also mentioned that a Scaf-
fold program is composed of modules. To avoid ambiguity
between both, we need to say that a module in a Scaffold
program is defined and written by an algorithm designer
(programmer), and through a compile, it is converted to a
module in a quantum-assembly code. Therefore, the func-
tions of both are definitely identical. Figure 5 shows an
example of a module in a quantum-assembly code.

FIG. 5. Example of a module. Parameter qubits passed from
external (parent or calling) modules are clearly specified at the
beginning. A module is defined by the preparation of local qubits
and classical bits, calling quantum gates and other submodules,
and measurement of local qubits.

FIG. 6. Comparison in the file size between a nonmodular
QASM and a modular QASM. Both codes are generated by
the ScaffCC compiler [26]. As the input increases, the size of
quantum-assembly code in the nonstructured format increases
over dozens TB.

We now need to say why we exploit ScaffCC in this
work. As we mention above, a quantum-assembly code
is a list of quantum instructions. Therefore, as the size of
a quantum algorithm increases, the size of the quantum-
assembly code nontrivially increases. It completely fol-
lows the complexity of a quantum algorithm. Obviously,
the size of a meaningful quantum algorithm, in reality, goes
beyond the capability of a conventional supercomputing
system. In other words, the size of a quantum-assembly
code for our interested algorithm is very huge, and such
scalability causes a practical problem in classical control
of a quantum-computing system. For example, empirically
the size of a quantum-assembly code of Shor’s factoring
algorithm to factorize 512-bit integer is around 39 TB
(see Fig. 6). Therefore, we had trouble in generating and
managing such a huge code with a classical computing
system. We can not even attempt to generate a larger quan-
tum algorithm than the algorithm above due to the lack of
classical storage and memory.

On the other hand, we believe that the hierarchy pro-
vided by ScaffCC can suppress the scalability problem. For
example, suppose that there exists a composite quantum
operation that is composed of N gates and is called as much
as M times. In a nonstructured quantum-assembly code, a
total of MN quantum instructions (N gates×N iteration)
are required to describe all the execution of such instruc-
tions. However, the hierarchical assembly code made by
ScaffCC completes such executions with only M + N
instructions (N gates+N iteration) by defining the com-
posite operation as a module. N instructions are required
to define the operation and M instructions are used to call
the module. By doing this, the size of the hierarchical
quantum-assembly code is much smaller than that of the
nonstructured quantum-assembly code as shown in Fig. 6.
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(a)

(b)

FIG. 7. Example of a Scaffold program to implement a five-
qubit CAT state. (a) Quantum circuit and (b) its Scaffold pro-
gram. The module MakeCAT makes the CAT state.

While we estimate that it takes at least 100 days to per-
form the system synthesis of the Shor N = 512 written in
the nonstructured assembly code, but only a few hours are
enough for the structured code.

As of writing this paper, ScaffCC only supports such
hierarchically structured quantum-assembly code. This is
the critical reason why we exploit ScaffCC in the pro-
posed platform in which we focus on large-scale quantum
computing.

To conclude this section, we show a simple example
of a Scaffold program to make a five-qubit CAT state

1√
2
(|0〉⊗5 + |1〉⊗5) and a corresponding quantum-assembly

code. Readers can see how to make a Scaffold program in
Ref. [29] and how to use ScaffCC compiler in Ref. [26].
Figure 7 shows a quantum circuit to implement a five-qubit
CAT state and a corresponding Scaffold program. A struc-
tured and nonstructured quantum-assembly code generated
via the ScaffCC compiler are respectively shown in Fig. 8.

B. System layer

A quantum algorithm (quantum-assembly code) is a
logic of how to solve a given problem. It is usually devel-
oped based on an ideal physical situation where noiseless
physical gates and arbitrary long qubit interaction are
allowed. In other words, a quantum algorithm is developed
without considering any physical implementation.

On the other hand, a quantum computer where a quan-
tum algorithm is executed has a certain logical and physi-
cal architecture such as a qubit connectivity. Therefore, to
run a quantum algorithm on such a quantum computer, we
need to reformulate the algorithm to be compatible with the
given quantum-computer architecture. For example, real
quantum-computing devices in IBM Quantum Experience
[7] have very limited qubit connectivity and even worse

(a)
(b)

FIG. 8. Quantum-assembly codes to generate a five-qubit CAT
state. (a) Structured code and (b) nonstructured code.

allow only one-directional CNOT. Therefore, the quantum-
assembly codes shown in Fig. 8 can not be directly exe-
cuted on the IBM QX4 device [see Fig. 9(a)] because the
codes include unallowable CNOT gates. Therefore, for the
execution, we have to recast a quantum-assembly code for
IBM QX4. In Fig. 9(b), we show the recasted (nonstruc-
tured) quantum-assembly code for the device. This is the
motivation of a quantum-computing system synthesis.

The principle of a quantum-computing system synthesis
is very simple, (1) set up a quantum-computer architecture

(a) (b)

FIG. 9. (a) Qubit layout of IBM QX4 device [7]. A node indi-
cates a qubit, and an edge with a direction implies that the
application of a controlled-CNOT gate is possible, where the con-
trol qubit and the target qubit are the root and end of the arrow.
Therefore, as can be seen bidirectional CNOT is allowed on the
IBM QX4. (b) Recasted assembly code from Fig. 7(b). Since
the instruction “CNOT data0,data1“ is not allowed directly on the
IBM QX4, Hadamard gates, “H data1” and “H data2,” are added
before and after the instruction. Note that the node index k indi-
cates the qubit data k. We so not cancel out repetitive Hadamard
gates. By canceling out those gates, the circuit depth can be
reduced from 12 to 9.

054033-8



INTEGRATED ANALYSIS OF PERFORMANCE. . . PHYS. REV. APPLIED 13, 054033 (2020)

and (2) recast a quantum-assembly code for the architec-
ture. The first set up is the mapping the algorithm qubits
onto physical device qubits, and the following recast is the
gate scheduling based on the arranged qubits. In what fol-
lows, we first describe a quantum-computer architecture
and then show how to actualize a quantum algorithm on
the target architecture.

1. Quantum-computer architecture

We discuss a hierarchically structured quantum-
computer architecture for the proposed framework. In gen-
eral, there is no restriction to the architecture. In other
literature, a regular one- or two-dimensional lattice is
usually exploited. But, in this work, we assume that it
is hierarchically structured. A quantum computer is then
composed of several computing regions and a communica-
tion bus connecting all the computing regions. With such
a structured architecture, the system mapping with a hier-
archically structured quantum-assembly code can be done
efficiently.

A computing region is completely associated with a
module in a quantum-assembly code. Therefore, a com-
puting region has to support the functions of the associated
module. The region has multiple qubit cells as much as
the number of the qubits of the module. Some cells are
allocated for parameter qubits passed from other mod-
ules, and others are allocated for local qubits temporarily
used within the module. Additional space is sometimes
required to form the two-dimensional rectangular shape
of the module. Figure 10 shows the example of a module
in a quantum-assembly code and its associated computing
region.

(a) (b)

FIG. 10. (a) Example of a module in a quantum-assembly code
and (b) the associated computing region on a quantum-computer
architecture. In (a), the qubits a and even are parameter qubits
passed from other modules, and the qubit scratch is a local qubit
only used within the module. In (b), the dark gray cells are for
the parameter qubits, the white cells are for the local qubits and
the light gray cells are just empty space or null qubits working
trivially. While the size of the parameter qubits a and even are
not specified in the module definition, it can be determined by
tracing back to all modules that calls the module.

(a)

(b)

FIG. 11. Example of a proposed quantum-computer architec-
ture. (a) 2D global layout and 2D local layout. (b) 1D global
layout and 2D local layout. Logical qubits of a different color
play a different role in a module; parameter qubits (dark gray),
local qubits (white), and dummy qubits (light gray).

