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Consolidated granular materials and materials with damage at the microstructural level exhibit anoma-
lous elastic behavior even when excited by low-amplitude elastic waves. Their response is given by a
combination of slow- and fast-dynamics effects which, as their definition implies, act on very different
time scales. In particular, conditioning (a transition to an elastic state dependent on the strain amplitude)
and relaxation (full recovery of the elastic properties when the strain is removed) have been observed in
different materials and under different dynamic excitations. An experimental parametric analysis of the
phenomenon, aiming to establish correlations between the effects on different elastic physical properties
(wave velocity and attenuation coefficient) and between the evolution of conditioning and relaxation is
proposed here, with the goal of better characterizing slow dynamics and allowing one to go beyond the
phenomenological description of elastic hysteresis currently available. At the same time, by studying dif-
ferent materials, we wish to highlight the possibility of using slow dynamics as an additional tool for
materials characterization.
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I. INTRODUCTION

Nonlinear elasticity in materials is often associated with
a loss of linearity in the stress-strain relation, which still
keeps an analytic form, when the excitation amplitude
becomes high. This description, usually known as clas-
sical nonlinear elasticity [1], however, fails in describing
the anomalous elastic behavior observed in mesoscopic
nonlinear elastic materials [2,3]. Consolidated [4–7] and
unconsolidated [8] granular media not only show nonlinear
elastic behavior at low strains but also feature, in addi-
tion, hysteresis in the stress-strain dependence, which can
thus no longer be described by an analytic function. Fur-
thermore, features typical of anomalous elasticity are also
present in the response to ultrasonic excitation of dam-
aged materials, whether granular [9,10] or not (metals,
composites, etc.) [11,12].

A typical characteristic of hysteretic elastic behavior is
the presence of features at the microscale level which pro-
duce physical effects on very different time scales (fast
and slow dynamics). Fast dynamics [13–19] is generally
associated with “instantaneous” variations of the elastic
modulus and damping parameter [20,21]. Slow dynamics
[22–24] is associated with completely different physical
processes and can be described as follows: when a strain
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of fixed amplitude is applied, the wave velocity (referred to
as simply “velocity” hereafter) and damping in the mate-
rial evolve slowly to a new equilibrium value different
from that of the unperturbed state. The phenomenon is
fully reversible and, once the strain is removed, the sys-
tem relaxes back to its original equilibrium state, that is,
with the initial values of the material properties. Thus, slow
dynamics is typical of nonequilibrium phenomena and of
the related transients from one equilibrium state to another.
We refer to conditioning [13,25–27] when the material
rearranges its state as a consequence of an applied strain,
and to relaxation [24,28–31] when it recovers, after a con-
ditioning process, its original properties once the strain is
no longer applied. Both processes take place over a long
time scale.

From the point of view of fast dynamics, hysteretic
elastic materials show, both qualitatively and quantita-
tively, a similar response, although with some differences,
for example in the power-law exponent describing non-
linear dependencies [32,33]. From the physical point of
view, however, they are characterized by very different
microstructural features (partially open clapping microc-
racks [34], closed microcracks with adhesion forces [35],
sliding or frictional interfaces [36,37], etc.). Thus, it is not
clear whether a single universal mechanism or, rather, a
specific material-dependent one should be identified as the
origin of nonlinearity and nonequilibrium behavior. Since
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conditioning and relaxation are distinctive features of hys-
teresis, their description could be crucial for validating
nonphenomenological models [13,25,37–41].

