
PHYSICAL REVIEW APPLIED 13, 034016 (2020)
Editors’ Suggestion

Energy-Efficient Stochastic Computing with Superparamagnetic Tunnel
Junctions

Matthew W. Daniels ,1,2,* Advait Madhavan,1,2 Philippe Talatchian,1,2 Alice Mizrahi,1,2,3 and
Mark D. Stiles 1,†

1
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland,

USA
2
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland, USA

3
Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France

 (Received 25 November 2019; revised manuscript received 21 January 2020; accepted 18 February 2020;
published 5 March 2020)

Superparamagnetic tunnel junctions (SMTJs) have emerged as a competitive, realistic nanotechnology
to support novel forms of stochastic computation in CMOS-compatible platforms. One of their appli-
cations is to generate random bitstreams suitable for use in stochastic computing implementations. We
describe a method for digitally programmable bitstream generation based on precharge sense amplifiers.
This generator is significantly more energy efficient than SMTJ-based bitstream generators that tune prob-
abilities with spin currents and a factor of 2 more efficient than related CMOS-based implementations.
The true randomness of this bitstream generator allows us to use them as the fundamental units of a novel
neural network architecture. To take advantage of the potential savings, we codesign the algorithm with
the circuit, rather than directly transcribing a classical neural network into hardware. The flexibility of the
neural network mathematics allows us to adapt the network to the explicitly energy-efficient choices we
make at the device level. The result is a convolutional neural network design operating at approximately
150 nJ per inference with 97% performance on the MNIST data set—a factor of 1.4 to 7.7 improvement
in energy efficiency over comparable proposals in the recent literature.

DOI: 10.1103/PhysRevApplied.13.034016

I. INTRODUCTION

Magnetic tunnel junctions (MTJs) are poised to make
significant contributions to new computer chips, most
immediately from nonvolatile memory applications [1–3],
such as magnetic random access memory (MRAM). These
devices consist of two magnetic layers separated by a
thin tunneling barrier. The memory values of 0 and 1 are
encoded in two different stable configurations of the device
(parallel and antiparallel magnetizations). Values can be
read by passing a small current (approximately 10 μA)
through the device, since its resistance depends on its con-
figuration. The device state can be switched by overcoming
an energy barrier between the two configurations by pass-
ing a higher current through the device. Since MRAM
is used as a nonvolatile memory, retention requirements
demand that the energy barrier be kept high (greater than
40 kT).

However, if the energy barrier is decreased by a fac-
tor of 10 (to around 4 kT) [4–6], then thermal fluctuations

*matthew.daniels@nist.gov
†mark.stiles@nist.gov

at room temperature cause the device to randomly switch
between its stable configurations. In this case, the mean
time between thermal switching events is about 55 ns, and
the magnetic tunnel junction is said to be in a superpara-
magnetic state, making such devices superparamagnetic
tunnel junctions (SMTJs). In principle, the barrier could
be lowered even further for faster switching. The rela-
tive times spent in each configuration can be controlled
by passing a current through the device, creating a spin-
transfer torque (STT) [7], or by passing a current through
an adjacent heavy metal layer, creating a spin-orbit torque
[8]. They can currently be fabricated down to a 10-nm
length scale [9,10].

The low energy, truly random behavior, ease of con-
trol, and established compatibility with CMOS circuitry
have led to the use of SMTJs as the basis for a number of
novel computing schemes [11–13]. SMTJs were proposed
to implement the concept of probabilistic bits, or p-bits,
which were leveraged for applications as Bayesian neural
networks [14–16], invertible Boolean logic [17,18], reser-
voir computing [19], and Ising network models applied to
optimization problems [20,21]. SMTJs have also been pro-
posed as stochastic neural units [22] that can interact with

2331-7019/20/13(3)/034016(20) 034016-1 © 2020 American Physical Society

https://orcid.org/0000-0002-3390-4714
https://orcid.org/0000-0001-8238-4156
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.13.034016&domain=pdf&date_stamp=2020-03-05
http://dx.doi.org/10.1103/PhysRevApplied.13.034016

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

synaptic units, emulated by crossbar arrays of MTJs that
can switch stochastically in the presence of current pulses
[23,24].

Some of these schemes encode information in the
switching rates [5], while others encode information in the
relative time spent in each state [13,17]. In these cases the
rates or probabilities are controlled by currents. Although
current-controlled methods have been used in many previ-
ous device proposals, the ohmic losses they incur can be
significant.

Many of these previous applications can be classified
as types of probabilistic computing. The specific (and
ambiguously named) subfield of probabilistic computing
we consider in this paper is called stochastic comput-
ing [25]. Many of the works mentioned above would not
qualify as stochastic computing per se. Stochastic com-
puting is concerned with encoding real-valued numbers as
the expectation values of random bitstreams; for exam-
ple, a bitstream such as 0100110100 has four ones and
six zeros, thereby encoding the value 0.4, since the prob-
ability of seeing a 1 on this wire is 4/10. Stochastic
computing is a competitive candidate for energy-efficient
application-specific architectures [26]. Its robustness to
noise [27], high density [27,28], intrinsic parallelism
[26,27], and latency-precision trade-off [26] make it a
promising platform for the implementation of dataflow-
based computations in CMOS circuits.

Ideally, stochastic computers operate on long chains of
nonrepeating, uncorrelated bitstreams that are cheap to
produce from an area and energy efficiency standpoint.
The conventional way of producing bitstreams is based on
a circuit called the linear feedback shift register (LFSR),
which comprises a series of flip-flops and simple combi-
national circuits. LFSRs operate by cycling through all of
their internal binary states, each producing a pseudoran-
dom bit, before returning back to the initial state. When
LFSRs are used to generate a vast number of pseudoran-
dom bitstreams, those bitstreams are both periodic and
cross-correlated. Such correlations are usually undesirable
from a computational perspective [26,29]. Pseudorandom
bitstream generation can incur significant overheads in
accelerator architectures [28,30].

Stochastic bitstreams with neither periodicity nor cross-
correlation can be generated by SMTJs. The thermal nature
of their switching behavior makes bitstreams generated
by SMTJ circuits aperiodic and truly random [31–33].
We replace LFSR-based stochastic sources with arrays
of SMTJs that use energy-efficient readout circuitry and
programmable logic to generate truly random bitstreams,
demonstrating their application in a convolutional neural
network architecture.

Using SMTJs to generate stochastic bitstreams becomes
useful only when the statistics of those bitstreams can be
controlled. Previous works have focused on using current
biasing to realize a steady-state STT on the free layer of

the junction. This modifies the effective energy landscape
of the device so that one of the configurations is tunably
preferred over the other. The use of spin-orbit torques in
a similar context has also been explored. In this paper,
however, we demonstrate how statistical control can be
readily accomplished by traditional circuit design; more-
over, we show that such digital control has superior energy
efficiency over current control for a large range of reason-
able material parameters. We discuss the challenges to be
overcome, and the contexts to be used, wherein spintronic
probability control may become an efficient option.

To make this demonstration concrete, we develop the
circuits and architecture to use SMTJs as the basis for a
neural network designed to recognize hand-written digits.
This allows us to compare, in an application, digitally pro-
grammable SMTJ-sourced stochastic bitstreams against
spintronically controlled versions. Considering a full-scale
stochastic computing application also allows us to us com-
pare SMTJ-sourced stochastic bitstreams against the per-
formance of digitally generated pseudorandom bitstreams.
The interplay between high-level design requirements for
the neural network and the capabilities of the low-level
devices (SMTJs) leads to modifications in the design of
both the networks and the circuits that connect with the
devices. Such engineering across the computational hierar-
chy, or stack, plays an important role throughout this paper.
In traditional computational systems, cross-stack engineer-
ing is not necessary because clean abstraction layers have
been identified between different levels of design to allow
optimization of each layer by itself. Computer program-
mers do not need to know the details of circuits in order to
write code, and electrical engineers do not need to know
the details of device physics in order to lay out useful
circuits. These clean abstraction layers break down when
using novel devices or novel architectures.

In our case, for example, implementing the neural net-
work with stochastic bitstreams requires uncorrelated bits
that can be generated at low energy, a requirement at the
device and circuit level driven by the architecture. At the
same time, the use of simple primitives, AND and OR gates,
to implement pieces of the neural network dictates changes
to the high-level structure of the neural network. Similar
engineering across the computational stack is important
for the many bio-inspired or other alternative comput-
ing approaches that aim to take advantage of materials
and devices wherein the native dynamics manifests the
behavior of neural processes. Because the algorithmic
operation depends on the physics (but not vice versa),
bottom-up approaches like ours, which choose interest-
ing or energy-efficient physical systems at the foundational
level, demand that we pay attention to whether and how the
high-level computation can effectively utilize the physics.

In Sec. II, we propose a circuit based on a precharge
sense amplifier (PCSA) to read the states of SMTJs to
generate a stochastic bitstream. Including a set-reset (SR)

034016-2

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

latch with the PCSA fixes the output to a form useful for
stochastic computing. This modified PCSA avoids control-
ling the state of the SMTJ by write currents; these currents
are much higher than the currents needed to read the state,
and give rise to ohmic losses that can dominate the energy
consumption of the device. Since the expected value of the
bitstream is fixed in the absence of tunable write currents,
multiple such bitstreams must be combined to produce
variable expected values. In Sec. III, we show how to
use digital logic to combine these low-energy SMTJ-based
stochastic oscillators into programmable bitstream genera-
tors. These circuits operate at lower energies than LFSRs
and other approaches based on SMTJs.

In Sec. IV, we design and simulate a deep convolutional
neural network based on LeNet5 [34] to demonstrate the
effectiveness of this SMTJ-based approach. The true ran-
domness of SMTJs relaxes constraints on design space
considerations for stochastic circuits, allowing us to take
advantage of uncommon stochastic computing ideas. We
choose an architecture that uses logical OR gates as neu-
rons, minimizing area and power expenditure compared to
state-machine-based approaches. The OR gate simultane-
ously provides both the summation and nonlinear activa-
tion function of a neuron. The use of these devices saves
enough energy to justify the modifications needed in the
high-level architecture. We train the stochastic neural net-
work by backpropagation on an analytic approximation
to the network. In Sec. V, we give the results for the
accuracy and energy efficiency of this approach based on
simulations of this network architecture.

II. PRECHARGE SENSE AMPLIFIER READOUT
OF SUPERPARAMAGNETIC TUNNEL

JUNCTIONS

Most previous uses of SMTJs use current biasing to
vary the duty cycle of the generated bitstream, which can
lead to sizeable leakage currents (typically of the order of
microwatts). In large-scale architectures that require many
SMTJs, the resulting ohmic losses can dominate the energy
consumption of the computation. An alternate approach
using a precharge sense amplifier has been proposed in the
literature [35]. In this approach, the state is read by a min-
imal read-current pulse and is not controlled by a larger
write current.

Others have used the PCSA method successfully to
generate random bits [5,32]. However, these applications
only need a single random bit to be produced at a time.
In stochastic computing, we need a continuous stream of
random bits to be made available at the hardware level.
Continuous production happens naturally in current-biased
systems where the SMTJ simply sits in a voltage divider,
but in the PCSA artifacts of the digital circuitry interfere
with extraction of a random bitstream.