Figure 11 shows examples of a hierarchically struc-
tured quantum-computer architecture. The box labeled Mi,j
(Mi) indicates a module (computing region). We call the
arrangement of modules a global layout on the whole
quantum computer, and the arrangement of qubits within
each module a local layout, respectively. All modules com-
municate with each other via a communication bus. In the
figure, the bus is depicted as a white space outside of mod-
ules. We discuss the bandwidth of the communication bus
in Sec. V.

Qubit that resides inside a module supports universal
quantum operations. Such a qubit, a logical qubit encoded
in a quantum error-correcting qubit, is composed of (low-
level concatenated or physical) data qubits for holding data
and ancilla qubits for error correction and logical opera-
tions. On the other hand, the qubits for a communication
bus perform error correction and logical Clifford opera-
tions only. Therefore, the composition of logical qubits for
a communication bus can be differed from that for mod-
ules according to a quantum error-correcting code and a
fault-tolerant quantum-computing scheme.

2. System synthesis

Figure 1 shows that for the performance analysis all
the data are collected in the system layer and there the
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performance of quantum computing is evaluated. In this
section, we describe the system synthesis in terms of the
performance evaluation.

We first describe the qubit mapping that associates
algorithm qubits with physical qubits. In this work, we
map the algorithm qubits onto the physical qubits in a first-
come-first-served manner without considering any opti-
mized mapping technology. Figure 10 shows an example
of the method as the qubits in the assembly code are allo-
cated to the computing region sequentially as they appear
in the code. Please note that several improved quantum-
circuit mapping methods have been proposed to reduce the
amount of qubit movements [37–39], and by taking such
methods, it is possible to make the performance of quan-
tum computing better than the above naive mapping at the
cost of the efficiency of the system synthesis.

Provided that all the algorithm qubits are mapped
onto the qubit layout. Then, we have to determine the
schedule of all the algorithm instructions for the target
qubit layout. A specific process definitely depends on the
type of quantum instructions from the quantum-assembly
code. Quantum instructions in the hierarchically structured
quantum-assembly code are classified into three types:
one-, two-qubit gate, and module.

The set of one-qubit gates includes X , Z, H , S (S†), T
(T†), RZ(θ) and a preparation and a measurement in the Z
basis. The synthesis process for such a one-qubit gate is
straightforward and can be done independently from other
qubits. Suppose that it is scheduled that a Hadamard gate
is applied to a qubit q. If the qubit is in idle status, i.e.,
no gate is acting on the qubit now, the Hadamard gate can
be executed immediately. Otherwise, the Hadamard gate
is performed just after the previously scheduled operations
are finished. If the scheduled operations are over at time
t(q), then Hadamard operation starts at t(q) and finishes at
t(q)+ Ht, where Ht is the execution time of the gate. This
is everything for the synthesis of a one-qubit gate. Note
that the execution time and fidelity of a quantum gate are
provided from the building-block layer.

For a two-qubit gate, the present work deals with a CNOT
gate only. When a SWAP gate is required, we implement a
SWAP gate via three CNOT gates. We assume that a CNOT
gate can be executed on the two qubits located in the near-
est neighbor. Suppose that it is scheduled that a CNOT gate
is applied to qubits qa and qb. For that, both qubits have
to be in temporarily and spatially ready status. First, if
they are apart, we make both qubits be located in neighbor
via qubit movements such as SWAP operations. Second,
if one qubit (or both qubits) is being manipulated by pre-
viously scheduled operations, we delay the CNOT gate
operation until both qubits are in idle status. In that case,
the CNOT operation definitely begins at max{t(qa), t(qb)},
and finishes on time max{t(qa), t(qb)} + CNOTt. Note that
max{t(qa), t(qb)} is the time both qubits are in idle status,
and CNOTt is the execution time of a CNOT gate.

The third type of quantum instruction, a module, works
like a multiqubit quantum operation. Therefore, on the
surface, it seems that the synthesis of a module is very
similar to the synthesis process of a two-qubit CNOT gate.
For the synthesis of a module, several argument qubits
for the module should be temporally and spatially ready.
The critical difference from the case of a CNOT gate is
that a distinguished physical space (the physical space for
a module is the computing region we describe before)
should be allocated for a module. Therefore, to perform
the synthesis of a module, we take into account the qubit
movements from the present module to a target mod-
ule, and vice versa. The detailed process for the qubit
movements between modules is described in the following
paragraphs.

Suppose that module A is being synthesized now. The
quantum instruction to process in the next turn is “M
(qa, qb, qc),” which implies that module M is called with
argument qubits qa, qb, and qc. For that, we first transmit
the argument qubits to the designated area of the module
M . The qubit transmission is achieved by a sequence of
SWAP operations through a communication bus. We call
the transmission from the calling module A to the called
module M a forward qubit passing. After the forward qubit
passing, the qubits are placed at the parameter qubit section
of the module M . See Fig. 10(b) for the parameter qubit
section of a module.

All the quantum instructions of the module M are then
executed (synthesized) over the qubits, where some qubits
are just passed from the module A and the others are
local qubits of the module M . If it is faced with a quan-
tum instruction calling another module M ′, then some
qubits in the module M are passed to the designated space
of the newly called module M ′ and manipulated thereby
following the quantum instructions of the module. After
executing all quantum instructions of the module M , the
passed qubits have to be back to the original module A.
We call this returning transmission a backward qubit pass-
ing. Figure 12 shows the module operation including the
forward and backward qubit passings.

We now describe how to evaluate the performance
of a quantum algorithm. For the evaluation, we need
to keep two lookup tables, a local lookup table and a
global lookup table. The evaluation proceeds by per-
forming all modules sequentially as they appear in a
quantum-assembly code. For each module, we initialize
a local lookup table for all qubits in the module and
update the operation time of each qubit as we process
each quantum instruction in the module. Algorithms 1
and 2 summarize the system-synthesis method in terms
of the performance analysis. As the mapping proceeds
instruction by instruction in the quantum-assembly code,
the performance criterion cycle and time are updated per a
qubit. For a two-qubit gate, we use the notations cycle∗

and time∗, which are the latest cycle and time between
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FIG. 12. Example of the module operation that consists of
seven steps: (1) (forward) move qubits to the bus, (2) (forward)
move to the target module, (3) (forward) move to the parameter
qubit cells (dark gray cells), (4) module operations,(5) (back-
ward) move qubits to the bus, (6) (backward) move to the original
module, and (7) (backward) move to the original qubit positions.

both qubits, cycle∗ = max{T[i]cycle, T[j ]cycle} and time∗ =
max{T[i]time, T[j ]time}.

After processing all the instructions of a module, we
determine the circuit depth and the execution time of the
module by picking up the maximum execution time among
all qubits, maxQ{T[Q]cycle} and maxQ{T[Q]time}. The per-
formance of a module is then recorded in the global lookup
table. In the middle of the synthesis of modules, if a mod-
ule already synthesized is called, then we can refer to the
performance of the module from the global lookup table
instead of performing the synthesis again. Note that our
analysis method assumes that a module is executed with
the same cost whenever it is called in the algorithm, and
therefore by performing the synthesis of a module only
once is enough in the hierarchical system synthesis.

Provided that the synthesis of all modules are com-
pleted, we can determine the execution time of a quan-
tum algorithm as the maximum operation time among
the qubits in the main module. This is a single-round
execution time of a quantum algorithm. For exam-
ple, the quantum-assembly code in Fig. 8(a) can be
mapped as shown in Table III, and its execution time is
determined as Prep Zt + FPmain→MakeCAT +MakeCATt +
BPmain←MakeCAT. The operation length and the execution
time of the module MakeCAT are respectively 5 and Ht +
4CNOTt, where Ht, CNOTt and Prep Zt are the execution
times of H , CNOT and PrepZ (preparation operation with
Z basis). As shown in Fig. 9, the execution of a two-
qubit CNOT gate sometimes requires qubit movements if
control and target qubits are not positioned in the neigh-
borhood. In Table III, for the purpose of the presentation,
we do not consider such a situation in detail. Note that
FPmain→MakeCAT (BPmain←MakeCAT) is the time for the for-
ward (backward) qubit passing, which is determined based
on the distance between both the modules, the position of
the argument qubits to be passed and the qubit passing

TABLE III. Mapping result of the quantum-assembly code in
Fig. 8(a).

