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A two-dimensional Stampfli-triangle photonic crystal (2D S-T PC), which arranges the basic structural
unit of a Stampfli-type photonic quasicrystal (PQC) in a triangular lattice, is proposed. The relationship
between the structural parameters and the topological trivial or nontrivial state generated in the 2D S-T
PC and the relationship between the structural parameters and the frequency of the one-way propagation
are analyzed. One-way propagation based on a U-shaped waveguide composed of 2D S-T PCs, with
topological trivial and nontrivial states sharing a common band gap, is realized. The topological edge
state, which satisfies C6 symmetry, is realized by changing just the diameters of the cylinders in the 2D
S-T PC. This provides an idea for the generation of a topological edge state based on a 2D PQC and
increases the diversity and adjustability of the method to realize the topological edge state.
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I. INTRODUCTION

The photonic quantum Hall effect (PQHE) and its one-
way propagation effect have been proved theoretically
based on photonic crystals [1,2], which has opened the
way for research on topological photonics. The topolog-
ical edge state has set off a research boom due to its
excellent topological properties, such as robustness, back-
scattering suppression, and defect immunity (see, e.g.,
[3–7]). Under the applied external magnetic field, an imag-
inary part occurs in the nondiagonal term of the magnetic
permeability tensor of the gyromagnetic material, which
breaks the time-reversal symmetry of the system and real-
izes a stable topological edge state. However, based on
the gyromagnetic [8–12] or gyroelectric [13] materials, the
working frequency domain of the light source is limited to
the microwave frequency. Weak magneto-optical effects in
the optical-frequency range lead to a significant absorption
loss, which limits the application of the PQHE at the most
common optical frequencies.

To solve this problem, researchers use all-dielectric
materials to achieve topological edge states that suit the
optical frequency. These include Floquet topological insu-
lators [14–18], valley Hall effects [19–22], and photonic
quantum spin Hall effects (PQSHEs) [23–28]. The PQSHE
generated by a photonic crystal with C6 symmetry has been
extensively researched, including the honeycomb lattice of
circle scatterers (dielectric cylinders [23,26,28] or air holes
[27]) or triangular air holes [25] and the triangular lattice
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of annular dielectric cylinders [24]. The PQSHE based on
a photonic crystal with C6 symmetry has also been exper-
imentally verified in the microwave frequency range [29].
In order to generate the topological edge state, the spacing
of the cylinders in the primitive cell needs to be expanded
or shrunken in the honeycomb lattice, or annular cylin-
ders needs to be adopted and the inner and outer radii
of the annular cylinders changed in the triangular lattice.
The honeycomb lattice can be seen as a triangular lat-
tice arranged using primitive cells that consist of complex
hexagonal lattices and both the honeycomb lattice and the
triangular lattice satisfy C6 symmetry. It can be conjectured
that a triangular lattice arranged using primitive cells that
satisfy C6 symmetry will generate a topological edge state.
There will be more selectivity and adjustability for the
primitive cell structure and a greater diversity of methods
for generating topological edge states. The Stampfli-type
PQC, which has been extensively researched, satisfies C6
symmetry [30] and can be applied to band-gap devices
[31], lasers [32,33], negative-refraction imaging [34,35],
the zero-refraction index [36], fibers [37–40], and other
fields. Moreover, 2D PQC structures can generate topolog-
ical edge states with rich band structures and topological
band gaps [41].

In this paper, the basic structural unit of the Stampfli-
type PQC is used as the primitive cell and arranged into
a triangular lattice to form a 2D S-T PC. A topological
edge state can be generated and the PQSHE can be realized
by changing just the diameters of the cylinders, instead of
expanding or shrinking the space occupied by the cylinders
or adopting annular cylinders in the primitive cell.
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II. MODELS AND THEORY