Figure 1(a) shows the PCSA described by Ref. [35]. It
works in two cycles. When the clock signal [Fig. 2(d)] is at
a low voltage, the transistor at c is turned off but the tran-
sistors a and b are on. As there is no path to ground, all
wires in the circuit are brought to Vdd, the supply voltage
of the circuit [36]. When the clock signal goes high, a path
to ground is opened at c, and all paths to Vdd are closed.
Because of the small capacitances C in the transistors,
there is a finite discharging time (Rsd + Rref)C in which
charge drains from node e to ground, and a finite time
(Rsd + RSMTJ)C in which charge drains from f to ground,
where Rref is the resistance of the reference resistor, RSMTJ
is the state-dependent resistance of the SMTJ, and Rsd is
the source-drain resistance of the transistors between e
or f and c. The horizontal red and blue wires provide a
nonlinear interaction between these two discharging pro-
cesses such that the lower resistance channel will connect
to ground and the higher resistance channel to Vdd after
the system comes to equilibrium (Fig. 10). Note that only
a small amount of charge proportional to CVdd ultimately
flows through the system, so ohmic losses are very small;
transistor capacitances are typically of the order of 10 aF
to 100 aF. Appendix A gives a more detailed discussion of
the operation of the PCSA and our proposed modification
discussed immediately below.

The problem with the above process is the precharge
phase, when the clock signal is low and the whole circuit is
brought to Vdd. The state of the system in that phase does
not represent the last measured state of the SMTJ; it is sim-
ply preparing to perform the next measurement. This can
be seen in Fig. 2(c). At t ≈ 2.25 μs, for instance, we can
see that the SMTJ is in a low-resistance state [Fig. 2(a)].
The output of the PCSA in Fig. 2(c) nevertheless goes to a

(a) (b)

FIG. 1. SMTJ readout. (a) The PCSA circuit for reading an
SMTJ state [35]. (b) The stochastic computing PCSA (SCPCSA)
includes a set-reset (SR) latch on top of the PCSA from (a), to
prevent the precharging of nodes e and f from affecting the out-
put duty cycle. The left and right (e and f) branches of the latch
are directly wired to the e and f nodes of the PSCA. A more
pedagogical version of this circuit is found in Fig. 10.

034016-3

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

O
U

T
AP

P

(a)

(b)

(c)

(d)

FIG. 2. Circuit simulations of the SCPCSA circuit. (a) Time-
series resistance of the SMTJ due to thermal fluctuations. (b)
Sampling clock (“clk” from Fig. 1). (c) Voltage at node f from
Fig. 1(a), the output of the standard PCSA circuit. (d) Voltage at
node OUT from Fig. 1(b), the output of the SC PSCA.

high voltage repeatedly in this time frame. This anomalous
comb structure on top of the actual SMTJ states is an
artifact of the precharge phase.

To address this, we attach a circuit called a set-reset
latch to the PCSA design, Fig. 1(b). Whenever e and f
are different, the latch copies the values of e and f into
its internal wires, so that OUT is set to f . When e and
f are both brought to Vdd during the precharge phase, the
internal state of the latch is left unchanged. The behav-
ior is explained in detail in Fig. 10 in Appendix A. The
simulated state of OUT is shown in Fig. 2(d). With the
anomalous comb structure removed, this voltage signal
becomes suitable for stochastic computing applications.

Figure 2 shows simulation results of the SCPCSA
obtained using a commercial software package and a 22-
nm predictive technology model [37,38]. The simulations
include modeled parasitic contributions from the transis-
tors but not the interconnects, which would depend on
layout. The interconnect capacitances would play a role at
high speeds, but not the clock periods we consider. In terms
of energy, the contributions from the interconnect capaci-
tances are negligible compared to those from the transistor
capacitances.

The SMTJ model is implemented in Verilog-A as
described in Ref. [39], using parallel and antiparallel resis-
tances of 1.5 k� and 4.5 k�, respectively. The dynamics

of the SMTJ is described by the probability of switching
in a given time interval, δt, of Pswitch = 1 − exp(−δt/τ),
where τ is the mean dwell time in that state. It is given
by τ = τ0 exp(�/kT), where � is the energy barrier out of
the current state of the SMTJ, T is the temperature, k is the
Boltzmann constant, and τ0 is a characteristic time scale. In
general, the net energy barrier depends on the applied field
and voltage, which we do not apply in this paper. These
simulations use τ0 = 10−9 s and �/kT = 4.

It is not obvious that SMTJ output sampled at a given
time is decorrelated from the output sampled on the same
device a single clock cycle later. If the SMTJ is read too
frequently, the state of the device has no time to change,
and the generated bitstream will have strong autocorrela-
tion. This autocorrelation can suppressed by increasing the
sampling interval. In Fig. 3, we see from numerical simu-
lation that the autocorrelation between two time-adjacent
samplings vanishes once the clock interval is chosen to
be more than twice the mean dwell time τ of the SMTJ.
In other words, the clock cycle should be chosen so that
the expected “period” 2τ of a P → AP → P cycle fits
within a single clock cycle. When the SMTJ switches
more slowly than the clock, the autocorrelation increases
linearly with τ .

Establishing an appropriately large clock cycle is cru-
cial. In many stochastic computing applications, auto-
correlation can introduce not only energy inefficiency
but also functional incorrectness. In the application we
present in Sec. IV, for instance, we will purposefully
delay time signals from each other in order to suppress
cross-correlations among them. This only works if the
initial signals themselves have vanishing autocorrelation.

FIG. 3. Autocorrelation under a lag of one clock cycle as a
function of clock cycle time tclock compared to the SMTJ mean
dwell time τ . Each point gives the mean autocorrelation time
over 103 trials, with each trial sampling the SMTJ for 103 clock
cycles. The vertical error bars give 95% confidence intervals on
the mean.

034016-4

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

If the continued development of SMTJ technology
could engineer a sufficiently small autocorrelation time
for the thermally induced magnetic dynamics—that is, a
speed comparable to the switching speed of the CMOS
gates—then the integrated ohmic power loss would be
similar to losses in the CMOS itself, and it might then
become reasonable to place a static read current across
the devices, as proposed in Refs. [12,17,19]. This would
provide a continuous-time random telegraph signal, open-
ing up the possibility of running asynchronous computa-
tions. We compare the energetic performance of such an
approach to our proposal in Sec. III, in the context of cur-
rent SMTJ technology. We explore this limit in detail in
Appendix C.

Since the SCPCSA is charge based, the dwell time of
the SMTJ does not change the energy expenditure of the
circuit (so long as the mean dwell times are not faster than
the equilibration time of the PCSA, about 1 ns). Ideally,
then, we would like the SMTJs to fluctuate as quickly as
possible; in general, we would also hope for uniformity of
dwell times and operation ranges. Measured dwell times
range between 1 μs and 0.1 s, depending on the operat-
ing regime [6]. The fluctuation rates are highly sensitive to
applied fields and currents. The two-state fluctuator model
used in this paper is not valid for fluctuator frequencies
approaching the 10−9 s time scale of magnetization rever-
sal [40], but for applications like ours in which a reference
resistor is present, Kaiser et al. [41] show that frequency
scales can exceed the 1-GHz regime. The achievable time
scale depends on the differences in the resistance, propor-
tional to the tunneling magnetoresistance of the magnetic
junction, that can be detected and the size of the current
needed to do so.

The resistance and magnetoresistance of the tunnel junc-
tion are the same as those developed for memory applica-
tions and so should have margins sufficient for effective
circuit design [42]. In memory applications, however, the
state of device is switched by the STT that is generated by
the current passing through the device. Substantial work
has been done to make that switching current as low as pos-
sible [43]. In the present application, by contrast, we want
the current response to be as weak as possible, so that the
read current has a minimal effect on switching rates. Unfor-
tunately, the current needed to influence the switching
behavior apparently [9] scales to smaller values as devices
become smaller. Increasing the this current requires addi-
tional research; recent work suggests that devices with
easy-plane anisotropy may be preferable, in this sense,
compared to perpendicularly magnetized devices [44].

There has been considerable work in the recent literature
to use MTJs or SMTJs as the fundamental units for truly
random number generators [31–33,45]. For general pur-
pose applications, random number generators are required
to pass certain tests of randomness; the NIST statistical
test suite [46] is usually taken as a standard benchmark for

validating good randomness in that sense. An important
criterion required by that test suite is that the mean value
of a bitstream has a long time average of 50%. To date, all
MTJ-based solutions that pass those tests require XORing
eight devices together to eliminate bias. Given SMTJs with
similar enough dwell times in each state as we assume
here, we expect that we could combine SCPCSA in a simi-
lar manner and pass the statistical tests needed for random
number generation.

In this work, we do not subject our SCPCSA to these
randomness tests, as they are not necessary for our applica-
tion space. Stochastic computing aims to encode values in
the expected value of random bitstreams. It is traditionally
implemented with low bit-resolution pseudorandom num-
ber generators that have poor randomness properties; some
stochastic computing has even been done with entirely
deterministic bitstreams [47,48]. The important proper-
ties needed for stochastic computing are simply small
enough cross-correlation between different devices and
small enough autocorrelation after some time has passed.
The correct metric for the success of our generator is not
that it can produce unbiased random bits for cryptographic
or scientific applications, but that it can be used to carry
out stochastic computing calculations. We show that it can
in a complex neural network architecture in Sec. IV.

III. SMTJ PROGRAMMABLE BITSTREAM
GENERATOR

In order to generate arbitrary bitstreams with n-bit preci-
sion, we develop a composite cell that can be programmed
based on values stored in static random access memory
(SRAM) cells. If the programmed value is 1/2, we need
only tap the output of one of the SCPCSA cells discussed
in Sec. II. Otherwise, we perform a sort of binary search
on the unit interval. Given a stochastic signal carrying
the probability value k/2n−1, it is synchronously fed into
a NAND gate together with a 1/2 probability signal from
a new SCPCSA cell to produce a signal with probability
1 − k/2n. A simple multiplexer (MUX) can then optionally
route the signal through an inverter, allowing us to access
values of both 1 − k/2n and k/2n.

Iterating this recursive subdivision operation allows us
to access all multiples of 1/2n using n SCPCSA cells. Val-
ues for zero and unity can be trivially implemented on the
end of the circuit by replacing the stochastic signal with
a constant voltage. In our simulations of a neural network
later in this paper, we restrict ourselves to the 4-bit case,
as illustrated in Fig. 4, allowing our synaptic weights to
express integer multiples of 1/16.

Although strict tests of randomness are not necessary
for our purposes, careful attention to correlation is. Sta-
tistical correlations can arise in many ways in a stochas-
tic computing circuit. We distinguish between two types:
graph correlation and source correlation. To understand

034016-5

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

FIG. 4. Bitstream generator with four programmable bits. Each
row is a recursive subdivision unit. Assuming input probabilities
of 1/2 from the SCPCSAs, the topmost two-input multiplexer
outputs 1/4 or 3/4 depending on b2; the middle multiplexer 1/8,
3/8, 5/8, and 7/8, depending on b2 and b3; and so on. SRAM
control-and-decode circuits, which set the bits �b appropriately
for the desired output probability, are hidden for clarity.

the former, suppose a circuit designer makes a simplifying
assumption that the inputs to a particular circuit node rep-
resent statistically independent stochastic processes. This
may not be true, depending on whether the computations
producing those inputs overlapped at some point earlier in
the circuit. If they are not statistically independent, the cir-
cuit output statistics will differ from the value expected by
the designer. We call the correlations leading to such errors
graph correlations, as they arise due to reconvergent fanout
in the computational graph of the circuit. One method for
alleviating these correlations is called isolation, and has
recently been discussed in Ref. [49]. We make use of these
and discuss their implementation and impact in Sec. IV.