Great attention has also been devoted recently to the
use of slow dynamics as a general tool for characteriz-
ing nonlinear properties of materials and their evolution
due to degradation or damage progression [42,43]. This
is mainly due to the advantage that, from the experimen-
tal point of view, a single impact or “event” is suffi-
cient to induce slow dynamics and that monitoring of the
related effects could be done by means of low-amplitude
probe signals (in other words, nonlinear effects can be
probed by means of linear measurements) [43]. There-
fore, differently from what happens with other approaches,
possible nonlinearities due to the experimental setup and
the need for careful control of source amplitudes would
no longer be an issue to deal with in order to quan-
tify nonlinear elastic properties. A very promising appli-
cation in this regard is the possibility of investigating
slow-dynamics effects triggered by ambient noise, as has
been shown, for example, in the case of the effects of
seismic and environmental loading on civil engineering
structures [44]. At the same time, it has also been evi-
denced (mostly by using the dynamic acousto-elasticity
testing approach) that the presence of damage is responsi-
ble for an increase in slow-dynamics effects compared with
those observed in intact samples, in buildings [31], loaded
[45] and thermally damaged concrete [46]. A generic
increase in slow dynamics when damage is present is
of course extremely interesting from the point of view
of damage detection. Nevertheless, quantification, reli-
able assessment, and discrimination of different damage
types are generally hard to achieve because compara-
ble and well-controlled starting experimental conditions
would be required. Indeed, differences in the spatial strain
distribution within a sample, slight variations in environ-
mental conditions, differences in the resonance frequency
of samples tested, etc. could generally induce quantita-
tive differences in the slow-dynamics response of intact
samples that may be of the same order of magnitude
as those caused by the presence of damage. Therefore,
in order to make the analysis simpler and more reli-
able, an approach aimed at identifying different func-
tional behavior in the response of intact vs damaged
samples is highly desirable, as has been done, for exam-
ple, in another context, where distinct power-law behavior
for materials with different forms of damage has been
reported [33].

The goal of this paper is (i) to define measurable quan-
tities to characterize and quantify the temporal evolution
of damping and velocity (slow dynamics), (ii) to pro-
vide methods for measuring their dependence on strain,
and (iii) to establish correlations between them. Several
experimental results, obtained on different types of con-
solidated granular materials, are presented with the aim

of selecting, from among the measured quantities, those
that better allow identifying differences between intact
and damaged samples, thus indicating the possibility of
distinguishing between classes of materials with differ-
ent behavior. An extensive experimental analysis of the
behavior of the damping and velocity as a function of
time during conditioning or relaxation (and also by varying
the conditioning strain amplitude) is presented. The possi-
ble emergence of relationships and correlations between
indicators related to the damping and modulus or to con-
ditioning and relaxation is discussed from the point of
view of analyzing and validating the completeness, suit-
ability, and “universality” of the models proposed in the
literature. Furthermore, it is shown that damaged samples
exhibit slow-dynamics effects similar to those observed
in intact ones, but with significant differences (mostly in
terms of a different functional dependence of the velocity
and damping as a function of time). This result represents
a promising step from the point of view of developing fast
and accurate nondestructive testing tools for characterizing
elastic nonlinearity of damaged samples.

II. MATERIALS AND METHODS

A. Experimental setup

The experiments are conducted by using a waveform
generator (Tektronix AFG 3022B) to produce ultrasonic
signals defined as monochromatic waves of amplitude
Ainp and frequency ν. After amplification through a linear
amplifier (CIPRIAN Model US-TXP-3, 200 x), the signals
are transmitted to an ultrasonic transducer (with a broad-
band response, up to a few hundreds of kHz) acting as
an emitter. The transducer is glued to the sample using
phenyl salicylate (salol). A second (identical) transducer
is used to detect the response of the material under test
and is connected to a digital oscilloscope (Lecroy 324A)
for data acquisition. The experiments are performed using
MATEST C370-02 transducers (with a diameter of 2.5 cm)
with a center frequency at 55 kHz, specifically designed for
concrete samples.

The signals are recorded in a short time window once
stationary conditions are reached (standing waves). In
order to excite longitudinal modes (both transducers are
excited in compressional mode), the transducers are glued
on the base of the sample. The linearity of the acquisition
system, including the transducers and coupling media, is
verified by measuring a linear metallic sample (copper)
and also the response of the two transducers coupled to
each other by means of salol and exciting them within
the same frequency and amplitude range. In the experi-
ments discussed here, the frequency is always chosen close
to the fundamental compression resonance mode of the
samples and Ainp ranges from 10 mV to 1.2 V (before
amplification).
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B. Samples

We test several samples, representative of classes of
materials with different structures at the microscopic level:
(i) with distributed heterogeneity on the macroscopic scale
(due to the presence of large inclusions in concrete) or on
the microscale (due to the grain structure in mortar and
sandstone), and (ii) with localized heterogeneity due to
damage-induced microcracks (damaged concrete).