The structure of the proposed 2D S-T PC is shown in
Fig. 1. As shown in Fig. 1(a), the combination structure
of an equilateral triangle and a square is rotated six times
around a vertex of the equilateral triangle and cylinders
are arranged at each vertex to obtain the basic structural
unit of the Stampfli-type PQC [30–32,34]. This structure
rotates 60◦ around its center along the angular phase and
coincides with itself, i.e., this structure satisfies C6 sym-
metry. The basic structural unit of the Stampfli-type PQC
is used as the primitive cell and is arranged in a triangular
lattice to form the 2D S-T PC. The lattice constant is a, the
cylinders in the primitive cell are silicon (relative dielec-
tric constant εRD = 11.7), and the background material is
air (εRA = 1). The distance between the cylinders in the
primitive cell R = a/(3 + √

3). The cylinders are divided
into two categories: one category includes seven cylinders
of diameter d1 in the inner ring and the center and the other
category includes twelve cylinders of diameter d2 in the
outer ring—2D S-T PCs with different diameters d1 and d2
are shown in Figs. 1(a) and 1(b), respectively.

A system satisfying C6 symmetry can realize the
PQSHE, which can be proved by k · P theory [23,24,42,
43]. The detailed theoretical derivation, taken from Ref.
[24], is as follows. In transverse-magnetic (TM) mode, the
Maxwell equations can be abbreviated as follows:

� × 1
ε(r)

� × hn,k(r) = ω2

c2 hn,k(r), (1)

where n represents the photonic band index, hn,k(r) rep-
resents the Bloch function of the magnetic field and its
normalized expression is as follows:

∫
u.c.

dr · h∗
n′,k · hn,k (r) = δnn′ , (2)

where the integral region u.c. represents a primitive cell.
Expanding the Bloch function hn,k(r) at the � point, the

(a) (b)

FIG. 1. The 2D S-T PC: (a) d1 = 0.9R, d2 = 0.4R; (b) d1 =
0.1R, d2 = 0.8R.

k · P Hamiltonian of the system can be obtained as follows:

Hnn′ = ω2
n,0

c2 δnn′ + k · Pnn′

−
∫

u.c.

dr
ε (r)

h∗
n,0 · [k × (

k × hn′,0 (r)
)
], (3)

where ωn,0 represents the eigenfrequency of the nth band
at the � point and P represents momentum, with its matrix
element being shown as follows:

Pnn′ (k) =
∫

u.c.

dr
ε (r)

[h∗
n,0 (r) × (

i∇ × hn′,0 (r)
)

+ (
i∇ × hn′,0 (r)

) × h∗
n,0 (r)]. (4)

From Eqs. (3) and (4), it can be seen that the matrix ele-
ment of momentum P is nonzero only when the parities
of the n and n′ bands are different. The parities of the two
bands of the 2D S-T PC are called the p band and the d
band which are illustrated in Fig. 4, respectively. Thus, the
effective Hamiltonian under the basis of (p+, d+, p−, d−)T

can be deduced as follows:

H =

⎛
⎜⎜⎜⎜⎜⎝

ω2
p

c2 Ak+ 0 0

A∗k−
ω2

d
c2 0 0

0 0
ω2

p
c2 A∗k−

0 0 Ak+
ω2

d
c2

⎞
⎟⎟⎟⎟⎟⎠

, (5)

where k± = kx ± iky , A represents the coupling coefficient
between different states, and ωp and ωd, respectively, rep-
resent the frequency of the p band and d band at the �

point. Equation (5) indicates that only p+, d+ states (or
p−, d− states) with the same pseudospin can be coupled.
In Eq. (5), the two square submatrices on the diagonal cor-
respond to the Dirac equations containing the mass terms
of pseudospin up and pseudospin down, respectively. The
pseudospin photonic pairs are connected by the operation
of time-reversal symmetry, which ensures that the whole
system still protects time-reversal symmetry. Therefore, if
the p band is regarded as the valence band and the d band
is regarded as the conduction band, by analogy with the
model used in the electronic system, the PQSHE can be
described by Eq. (5). When ωp < ωd, the system gener-
ates a topological trivial state. When ωp > ωd, a p-d parity
inversion occurs at the � point, which will lead directly to
the topological nontrivial state for photons. When the 2D
S-T PCs with topological trivial and nontrivial states share
a common band gap, a topological edge state will be gener-
ated at the interface of the two 2D S-T PCs and light with a
frequency at the topological edge state can realize one-way
propagation.