The programmable bitstream generator described above
addresses a more insidious form of correlation that can
arise when the original bitstreams are not random. In typ-
ical implementations of stochastic computing, the LFSRs
and other commonly used sources of pseudorandom bit-
streams are periodic. Overusing the same LFSR design
at multiple instances in a circuit can lead to correlation-
induced errors that are difficult to predict [50]. We call
these source correlations; they are induced by inconsistent
assumptions about bitstream generators on the boundary
of the computational graph. One of our motivations for
SMTJ-based stochastic computing is to solve the prob-
lem of source correlations. This is especially important in
neural networks, where hundreds or thousands of inputs
can all fan in to the same circuit node. To avoid source
correlations in this case, pseudorandom circuit designs

become prohibitively energy-hungry, but our SMTJ-based
approach scales to any degree of fan-in with no source
correlation present.

Energy numbers for our approach at various bit pre-
cisions and power supply voltages are shown in Fig. 5.
Although lower supply voltages should generally lead to
lower energies, we see that for n = 8 the energy per cycle
is actually higher for the lower supply voltage. In order to
get high reliability operation of the SCPCSA at low sup-
ply voltage, the drive strength of some transistors needs to
be increased. This results in the 0.8-V SCPCSA requiring
more energy than its 1-V counterpart. As the number of
SCPCSA in the readout circuit increases at high bit preci-
sion, this anomalous energy cost at low supply voltage can
overwhelm the nominal savings in the rest of the logic tree.

Figure 5 also compares SCPCSA energy to the energy
consumption of an LFSR with the same bit precision. For
a fair comparison, we designed the (Galois-type) LFSRs
according to standard maximum sequence length designs,
and using the same technology node and predictive tech-
nology models as for the SCPCSA simulations. We found
that the SCPCSA performed about twice as efficiently
across a range of bit precisions. This result is predictable
from the transistor count of the two designs; the SCPCSA
has 15 transistors, whereas a clocked, NAND-gate-based
digital flip-flop (the fundamental unit of the LFSR) has
20. The circuitry of the comparator in the LFSR-based
scheme is also slightly larger than the AND-NOT-MUX rows

FIG. 5. Energy efficiency comparison between our pro-
grammable bitstream generator (PBS) at supply voltages of 1 V
and 0.8 V and a traditional LFSR with binary comparator. Plot-
ted horizontally is the energy needed to produce a single new
element of the output stochastic bitstream. The N -bit PBS uses
N SMTJs where the N -bit LFSR uses an N -bit register, ensuring
a fair equiprecision comparison.

034016-6

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

of Fig. 4. The LFSR-based scheme additionally contains
some small number of XOR gates, although the number
of XORs is an algebraic property that does not necessarily
scale with the number of bits, N .

We note that several proposals address the cost of
LFSR-based pseudorandom number generators by extract-
ing combinatorial subsets of the bits in a large LFSR
[51,52]. Although these shared-LFSR methods amortize
the energy cost by sharing it over many pseudorandom
bits, the resulting correlation between these bitstreams is
1.5 to 2 times higher than the isolated LFSR case [52].
In correlation-sensitive applications, this is clearly disad-
vantageous. In applications that have been engineered to
be correlation insensitive, one could imagine applying the
same shared generator techniques to our programmable
bitstream generator; the same energy-correlation trade-off
should apply. We leave the details of such a device to future
research.

Several related configurations for using MTJs have been
proposed that could be used for generating stochastic bit-
streams. Most fall into two broad categories: those based
on nominally stable MTJs that are brought into an unstable
state by a current [31,45,53]; and those based on SMTJs
that are current biased to control the expected value of
the bitstream [14–17,19–21]. The write currents in both of
these approaches lead to significant ohmic losses, which
are disadvantageous for this stochastic computing. We
note, however, that in many cases these configurations
have been proposed for applications for which the ohmic
losses may not be quite as important.

We estimate the ohmic losses for pulsed destabilizing
of stable MTJs in Appendix B. The circuits reported in
Ref. [45] are based on MTJs with average resistance R =
1000 �, and use an average write voltage of 217.5 mV for
8.75 ns. The ohmic losses are then 414 fJ per bit. Refer-
ence [53] uses similar techniques on MTJs specifically tai-
lored to the generation of stochastic computing bitstreams
(the same task we consider here); they report average costs
of 526 fJ per bit. Both estimates are significantly higher
than the 10 fJ estimated for the SCPCSA-based approach.

To estimate the ohmic losses (see Appendix C for
details) for p-bit-style current-biased SMTJs, we assume
a supply voltage of Vdd = 1 V and favorable resistances of
RAP = 100 k� and RP = 50 k�, and find ohmic losses of
about 500 fJ per bit for the 150-ns clock cycle we consider;
the clock period is set by the autocorrelation time of the
SMTJ. In the SCPCSA-based approach described above,
the energy per bit of 10 fJ for the whole circuit is roughly
independent of the clock cycle. Note that, for the current
controlled approach, the energy per bit decreases linearly
as the clock cycle decreases, decreasing the advantage of
the SCPCSA-based approach.

We cannot expect the manufacturing margins of real
SMTJ devices to be ideal. The fabrication of MTJs has
been optimized in commercial fabrication facilities [54,55]

in the nonvolatile regime that is desirable for memory
applications. SMTJs have only been studied for larger
devices fabricated in laboratory settings [6].

Real devices will have distributions of all of their
properties. Three important ones are variations in bar-
rier heights (and hence characteristic dwell times), varia-
tions in biasing around the perfect p = 1/2 that we have
assumed above, and variations in the device resistances.
The insensitivity to a distribution of barrier heights is
addressed in Fig. 3. Essentially uncorrelated bitstreams are
generated as long as the mean dwell times are shorter than
the clock cycle and longer than some lower limit set by the
response time of the PCSA, of the order of 1 ns for the cir-
cuits considered here. Assuming a prefactor of τ0 ≈ 1 ns
in the transition time distribution, this approach is insensi-
tive to fluctuations in the barrier height for 0 < �/kT < 5.
Since considerable effort has been required to keep energy
barriers large as MTJ devices become smaller [56,57], it
seems that it should not be difficult to fabricate devices
with small enough barriers to enable thermally driven tran-
sitions. Variations in the barrier height should not pose
a difficulty if it is possible to maintain the roughly 10%
variation in barrier heights [58] as devices are scaled down.

Having an expected value of 0.5 for the output of the bit-
stream generator requires that the energies of the parallel
and antiparallel states are the same. Such equality in turn
requires that the fringing fields acting on the free layer be
close to zero. It is difficult to fabricate devices with pre-
cisely these fields and there will naturally be a distribution
of relative energies and hence dwell times. Figure 6 gives
the effect of the variation in the relative dwell times on the
output of a 4-bit stochastic bitstream generator. We assume
that the fluctuations in the relative dwell times in the

FIG. 6. Output probability distributions for the 4-bit generator
induced by imprecision in SMTJ fabrication. The three differ-
ent standard deviations correspond to the three distributions in
Fig. 11. The width of a bubble at a particular vertical coordinate
gives the probability density that the generator outputs that prob-
ability in its bitstream. Note that the 3-, 2-, and 1-bit versions can
be extracted by simply restricting this plot to outputs with mean
values that are multiples of 1/8, 1/4, and 1/2, respectively.

034016-7

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

parallel and antiparallel states are distributed around zero
with standard deviations given in the figure (see Appendix
D for details). These distributions should be compared to
the expected distribution for perfectly balanced bitstreams
that are sampled for a finite sample size. For the results
presented below based on using bitstreams of length 128,
the expected distributions of values found from perfectly
balanced bitstreams are similar to the distributions found
for 10% variations in the distribution of the relative dwell
times.

Finally, we address whether the distributions of resis-
tances would adversely affect the performance of our bit-
stream generator. We avoid the use of spintronic control
over the random telegraph noise, so resistance variations
do not directly affect the probability of our bitstreams.
The main failure mode would arise from resistance vari-
ations, that is, if the reference resistor Rref, selected before
devices are grown and tested, were not to fall between
the resistances RP and RAP of the parallel and antiparallel
states.

Recent data from fabrication facilities [59,60] show
that the manufacturing margins should be tight enough to
accomplish this. The 3σ variability in the parallel state
resistance is under 10%. The 3σ variability in the tunneling
magnetoresistance is only 2% to 3%. If we target a 1.5 k�

resistance for RP, and a 4.5 k� resistance for RAP, then a
reference resistance of 3 k� is about 15σ away from both
resistances, providing an adequate manufacturing margin
even if the magnetoresistance were much smaller than the
assumed 200%. In addition, neural network applications,
which we consider in some detail in the paper, can be
robust to single-device failures, if the failure of particular
devices can be detected (which it is easy to imagine doing
here).

The data we cite above are for high-barrier MTJs devel-
oped for MRAM, but manufacturers are pushing toward
the superparamagnetic regime; recently announced [61]
progress on embedded MRAM devices works with reten-
tion times of the order of seconds to milliseconds. This is
not too far from the SMTJ speeds fabricated in academic
labs, and the reported fabrication distributions continue
to be satisfactory in this lower-barrier regime. Based on
these reports, our proposed approach should be resistant to
device fluctuations within the range of fluctuations that can
be expected from a dedicated fabrication process.

IV. APPLICATION TO NEURAL NETWORKS

Artificial neural networks, initially inspired by the struc-
ture of the brain [62], have become one of the most
powerful classes of algorithms in machine learning. These
neural networks are composed of two fundamental units:
neurons, which sum inputs and apply a nonlinear activa-
tion function to the resulting sum; and synapses, which
multiply the output of one neuron by a real-valued weight

and pass the result to a downstream neuron. Traditionally,
the numerical values that propagate through neural net-
works correspond to rates at which neural spikes propagate
through an actual biological brain.

The origins of stochastic computing lie in the observa-
tion that time series data of stochastic spike trains in the
brain could be modeled by stochastic jumps from ground
to Vdd in a logic circuit [63–65]. It is no surprise, then, that
neural network structures have been implemented success-
fully and energy efficiently in recent stochastic computing
work [66–69]. Rather than carrying out high-level arith-
metic and logic operations to “theoretically predict” a
neural network’s output, stochastic computing implements
neuromorphic models of the network in CMOS circuitry.
The network operation is “experimentally simulated” by
the physics of the circuit, and the results are obtained by
monitoring the time series voltages at the network output.

A crucial synergy involved in this scheme is the inherent
parallelism of both neural networks and stochastic comput-
ing. Whereas the many mathematical operations involved
in a neural network layer would need to be computed
serially in a traditional computing environment, the phys-
ical nature of the stochastic computer means that these
operations are all run simultaneously. There is a sizeable
body of recent work that uses this principle to build effi-
cient, stochastic-computing-based neural networks. The
first stochastic computing implementation of a deep con-
volutional neural network, a particularly important neural
network topology with broad applications to image pro-
cessing, was proposed by Ren et al. [66] and further
optimized in Refs. [67,70]. These works draw heavily on
new ideas in the stochastic computing literature, including
massively parallel generation of pseudorandom bitstreams
[71], state-machine-based nonlinear activation functions
[68,72], and aggressive use of correlation insensitivity
[73].

A common approach in the stochastic computing neu-
ral network literature is to construct a neuron unit
from multiplexer-based addition composed with a state-
machine-based nonlinearity. These operations are costly
in terms of CMOS transistor counts. We take a simpler
approach: our entire neuron is a single logical OR gate.