Operation index data[0] data[1] data[2] data[3] data[4]

1 PrepZ PrepZ PrepZ PrepZ PrepZ
2 Forward passing (main→ MakeCAT)

3 H
4 CNOT
5 CNOT
6 CNOT
7 CNOT
8 Backward passing (main← MakeCAT)

technology [40]. As discussed later, the execution time of
quantum gates are determined based on the quantum error
correction and fault-tolerant gate protocols. In the above
example, the quantity of the qubits to run the algorithm
is a sum of five algorithm qubits and Qbus bus qubits.
According to the type of quantum computing, an algorithm
qubit corresponds to a physical qubit or an error-corrected
logical qubit.

So far, we describe a system synthesis algorithm for
a hierarchically structured quantum-assembly code. The
presented algorithm can be applied to a nonstructured
quantum assembly code needless to say. In such a code,
there are two types of quantum instructions: one- and two-
qubit gate. Regardless of the type of a quantum-assembly
code, as mentioned before the heart of the system map-
ping is (1) set up a quantum-computer architecture and
(2) recast quantum algorithm for the architecture by per-
forming the system mapping. To be compatible with the
quantum-assembly code, a simple qubit array such as
a regular two-dimensional lattice may be enough. The
proposed framework supports a system mapping on an
arbitrary qubit layout as shown in Fig. 9(a).

C. Building-block layer

It is well known that very robust and accurate qubits and
quantum gates are required to achieve reliable quantum
computing. For example, by following a KQ formalism
[41], to accurately run a quantum algorithm of 50 qubits
and 1000 circuit depth the physical error rate of a quantum
gate should be less than 0.00002. Otherwise, a quantum
error may happen during the computation, which causes
the quantum computation to be broken. Furthermore, the
interesting quantum algorithms such as integer factoring
[42] and unstructured database search [43] need much
more qubits and much longer circuit depth. The required
error rate for those algorithms should be below as much
as O(10−15)–O(10−20), but it looks almost impossible to
achieve it practically. Fortunately, it is well known that we
can make an effective error rate of quantum gates lower to
the arbitrary degree by employing a quantum error correc-
tion [44–48] and a fault-tolerant protocol [41,49–52].
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Algorithm 1. System mapping for hierarchical QASM

In the present work, we apply the fault-tolerant
quantum-computing protocols based on [[7, 1, 3]] Steane
code [47] and surface code [19,53]. Both codes have well-
studied logical-gate protocols. The concatenation level of
Steane code and the code distance of a surface code are
completely determined by the size of a given quantum
algorithm and physical error rate [16,20]. In this work, we
set both figures by using KQ formalism [41]. Note that the

KQ value, the number of qubits and the circuit depth, com-
pletely depends on the size of a quantum algorithm, and
therefore it should be provided from the compile layer.

1. Steane code

[[7, 1, 3]] Steane code encodes logical quantum infor-
mation in a qubit into seven physical qubits and protects
it from an arbitrary one-qubit quantum error. Since the
transversal implementations for a logical Hadamard and
a logical CNOT gate are supported well, many studies on
the fault-tolerant quantum computing based on the Steane
code are conducted. In Ref. [5], an optimal design of a
logical qubit for Steane code under the two-dimensional
nearest-neighbor qubit interaction was proposed. They
achieved the threshold O(10−5) with 48 lower-level qubits
and modified quantum error correction.

In this work, we redesign a logical qubit with 30 lower-
level qubits. Seven qubits among them are used for holding
data, and the others are temporarily used for logical oper-
ations and error correction. We apply the Shor quantum
error correction [49], exploiting a four-qubit Shor state
for the syndrome measurement. For that, we prepare and
verify the Shor state [54]. We implement the prepara-
tion of a logical state |0〉L by following Ref. [15]. Most
of the logical gates are implemented as transversal gates,
and the non-Clifford T gate is implemented by exploiting
a magic state. We generate magic states by employing a

Algorithm 2. System mapping for each module
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seven-qubit Shor state without resource-consuming magic
state distillation [55].

Accuracy threshold theorem [56,57] says that if we
have a quantum device of physical error rate below a
code threshold, it is possible to achieve arbitrarily reliable
quantum computing. But, for a very large-sized quantum
algorithm, encoding only once may not be enough. For-
tunately, by encoding a qubit recursively [51], we can
lower the effective error rate to the degree where reliable
quantum computing is possible.

Given a quantum algorithm, we can calculate KQ and
determine the maximum tolerable error rate Pmax as 1/KQ.
We then determine the concatenation level l by the follow-
ing inequalities satisfies

Pmax ≥ (copp2)
2l

cop
, (1)

where op is quantum error correction and logical opera-
tions, and cop is the constant factor of a specific logical
operation op . We obtain the constant values of each logical
operation from KQ of a quantum circuit for the opera-
tion. For example, cQEC corresponds to KQ of the QEC
quantum circuit. In this work, we do not optimize the
arrangement of qubits (see Table IV), and therefore the
quantum error correction and a logical operation work sub-
optimally, and therefore the threshold may be lower than
the optimal value O(10−5). (Please note that the objec-
tive of our work is not to increase a code threshold, but to
configure quantum computing and analyze its performance
accurately.)

Suppose that a concatenation level for quantum comput-
ing is determined as l. The implementation of a logical T
gate in the level l consists of only Clifford operations at
a lower level k < l. Then, in the level k, the implementa-
tion of a logical T gate is not necessary and therefore the
qubits to implement a magic state, the seven-qubit Shor
state, are not strongly required. Therefore, only 23 qubits

TABLE IV. Arrangement of qubits to implement a logical qubit
in the concatenation level l. The component qubits are in the
concatenation level l− 1. The qubit denoted by D[i] indicates
a ith data qubit. The qubits 4Sh[i] and 7Sh[j ] are for four- and
seven-qubit Shor states for syndrome measurement and a logi-
cal T gate, and V4Sh and V7Sh are used to verify the four- and
seven-qubit Shor states, respectively. The qubit M [i] is also used
to implement a logical T gate.

V4Sh[1] V4Sh[2] D[1] D[2] D[3]

4Sh[1] 4Sh[2] D[4] D[5] D[6]
4Sh[4] 4Sh[3] D[7] V7Sh[1] V7Sh[2]
M [1] M [2] M [3] M [4] M [5]
M [6] M [7] V7Sh[3] 7Sh[1] 7Sh[2]
7Sh[3] 7Sh[4] 7Sh[5] 7Sh[6] 7Sh[7]

are required to implement a logical qubit in the lower-
level k. But, to form a two-dimensional rectangular shape
of a logical qubit, we require 25 qubits (5× 5 layout) for
a lower-level qubit in the level k. In Table IV, the qubit
denoted by 7Sh[i] is not required in the lower-level qubit
k. On the other hand, the qubits V7Sh[i] (the main role of
which is to verify the seven-qubit Shor state) are used for
the other purpose, logical measurement.

2. Surface code

Two-dimensional surface-code-based fault-tolerant quan-
tum computing is recognized as the most promising fault-
tolerant quantum-computing scheme due to physically less
challenging requirements. The code has a high threshold
around O(10−2) [53,58,59], and its structure is well suited
to nearest-neighbor interacting qubits arranged on a two-
dimensional lattice. In this work, we implement double-
defect-based logical qubits and logical gates described in
Refs. [16,19,53]. The detailed protocols are beyond the
scope of the present work, and we describe performance
parameters only.

We use the KQ formalism to determine a code distance
d [16,20]. The objective error rate of quantum computing
is determined by Pfail ≈ KQεL, where εL is a logical error
rate. The code distance d is then determined as

d ≈ 2
(

log εL − log C1
)

log C2 + log εp
εth

− 1, (2)

where εp and εth are the physical error rate and the thresh-
old of the surface , respectively. C1 and C2 are code
parameters, and we use the specific figures, C1 ≈ 0.13,
C2 ≈ 0.61, from Ref. [20]. We apply the code threshold
εth = 0.009 from the same reference.