In order to determine the relationship between the struc-
tural parameters and the topological trivial or nontrivial
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state generated in the 2D S-T PC, the variable ωpd is
introduced as follows:

ωpd = 2(ωd − ωp)

ωd + ωp
, (6)

where the structure with ωpd > 0 generates the topologi-
cal trivial state and the structure with ωpd < 0 generates
the topological nontrivial state. What needs to be demon-
strated is that ωpd is not a band gap. As illustrated with
the p and d bands and the frequency range marked as a
gray area in Figs. 4(a) and 4(c), the value of ωpd is deter-
mined by ωp and ωd, which are set out in Eq. (5), while
the frequency range of the band gap is from the highest
frequency of the lower band to the lowest frequency of the
upper band.

III. RESULTS AND DISCUSSION

Topological trivial and nontrivial states can be gener-
ated by shrinking and expanding the honeycomb lattice,
respectively [23,26,28,29]. The method to generate topo-
logical trivial and nontrivial states based on the 2D S-T PC
can be analogously derived from the honeycomb lattice as
shown in Fig. 2.

After shrinking [Fig. 2(c)] and expanding [Fig. 2(d)] the
honeycomb lattice [Fig. 2(b)], the topological trivial state
(ωpd > 0) and the topological nontrivial state (ωpd < 0)
can be obtained, respectively. The structures in Figs. 2(e)
and 2(f) can be obtained by deformation from the shrinking
and expanding honeycomb lattice, respectively. According
to Fig. 2(a), as d1 (d2) increases, the value of ωpd in the
2D S-T PC with the primitive cell structure as shown in
Figs. 2(e) or 2(g) [2(f) or 2(h)] increases (decreases) gradu-
ally and the value is always greater (less) than zero, i.e., the
characteristic of this 2D S-T PC is consistent with that of
the shrunken (expanding) honeycomb lattice, which gener-
ates the topological trivial (nontrivial) state. The structures
in Figs. 2(e) and 2(f) can be seen as the structure formed by
the cylinders in the inner ring [Fig. 2(g)] and the outer ring
[Fig. 2(h)] of a primitive cell structure of the 2D S-T PC,
respectively. In other words, when combining the struc-
tures in Figs. 2(e) and 2(f), the primitive cell structure of
the 2D S-T PC can be formed as shown in Fig. 2(i). It can
be conjectured that 2D S-T PCs dominated by the inner-
ring cylinders (d2/d1 < 1) and the outer-ring cylinders
(d2/d1 > 1) can generate topological trivial and nontrivial
states, respectively.

In order to further determine the relationship between
the structural parameters and the topological trivial or non-
trivial state generated in the 2D S-T PC, the values of
ωpd and the band-gap distribution in the 2D S-T PC under
different structural parameters are calculated, as shown in
Fig. 3.

When d1 = 0.4R, 0.5R, and 0.6R and d2/d1 changes
from 0 to 2, the variation trend of ωpd in the 2D S-T PC

FIG. 2. (a) The variation trend of ωpd with changing d1 but
d2 = 0, and changing d2 but d1 = 0, in the 2D S-T PC with the
primitive cell structures shown in (e) or (g) and (f) or (h). (b)
The honeycomb lattice. (c) The shrunken honeycomb lattice. (d)
The expanded honeycomb lattice. (e) The structure formed by
adding a central cylinder to the shrunken honeycomb lattice. (f)
A combination structure formed by rotating the expanded hon-
eycomb lattice cylinders +π/12 and −π/12 around the center,
respectively. (g) A primitive cell of a 2D S-T PC with d2 = 0
but d1 �= 0. (h) A primitive cell of a 2D S-T PC with d1 = 0 but
d2 �= 0. (i) A primitive cell of a 2D S-T PC with d1 = d2 �= 0.