The characteristics of the samples investigated are the
following:

(a) The concrete sample (B06) is in the shape of a cylin-
der (4 cm diameter and 16 cm length) and is drilled from
a casting prepared with 340 kg of cement (CEM II A-L
42.5 R), 957 kg of sand (0–5 mm), 846 kg of gravel
(5–15 mm), and 200 kg of water [water:cement (w/c) ratio
≈ 0.59]. The age of the cylinder at the time of testing
is more than 5 years, thus guaranteeing that the cement
hydration process is completed.

(b) The Berea Sandstone sample is a thin cylinder with
a diameter of 2.5 cm and 15 cm long. The size of the grains
in this sample is of the order of tens of micrometers.

(c) The mortar sample (P18) is in the shape of a prism
(4 × 4 × 16 cm3) and is produced using Portland cement
(CEM I 42.5N) with a w/c ratio of 0.35 by mass.

(d) The damaged mortar sample (TQ4) is produced with
the same Portland cement as sample P18 and a w/c ratio of
0.3. It is in the shape of a prism with a size of 3 × 3 ×
15 cm3.

(e) The damaged concrete sample (X4) is produced
with proportions of 2 volumes of cement, 4 volumes of
sand, and 6 volumes of gravel per volume of water (the
average gravel size is 7 ± 2 mm and the size of the
sand particles is predominantly around 2 mm). Sample
X4 is damaged by a quasistatic three-point bending test
performed at 75% of its rupture load.

C. Data acquisition and analysis

The measurements are performed by using monochro-
matic waves and monitoring the system response over
time. Each experiment consists in the following procedure:
(i) A monochromatic wave with the lowest possible excita-
tion amplitude is continuously sent to the sample, in order
to avoid generation of slow-dynamics effects but still being
above the noise level. Several portions of the output sig-
nals are subsequently recorded by repeating, at different
times, the same temporal acquisition window, in order to
monitor preconditioning. Then, (ii) the input amplitude is
amplified to a new level, and acquisition is repeated at suc-
cessive times, as in (i), but now to monitor conditioning
effects. Finally, (iii) the amplitude is set back to the initial
low-amplitude level to monitor relaxation dynamics. No
delay times occur within the three steps. The protocol is
described in Fig. 1.
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FIG. 1. Scheme of the experimental protocol. The graph shows
the schematic output signal as a function of time for the three
steps of the protocol: preconditioning (blue), conditioning (red),
and relaxation (green). The vertical lines indicate the time win-
dows of the signal that are acquired by the oscilloscope. Inset:
example of a signal acquired during conditioning.

Measurements are performed by varying the amplifica-
tion of the input signal during step (ii) in order to achieve
a different level of conditioning. Then, full relaxation is
allowed for several hours between protocols performed at
increasing conditioning amplitudes.

For each time window (that is, at different times dur-
ing the same measurement protocol), the recorded signal is
analyzed following an approach which allows us to simul-
taneously extract the modulus and damping of the material.
These two quantities can be obtained from the phase and
amplitude of the recorded waveform when the distortions
of the signals from a pure sinusoid are small, that is, for
small nonlinearities [20]. The procedure adopted to derive
the dependence of the velocity and damping on amplitude
is reported in Appendix A1.

III. CONDITIONING AND RELAXATION

A. Experiments

Experiments are performed on the concrete sample
B06, following the protocol discussed above. First, the
sample is excited with a low-amplitude excitation Alin
(preconditioning). Then, the source amplitude is set to a
conditioning-effective level Acnd (conditioning). Finally,
the source amplitude is set again to the initial value (relax-
ation). The scheme of the protocol is reported in Fig. 1.
The signals are acquired using a fixed time window, �t =
5 ms, at successive times. The detected signals are fitted
to a cosine wave to extract the amplitude and phase as a
function of time.