Now it is possible to determine the execution time of
surface-code logical gates. Above all, we stress that the
surface-code error correction has to iterate d rounds of a
syndrome measurement to avoid an effect by noise dur-
ing the measurement [19]. We assume that logical Pauli
operators are performed in classical control software by
updating the logical Pauli frame [19]. A logical CNOT gate
between the same type (X -cut or Z-cut) logical qubits
consists of three CNOT gates between different type of
logical qubits. For that, we prepare a pair of different
types of logical ancilla qubits [19]. A logical Hadamard
gate protocol consists of cutting and reconnecting a tar-
get logical qubit from/to a whole qubit array and per-
forming transversal physical Hadamard and SWAP gates
[19,60]. The Hadamard gate makes the role of syndrome
qubits interchanged, and the syndrome qubit reverts to the
original position (role) via the SWAP operation.

We now turn our attention to the nontransversal gates S
and T. A logical S gate is deterministically implemented by
using a high-fidelity magic state |YL〉 = 1√

2

(|0L〉 + i|1L〉
)
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[19,20]. Since the gate protocol does not measure |YL〉,
it is possible to reuse it after we generate plenty of the
states at the beginning. How many |YL〉 states should be
prepared is discussed later. A logical T gate is imple-
mented by consuming a high-fidelity magic state |AL〉 =

1√
2

(|0L〉 + expiπ/4 |1L〉
)

[19]. The magic state has to be
prepared for every T gate. We assume that a magic state
is prepared and supplied in offline. In other words, the
preparation of the high fidelity |AL〉 is not included in the
quantum-computing time. On the other hand, the logical
T-gate operation is probabilistically achieved up to the log-
ical S-gate correction. Therefore, to implement a logical T
gate, a |YL〉 state is probabilistically required.

We now discuss the quantity of the required |YL〉
states. It depends on the quantity of the states maximally
required at one time. Since a logical T gate probably
requires a |YL〉, we have to prepare |YL〉 as much as
max{parallel T, parallel S}, where parallel T (parallel S) is
the number of logical T (S) gates executed in parallel. Note
that the quantities of parallel T and parallel S can be found
from the system-synthesis process.

The preparation of a high-fidelity magic state takes
two steps, state injection and state distillation [19,61].
The state injection in the surface-code quantum comput-
ing injects an arbitrary logical state into the distance 1
logical qubit called a short qubit and makes the logi-
cal qubit larger [19]. Enlarging a double-defect logical
qubit consists of multicell qubit movements and measure-
ment on data qubits. The state-distillation protocol takes
m noisy states and generates k less noisy states, where
m > k. By performing multiple rounds of the distillation,
the magic spread over many states can be concentrated
onto only a few states and therefore we can obtain high-
fidelity magic states. In this work, we deal with the magic-
state-distillation protocols described in Refs. [19,53]. The
required iteration of the protocol is completely determined
by the objective fidelity and a physical error rate [16].
We set the objective error rate of the magic states as
10−12 to achieve high fidelity for the configured quantum
computing (1/NT gates), and empirically the two-round
distillation achieved the objective error rate in the physical
error rate 10−3–10−5.

We determine the capacity of a magic state factory that
prepares and supplies |AL〉 states. The capacity depends
on a quantum algorithm and the running times of a state
distillation and a logical T gate. Imagine that a logical
T gate is applied consecutively to a certain qubit. If a
magic state factory generates only one magic state at a
time, there a latency for the supply of the magic states
may happen if the magic state distillation takes more
time than the execution time of a logical T gate. There-
fore, the magic state factory has the capacity to prepare
at least max{parallel T} × time(MSD)/time(T) states at a
time where time(MSD) and time(T) are the running times

of the magic state distillation and the logical T-gate proto-
col. Empirically, the time(MSD)/time(T) is approximately
20 in our estimation.

To conclude, the required physical qubits for |AL〉 and
|YL〉 are respectively

max{parallel T} × time(MSD)

time(T)
× (

15× QL)
r−1

× (16× QL), (3)

and

max{parallel T, parallel S} × (
7× QL

)r−1 × (8× QL),
(4)

where QL is the number of physical qubits to implement
a logical qubit and r is the required distillation rounds.
The last distillation round requires one more logical qubit
from the Bell state [19]. Above this, the ancilla qubits to
perform CNOT gates during the distillation protocol also
should be included. Recall that to perform a CNOT oper-
ation between the same type of logical qubits (Z cut or X
cut), the opposite type of logical qubit is required as an
ancilla.

V. PERFORMANCE METRIC

We describe how to evaluate the quantum-computing
metrics, execution time, fidelity, and the number of qubits.

A. Execution time

We examine the quantum-computing time in two steps.
In the system synthesis, we obtain the single-round exe-
cution time Tone of a quantum algorithm. However, the
single-round execution does not guarantee reliable quan-
tum computing. Noisy components may make quantum
computing broken. To overcome such a problem, we cal-
culate the average execution time Tavg by reflecting the
number of the required iterations to achieve the fidelity of
100% as

Tavg = Tone/Falg. (5)

We believe this averaged time shows the time required for
getting a reliable answer from quantum computing. (This
does not indicate that the output from quantum computing
is an exact solution. We do not consider the probabilistic
nature of a quantum algorithm.) Note that how to calcu-
late the fidelity of quantum computing is described in the
following section.

B. Fidelity

The fidelity of fault-tolerant quantum computing can be
calculated based on the fidelity of logical quantum gates as
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follows [16]:

Falg =
∏

g

Fg
Ng , (6)

where g is a quantum gate utilized in the algorithm. Fg
is the fidelity of the gate g, and Ng is the total count
of the gate in the algorithm. The value Ng can be found
from the system synthesis and Fg is determined in the
building-block layer. It is worthwhile to note, this fidelity
calculation is only applicable to Steane-code-based quan-
tum computing. As shown in Sec. IV C 2, the final fidelity
of surface-code-based quantum computing is given by
Falg = 1− KQ× εL.

C. Number of physical qubits

We examine the quantity of physical qubits required to
run a quantum algorithm. Since the quantity of the required
qubits differs according to a fault-tolerant quantum-
computing scheme, we first identify the common factor,
the qubits in a quantum algorithm, and then go into specific
cases later.

The proposed hierarchical quantum-computer structure
consists of multiple modules and a communication bus
connecting all modules. In the quantum-assembly code, we
can find the quantity of logical (or physical) qubits for a
module.

Qcomp =
∑

m∈M

(
Qm

local + Qm
param

)
, (7)

where Qm
local (Qm

param) is the number of local (parameter)
qubits of a (computing) module m. Note that M is the set
of all modules in the quantum algorithm.

1. Steane-code quantum computing

We consider Steane-code quantum computing. The
structure of a communication bus depends on the chosen
global layout over all modules. On the 1D global lay-
out, the number of qubits can be simply calculated as
Qcomm = bandwidth× length, where length is obtained as

length =
∑

m

mwidth, (8)

where mwidth is the width of a module, which is 1 for 1D
local layout in common and √Qm� for 2D local layout.
Note that Qm = Qm

local + Qm
param.

On the other hand, on the 2D global layout, the number
of qubits can be calculated as follows. Let us suppose that
the number of modules is |M |. Then, √|M |� × √|M |�-
sized 2D global layout is necessary. To keep the shape of
a module on the 2D layout, all modules have the same

size cells n× n, where n = √maxm∈M {Qm}�. Then, the
required logical qubits for the communication bus is

Qcomm = 2× bandwidth× n× A× B+ (
n× A

)2, (9)

where A = √|M |� − 1 and B = √|M |�. In this work, we
determine the bandwidth of a bus as the maximum number
of parameter qubits, bandwidth = maxm∈M {Qm

param}.
We now turn our attention to the quantity of lower-level

qubits forming a logical qubit of the concatenation level l.
As mentioned in Sec. IV C 1, a logical qubit in the concate-
nation level k = 1 ∼ l− 1 is composed of 25 lower-level
qubits, and the qubit in the level l is composed of 30 qubits
in the l− 1 level. According to the physical error rate and
the size of the quantum algorithm, the concatenation level
is determined as mentioned before. The quantity of total
physical qubits in the Steane-code quantum computing is
then

QSteane = 25r−1 × 30× Qcomp + 25r × Qcomm, (10)

where r is the concatenation level.