is shown in Fig. 3(a). As d2/d1 increases, ωpd decreases
monotonically: ωpd > 0 when d2/d1 < 1, ωpd = 0 when
d2/d1 = 1, and ωpd < 0 when d2/d1 > 1. In the case of
different values of d1, the curves in Fig. 3(a) are mono-
tonically decreasing. It can be seen that the structure of
d2/d1 < 1 (the inner-ring cylinders play a leading role)
generates the topological trivial state and the structure of
d2/d1 > 1 (the outer-ring cylinders play a leading role)
generates the topological nontrivial state. Therefore, the
structural parameters can be used to distinguish or adjust
the generation of topological trivial and nontrivial states
directly. As shown in Fig. 3(b), the band-gap frequency
of a 2D S-T PC with a topological trivial state varies
within the range of [0.443(a/λ), 0.786(a/λ)] when d1 and
d2 change. As d2 increases with d1 taking an arbitrary
value, the band-gap width and the band-gap center fre-
quency gradually decrease. As d1 increases with d2 taking
an arbitrary value, the band-gap width gradually increases
and the band-gap center frequency gradually decreases. As
shown in Fig. 3(c), the band-gap frequency of a 2D S-T PC
with a topological nontrivial state varies within the range
of [0.391(a/λ), 0.672(a/λ)] when d1 and d2 change. As
d1 increases with d2 taking an arbitrary value, the band-
gap width and the band-gap center frequency gradually
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(a)

(b) (c)

FIG. 3. (a) The variation trend of ωpd in the 2D S-T PC with
changing d2/d1 when d1 = 0.4R, 0.5R, and 0.6R respectively.
The band-gap distribution diagram of 2D S-T PCs with topo-
logical trivial and nontrivial states when d1 and d2 change: (b) a
2D S-T PC with a topological trivial state, that is, the structure of
d2/d1 < 1; (c) a 2D S-T PC with a topological nontrivial state,
that is, the structure of d2/d1 > 1.

decrease. As d2 increases with d1 taking an arbitrary value,
the band-gap width gradually increases and the band-gap
center frequency gradually decreases. Thereby, 2D S-T
PCs with topological trivial and nontrivial states sharing a
common band gap in the frequency range of [0.443(a/λ),
0.672(a/λ)] can be obtained from Figs. 3(b) and 3(c).
Therefore, topological edge states in the frequency range
of [0.443(a/λ), 0.672(a/λ)] can be achieved by adjusting
the structural parameters.

The 2D S-T PCs with topological trivial and nontrivial
states sharing a common band gap are designed by select-
ing corresponding structural parameters from Fig. 3 and
the band structures of these 2D S-T PCs are calculated as
shown in Fig. 4.

As d2/d1 goes through values that are less than, equal to,
and greater than 1, the band at the Dirac degenerate point

(a)

(d) (e)

(b) (c)

FIG. 4. The band structures of 2D S-T PCs with different struc-
tural parameters and the Brillouin zone and its high-symmetry
points K , �, and M : (a) d1 = 0.9R, d2 = 0.4R, d2/d1 < 1; (b)
d1 = 0.6R, d2 = 0.6R, d2/d1 = 1; (c) d1 = 0.1R, d2 = 0.8R, d2/

d1 > 1. The electric fields at the � point from the second to the
sixth bands, corresponding to the bands in (d) Fig. 4(a) and (e)
Fig. 4(c). K and M are the high-symmetry points in the Brillouin
zone.

correspondingly goes through open [Fig. 4(a)], degenerate,
[Fig. 4(b)] and reopened [Fig. 4(c)] states, accompanied
by the inversion of the upper and lower bands at the
degenerate point. The band inversion can be reflected from
electric field diagrams at the high-symmetry point �, as
shown in Figs. 4(d) and 4(e). The second and third bands
in Fig. 4(a) correspond to the electric field distribution
labeled p , as shown in Fig. 4(d), indicating the p band. The
fifth and sixth bands in Fig. 4(a) correspond to the electric
field distribution labeled d, as shown in Fig. 4(d), indicat-
ing the d band. When the Dirac point goes through the
open, degenerate, and reopened process, the corresponding
electric field at the � point changes as shown in Fig. 4(e).
The second and third bands in Fig. 4(c) become the d band
and the fifth and sixth bands in Fig. 4(c) become the p
band. Therefore, when d2/d1 goes through values that are
less than, equal to, and greater than 1, the band of the sys-
tem realizes p-d parity inversion, indicating that the system
realizes the PQSHE.