The variations of the normalized amplitude and phase
with respect to the value at t = 0 s, i.e., the precondition-
ing equilibrium value, are shown in panels (a) and (b) of
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FIG. 2. Evolution of material properties as a function of time
during a conditioning experiment. (a) and (b) show the evolution
of the amplitude and phase of the harmonic signal detected by the
receiver. (c) and (d) report the evolution of velocity and attenu-
ation coefficient as a function of time. The sample is B06, the
source frequency is set to 11.2 kHz, and the excitation amplitude
during conditioning is Acnd = 0.58 V. The black and brown sym-
bols in panels (a) and (b) show the signals acquired by directly
coupling the two transducers and by measuring a linear sample
(copper), respectively.

Fig 2. Both the transition to a new equilibrium state when
the source amplitude is increased and the subsequent relax-
ation to the initial amplitude and phase values are evident.
The same analysis is also performed on a linear metal-
lic sample, consisting of copper (brown symbols), and by
directly coupling the two transducers with salol without
any sample in between (black symbols). As expected, both
the normalized amplitude and the phase are constant as a
function of time, that is, their variation with respect to the
initial value is zero, thus demonstrating the linearity of the
setup and of the acquisition procedure.

Then, from Eqs. (A4) and (A5) in Appendix A1, the
velocity and damping can be derived, and their variations
with respect to the preconditioning value are shown as
a function of time in Fig. 2(c) and 2(d). As expected,
we observe a softening and an increase in the attenu-
ation during the conditioning phase, followed by a full
relaxation. This indicates that the conditioning effect is
fully reversible. The full evolution of c and α, char-
acterized by introducing a few parameters indicated in
Fig. 2(c) and 2(d), can be easily determined without mak-
ing any assumption about the shape of the relaxation
curve:

(a) Conditioning is characterized by an initial jump in
the velocity, δcNL, at t = tc due to nonlinear effects (see
Fig. 2), where tc is the time at which the conditioning
amplitude is applied. For a given state of the material,
this jump is dependent on the conditioning amplitude.
Then, after the initial sudden variation in the velocity
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FIG. 3. Evolution of velocity and attenuation coefficient dur-
ing conditioning and relaxation for sample TQ4. The same
experiment is repeated on different days to prove reproducibil-
ity and robustness of the measurements. Here, the frequency is
19.82 kHz and the conditioning amplitude Acnd is 1 V before
amplification.

value, a slow-dynamics process takes place, until a new
equilibrium state is achieved along with a further variation
of velocity, δcneq. Similar parameters are defined for α as
well.

(b) Relaxation is characterized by a single parameter
δcrlx (and a similar one for α), which characterizes mem-
ory, that is, the residual effect of conditioning on the
velocity and damping when the conditioning amplitude is
turned off.

These parameters are discussed in more detail in
Appendix A2.

The measurements performed during conditioning and
relaxation have a high degree of repeatability, thus prov-
ing the robustness of the conclusions reported here. The
measurements on sample TQ4 are repeated two times (at a
distance of two days between one and the other) with the
same conditioning-amplitude level. The results, shown in
Fig. 3, indicate that the time evolution of the modulus and
attenuation coefficient are both well reproduced when the
experiment is repeated. A similar degree of repeatability is
also observed for sample B06.

B. Results

The general behavior of the velocity and attenuation
coefficient during conditioning and relaxation is common
to the different materials, as shown in Fig. 4. Here, the vari-
ations of the velocity and attenuation with respect to their
linear values (that is, measured on the relaxed sample and
with a low-amplitude excitation) are shown as a function of
time for the different samples investigated. In all cases, we
observe a common qualitative behavior (in agreement with
what is discussed in the theoretical framework reported in
Appendix A2).
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FIG. 4. Relative variation of velocity (blue) and attenuation
coefficient (red) during conditioning (left-hand side) and relax-
ation (right-hand side) for different materials. Note that the sign
of the relative variation is inverted for the velocity, to help
comparison with the attenuation coefficient.