2. Surface-code quantum computing

We implement double-defect-based logical qubits. For
a double-defect logical qubit with code distance d, each
defect has to be apart from a boundary as much as d
data qubits and double defects also should be separated
as much as d data qubits. On the other hand, to perform
a braiding operation in a fault-tolerant manner, the space
between double defects has to be at least 2d + d/4� rather
than only d. Therefore, to implement a double-defect log-
ical qubit of code distance d, (2A+ 1)(2B+ 1) physical
qubits are required, where A = (

2d − 2+ d/4�) and B =(
4d − 4+ 3d/4�). Figure 13 shows a double-defect logi-

cal qubit of code distance 3. A total of 253 physical qubits,
126 data qubits and 125 syndrome qubits, are required.

Two neighboring logical qubits are also separated as
much as d/4� data qubits to keep the code distance
between both qubits during the fault-tolerant braid trans-
formation. In this regard, if N logical qubits are arranged
on the two-dimensional layout of nh × nw, we need

{
2
[
nwA+ (nw − 1)d/4�

]
+ 1

}

×
{

2
[
nhB+ (nh − 1)d/4�

]
+ 1

}
(11)

qubits, where A and B are as we mention above.
We take account of the ancilla qubits required for a CNOT

gate. As mentioned before, the CNOT gate between the
same type (X -cut or Z-cut) logical qubits consists of three
CNOT gates between different types of logical qubits. For
that, two ancilla qubits, X -cut qubit |gL〉 and Z-cut qubit
|+L〉 are required. We allocate a pair of both ancilla qubits

054033-15



HWANG, KIM, BAEK, and CHOI PHYS. REV. APPLIED 13, 054033 (2020)

FIG. 13. Double Z-cut qubit of a code distance 3. The blue
dots indicate data qubits. One of the green chains indicates a log-
ical Z operator, and the red chain indicates a logical X operator.
Through the yellow line, it is possible to perform a fault-tolerant
braiding operation from other X -cut qubit to this Z-cut qubit.
Each defect has to be away from boundary as much as 3 data
qubits, and both defects have to be separated 6 data qubits. 126
data qubits and 125 syndrome qubits are required to implement a
distance-3 logical qubit.

to every module where a CNOT gate is performed. In that
case, the number of logical qubits for a module is the sum
over parameter qubits, local qubits, and two ancilla qubits
instead of Eq. (7).

In the case of surface-code quantum computing, the
communication bus is not strongly required for the CNOT
operation between distant qubits. Instead of the sequence
of SWAP operations as much as the passing distance, the
qubit transmission in the double-defect surface-code quan-
tum computing is much more efficient. A defect can be
moved to an arbitrary apart place via performing a multi-
cell movement once [16,19]. However, the qubit passing
may be useful to make the interaction between distant
qubits belong to different modules more efficient [62].

We assume that the surface-code quantum computing
performs the qubit passing sequentially on the bus with
the narrow bandwidth. We set the bandwidth of the bus
as d/4�, and additionally, the movement path should be
away from a boundary as much as d data qubits. Figure 14
shows the quantum-computer architecture based on a sur-
face code and a structured quantum-assembly code, where
all the modules are arranged on the one-dimensional layout
by keeping the space as much as d/4� data qubits between
both modules.

VI. ANALYSIS OF PERFORMANCE AND
RESOURCE

We show the performance analysis results of the
quantum-computing models we configure. For that, we,
first of all, set the objective fidelity of quantum comput-
ing as 70%. This means that we set the error correction
strength (concatenation level or code distance) to let the
fidelity of a single-round quantum computing be at least
70%.

FIG. 14. Quantum-computer structure based on the surface-
code quantum computing. Dark green dots indicate defects and
yellow cells are used as a path for the braiding transformations.
Blue cells can be used for the forward-backward qubit passings
over distance modules. An enclosed section by dotted red line is
a computing region, a module. A defect has to be away from the
boundary of a logical qubit or a braiding path as much as d data
qubits, and two logical qubits are mutually separated as much as
d/4� data qubits.

We basically assume that the error rates of physi-
cal operations in the Steane-code quantum computing
and surface-code quantum computing as 10−9 and 10−3,
respectively. However, we show the changes in the perfor-
mance and the required resource of quantum computing as
varying the physical error rates in Sec. VII. Besides, we
assume that the execution time of a physical operation is
1 μs conservatively. This assumption may be pessimistic
because other literature usually takes physical gates with
tens–hundreds of nanoseconds.

In the following subsections, we configure and analyze
quantum computing by applying realistic factors one by
one. In the beginning, we show the effect by a compile
in Sec. VI A by comparing the performance between a
Rz(θ) decomposed code and a nondecomposed code. We
then show that how much a fault-tolerant protocol changes
the performance and the resource of quantum comput-
ing Sec. VI B. There we assume that nonlocal multiqubit
interaction, i.e., a CNOT between qubits located apart from
each other, can be used. On the other hand, in Sec. VI C,
we analyze fault-tolerant quantum computing with the
assumption that a local interaction for multiqubit operation
is only allowed.

We finally recall that the benchmarks for all the analy-
ses in this paper are Shor’s factoring algorithm [16,26,63]
except the case of Fig. 18, and the plotted quantum-
computing time is based on the unit of Tavg, which
indicates the total running time of repetitive quantum-
computing executions to achieve the algorithm execution
fidelity of 100%.
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(a) (b)

FIG. 15. We show the quantum-computing performance change by only the compile effect. (a) Quantum-computing time and (b)
number of physical qubits.

A. Case of applying compile

We show the change of the performance of quantum
computing by applying quantum compile, i.e., the decom-
position of a RZ(θ) gate into a sequence of H , S, and
T gates. Even though generally such a decomposition is
strongly required to implement a fault-tolerant quantum
computing, in this section we perform physical quantum
computing without quantum error correction to see the
effect of the compile only. For that, we assume that the
components of the other layers are ideal.

We set the precision of the decomposition as 10−10,
which means that the decomposed gate sequence of the
RZ(θ) gate achieves the exact RZ(θ) operation with an error
probability 10−10. Consequentially, both RZ(θ1) and RZ(θ2)

can be decomposed into the same sequence of H , S, and T
if |θ1 − θ2| ≤ 10−10. Under such precision, a RZ(θ) gate is
usually decomposed into a sequence of 250 H , S, and T
gates [64]. Note that the decomposition algorithm works
probabilistically [3,30].

Figure 15 compares the performance. By decomposing
the RZ(θ) gate, the quantum-computing time increases as
much as 4–5 times, but the number of physical qubits
stays equivalently. In general, the RZ(θ) gate takes more
than half of all quantum gates in our benchmark algorithm
(see Table V). Here, on considering that the RZ(θ) gate is
decomposed into a sequence of hundreds of H , S, and T
gates as we mention above, readers may guess that the per-
formance difference between both cases should be larger
than that shown in the figure.

TABLE V. Proportion of the RZ(θ) gate in Shor N = 128.