In our approach, a single multi-input logical OR gate
simultaneously, approximately, and inseparably performs
both the summation and nonlinear activation. Although
for small input magnitudes an OR gate performs addi-
tion of probabilities p1 + p2 + O(p2), nonlinear correc-
tions become important as the input probabilities increase.
Utilizing this property to our advantage, we harness that
nonlinearity directly as our neuron’s nonlinear activa-
tion function. This approach was originally proposed
in Refs. [74–77], but until now has been unable to
scale beyond small networks due to correlations between
LFSRs. Our use of truly random bitstreams sourced from
SMTJs opens up the possibility of using this very small

034016-8

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

and efficient neuron in modern-scale neural networks. The
synapses in our work are AND gates, which naturally imple-
ment multiplication on probabilities, with inputs from the
output from the previous neuron and from a fresh stochas-
tic bitstream encoding the weight (in our case, provided by
an SMTJ programmable bitstream generator).

The probabilistic response of an OR gate in stochastic
computing is analogous to its Boolean response; the output
probability is given by

POR(p) = 1 −
N∏

j =1

(1 − pj), (1)

where p is the vector of input probabilities. Equation (1)
holds when each input probability pj is an independent
random variable. Note that this condition generally fails in
stochastic neural networks that use LFSR-based bitstream
generation, especially when the number of inputs to a neu-
ron approaches or exceeds the periodicity of the LFSR
design being used.

Unlike a traditional artificial neuron, the OR gate’s action
on probabilities cannot be factored into two separate pro-
cesses of summation and activation. But by examining its
limiting cases, we can see that the OR gate does approx-
imately perform summation-and-activation functionality:
for the large fan-in case, where N > 10, the lower bound
of the OR gate output approaches 1 − exp(−∑

j pj). We
plot this bound, and all of the other allowed output values,
as a function of the input probability sum in Fig. 7. The
functional form of this distribution is similar to the hyper-
bolic tangent function, a widely used activation function in
machine learning.

The inputs to a neuron are multiplied by real numbers
often called synaptic weights. We represent each weight
using a programmable bitstream generator, and each mul-
tiplication using an AND gate. The OR-gate neuron, together
with AND-gate synapses, form the fundamental unit of our
proposed neural network architecture. This is an extremely
energy-efficient primitive cell, and we have to accept mul-
tiple constraints in order to use it. The most striking
constraint is that, since all values in our neural network
are represented by probabilities between zero and one, our
network nominally lacks any form of inhibition (classi-
cally implemented with negative numbers) as reflected in
the fact that the activation function in Fig. 7 is not defined
left of the origin.

Without making changes at the algorithmic level to
accommodate the lack of inhibition, the OR-gate neuron
would be largely useless. To facilitate the use of this neu-
ron, we replace the standard weight matrices by two sets of
weight matrices, one for inhibition, wI , and one for exci-
tation, wE , that are merged to provide a form of inhibitory
activation for the network. The inhibitory subneuron uses
a NOR gate rather than an OR gate, so that large inhibitory

O
R

OR

FIG. 7. Activation pseudofunction of the OR gate in terms of
its bounds. The shaded region indicates possible (multivalued)
outputs as a function of total input probability, in the large
fan-in case. For comparison, the dashed line plots the hyper-
bolic tangent function, a common neural activation in deep
learning applications. Like the hyperbolic tangent, the OR-gate
operation is asymptotically linear near the origin and saturates
exponentially to unity.

input suppresses the neuron output. The binary output y ∈
{0,1} of each neuron is given by

y =
⎡

⎣1 −
∏

j

(1 − wE
j xj)

⎤

⎦

︸ ︷︷ ︸
OR

×
⎡

⎣
∏

j

(1 − wI
j xj)

⎤

⎦

︸ ︷︷ ︸
NOR

, (2)

where the outermost multiplication is implemented with a
single AND gate. The use of both excitatory and inhibitory
subnetworks introduces a higher dimensional symmetry,
which the network can break to accomplish dynamical
inhibition (or excitation) and successfully learn correct
weights for classification. More details are discussed in
Appendix E.2.

Since the OR-gate neuron is unusual, the network train-
ing algorithms must adapt to it. We derive the back-
propagation equations for this neuron and the inhibitory-
excitatory subnetworks for use in training, and adapt
standard training algorithms to accommodate the hard con-
straints on allowed weights. The details of this codesign
process are elaborated upon in Appendix E. One important
note is that Eq. (2) prescribes the correct Boolean output
at a given clock cycle, but is formally inaccurate as a pre-
scription for the expectation value of y over many cycles.
It treats the inputs x to the OR and NOR gates as inde-
pendent random variables, when in fact they are identical
and thus perfectly dependent on each other. Nevertheless,
we found empirically that the use of Eq. (2) for network

034016-9

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

training performed well enough for our purposes. Refin-
ing the training process to use a more accurate expression
could improve network performance.

To demonstrate the effectiveness of our stochastic neu-
ron and synapses, we implement a stochastic approxi-
mation of LeNet5 [34], a convolutional neural network.
Formally, LeNet5 is based on floating-point arithmetic
and specific choices of neurons. We instead use the AND
and OR gates for synaptic and neural operations, as out-
lined above, in a stochastic computing framework. We
also make simple changes to the layer structure to account
for our restriction to non-negative probabilities, which are
outlined in Appendix E. This benchmark task allows for
an easy comparison to existing literature. Reference [67]
treats the standard form of LeNet5 (using stochastic arith-
metic) as a fixed boundary condition at the top of the
stack, and optimizes a scaffolding of stochastic comput-
ing hardware around this software-oriented neural network
design. The implementation of LeNet5 we present here is
instead based on the kind of cross-stack reasoning we have
just outlined: we relax the strict definition of LeNet5 as
a boundary condition and use the resulting flexibility to
accommodate our energy-efficient choice of neurons and
synapses at lower levels.

V. EVALUATION AND RESULTS

To evaluate our implementation of LeNet5, we train and
test our neural network on the MNIST data set, a well-
known dataset of handwritten digit images. The MNIST
data set comprises 60 000 training images and 10 000 test
images, each image comprised of 28 × 28 pixels. First,
we perform offline training on an analytic model based on
probabilities rather than stochastic representations of prob-
abilities, that is, on a traditional software model using the
unusual topology, constraints, and activation functions of
our proposed network. Although the network does train,
we find the process to be significantly noisier than training
of classical LeNet5 models under the same hyperparam-
eters. We speculate that the noise arises from the unfac-
torability of the summation nonlinearity approximated by
Eq. (1), as well as the hard constraint that all weights must
be between zero and one.

Among successfully trained networks, we find that we
frequently achieve around 98% test set accuracy with the
analytic model applied to MNIST, within 1% of the 98.9%
accuracy achieved by the original LeNet5 authors [34]. We
then discretize the trained weights and biases by round-
ing them to the nearest multiple of 1/16. These are loaded
into a stochastic simulation of the logical architecture,
complete with stochastic processes to generate the SMTJ
statistics.

To deal with residual graph correlations induced by
reconvergent fanout of the signals into and out of each
neural network layer, we insert what we call an isolator

mask—an array of randomly chosen (but static) pixelwise
temporal delays—after each network layer. We discuss in
more detail in Appendix E.4 how isolators can be used to
achieve decorrelating effects by shifting signals relative to
each other in time. Each pixelwise, integer-valued delay is
chosen uniformly at random from the interval [0, δ], where
δ is the maximum delay. In our LeNet5 architecture, this
leads to a total of L = 6 decorrelation layers. The maxi-
mally delayed route from input to output, then, has delay
length W = Lδ, which is the amount of time we must wait
before collecting N usable data points at the output.

In the upper black curve in Fig. 8, we plot the per-
formance of a trained network on the test data sets as
a function of the maximum delay δ and length of col-
lected bitstream N . Performance improves exponentially
with increasing δ, eventually saturating around a maximum
delay length of 16—and, therefore, a mean delay length of
8. We also find, in the lower curve, that increasing N pro-
vides diminishing returns beyond N ≈ 128. We use this
(δ, N) = (16, 128) configuration to report the rest of the
numbers in our paper. The fluctuations that become evi-
dent in the plot at high δ arise from the pseudorandomness
of the isolator mask configuration. A systematic approach
would search through multiple mask configurations until
an appropriate one is found for the given trained network.

To compute the energy efficiency of our proposed archi-
tecture, we extract the mean activity factors from weights
and neurons in the network over an inference pass on the
MNIST test data set. As our simulation is purely logical
(that is, it works at the level of clocked bits rather than
dynamical voltages), we find it unwieldy to extract the

inference error (%)

FIG. 8. Evaluation of our network performance for various
hyperparameters. The upper curve shows variation in δ, the max-
imum number of isolators decorrelating each of the L hidden
layers. This affects the energy by increasing the total warm-up
time, Lδ, needed before network output becomes meaningful.
The lower curve tracks N , the number of meaningful data points
collected after the warm-up period concludes.

034016-10

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

expected activity factors from inside the circuit-level com-
posite gates of the OR-gate neuron. Instead, we convert the
activity factors from the logical model into the worst-case
activity factors for the realistic architecture.

To produce our worst-case analysis, we assume that
every switch in the voltage signal causes a maximal num-
ber of switches in the AND-gate synapse and the down-
stream OR-gate neuron. We apply this assumption to the
activity factors found in our stochastic model, together
with circuit power estimates based on predictive technol-
ogy models [37,38]. The results for the N = 128, δ = 16
case are listed in Table I. For Vdd = 1 V at the 22-nm node,
CMOS switching events in OR-gate neurons and AND-gate
synapses together account for 8.09 nJ.

Random bitstream generation and isolator-based decor-
relation are more expensive than the computational graph.
For these estimates we again use worst-case activity fac-
tors. In the full LeNet5 architecture, the PCSA circuits
generating network weights and inputs account for about
113 nJ for a full inference. The programmable isolator
buffers are each relatively expensive, but fewer are needed
compared to the weights. The total cost for the isolator
circuits is around 26 nJ.

We also test the behavior of our architecture at a reduced
supply voltage. For voltages below 0.7 V, the PCSA per-
formance begins to degrade, causing errors in the output
bitstream. At 0.8 V, the total energy consumed by the entire
architecture drops from 147 nJ to 135 nJ. These energy
estimates are also displayed in Table I.

One likely source of network inference error that
remains after accounting for latency and isolator length is
the quantization of weights from the analytic model to dis-
crete values allowed by the bitstream generator. Codesign
of hardware with deep neural networks has made the study
of low-precision neural networks a topic of considerable
recent interest [78]; quantization-aware training methods
are now being developed both for pure CMOS systems

TABLE I. Energy breakdown of worst-case analysis of LeNet5
case study for an SMTJ-driven computation. The rightmost col-
umn corresponds to the N = 128, δ = 16 network configuration.

Energy (fJ) Energy (nJ) Energy (nJ)

Element cycle LeNet5 cycle
Inference, at

97% accuracy

Vdd = 1 V
Weights 5.80 0.50 112.80
Neurons 3.11 0.04 8.09
Isolators 19.75 0.11 25.72
Total (nJ) 0.65 146.62
Vdd = 0.8 V
Weights 5.62 0.49 109.39
Neurons 2.47 0.03 6.44
Isolators 15.02 0.09 19.56
Total (nJ) 0.60 135.40

[79–81] and for platforms with nanodevice integration [82,
83]. Applied to systems like ours, these may offer the pos-
sibility of improved inference performance at fewer and
fewer bits, improving energy consumption and network
latency.

That said, the robustness of our stochastic model after
rounding the weights of our analytic model expresses a
robustness to error characteristic of neural networks. We
speculate that, since network performance was robust with
respect to rounding weights to multiples of 1/16, it should
be equally robust had the weights been rounded to val-
ues slightly different than the multiples of 1/16. If that
is indeed the case, then systems like ours would enjoy a
degree of robustness against variation of the type shown in
Fig. 6.