In order to further prove the realization of the PQSHE,
the projected band structure of the 2D S-T PC along the
kx direction and its electric field diagram, as well as the
one-way propagation diagram of the U-shaped 2D S-T PC
waveguide are calculated, as shown in Fig. 5.

As can be seen from Figs. 4(a) and 4(c), the 2D S-T
PC with d1 = 0.9R and d2 = 0.4R for the topological triv-
ial state and the 2D S-T PC with d1 = 0.1R and d2 = 0.8R
for a topological nontrivial state share a common band
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FIG. 5. The projected band structure and topological edge
states. (a) The projected band structure of a ribbon-shaped super-
cell structure consisting of 16 unit cells with d1 = 0.9R and
d2 = 0.4R for the topological trivial state and 16 unit cells with
d1 = 0.1R and d2 = 0.8R for the topological nontrivial state. (b)
The electric field and the partial enlarged phase of Ez correspond-
ing to points A and B in the projected band with kx = ±0.3(π/a).
The propagation in the U-shaped waveguide between the 2D S-T
PCs with topological trivial and nontrivial states at 140.5 THz
[i.e., 0.4683(a/λ)]: (c) S+; (d) S−.

gap. The dispersion relation of the topological edge state
can be seen near frequencies 0.47(a/λ) and 0.50(a/λ)
in Fig. 5(a). The frequency widths for generating topo-
logical edge states are �f1 = 0.0065(a/λ) and �f2 =
0.0119(a/λ), with the frequency ranging from 0.4657(a/λ)
to 0.4722(a/λ) and from 0.4911(a/λ) to 0.5030(a/λ),
respectively. The frequency width of the common band
gap of the two 2D S-T PCs �fC = 0.0373(a/λ), with the
frequency ranging from 0.4657(a/λ) to 0.5030(a/λ). The
ratio (�f1 + �f2)/�fC is 0.4933, which is smaller than
the 0.6885 estimated in Ref. [24]. There is an obvious
band gap with the frequency ranging from 0.4722(a/λ)
to 0.4911(a/λ) between the edge bands because the dif-
ferent structure of the topological trivial and nontrivial
states destroys the C6 symmetry, which protects the dou-
ble degenerate point for the p and d bands at the � point
[24]. As shown in Fig. 5(b), the electric fields Ez at selected
points A and B are exactly the same: the phase diagram of
Ez at point A is clockwise, which represents spin down,
while the phase diagram of Ez at point B is anticlockwise,
which represents spin up. Light source S± = H0eiωt(ex ∓
iey) (where ex and ey are the unit vectors along the x and

(a) (b)

FIG. 6. The band structures of the 2D S-T PCs with differ-
ent structural parameters: (a) d1 = 0.9R, d2 = 0.4R, d2/d1 < 1;
(b) d1 = 0.4R, d2 = 0.7R, d2/d1 > 1.

y directions) corresponds to the spin up (S+) and spin
down (S−) modes, respectively. When the incident light
frequency is 140.5 THz [i.e., 0.4683(a/λ)] and the lattice
constant a = 1 μm, the U-shaped 2D S-T PC waveguide
with light source S+ and S− can achieve rightward and
leftward one-way propagations, respectively, as shown in
Figs. 5(c) and 5(d). The stable propagation of electro-
magnetic waves in the U-shaped waveguide proves the
realization of the PQSHE and topological edge state in the
2D S-T PC.