Input size RZ(θ) Total gates Proportion

128 2.036× 109 3.399× 109 59.90%
256 1.630× 1010 2.719× 1010 59.94%
512 1.304× 1011 2.175× 1011 59.95%

Recall that we set the precision of the decomposition
as 10−10 above. Most θ in Shor’s factoring algorithm are
very small (θ = π/2n−1 with n = 1 ∼ N for N -bit integer
factoring), and therefore the decomposition of such rota-
tion operation works as the identity operation. We show
the top dominant θ used in Shor’s N = 128 algorithm in
Table VI. All the angles are less than 10−10. While we
do not describe all θ in the algorithm in the table, empir-
ically 75% of the angles applied in the algorithm are less
than 10−10. In this regard, the degree of the performance
change by decomposing RZ(θ) gates is not so remarkable
regardless of the quantity of RZ(θ) gates in the algorithm.

B. Case of applying compile and error correction

We show the performance of quantum computing by
applying a quantum error correction. For that, as men-
tioned above, we need to compile a quantum algorithm
by decomposing the RZ(θ) gate into the H , S, and T
gate. Here, we concentrate only on the effect by applying

TABLE VI. List of top ten dominant angles in Shor’s factoring
algorithm, N = 128. The θ listed in this table is less than 0.01
and therefore RZ(θ) works as an identity operator. The rotational
angle θ of the gate is from π/2n−1 in quantum Fourier transform,
and the exact representation of the angle is limited by a classical
computer precision.

θ Count Proportion

0.000 000× 100 6.88× 108 0.3381
−0.000 000× 100 3.44× 108 0.1691
−5.000 000× 10−5 3.13× 107 0.0154
−1.000 000× 10−4 3.11× 107 0.0153
5.000 000× 10−5 3.10× 107 0.0152
−2.000 000× 10−4 3.09× 107 0.0152
1.000 000× 10−4 3.08× 107 0.0151
−4.000 000× 10−4 3.08× 107 0.0151
2.000 000× 10−4 3.07× 107 0.0151
−7.500 000× 10−4 3.06× 106 0.0150
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(a) (b)

FIG. 16. Quantum-computing performance and resource by applying quantum error correction. We assume that an arbitrary long
qubit interaction is allowed here. For the fault-tolerant operation, we compile a quantum algorithm by decomposing RZ(θ) gates into
a sequence of H , S, and T gates. In this evaluation, the quantum-computer architecture and local qubit interaction are not completely
considered. (a) Quantum-computing time and (b) number of physical qubits. The concatenation level for the input size 128 is 1, and 2
for the other cases.

quantum error correction. To this end, we assume that a
nonlocal interaction between distant qubits can be directly
applied. By doing so, we can disregard the effect of a
quantum-computer system architecture. Therefore, a com-
munication bus and a qubit movement are not required in
this case. We deal with a Steane-code quantum computing
only because the surface-code quantum computing inher-
ently takes account of the two-dimensional qubit array
allowing nearest-neighbor qubit interaction.

Figure 16 shows the quantum-computing performance.
The execution time and the number of qubits increase
remarkably when the input size increases from 128 to
256. This is because the required concatenation level
increases from 1 to 2 there to satisfy the objective fidelity
of 70%. But, as the concatenation level stays as 2 when
the input increases from 256 to 512, the increases of a

quantum-computing time and the number of qubits are
rather modest.

As we mention above, the changes in the performance
and the resource shown in the figure are only caused by
the fault-tolerant quantum-computing protocol. For exam-
ple, in Fig. 16(b), the numbers of qubits in the Steane-code
quantum computing are bigger than physical computing
as much as 30, 900, and 900 times, respectively. Recall
that we design a logical qubit by assembling 30 low-level
qubits.

C. Case of applying compile, error correction, and
system architecture

We analyze the quantum-computing performance by
considering all the realistic factors we describe previously.

(a) (b)

FIG. 17. Quantum-computing performance of the Steane-code-based local fault-tolerant quantum computing. To see the influence by
the architectural limitation, we also add the performance when the arbitrary long qubit interaction is allowed. (a) Quantum-computing
time and (b) number of physical qubits. All concatenation levels for the local qubit interaction cases (black, red, and blue lines) are 3
in common. But, in the case of the nonlocal qubit interaction (green line), the concatenation level is 1 for the input size 128 and 2 for
the others. See Fig. 11 about the quantum-computer architectures.
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TABLE VII. Proportion of SWAP gate in Shor’s factoring
algorithm. The layout indicates a combination of global layout
and local layout.

Input size Layout SWAP Total gates Proportion

128 (1D, 1D) 7.371× 1011 7.405× 1011 99.54%
(1D, 2D) 1.262× 1012 1.266× 1012 99.73%
(2D, 2D) 1.527× 1013 1.527× 1013 99.97%

256 (1D, 1D) 1.116× 1013 1.118× 1013 99.76%
(1D, 2D) 1.856× 1013 1.859× 1013 99.85%
(2D, 2D) 2.719× 1014 2.720× 1014 99.99%

512 (1D, 1D) 1.068× 1014 1.070× 1014 99.80%
(1D, 2D) 1.811× 1014 1.813× 1014 99.88%
(2D, 2D) 5.789× 1015 5.789× 1015 99.99%

We apply fault-tolerant quantum computing based on cer-
tain quantum-computer architectures where only nearest
neighbored qubits can interact. In this section, we deal
with both the Steane code and the surface code as a
fault-tolerant quantum-computing scheme.

We first show the performance and the resource of the
Steane-code quantum computing by varying the quantum-
computing architectures as (1D global, 1D local), (1D
global, 2D local) and (2D global, 2D local). See Fig. 11
for the quantum-computer architectures. Figure 17 shows
the performance and the resource of the Steane-code quan-
tum computing. To see the influence caused by a local
qubit interaction, we also compare the performance of the
quantum computing based on nonlocal qubit interaction
(“all-to-all”) shown in the previous section.

As shown in the figure, the performance degradation by
the local qubit interaction on a quantum computer archi-
tecture is highly nontrivial. This is because many modules
are spread over the quantum computer, and the communi-
cation (qubit passing) are performed frequently. Table VII
shows the proportion of SWAP gates in the implementation
of the factoring algorithm. Surprisingly, on the proposed

quantum-computer architecture with the nearest-neighbor
qubit interaction, most of the quantum operations in the
Steane-code quantum computing are qubit movements
rather than qubit manipulations.

We think the quantity of the qubit movements is a tem-
poral overhead to implement a quantum algorithm on a
quantum computer. Such a large overhead caused by the
qubit movements can be reduced by improving a quantum-
computer structure, a fault-tolerant quantum-computing
scheme, or a system-synthesis algorithm. For reference,
many efforts are being dedicated to how to reduce such an
overhead by qubit movements [37–39,65–69].

The figure shows that a quantum-computer architecture
of the 1D global layout provides better performance than
a quantum computer of the 2D global layout. However,
it may not always be the case. It completely depends on
the number of modules in a quantum-computing program
(see Fig. 7), and the arrangement of the modules on the
architecture. In general, the 2D global layout is a better
architecture in terms of the qubit movements when the
number of modules is very large. On average, the arrange-
ment of the modules on the 2D global layout can reduce
the distance between modules more than the 1D global
layout. Therefore, the communication cost of the qubit
passing is less than the 1D global layout. As an exam-
ple, Fig. 18 shows that a ground-state estimation (GSE)
algorithm [16,17,26] works better on a quantum-computer
architecture with the 2D global layout because the GSE
algorithm is composed of much more modules than the
factoring algorithm benchmark.

In what follows, we show the performance and the
resource of the surface-code computing in Fig. 19. The
quantum-computer architecture for the case is shown in
Fig. 14. In the error rate 10−3, as the input size increases,
the required code distance is raising 25, 27, and 30 to sat-
isfy the objective fidelity. In the figure, we also show the
number of physical qubits to run a magic state factory

(a) (b)

FIG. 18. Quantum-computing performance of ground-state estimation algorithms over input size M = 20, 40, 60, 80. Quantum gates
are noiseless, and only nearest-neighbor qubits mutually interact on the quantum-computer architectures. (a) Quantum-computing time
and (b) number of physical qubits.
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(a) (b)

FIG. 19. Quantum-computing performance based on the surface-code quantum computing. (a) Quantum-computing time and (b)
number of physical qubits. The code distances are respectively 25, 27, and 30. In (b), we also show the required physical qubits for a
magic state factory.

that supplies |AL〉 states during the quantum computing.
As shown in the figure, the capacity of a magic state fac-
tory stays almost the same regardless of the input size of
the factoring algorithm. It increases as much as the code
distance.