Although some designs for modern neural networks
can work at 4-bit (or sometimes lower) precision, it does
not necessarily follow that one could successfully use an
N = 16 stochastic computing network. Stochastic com-
puters have two types of precision that are intrinsically
linked: representational precision and sample precision.
Collecting N time steps means that N different values
are representable on the output, but it also means that
our certainty (standard deviation) that the measured value
matches the true value of the output distribution scales
as N−1/2. Therefore the expected length of a computation
itself influences the meaningful representational precision
of the inputs; we found that our 4-bit programmable bit-
stream generator gave sufficient resolution at N = 128.
The link between these two types of precision is sub-
tle [84] but will be increasingly important in determining
when stochastic computing is or is not energy efficient for
different target applications.

In Fig. 9, we gave a comparison with the current state
of the art in stochastic computing research. The works we
cite all treat LeNet5 on MNIST. However, these works are
also simulated at the 45-nm, rather than 25-nm, technol-
ogy node. As is standard practice, we scale our reported
energies by the corresponding scaling in transistor size
(and therefore capacitance) to make a fair comparison [85].
We found that with significant energy savings we could
achieve comparable accuracy, 97%. While highly efficient
inference framework (HEIF), the most modern work in that
field, does significantly better (around 99.1%), it is also the
culmination of a research program that optimized all the
other networks in Fig. 9, which originally required higher
energy and gave lower performance. We make no similar
attempt to optimize our network and believe that it could
be improved in principle to perform with similar accuracy
and significantly lower energy.

The question remains as to whether 97% is a useful
recognition accuracy. The answer is conditionally affir-
mative, as long as one chooses the correct application.
Although our network addressed the “Hello, world!” task
of handwriting recognition, one might imagine a similar

034016-11

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

inference error (%)

FIG. 9. Comparison of stochastic computing implementations
of LeNet5 on the MNIST data set from the literature. The
survey of logistic, rectified linear unit (ReLU), and tanh net-
works is reported in Ref. [70]. Two best-performing examples
are extracted for stochastic computing deep convolutional neu-
ral network (SC-DCNN) [66], and HEIF is reported in Ref. [67].
These references are all reported at the 45-nm technology node.
The results for our work are presented at 1 V with N = 128 and
δ = 16 and are scaled up by a factor of 4 to bring our 22-nm node
calculation into fair comparison with the literature.

convolutional neural network used for face recognition.
Presumably, our implementation would not perform as
well as can be done in mainstream neural networks. For
mission-critical applications like biometric identification,
this would be an unacceptable drop in performance. But
for, say, automatic face detection in a power-constrained
edge context like a mobile device’s camera application, the
drop in performance may be well worth the considerable
energy efficiency advantages.

VI. CONCLUSION

We introduce a hybrid approach to classical stochas-
tic computing, based on truly stochastic, low-energy
bitstreams generated by SMTJs. We introduce energy-
efficient primitive circuit elements (SCPCSA) that can be
used to interface SMTJs with standard stochastic circuits.
To test their effectiveness and explore the relaxed design
space constraints afforded by true randomness, we sim-
ulated a neural network with OR-gate neurons driven by
SMTJ-based bitstream generators. Stochastic simulations
of the network give 97% classification accuracy on the
MNIST data set, and circuit simulations of the circuit ele-
ments show that the energy usage should be about 150
nJ per inference, several times less than other stochastic
implementations of LeNet5.

The energy efficiency we find in this case study is made
possible in large part by true randomness, which eliminates

the source correlations that would arise from the use of
periodic pseudorandom number generators. Timing-based
decorrelators called isolators address but do not entirely
eliminate graph correlations, which arise due to recon-
vergent fanout of stochastic bitstreams. We analyze the
energy and power usage of our neural network and discuss,
in particular and in general, how SMTJ-based stochas-
tic computing will scale with the progress being made in
materials science. From the neural network perspective,
our case study of LeNet5 is not optimized over all potential
hyperparameters, so we expect that it should be possi-
ble to achieve higher classification accuracy and greater
energy efficiency with more research. Non-neuromorphic
stochastic computing designs [86] may also be able to ben-
efit from correlation-free randomness sources. The design
space degrees of freedom enabled by true randomness are
an exciting landscape for future research.

ACKNOWLEDGMENTS

M.W.D. and A.Ma. contributed equally to this work.
We thank Julie Grollier, Keven Garello, William Bor-
ders, Timothy Sherwood, George Tzimpragos, and Brian
Hoskins for enlightening discussions and comments on
the manuscript. M.W.D., A.Ma., P.T., and A.Mi. acknowl-
edge support under the Cooperative Research Agreement
Award No. 70NANB14H209, through the University of
Maryland.

APPENDIX A: THE SET-RESET LATCH IN THE
SC PSCA

Judiciously adding the SR latch is a crucial modification
we make to the standard PSCA circuit. The SR latch is a
standard electrical engineering concept that can be found
in textbooks [87]. Because the operating principles of the
SR latch may nevertheless be unfamiliar to some readers,
we include in this appendix a brief description of the activ-
ity in the circuit in Fig. 1. Typical descriptions of the SR
latch are given in terms of two recurrently connected NAND
gates, but we will analyze it at the transistor level since
the operation of a field-effect transistor is more physically
transparent and familiar to many physicists.

We describe in Sec. II how nodes e and f are brought
to either 01 or 10 after the clock signal goes to 1, the so-
called evaluation phase. It seems that the state of node f
is a good representative of the current state of the SMTJ,
but unfortunately node f goes to a high-voltage state in
the precharge phase when the clock goes back to 0. There-
fore f carries artifacts of the circuit operation, and does
not faithfully represent the physical state of the SMTJ at
the time it was previously read. We fix this by adding the
SR latch in Fig. 1(b).

First, consider the conclusion of the evaluation phase
for the case e = 1 and f = 0, as illustrated in Figs. 10(a)
and 10(b). In this figure, blue wires are at Vdd while red

034016-12

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

wires are connected to ground. The evaluated voltages at
e and f are physically wired to the the e and f branches
of the latch in Fig. 10(b). Because branch e is on, the top-
left transistor path is disconnected, denoted by a red circle.
One can verify by hand that both transistors above the out-
put node are disconnected (in the sense of open switches),
while the transistors below the output node are connected
to ground. The transistors above and below node g are in
the opposite configuration. The output node thus reliably
captures the state of node f during the evaluation phase.
Notice that there are no paths for current to flow from Vdd
to ground, so ohmic losses terminate as soon as this steady
state is reached.

We now consider the precharge phase in Figs. 10(c)
and 10(d). Both nodes e and f are brought to a high-
voltage state in preparation for the RC race that will occur
when the clock goes high again. Now that node f is high,

the top and bottom transistors change state on the f branch
of the latch, at the far right of Fig. 10(d). However, this
does not change the state of the output node or node g,
which themselves contribute to the opening and closing of
each other’s paths to Vdd and ground. Again, there is no
steady-state current flow once equilibrium is reached, so
there are no continuous ohmic losses.

The two parallel transistors above node g act like a OR
gate; if either of their gate voltages is low, then a current
path exists between Vdd and node g. The series transistors
below node g act like an AND gate; a current path exists
from g to ground only if both gate voltages are high. This
logical analysis will lead one to the standard presentation,
but for our purposes it is sufficient to see that a change in
state of f does not cause a change of state in the output
node, so the unwanted comb structure from Fig. 2(d) is
avoided.

ar
b.

 u
ni

ts

O
U

T

OUT
OUT

OUT

(a) (b) (e)

(f) (g)

(c) (d)

FIG. 10. Operation of SCPCSA. Blue wires represent V = Vdd, red wires represent V = 0, and red circles indicate that the source-
drain path of the transistor is turned off. (a) Steady-state conclusion of evaluation phase, corresponding to the far right of (f). The PCSA
has detected that the SMTJ is in the parallel state, pulling node f to ground and node e to Vdd as a result. (b) The SR latch copies the
value of node f to the output node. (c) Steady-state conclusion of the precharge phase, corresponding to the far right of (g). (d) The
PCSA has brought both e and f to Vdd in preparation for the measurement in the next evaluation phase. Although f has been brought
to Vdd, the internal state of the latch does not change, so the output node continues to correctly represent the previously measured state
of the SMTJ. (e)–(g) States of the various circuit node voltages throughout a simulation of the SCPCSA. Curve colors correspond to
points in the circuit indicated by the small circles in (a)–(d).

034016-13

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

APPENDIX B: COMPARISON WITH
STOCHASTICALLY-SWITCHED MTJs

A popular method in the literature for random number
generation based on magnetic nanotechnology is the use
of stochastic switching phenomena in nonvolatile MTJs
[31,45,53]. In this approach, an MTJ is first written to one
preferred configuration, and then a subcritical write volt-
age is placed across an MTJ. The strength of the write
voltage is related to the parameter p of the Bernoulli trial
to be performed. After probabilistically writing to the MTJ,
the state is sensed with a read voltage in the usual way; the
MTJ will have switched to the other stable configuration
with probability p .

To compare our method with this one, we refer to
Ref. [45] as a standard point of reference. Although the
authors of that reference do not report numbers for the
entire circuitry, they do report resistance and voltage num-
bers for the tunnel junction itself. Their devices have an
average resistance R = 1000 �, and they apply an aver-
age of 217.5 mV bias perturbative write voltages over an
average window of 8.75 ns. We neglect the cost of their
read operation and any required CMOS circuitry here; the
ohmic losses in the MTJ alone amount to 414 fJ per bit.
Reference [53] uses similar techniques on MTJs specif-
ically tailored to the generation of stochastic computing
bitstreams (the same task we consider here); they report
average costs of 526 fJ per bit.

Although the energy per bit is orders of magnitude
higher than what we present in Fig. 5, the tasks are not
immediately equivalent. The main difference seems to be
in speed available in the current state of the art. Write-
read cycles on nonvolatile MTJs can be quite fast, allowing
for rapid generation of random numbers in principle. Our
scheme and that of [32] avoid large ohmic losses by using
sense amplifiers, but as a result are limited in speed by the
natural time scale of the SMTJ’s random telegraph noise.
Experiments on SMTJs have demonstrated millisecond-
scale fluctuations; uncorrelated random bits cannot be sam-
pled significantly faster than this time scale, which goes as
roughly e�/kBT ns. If faster SMTJs can be engineered, our
scheme would continue to function at the same energy per
bit performance that we describe in this paper, and could
plausibly produce bits down at the nanosecond time scale
for ultra-low-barrier devices.

APPENDIX C: COMPARISON WITH p-BITS

A common application of SMTJs is the p-bit
[14–17,19–21]. A p-bit consists of an SMTJ and a tran-
sistor in series between a supply voltage Vdd and ground.
The node between the SMTJ and the transistor is a voltage
divider; its output is sent to a sequence of specially tuned
CMOS inverters, where that output fluctuates around some
reference voltage to produce a random telegraph noise sig-
nal. Controlling the gate-source voltage of the transistor in

an analog fashion allows one to access analog tunability of
the spin torque on the SMTJ; this consequently allows one
to tune the probability encoded in the output of the CMOS
inverters.

Generally speaking, ideal p-bits are in a different class
of device than what we propose here. In particular, they
operate on analog voltage inputs. One could in principle
build an analog probabilistic computer out of these units,
whereas our proposed circuit is purely digital. Here, we
do not compare the relative computational ability of dig-
ital versus analog computing but evaluate how well p-bit
circuits would work for stochastic computing.