When the diameter of the cylinders of the topological
nontrivial state are adjusted, the common band gap can be
found near frequency 0.85(a/λ) in 2D S-T PCs with d1 =
0.9R, d2 = 0.4R for a topological trivial state and 2D S-T
PCs with d1 = 0.4R, d2 = 0.7R for a topological nontrivial
state, as shown in Figs. 6(a) and 6(b).

In order to further explore whether there is a topologi-
cal edge state near frequency 0.85(a/λ), the projected band
structure of the 2D S-T PC along the kx direction and its
electric field diagram, as well as the one-way propaga-
tion diagram of the U-shaped 2D S-T PC waveguide are
calculated, as shown in Fig. 7.

The dispersion relation of the topological edge states
can be seen near a frequency of 0.85(a/λ) at the projected
band structure, as shown in Fig. 7(a). The frequency width
for generating topological edge states is 0.0159(a/λ), with
the frequency ranging from 0.8419(a/λ) to 0.8578(a/λ),
which fills the entire common band gap for the two 2D S-T
PCs, and there is no band gap between the edge bands. The
electric field distributions at points A′ and B′ are strongest
at the interfaces and attenuate into the bulk as shown in
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FIG. 7. The high-frequency topological edge state. (a) The
projected band structure of a ribbon-shaped supercell structure
consisting of 16 unit cells with d1 = 0.9R and d2 = 0.4R for
a topological trivial state and 16 unit cells with d1 = 0.4R and
d2 = 0.7R for a topological nontrivial state. (b) The electric field
corresponding to A′ and B′ points in the projected band with
kx = ±0.24(π/a). The propagation in the U-shaped waveguide
between 2D S-T PCs with topological trivial and nontrivial states
at 252.6 THz [i.e., 0.8420(a/λ)]: (c) S+; (d) S−.

Fig. 7(b), corresponding to the appearance of the topologi-
cal edge state. The one-way propagations are also realized
at 252.6 THz [i.e., 0.8420(a/λ)], as shown in Figs. 7(c) and
7(d). The stable propagation of electromagnetic waves in
the U-shaped waveguide further proves the realization of
topological edge state in the 2D S-T PC at a higher fre-
quency. The high-frequency topological edge state can be
realized only by adjusting the diameters of the cylinders in
the 2D S-T PC for the topological nontrivial state, which
further expands the frequency range of the topological
edge states.

The topological edge state in the 2D S-T PC can be
applied to optical devices such as one-way waveguides
[8–12,23–29], splitters [11], optical sensors [27], and opti-
cal switchers [44]. In particular, the transmission path and
direction of the one-way waveguide can be adjusted by
changing just the diameters of the cylinders to realize inte-
grated circuits such as logic-gate devices. This provides
a possibility for the realization of programmable photonic
topological insulators, a new concept introduced in the
acoustic system recently [45], which can be used to real-
ize reconfigurable and programmable optical devices and
may lead to important advances in integrated circuits and
quantum computation.

IV. CONCLUSIONS

In this paper, a topological edge state is realized based
on the structure arranged using the basic structural unit
of the Stampfli-type PQC periodically. The relationship
between the diameter ratio d2/d1 and the topological trivial
or nontrivial state generated in the 2D S-T PC is inferred,
i.e., when d2/d1 < 1 and ωpd > 0, the structure can gen-
erate topological trivial states and when d2/d1 > 1 and
ωpd < 0, the structure can generate topological nontriv-
ial states. Finally, the topological edge state and one-way
propagation are realized based on 2D S-T PCs with topo-
logical trivial and nontrivial states that can realize band
inversion and that share a common band gap. The fre-
quency of the topological edge state can be controlled by
changing the diameters of the cylinders in the 2D S-T PC,
which increases the adjustability and application ranges of
the topological edge state. This adjustability will create
opportunities for the realization of programmable photonic
topological insulators.
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los, and M. Soljačić, Experimental Observation of Large
Chern Numbers in Photonic Crystals, Phys. Rev. Lett. 115,
253901 (2015).

[13] L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopou-
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