Reference [19] estimated the surface-code quantum-
computing execution time of the factoring algorithm to
factorize a 2000-bit integer. By following their method,
the quantum-computing time to factorize a 512-bit inte-
ger is only 0.45 h (40× 5123 × 3× 100 ns) regardless of
physical error rates. But, our estimation says that 8.78×

FIG. 20. Comparison in quantum-computing time and T-gate
depth between our benchmark and Ref. [19]. Quantum-
computing time of our benchmark is also obtained by applying
a time-optimal quantum-computing scheme in our platform.
The T-gate depth of our benchmark is obtained from the sys-
tem layer since any rigorous analysis on the T-gate depth is
not conducted in the original literature [63]. The difference in
quantum-computing time between both is as much as the quan-
tity of T-depth times 10. The constant factor 10 is caused by the
difference in the execution time of a physical measurement gate.

105 h are required for the same task in the physical error
rate of 10−3.

We believe this shocking discrepancy is caused by the
quantum-computing scheme and the variant of Shor’s fac-
toring algorithm they applied rather than our platform
itself. First, Ref. [19] applies the time-optimal quantum-
computing scheme [28] as a computing model. The scheme
claims that a Clifford gate can be completed effectively
zero time and a logical T gate can be completed within
a single physical measurement time. Therefore, the execu-
tion time of a fault-tolerant quantum computing is inde-
pendent of the error-correction strength such as a code
distance. On the other hand, as we mention before, our
platform counts the execution times of all quantum opera-
tions including the error correction by d-round syndrome
measurements. In particular, in our platform, the exe-
cution time of a logical T gate is basically defined by
CNOTt +Meas Zt + St/2, where St/2 is added because a
logical T gate requires an S-gate correction with proba-
bility of 50%. For this reason, the execution time by the
time-optimal quantum computation is much less than both
the previously expected and ours.

Second, the variant of the factoring algorithm examined
in Ref. [19] has a small-sized quantum-assembly code than
our benchmark in the 512-bit input regime. Their bench-
mark is composed of a Toffoli-gate-based quantum adder,
but our benchmark [63] is based on a QFT adder. In terms
of the circuit complexity, our benchmark is superior to
their algorithm as 2000n2 vs O(n3) for the modular expo-
nentiation. However, the QFT circuit contains many RZ(θ)

gates, which should be decomposed into H , S, and T gates
beforehand. Such a gate decomposition from RZ(θ) gates
rather raises a larger circuit in the Shor N = 512 regime
than the counterpart algorithm. From our analysis, the
T-gate depth in our benchmark is 20-fold longer. See
Fig. 20. In this respect, for Shor N = 512, our benchmark
shows poorer performance than its counterpart.
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(a) (b)

FIG. 21. We simply compare the quantum resource in the Steane-code quantum computing and the surface-code quantum comput-
ing. The physical error rate is 10−9. The quantum-computer architecture for the Steane-code quantum computing is the 1D global
layout and the 2D local layout because as shown in Fig. 17 the architecture shows the best performance in this work. We also compare
the Steane-code quantum computing with nonlocal qubit interaction because the performance of the Steane-code quantum computing
significantly depends on the quantum-computer architecture.

To validate our platform, we apply the time-optimal
quantum-computing scheme to our platform, and analyze
the Shor algorithm. Figure 20 shows the analysis result and
compares it to Ref. [19]. Our data is strikingly reduced
from 3.163× 109 s to 3.5× 105 s at N = 512. Our esti-
mation is still larger than Ref. [19] as much as 200 times.
As mentioned above, there exists a discrepancy in T depth
between ours and Ref. [19]. The other factor 10 is caused
by the difference in the physical measurement gate run-
ning time. All of our performance analysis in this work is
based on a physical gate with the execution time 1 μs, but
Ref. [19] assumes 100 ns running physical measurement
gate. Therefore, considering all of the above-mentioned
differences, we believe our platform provides a reasonable
analysis result.

References [20,21] also estimated the running time of
Shor’s factoring algorithm based on surface-code FTQC.
As we mention in Sec. II, they focused on the domi-
nant part of the algorithm, quantum adder. Reference [21]
determines the execution time of the algorithm by mul-
tiplying the running time of a quantum adder and the
adder depth, which is the quantity of quantum adders exe-
cuted in series in the factoring algorithm. By applying their
method, we find that 503 h are required to execute Shor
N = 512. Note that the running time of a quantum adder is
4× log2 N × Tofft and the adder depth is 4× N 2 in their
Shor benchmark algorithm. The running time of a Toffoli
gate Tofft is 48 ms there. Reference [20] estimates the exe-
cution time of the factoring algorithm by exactly following
Ref. [21] except the performance of a Toffoli gate. By tak-
ing an improved Toffoli gate (Tofft = 930 μs), 9.75 h are
required to run Shor N = 512.

One of the reasons why a surface code has attracted
so much attention is it requires relatively less quan-
tum resources. In what follows, we simply compare the

Steane-code FTQC and surface-code FTQC in light of
quantum resources without considering their theoretical
foundation. For the fair comparison, we assume the error
rate of the physical device is 10−9 for both cases. Figure
21 shows the quantum-computing time and qubits to run
the factoring algorithm. As we mention before, the perfor-
mance of the Steane-code quantum computing completely
depends on a quantum-computer architecture. Therefore,
to focus on the difference in the quantum resource only by
a fault-tolerant quantum computing, we also compare the
situation where a nonlocal qubit interaction is allowed. As
shown in the figure, in the small input size, the Steane-
code quantum computing requires less time and qubits
than the surface-code quantum computing when nonlo-
cality of a multiqubit operation can be directly applied.
But, as the input size increases, the surface-code quantum
computing shows better performance than the Steane-code
quantum computing even a nonlocal qubit interaction is
allowed.

To summarize this section, in Fig. 22, we show the
quantum-computing times are increased by applying real-
istic quantum-computing components one by one.

VII. USABILITY OF THE PROPOSED
FRAMEWORK

The aim of the proposed methodology and platform is to
help to design and analyze a quantum computing system.
In this regard, in this section, we show how to exploit it
for analyzing high-performance quantum-computing com-
ponents. The first is an efficient compile (Sec. VII A), and
the second is an improved physical gate (Sec. VII B) and
the last is the strategy for the fault tolerance (Sec. VII C).
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(a) (b)

FIG. 22. Performance changes of (a) Steane-code FTQC and (b) surface-code FTQC. Both figures show the quantum-computing
times are increased by applying compile, quantum error correction, local gate. Note that surface-code FTQC and Steane-code FTQC
work under the physical error rate 10−3 and 10−9, respectively.

A. Efficient decomposition of controlled Rn

The authors proposed an efficient decomposition
algorithm for a controlled-Rn gate [70]. By hiring an
ancilla qubit, they reduced the total number of quan-
tum gates {H , S, T} from 35 (Ref. [30]) to 21. We show
how the proposed compile algorithm affects the execu-
tion time of our benchmark. Even though the proposed
algorithm itself requires more qubits, by reducing the size
of the quantum circuit (therefore the algorithm execution
time) and increasing the fidelity of quantum computing
simultaneously, in total fewer qubits are used.

Figure 23 shows the performance improvement by the
efficient compile in the Steane-code quantum comput-
ing. At the input size N = 128, the improved decompo-
sition lowers the quantum-computing time as much as
over 400 times and the qubits as much as 30 times. The
degree of performance improvement depends on the input
size. As shown in the figure, at the input size where
the required concatenation level lowers by applying the

proposed decomposition, the performance improvement is
remarkable.