To make a fair comparison of device power and energy,
we assume the supply voltage is again Vdd = 1 V. The
voltage division provided by the inverter and SMTJ in
the p-bit swings between two values which must be dis-
tinguished by the CMOS inverter. In order to center the
p = 1/2 response of the p-bit at an input voltage of V =
0.5 V, the effective resistance of the transistor at that
input voltage should be

√
RPRAP to maximize the sensi-

tivity of the circuit to both the high- and low-resistance
states. In that configuration, we essentially have a 1 V
voltage drop across a series resistor of effective resistance√

RPRAP + (RP + RAP)/2. The current running through the
structure is therefore

I = 2Vdd

(RP + RAP) + 2
√

RPRAP
. (C1)

For RAP = 100 k� and R P = 50 k�, this amounts to
a 3.4-μA current, or 3.4 μW of ohmic dissipation per
device. Neglecting the energy cost associated with generat-
ing independently controllable analog voltage sources for
each p-bit, the ohmic loss is about 500 fJ per bit at the
150-ns clock cycle we consider, substantially greater than
the approximately 10 fJ for our PCSA-based approach.
However, as the clock speed of the circuit is increased,
the PCSA-based approach has constant energy cost per
bit while the p-bit approach scales roughly linearly to
lower energies with increasing speed. In order to achieve
10 fJ per bit performance, the autocorrelation time of the
stochastic fluctuations in a p-bit would need to be reduced
to 3 ns.

Recent work has attempted to push the theory of SMTJs
toward this limit where the analog behavior can be har-
nessed more energy efficiently. Reference [18] makes sim-
ilar order of magnitude energy projections to ours in the
case where the SMTJ dwell time could be reduced to
around 1 ns. Theory [41] suggests that nanomagnets with
autocorrelation times on this scale might be realizable in
the limit as the barrier goes to zero. There are a number of
obstacles to realizing devices that operate in this regime.
As the barrier goes to zero, the current becomes more and
more efficient at dictating the SMTJ state, requiring a del-
icate balance between adequate read currents and currents

034016-14

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

that control the state of the nanomagnet. Fabricating such
a device may require extremely narrow margins of error.

APPENDIX D: DEVICE VARIABILITY

In the main text, especially leading up to Fig. 6, we
assume a distribution for device variability. However, we
do not assume the distribution to be Gaussian, because
the exponential tails of the normal distribution are prob-
lematic; the probability that a particular device is found
in the parallel or antiparallel states is strictly confined to
the open subset (0, 1), by construction. Instead of trying to
truncate or morph normal distributions to the domain, we
opt instead to use the beta distribution, which is naturally
defined on the unit interval.

Suppose that the probability for a device to be in the on
state is itself a random variable P . We choose to model
P as a beta distribution with unnormalized probability
density

f (p) ∝
{

pμφ−1(1 − p)φ−μφ−1 0 ≤ p ≤ 1,
0 otherwise.

(D1)

The normalization is given by an Euler integral of the first
kind. A convenient parametrization of the beta distribu-
tion is to specify its mean μ and a shape parameter φ > 0,
which is related to the variance of the distribution by

σ 2 = μ(1 − μ)

1 + φ
. (D2)

First, consider the case where μ = 1/2 but φ is greater than
zero. We plot three different distributions with standard
deviations σ ∈ {0.05, 0.1, 0.15} in Fig. 11. The existence
of these distributions at the inputs to the bitstream gen-
erator will induce distributions in the statistics of the
generator’s output bitstream. Expressions for these output
distributions are analytically tractable [88], but are given in
terms of hypergeometric Meijer G-functions and provide
little useful intuition. To gain insight into the relationship
between device variance and bitstream variance, we sam-
ple 5000 generator outputs at each programming code, for
each of the distributions in Fig. 11. Figure 6 plots these
distributions vertically at each programmable probability.

A similar idea for producing a discretely specified prob-
ability bitstream from a collection of LFSRs, called the
weighted binary generator (WBG), has been discussed in
Refs. [89,90]. Our circuit has the advantage of O(n) scal-
ing of the input capacitance as a function of bit resolution
n, whereas the input capacitance of the WBG scales as
O(n2). We expect our solution to take less energy in gen-
eral, regardless of whether LFSRs or SMTJs are used as
the randomness sources. On the other hand, our numer-
ical experiments indicate that for large deviations of the
mean input probabilities from 1/2, distortions in the out-
put behavior of the WBG are better behaved than ours in

FIG. 11. Probability density functions for the beta distribution
centered at 1/2 with three different standard deviations.

the sense that the ordering of outputs is preserved rela-
tive to the WBG’s binary programming. In the case where
programming protocols can be determined after fabricated
devices are characterized, our circuit remains favorable.
But if the mean of the beta distribution governing expected
probability for each SMTJ is unknown, or if the SMTJ
variance is very large and the programming protocol needs
to be uniform across many devices, then the use of the
WBG circuit may be preferable for reliability and ease of
programming.

APPENDIX E: DETAILS OF THE NEURAL
NETWORK

1. Layer structures

Each layer in a stochastic neural network architecture
receives output bitstreams from the previous layer, as well
as bitstreams from the programmable SMTJ weight arrays.
These bitstreams are all multiplied in parallel using AND
gates, the outputs of which are fed into the OR-gate neu-
rons for summation and activation. In other words, a fully
connected layer with input degree m and output degree n is
simply implemented as n different m-input OR-gate neurons
as we describe in Sec. IV. The output of each layer is then
passed through a random mask decorrelator as we describe
in Appendix E.4. Figure 12 sketches the arrangement of
this high-level architecture.

In a convolutional layer, we spatially multiplex the ker-
nel applications. This means that each weight, which is
being generated as described in Sec. II, is fanned out to
a large number of input pixels at the same time. This mas-
sive weight sharing will cause neighboring pixels in the
layer output to be strongly correlated, making the use of a
graph decorrelator especially important here.

034016-15

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

(a)

(b) (c)

FIG. 12. (a) Schematic block diagram of LeNet5 neural net-
work. (b) Schematic block diagram of a neural layer (either a
convolutional or a fully connected layer). Each of these layers
contains excitatory and inhibitory subnetworks. (c) Schematic
view of a functional neural block comprised of SMTJs, AND
gates, one OR gate, and a decorrelator.

Today, most neural network designers implement the
max operation as their pooling function, although aver-
age pooling and min pooling are also used. Reference [91]
has developed a correlation-insensitive max function for
stochastic circuits that could be used for this purpose. Our
pooling layer performs “OR pooling”—that is, we simply
use a single four-input OR gate as our 2 × 2 pooling oper-
ation. This is similar to the method used in Ref. [92] to
approximate average pooling, but without their weighting
elements.

2. Dual architecture

In this paper, we use unipolar encoding to represent val-
ues in the stochastic circuit. To use unipolar encoding as
such is to identify the probability of a wire being in the
on state with the value that wire is said to encode. A disad-
vantage of this approach is that only numbers between zero
and one can be encoded by the network. An alternative is
bipolar encoding, where a wire turned on with probability
p is said to encode the value 2p − 1 [93]. This approach is
used by many others in the field [66,67], but unfortunately
it is not clear to us that the OR gate can still be used as a use-
ful nonlinear activation function in this encoding scheme.

Inhibitory behavior is generally believed to be a cru-
cial aspect of neural networks [94,95]. In most previous
stochastic network proposals, use of the bipolar represen-
tation [93] grants the network access to negative numbers
and, consequently, a mechanism for inhibitory signals.
Some work has also been done on learning in networks
with non-negative weights [96], where inhibition is exer-
cised by amplifying all signals except for those targeted
for inhibition. Unfortunately, the unipolar representation

employed here can represent neither negative numbers
nor numbers greater than unity. Unipolar stochastic net-
works therefore lack the usual inhibitory mechanisms and
fail to meaningfully learn most nontrivial data sets in our
experiments.

To address this issue, we use a variation on a method
proposed in Refs. [74,77]. We refer to our strategy as a
dual architecture. We employ two separate weight matri-
ces in each layer, which are labeled as the excitatory and
inhibitory subnetworks. The entire output vector from the
inhibitory subnetwork is then elementwise inverted and
ANDed with the excitatory output to achieve the response
of the full layer. In the absence of correlations, the j th ele-
ment zj of the final output from a network layer is therefore
given by

zj = y(e)
j

(
1 − y(i)

j

)
, (E1)

where y(e,i)
j is the output element for the excitatory

(inhibitory) subnetwork. This leads more explicitly to
Eq. (2) from the main text. In reality, the preliminary out-
puts y(e)

j and y(i)
j are never uncorrelated, because they are

both sourced from the same set of inputs {xj } to the layer.
However, the use of the approximation in Eq. (E1) is nec-
essary to use standard, local backpropagation methods, and
we find that any induced error is minimal.

3. Simulation and training

We build two kinds of models for our architecture: an
analytic one and a stochastic one. The analytic model
provides a representation of the network in terms of prob-
abilities rather than the more complicated stochastic rep-
resentation of random processes, allowing it to run faster
than the stochastic model. The analytic model verifies the
functional correctness of our network structure and pro-
vides a baseline against which to compare our stochastic
simulations. The stochastic model is a logic-level simula-
tor, which allows us to determine the effects of correlation
and to estimate activity factors needed for energy esti-
mates. It uses input bitstreams that are generated from
statistics consistent with the known properties of SMTJs.

To train our network, we use the standard backprop-
agation algorithm applied to our nonstandard network
functionality given by Eq. (2)—that is, Eqs. (1) and (E1).
The speed of the analytic model makes it suitable for the
training phase, as running detailed stochastic simulations
for each inference of the training process would be pro-
hibitive. This model is deterministic in the sense that we
use the analytic probability equations for inference and
backpropagation; it is local in the sense that we assume
the inputs to each node of the network to be free of corre-
lations. To train the model, we use a mini-batch version
of the RMSProp optimization algorithm [97]. We use a
learning rate of 0.005 and a forgetting factor of 0.95. We

034016-16

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

train 60 randomly initialized models for 16 epochs each
and select the best-performing model. This network is then
transferred to the stochastic model, to be simulated using
realistic bitstreams generated according to known statistics
for physical SMTJ devices.

4. Decorrelation

In order to train our neural network efficiently, we use
backpropagation and gradient descent. In practice, back-
propagation is implemented as a local learning rule; the
gradient of the cost function is determined at each node
in the network as a function only of that node and its
nearest, connected neighbors. This locality is essential
in keeping backpropagation algorithmically efficient, and
therefore necessitates the use of a local analytic descrip-
tion that assumes all inputs are statistically independent.
Such an analytic description, however, will necessarily fail
to capture most graph correlations. In the specific case of a
neural network, then, we need additional functionality for
addressing graph correlations.

Because of the massive fan-in required in neural net-
work systems, the algorithm from Ref. [49] would be
unwieldy to implement in a neural network. For a fully
connected layer with n neurons on the output, total decor-
relation would require different delays for each neuron,
leading to O(n2) delay elements per neuron. Our approach
is instead to delay each neuron by a pseudorandom but
fixed amount, creating a random mask of delay lengths
on the output of each neural network layer. Such a pro-
grammable feature is implemented in our architecture by a
chain of flip-flops which are tapped into a multiplexer. The
output of each decorrelator is fed to the next layer. In other
words, every output of every layer is delayed by some
integer between zero and a fixed upper bound, chosen
pseudorandomly and uniformly over the interval at the net-
work programming step. This approach does not formally
eliminate graph correlations, but it empirically reduces
their impact to a low enough level such that implemen-
tation of the network architecture becomes feasible. The
results presented in Sec. V demonstrate that the delay time
can be set long enough to mostly saturate correlation-based
network errors.