The results can be summarized as follows:

(a) All the materials feature (i) a softening and an
increase in the attenuation coefficient during conditioning,
and (ii) a complete relaxation to the original state during
relaxation (with hardening and damping reduction).

(b) The time scale for the evolution of conditioning
and relaxation is very similar for B06, the Berea Sand-
stone sample, and P18, that is, those samples with a
more homogeneous microstructure. This holds for both the
velocity (blue symbols) and the attenuation coefficient (red
symbols).

(c) The time scales of conditioning and relaxation for
the damaged samples are different.

(d) In the case of B06, the Berea Sandstone sample,
and P18, the velocity and attenuation evolve following
a qualitatively similar function during both conditioning
(left-hand side of the plots) and relaxation (right-hand
side). This symmetrical behavior is not featured, however,
by samples TQ4 and X4.

(e) Sample TQ4 shows a very small conditioning effect
in the velocity (blue symbols), which evolves on a much
shorter time scale than the attenuation. The opposite
behavior is observed during relaxation, where the damp-
ing evolves faster than the velocity. Note that TQ4 shows
the highest heterogeneity on the microscale among the
samples considered.

(f) In the case of the damaged sample X4, the behav-
ior during conditioning is very similar to that of B06, but,
during relaxation, the attenuation coefficient recovers to
the preconditioning value much more rapidly, similarly to
what is observed for TQ4.

The results reported in Fig. 4 indicate the presence of a
number of common features in the processes investigated,
but also significant differences, which could be linked to
different degrees of heterogeneity at the microstructural
level; this is higher for TQ4 and X4 (at least in the area
close to the damage location). This suggestion has to be
investigated further and more deeply, and might be use-
ful for modeling. Also, differences in the slow-dynamics
response of a material to an external excitation could pave
the way for novel techniques for materials characterization
and damage detection. We will not discuss these issues
further, as they need an extensive analysis, together with
imaging of the real sample structure, in order to obtain a
quantitative description.

Figure 5 shows how the variation in the conditioning
amplitude affects the slow dynamics. In all cases (here,
only data for B06 are shown), nonequilibrium effects
become stronger with increasing amplitude and, at least in
the range of excitation levels considered here, no saturation
of the effects seems to occur.

Figure 6 reports the results obtained for different con-
ditioning protocols, in panels (a)–(c). First (red curves),
an intermediate conditioning amplitude (Ainp = 0.58 V)
is applied to the sample, which is then allowed to relax.
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FIG. 6. Evolution of velocity and attenuation coefficient for
sample B06 during conditioning for different experimental pro-
tocols. (a)–(c) Experimental protocols. Black symbols refer to
preconditioning measurements, red symbols to conditioning at
Acnd = 0.58 V, blue symbols to conditioning at Acnd = 1.2 V, and
green symbols to conditioning at successively increasing con-
ditioning amplitudes. (d) and (e) Conditioning measurements.
(f) and (g) Relaxation measurements.

Second (green), the intermediate conditioning amplitude
is followed by a larger amplitude (Ainp = 1.2 V) and then
relaxation is recorded. Third (blue), the large condition-
ing amplitude is applied directly without any intermediate
conditioning step. The results for the evolution of the
velocity and attenuation coefficient during conditioning are
reported in the respective colors in panels (d) and (e), while
their evolution during relaxation is shown in panels (f)
and (g). Black symbols refer to results obtained during
preconditioning. We can notice the excellent reproducibil-
ity of the conditioning step at the intermediate amplitude
[superposition of green and red lines in panels (d) and
(e)]. Moreover, the behavior of the relaxation process fol-
lowing the application of the large conditioning amplitude
is also quite repeatable [superposition of blue and green
curves in panels (f) and (g)]. Despite some differences,
we consider this result excellent, taking into account the
different durations of conditioning at Ainp = 1.2 V in the
two cases, which is about twice as long in the case of
the blue curve. The experimental results shown here agree
well qualitatively with the theoretical predictions reported
in Fig. 12(b).