Figure 24 shows the performance improvement by the
efficient compile in the surface-code quantum comput-
ing. Unlike the Steane-code quantum computing, the per-
formance improvement in the quantum-computing time
increases gradually as the input size increases. This is
because there always exists a difference in the code
distance. By the improved decomposition, the required
code distance lowers from 25, 27, 30 to 22, 24, 27,
respectively.

B. Accurate quantum gates

Previously, we basically assumed that the physical error
rate is respectively 10−9 for Steane-code quantum comput-
ing and 10−3 for surface-code quantum computing. In this
section, we show what happens in quantum computing if a
quantum device becomes more reliable. For that, we show
the performance evaluations based on the physical error

(a) (b)

FIG. 23. Performance comparison between a naive compile and the proposed efficient compile [70] for controlled-Rn gate under
Steane-code-based quantum computing. (a) Quantum-computing time and (b) number of physical qubits.
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(a) (b)

FIG. 24. Performance comparison between a naive compile and the proposed efficient compile [70] for controlled-Rn gate under
surface-code-based quantum computing. (a) Quantum-computing time and (b) number of physical qubits.

rates 10−9–10−15 for Steane-code quantum computing and
10−3–10−9 for surface-code quantum computing.

Figure 25 shows the Steane-code quantum-computing
performance over physical error rates 10−9–10−15. We also
compare a nonfault-tolerant physical quantum computing
to those fault-tolerant quantum computing at the physical
error rate 10−15.

The performance improvement by lowering the error
rate from 10−9 to 10−12 is highly nontrivial because the
required concatenation level is reduced from 2 and 3 to
1 in both cases, respectively. But, lowering the error rate
additionally does not lead to better fault-tolerant quantum-
computing performance. In other words, the fault-tolerant
quantum computing in the physical error rate 10−15 does
not show any advantage against the quantum computing
in the physical error rate of 10−12. This is because as
the physical error rate lowers the fault-tolerant quantum

computing with the same concatenation level achieves
very high fidelity (>90%). If both quantum computings are
performed with the same concatenation level, both have
the same single-round quantum-computing time. In that
case, if there is no big difference between fidelities, the
average quantum computing Tavg is very similar.

For the same reason, in the physical error rate 10−15, a
nonfault-tolerant physical quantum computing shows bet-
ter performance than fault-tolerant quantum computing
because the physical quantum computing already achieves
high fidelity. From our analysis, Tone of the physical
quantum computing in the error rate 10−15 is 6.89× 108

with the fidelity 64.33%. On the other hand, Tone of the
fault-tolerant quantum computing is 7.78× 1010 with the
fidelity 99.99%. Obviously, physical quantum computing
requires less quantum-computing time in terms of Tavg,
(6.89× 108)/0.6433 < (7.78× 1010)/0.9999.

(a) (b)

FIG. 25. Performance comparison over physical error rates 10−9–10−15 under Steane-code-based quantum computing. (a) Quantum
computing time and (b) number of physical qubits. At the error rate 10−15, as shown in this figure, fault-tolerant quantum computing
is not required.

054033-23



HWANG, KIM, BAEK, and CHOI PHYS. REV. APPLIED 13, 054033 (2020)

(c)

(b)

(a)

FIG. 26. Performance comparison over physical error rates
10−3–10−9 under surface-code-based quantum computing. (a)
Code distance, (b) quantum-computing time, and (c) number of
physical qubits.

Figure 26 shows the performance improvement in the
surface-code quantum computing over physical error rates
10−3–10−9. In the figure, we also compare the required
code distance. As shown in the figure, as the physical
error rate lowers, the required code distance decreases and
therefore the performance increases. But, since the code
distance is already too low, 4 or 5, there is not enough room
for the performance improvement as the gate is improved
more.

C. Degree of fault tolerance

Accuracy threshold theorem [56,57] says that if we have
a quantum device of physical error rate below a thresh-
old, it is possible to achieve an arbitrary long quantum
computation. By applying a recursive concatenated cod-
ing [51], we can lower the effective error rate to where a
reliable quantum computing is possible. As we increase
the concatenation level, the fidelity of quantum com-
puting is definitely improved. But, the running time of
quantum computing is also increased by following the
increased concatenation level. Therefore, the higher con-
catenation level does not always make the more efficient
quantum computing possible. Figure 27 shows that there
exists a trade-off for the concatenation level in the Steane-
code quantum computing, in particular for a quantum-
computing time. Needless to say, the number of required
qubits becomes larger as the concatenation level increases.

In the case of surface-code quantum computing, the
performance completely depends on the code distance.
The code distance is determined to satisfy the objective
fidelity of quantum computing, but in most cases, the
accuracy of the quantum computing by the chosen code
distance exceeds the target fidelity. In this regard, consider-
ing the averaged quantum-computing time Tavg, the chosen
code distance may not bring the best quantum-computing
performance as shown in the Steane-code case.

Figure 28 shows that the surface-code quantum comput-
ing has the best performance with a code distance of 31,
but the code distance determined by the equation is 30.
Even though the code distance determined from the target
fidelity 70% is 30, the goal of quantum computing is to find

FIG. 27. Quantum computing time of Shor N = 512. We eval-
uate the quantum-computing performance Tone and Tavg accord-
ing to the concatenation levels 1–5. After the concatenation
level 3, the fidelity of quantum computing is almost 100% and
therefore the average computing time closely approaches the
single-round computing time. When the concatenation level is
1, the fidelity of quantum computing is almost vanishing and
therefore the average computing goes to almost infinity.
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FIG. 28. Quantum-computing time of Shor N = 512. We eval-
uate the quantum-computing performance Tone and Tavg by vary-
ing the code distance from 29 to 35. The calculated code distance
for the objective fidelity is 30. As shown in the figure, the
code distance 31 introduces the best quantum-computing per-
formance. By taking the code distance 31, we can reduce the
quantum-computing time as much as 1400 days than the case
of the distance 30 at the cost of qubits.

an exact answer, not a probable answer. By applying the
code distance 31, we can reduce the quantum-computing
time as much as 1400 days than the expected time by the
code distance 30 at the cost of qubits.

VIII. DISCUSSION

We propose an integrated method for analyzing the
performance and the resource of a large-scale quantum
computing. By considering practically running a quantum
algorithm on a quantum computer hardware of specific
system architecture, we obtain the most realistic perfor-
mance and resource where the effects by all of the fully
decomposed algorithm, fault-tolerant gate protocols, sys-
tem architecture, and quantum device are involved. To per-
form such an analysis efficiently, we propose and develop
a quantum-computing platform composed of three func-
tional layers where each layer plays a definite role in
quantum computing.

By exploiting the platform, we can configure a quantum-
computing model by selecting specific protocols and/or
properties. By doing so, we can analyze not only the per-
formance and resource of a quantum computing but also
the impact of specific components on the entire quantum
computing. For example, we discuss an optimal concate-
nation level or code distance of fault-tolerant quantum
computing. We believe such a discussion is possible due
to the proposed framework.

In this work, we report that the quantity of the required
qubits and the quantum-computing time are too enormous.
However, based on the analysis results, we do not insist
that the future of quantum computing is so pessimistic.
As we mention several times, those figures completely

depend on the protocols and the architectures we employ.
This means that by applying advanced technologies the
analysis data is improved. For example, in Sec. VII, we
show an improved compile algorithm and device can make
the amount of the required resource less and the perfor-
mance better. Besides, we also argue that by taking an
advanced system architecture and synthesis algorithm, we
can decrease the temporal overhead that happened dur-
ing practical quantum computing. As quantum computing
components are being improved more and more, the per-
formance of a quantum-computing system will be better
and the required resource will be less than this report.

The objective of the present work is to provide the most
realistic performance and resource of quantum comput-
ing. On the other hand, we believe the proposed software
platform can play a significant role in practically running
quantum computing with a real quantum-computing hard-
ware later if some components are added (see Fig. 1).
For example, a classical controller to manage and control
a real quantum device is required in the building-block
layer. The system layer also requires functions that exe-
cute a quantum algorithm and a quantum error correction
efficiently.
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