[1] D. Apalkov, B. Dieny, and J. Slaughter, Magnetoresistive
random access memory, Proc. IEEE 104, 1796 (2016).

[2] T. Hanyu, T. Endoh, D. Suzuki, H. Koike, Y. Ma, N.
Onizawa, M. Natsui, S. Ikeda, and H. Ohno, Standby-
power-free integrated circuits using MTJ-based VLSI com-
puting, Proc. IEEE 104, 1844 (2016).

[3] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman,
Ac-dimm: Associative computing with STT-MRAM, ACM
SIGARCH Comput. Archit. News 41, 189 (2013).

[4] M. Bapna, S. K. Piotrowski, S. D. Oberdick, M. Li,
C.-L. Chien, and S. A. Majetich, Magnetostatic effects on

switching in small magnetic tunnel junctions, Appl. Phys.
Lett. 108, 022406 (2016).

[5] A. Mizrahi, T. Hirtzlin, A. Fukushima, H. Kubota, S.
Yuasa, J. Grollier, and D. Querlioz, Neural-like comput-
ing with populations of superparamagnetic basis functions,
Nat. Commun. 9, 1533 (2018).

[6] W. Rippard, R. Heindl, M. Pufall, S. Russek, and A. Kos,
Thermal relaxation rates of magnetic nanoparticles in the
presence of magnetic fields and spin-transfer effects, Phys.
Rev. B 84, 064439 (2011).

[7] J. Sun and D. Ralph, Magnetoresistance and spin-transfer
torque in magnetic tunnel junctions, J. Magn. Magn. Mater.
320, 1227 (2008).

[8] S.-W. Lee and K.-J. Lee, Emerging three-terminal magnetic
memory devices, Proc. IEEE 104, 1831 (2016).

[9] H. Sato, S. Ikeda, and H. Ohno, Magnetic tunnel junctions
with perpendicular easy axis at junction diameter of less
than 20 nm, Jpn. J. Appl. Phys. 56, 0802A6 (2017).

[10] N. Perrissin, G. Grégoire, S. Lequeux, L. Tillie, N. Strelkov,
S. Auffret, L. Buda-Prejbeanu, R. Sousa, L. Vila, B. Dieny,
et al., Perpendicular shape anisotropy spin transfer torque
magnetic random-access memory: Towards sub-10 nm
devices, J. Phys. D: Appl. Phys. 52, 234001 (2019).

[11] J. Grollier, D. Querlioz, and M. D. Stiles, Spintronic nan-
odevices for bioinspired computing, Proc. IEEE 104, 2024
(2016).

[12] K. Roy, A. Sengupta, and Y. Shim, Perspective: Stochastic
magnetic devices for cognitive computing, J. Appl. Phys.
123, 210901 (2018).

[13] K. Y. Camsari, B. M. Sutton, and S. Datta, p-bits for
probabilistic spin logic, Appl. Phys. Rev. 6, 011305 (2019).

[14] R. Faria, K. Y. Camsari, and S. Datta, Implementing
bayesian networks with embedded stochastic MRAM, AIP
Adv. 8, 045101 (2018).

[15] X. Jia, J. Yang, Z. Wang, Y. Chen, H. H. Li, and W. Zhao,
in 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC) (IEEE, Jeju Island, Korea, 2018),
p. 580.

[16] A. Sengupta, M. Parsa, B. Han, and K. Roy, Proba-
bilistic deep spiking neural systems enabled by magnetic
tunnel junction, IEEE Trans. Electron Devices 63, 2963
(2016).

[17] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta,
Stochastic p-Bits for Invertible Logic, Phys. Rev. X 7,
031014 (2017).

[18] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H.
Ohno, and S. Datta, Integer factorization using stochastic
magnetic tunnel junctions, Nature 573, 390 (2019).

[19] S. Ganguly, K. Y. Camsari, and A. W. Ghosh, Reser-
voir computing using stochastic p-bits, arXiv:1709.10211
(2017).

[20] O. Hassan, K. Y. Camsari, and S. Datta, Voltage-driven
building block for hardware belief networks, IEEE Des.
Test 36, 15 (2019).

[21] Y. Shim, A. Jaiswal, and K. Roy, Ising computation based
combinatorial optimization using spin-hall effect (SHE)
induced stochastic magnetization reversal, J. Appl. Phys.
121, 193902 (2017).

[22] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, and K. Roy,
Magnetic tunnel junction mimics stochastic cortical spiking
neurons, Sci. Rep. 6, 30039 (2016).

034016-17

https://doi.org/10.1109/JPROC.2016.2590142
https://doi.org/10.1109/JPROC.2016.2574939
https://doi.org/10.1145/2508148.2485939
https://doi.org/10.1063/1.4939911
https://doi.org/10.1038/s41467-018-03963-w
https://doi.org/10.1103/PhysRevB.84.064439
https://doi.org/10.1016/j.jmmm.2007.12.008
https://doi.org/10.1109/JPROC.2016.2543782
https://doi.org/10.7567/JJAP.56.0802A6
https://doi.org/10.1088/1361-6463/ab0de4
https://doi.org/10.1109/JPROC.2016.2597152
https://doi.org/10.1063/1.5020168
https://doi.org/10.1063/1.5055860
https://doi.org/10.1063/1.5021332
https://doi.org/10.1109/TED.2016.2568762
https://doi.org/10.1103/PhysRevX.7.031014
https://doi.org/10.1038/s41586-019-1557-9
https://doi.org/10.1109/MDAT.2019.2897964
https://doi.org/10.1063/1.4983636
https://doi.org/10.1038/srep30039

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

[23] A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romd-
hane, O. Bichler, C. Gamrat, W. S. Zhao, J.-O. Klein,
S. Galdin-Retailleau, and D. Querlioz, Spin-transfer torque
magnetic memory as a stochastic memristive synapse for
neuromorphic systems, IEEE Trans. Biomed. Circuits Syst.
9, 166 (2015).

[24] G. Srinivasan, A. Sengupta, and K. Roy, Magnetic tunnel
junction based long-term short-term stochastic synapse for
a spiking neural network with on-chip stdp learning, Sci.
Rep. 6, 29545 (2016).

[25] W. J. Gross and V. C. Gaudet, Stochastic Computing: Tech-
niques and Applications (Springer, Cham, Switzerland,
2019).

[26] A. Alaghi, W. Qian, and J. P. Hayes, The promise and chal-
lenge of stochastic computing, IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37, 1515 (2018).

[27] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J.
Lilja, An architecture for fault-tolerant computation with
stochastic logic, IEEE Trans. Comput. 60, 93 (2010).

[28] V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze,
and M. Oskin, Architecture considerations for stochastic
computing accelerators, IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 37, 2277 (2018).

[29] F. Neugebauer, I. Polian, and J. P. Hayes, S-box-based
random number generation for stochastic computing,
Microprocess. Microsyst. 61, 316 (2018).

[30] J. M. de Aguiar and S. P. Khatri, in 2015 33rd IEEE Inter-
national Conference on Computer Design (ICCD) (IEEE,
New York, NY, USA, 2015), p. 391.

[31] A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Ima-
mura, S. Yuasa, and K. Ando, Spin dice: A scalable truly
random number generator based on spintronics, Appl. Phys.
Express 7, 083001 (2014).

[32] D. Vodenicarevic, N. Locatelli, A. Mizrahi, J. S. Friedman,
A. F. Vincent, M. Romera, A. Fukushima, K. Yakushiji,
H. Kubota, S. Yuasa, S. Tiwari, J. Grollier, and D. Quer-
lioz, Low-Energy Truly Random Number Generation With
Superparamagnetic Tunnel Junctions for Unconventional
Computing, Phys. Rev. Appl. 8, 054045 (2017).

[33] B. Parks, M. Bapna, J. Igbokwe, H. Almasi, W. Wang, and
S. A. Majetich, Superparamagnetic perpendicular magnetic
tunnel junctions for true random number generators, AIP
Adv. 8, 055903 (2018).

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-
based learning applied to document recognition, Proc. IEEE
86, 2278 (1998).

[35] W. Zhao, C. Chappert, V. Javerliac, and J.-P. Noziere, High
speed, high stability and low power sensing amplifier for
MTJ/CMOS hybrid logic circuits, IEEE Trans. Magn. 45,
3784 (2009).

[36] Vdd is a standard electrical engineering notation for the
supply voltage across a CMOS circuit, specified in both
textbooks and industry standards. The etymology is some-
what obscure; an interesting historical discussion appears at
https://electronics.stackexchange.com/a/142412.

[37] W. Zhao and Y. Cao, New generation of predictive technol-
ogy model for sub-45 nm early design exploration, IEEE.
Trans. Electron Devices 53, 2816 (2006).

[38] A. PTM, Arizona state university predictive technology
model, 22 nm, http://ptm.asu.edu/.

[39] A. Mizrahi, N. Locatelli, R. Matsumoto, A. Fukushima,
H. Kubota, S. Yuasa, V. Cros, J. Kim, J. Grollier, and D.
Querlioz, Magnetic stochastic oscillators: Noise-induced
synchronization to underthreshold excitation and com-
prehensive compact model, IEEE Trans. Magn. 51, 1
(2015).

[40] R. Faria, K. Y. Camsari, and S. Datta, Low-barrier nano-
magnets as p-bits for spin logic, IEEE Magn. Lett. 8, 1
(2017).

[41] J. Kaiser, A. Rustagi, K. Y. Camsari, J. Z. Sun, S. Datta,
and P. Upadhyaya, Ultrafast fluctuations in low-barrier
magnets, arXiv:1902.03312 (2019).

[42] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y.
Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa,
et al., in 2010 IEEE International Solid-State Circuits Con-
ference (ISSCC) (IEEE, San Francisco, CA, USA, 2010),
p. 258.

[43] Y. Jiang, T. Nozaki, S. Abe, T. Ochiai, A. Hirohata, N.
Tezuka, and K. Inomata, Substantial reduction of critical
current for magnetization switching in an exchange-biased
spin valve, Nat. Mater. 3, 361 (2004).

[44] O. Hassan, R. Faria, K. Y. Camsari, J. Z. Sun, and S. Datta,
Low-barrier magnet design for efficient hardware binary
stochastic neurons, IEEE Magn. Lett. 10, 1 (2019).

[45] W. H. Choi, Y. Lv, J. Kim, A. Deshpande, G. Kang, J.-P.
Wang, and C. H. Kim, in 2014 IEEE International Electron
Devices Meeting (IEEE, San Francisco, CA, USA, 2014),
p. 12.

[46] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker,
A statistical test suite for random and pseudorandom num-
ber generators for cryptographic applications, Tech. Rep.
(Booz-Allen and Hamilton Inc., Mclean, VA, 2001).

[47] D. Jenson and M. Riedel, in 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (IEEE,
Austin, TX, USA, 2016), p. 1.

[48] M. H. Najafi, D. J. Lilja, and M. Riedel, in 2018
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) (IEEE, San Diego, CA, USA, 2018), p. 1.

[49] P.-S. Ting and J. P. Hayes, in 2016 IEEE 34th International
Conference on Computer Design (ICCD) (IEEE, Phoenix,
AZ, USA, 2016).

[50] G. E. Salam and R. M. Goodman, in Silicon Implementation
of Pulse Coded Neural Networks, edited by M. E. Zaghloul,
J. L. Meador, and R. W. Newcomb (Springer US, Boston,
MA, 1994), p. 249.

[51] H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue,
in 2014 IEEE 32nd International Conference on Computer
Design (ICCD) (IEEE, Seoul, South Korea, 2014), p. 361.

[52] K. Kim, J. Lee, and K. Choi, in 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC) (IEEE,
Macau, China, 2016).

[53] A. Mondal and A. Srivastava, Energy-efficient design of
MTJ-based neural networks with stochastic computing, J.
Emerg. Technol. Comput. Syst. 16, 1 (2019).

[54] S.-W. Chung, T. Kishi, J. Park, M. Yoshikawa, K. Park,
T. Nagase, K. Sunouchi, H. Kanaya, G. Kim, K. Noma,
et al., in 2016 IEEE International Electron Devices Meeting
(IEDM) (IEEE, San Francisco, CA, USA, 2016), p. 27.

[55] K. Rho, K. Tsuchida, D. Kim, Y. Shirai, J. Bae, T. Inaba,
H. Noro, H. Moon, S. Chung, K. Sunouchi, et al., in

034016-18

https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.1038/srep29545
https://doi.org/10.1109/TCAD.2017.2778107
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.1109/TCAD.2018.2858338
https://doi.org/10.1016/j.micpro.2018.06.009
https://doi.org/10.7567/APEX.7.083001
https://doi.org/10.1103/PhysRevApplied.8.054045
https://doi.org/10.1063/1.5006422
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TMAG.2009.2024325
https://electronics.stackexchange.com/a/142412
https://doi.org/10.1109/TED.2006.884077
http://ptm.asu.edu/
https://doi.org/10.1109/TMAG.2015.2439736
https://doi.org/10.1109/LMAG.2017.2685358
https://doi.org/10.1038/nmat1120
https://doi.org/10.1109/LMAG.2019.2910787
https://doi.org/10.1145/3359622

ENERGY-EFFICIENT STOCHASTIC... PHYS. REV. APPLIED 13, 034016 (2020)

2017 IEEE International Solid-State Circuits Conference
(ISSCC) (IEEE, San Francisco, CA, USA, 2017), p. 396.

[56] N. Perrissin, S. Lequeux, N. Strelkov, A. Chavent, L. Vila,
L. D. Buda-Prejbeanu, S. Auffret, R. C. Sousa, I. L. Pre-
jbeanu, and B. Dieny, A highly thermally stable sub-20 nm
magnetic random-access memory based on perpendicular
shape anisotropy, Nanoscale 10, 12187 (2018).

[57] E. Liu, J. Swerts, Y. C. Wu, A. Vaysset, S. Couet, S.
Mertens, S. Rao, W. Kim, S. Van Elshocht, J. De Boeck,
et al., Top-pinned STT-MRAM devices with high ther-
mal stability hybrid free layers for high-density memory
applications, IEEE Trans. Magn. 54, 1 (2018).

[58] K. Tsunoda, M. Aoki, H. Noshiro, Y. Iba, S. Fukuda,
C. Yoshida, Y. Yamazaki, A. Takahashi, A. Hatada,
M. Nakabayashi, et al., in 2014 IEEE International Elec-
tron Devices Meeting (IEEE, San Francisco, CA, USA,
2014), p. 19.

[59] C. Park, H. Lee, C. Ching, J. Ahn, R. Wang, M. Pakala,
and S. Kang, in 2018 IEEE Symposium on VLSI Technology
(IEEE, Honolulu, HI, USA, 2018), p. 185.

[60] L. Xue, C. Ching, A. Kontos, J. Ahn, X. Wang, R. Whig,
H.-W. Tseng, J. Howarth, S. Hassan, H. Chen, et al., in 2018
IEEE Symposium on VLSI Technology (IEEE, Honolulu,
HI, USA, 2018), p. 117.

[61] J. G. Alzate et al., in 2019 IEEE International Electron
Devices Meeting (IEDM) (IEEE, San Francisco, CA, USA,
2019).

[62] W. S. McCulloch and W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bull. Math. Biophys. 5,
115 (1943).

[63] J. Von Neumann, Probabilistic logics and the synthesis of
reliable organisms from unreliable components, Automata
Stud. 34, 43 (1956).

[64] W. Poppelbaum, C. Afuso, and J. Esch, in Proceedings of
the November 14-16, 1967, Fall Joint Computer Confer-
ence (ACM, New York, NY, USA, 1967), p. 635.

[65] B. R. Gaines, in Stochastic Computing: Techniques and
Applications (Springer, Cham, Switzerland, 2019), p. 13.

[66] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian,
and B. Yuan, in Proceedings of the Twenty-Second Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems – ASPLOS ’17
(ACM, Xi’an, China, 2017).

[67] Z. Li, J. Li, A. Ren, R. Cai, C. Ding, X. Qian, J. Draper, B.
Yuan, J. Tang, and Q. Qiu, HEIF: Highly efficient stochas-
tic computing based inference framework for deep neural
networks, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 38, 1543 (2018).

[68] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu,
and W. J. Gross, VLSI implementation of deep neural
network using integral stochastic computing, IEEE Trans.
Very Large Scale Integr. VLSI Syst. 25, 2688 (2017).

[69] N. Onizawa, W. J. Gross, and T. Hanyu, in Stochastic Com-
puting: Techniques and Applications, edited by W. J. Gross
and V. C. Gaudet (Springer International Publishing, Cham,
Switzerland, 2019), p. 185.

[70] J. Li, Z. Yuan, Z. Li, C. Ding, A. Ren, Q. Qiu, J. Draper,
and Y. Wang, in 2017 International Joint Conference on
Neural Networks (IJCNN) (IEEE, Anchorage, AK, USA,
2017), p. 1230.

[71] K. Kim, J. Lee, and K. Choi, in 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC) (IEEE,
Macau (Macao), China, 2016), p. 256.

[72] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, in
Proceedings of the 53rd Annual Design Automation Con-
ference, DAC ’16 (ACM, New York, NY, USA, 2016),
p. 124:1.

[73] A. Alaghi and J. P. Hayes, in 2013 IEEE 31st International
Conference on Computer Design (ICCD) (IEEE, Asheville,
NC, USA, 2013), p. 39.

[74] J. Tomlinson, M. S. D. Walker, and M. Sivilotti, in 1990
IJCNN International Joint Conference on Neural Networks
(IEEE, San Diego, CA, USA, 1990).

[75] Y.-C. Kim and M. Shanblatt, in 1992 IJCNN International
Joint Conference on Neural Networks (IEEE, Baltimore,
MD, USA, 1992).

[76] Y.-C. Kim and M. Shanblatt, Random noise effects in
pulse-mode digital multilayer neural networks, IEEE Trans.
Neural Networks 6, 220 (1995).

[77] Y.-C. Kim and M. Shanblatt, Architecture and statistical
model of a pulse-mode digital multilayer neural network,
IEEE Trans. Neural Networks 6, 1109 (1995).

[78] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient
processing of deep neural networks: A tutorial and survey,
Proc. IEEE 105, 2295 (2017).

[79] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P.
Narayanan, in International Conference on Machine Learn-
ing (PMLR (Proceedings of Machine Learning Research),
Lille, France, 2015), p. 1737.

[80] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,
Dorefa-net: training low bitwidth convolutional neural
networks with low bitwidth gradients, arXiv:1606.06160
(2016).

[81] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y.
Bengio, Quantized neural networks: Training neural net-
works with low precision weights and activations, J. Mach.
Learn. Res. 18, 6869 (2017).

[82] C. Song, B. Liu, W. Wen, H. Li, and Y. Chen, in 2017
IEEE 6th Non-Volatile Memory Systems and Applications
Symposium (NVMSA) (IEEE, Hsinchu, Taiwan, 2017),
p. 1.

[83] Q. Yang, H. Li, and Q. Wu, in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS) (IEEE, Flo-
rence, Italy, 2018), p. 1.

[84] R. Manohar, Comparing stochastic and determinis-
tic computing, IEEE Comput. Archit. Lett. 14, 119
(2015).

[85] J.-A. Carballo, W.-T. J. Chan, P. A. Gargini, A. B. Kahng,
and S. Nath, in 2014 IEEE 32nd International Conference
on Computer Design (ICCD) (IEEE, Seoul, South Korea„
2014), p. 139.

[86] A. Alaghi and J. P. Hayes, Strauss: Spectral transform use
in stochastic circuit synthesis, IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 34, 1770 (2015).

[87] N. H. E. Weste and K. Eshraghian, Principles of VLSI
Design: A Systems Perspective (Addison-Wesley, Reading,
MA, USA, 1994), 2nd ed.

[88] M. D. Springer and W. Thompson, The distribution of prod-
ucts of beta, gamma and gaussian random variables, SIAM
J. Appl. Math. 18, 721 (1970).

034016-19

https://doi.org/10.1039/C8NR01365A
https://doi.org/10.1109/TMAG.2018.2889566
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/TCAD.2018.2852752
https://doi.org/10.1109/TVLSI.2017.2654298
https://doi.org/10.1109/72.363434
https://doi.org/10.1109/72.410355
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/LCA.2015.2412553
https://doi.org/10.1109/TCAD.2015.2432138
https://doi.org/10.1137/0118065

MATTHEW W. DANIELS et al. PHYS. REV. APPLIED 13, 034016 (2020)

[89] P. K. Gupta and R. Kumaresan, Binary multiplication with
pn sequences, IEEE Trans. Acoust. Speech Signal Process.
36, 603 (1988).

[90] M. Yang, B. Li, D. J. Lilja, B. Yuan, and W. Qian, in
2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI) (IEEE, Hong Kong, China, 2018), p. 154.

[91] F. Neugebauer, I. Polian, and J. P. Hayes, in Proceedings
of the 16th ACM International Conference on Comput-
ing Frontiers – CF ’19 (ACM, Alghero, Sardinia, Italy,
2019).

[92] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, in 2017 IEEE Inter-
national Conference on Computer Design (ICCD) (IEEE,
Boston, MA, USA, 2017), p. 97.

[93] C. Winstead, in Stochastic Computing: Techniques and
Applications (Springer, Cham, Switzerland, 2019), p. 39.

[94] D. R. Chialvo and P. Bak, Learning from mistakes,
Neuroscience 90, 1137 (1999).

[95] P. Bak and D. R. Chialvo, Adaptive learning by extremal
dynamics and negative feedback, Phys. Rev. E 63, 031912
(2001).

[96] J. Chorowski and J. M. Zurada, Learning understandable
neural networks with nonnegative weight constraints, IEEE
Trans. Neural Netw. Learn. Syst. 26, 62 (2015).

[97] G. Hinton, N. Srivastava, and K. Swersky, Neural networks
for machine learning, lecture 6a: Overview of mini-batch
gradient descent (2012).

034016-20

https://doi.org/10.1109/29.1564
https://doi.org/10.1016/S0306-4522(98)00472-2
https://doi.org/10.1103/PhysRevE.63.031912
https://doi.org/10.1109/TNNLS.2014.2310059

	I. INTRODUCTION
	II. PRECHARGE SENSE AMPLIFIER READOUT OF SUPERPARAMAGNETIC TUNNEL JUNCTIONS
	III. SMTJ PROGRAMMABLE BITSTREAM GENERATOR
	IV. APPLICATION TO NEURAL NETWORKS
	V. EVALUATION AND RESULTS
	VI. CONCLUSION
	ACKNOWLEDGMENTS
	A. APPENDIX A: THE SET-RESET LATCH IN THE SC PSCA
	B. APPENDIX B: COMPARISON WITH STOCHASTICALLY-SWITCHED MTJs
	C. APPENDIX C: COMPARISON WITH p-BITS
	D. APPENDIX D: DEVICE VARIABILITY
	E. APPENDIX E: DETAILS OF THE NEURAL NETWORK
	1. Layer structures
	2. Dual architecture
	3. Simulation and training
	4. Decorrelation

	. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