IV. DISCUSSION

A. Correlation between velocity and attenuation
coefficient

It is interesting, from a theoretical point of view, to quan-
titatively analyze the existence of correlations between
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FIG. 7. Parametric plot of c vs α for sample B06 during
conditioning and relaxation at different conditioning amplitudes.

the evolution of the attenuation coefficient and that of the
velocity during both conditioning and relaxation. Indeed,
the presence of such a correlation implies that, most proba-
bly, the same physical features (for example, grain contacts
or fluids at grain-grain interfaces) are responsible for the
observed nonequilibrium effects for both of these physical
properties of the material.

Figure 7 shows a plot of c vs α for conditioning (a) and
relaxation (b) for sample B06. The value of the velocity
at a given time is reported as a function of the attenuation
coefficient value obtained at the same time. Different col-
ors refer to different conditioning amplitudes. An excellent
linear correlation is observed:

c = mα. (1)

As mentioned, the existence of a linear correlation between
the attenuation coefficient and velocity indicates that the
variations in the velocity and damping are proportional to
some density N related to microscopic features:

δc = kcN ,

δα = kαN .

We thus have m = kc/kα , which, in the case of B06,
is independent of the conditioning amplitude. From the
physical point of view, this fact implies that, at each
amplitude, the nonlinear features responsible for hystere-
sis and nonequilibrium behavior influence the changes in
the velocity and attenuation coefficient in the same way.

A linear correlation is also found for other materials, as
shown in Fig. 8. In all cases, a linear correlation at a given
amplitude of conditioning is found, for both conditioning
and relaxation. The correlation coefficient m [see Eq. (1)]
is almost independent of the conditioning amplitude in the
case of sample P18 also (and should be so for most materi-
als). However, this is not the case for the damaged sample
X4, thus denoting an additional difference in the behavior
besides that already noticed in Fig. 4.
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FIG. 8. Parametric plot of c vs α for different samples during
conditioning and relaxation.

B. Correlation between conditioning and relaxation

It is also interesting to examine whether the physi-
cal elements which undergo conditioning are the same as
those responsible for relaxation. In order to shed light on
this point, we need to investigate the possible correlations
between the parameters describing the behavior of the con-
ditioning and relaxation processes. As shown in Fig. 2 and
discussed in Appendix A2, we identify three parameters
for the velocity, δcNL, δcneq, and δcrlx, and three for the
attenuation coefficient, δαNL, δαneq, and δαrlx.

The dependence of the three parameters on the condi-
tioning amplitude is analyzed in Fig. 9 for the case of
sample B06. A linear dependence is found, but with a
slightly higher slope (i.e., stronger contribution) for the
parameters δcNL and δαNL, related to purely nonlinear
effects, than for the parameters related to nonequilibrium
effects. More important, however, is the fact that the fitting
lines, shown as dashed lines in the two panels of Fig. 9,
go through the origin only for the nonlinearity parameters.
Thus, while purely nonlinear effects do not show an ampli-
tude threshold for their appearance, this does not seem to
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FIG. 9. Evolution of the nonlinear (blue), conditioning (red),
and relaxation (green) parameters [see Eqs. (A6) and (A7) and
Fig. 2] as a function of conditioning amplitude for sample B06.
The dashed lines show linear fits of the data.
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be the case for nonequilibrium effects. TenCate et al. [24]
had already postulated the existence of a threshold for the
emergence of hysteresis in Berea Sandstone, even though
their data did not allow one to decide whether nonequilib-
rium effects at low excitation amplitudes were absent or
were simply hidden below the noise level.

In Fig. 9 it should also be noticed that, in the case
of sample B06, δcneq ≈ δcrlx and δαneq ≈ δαrlx, thus sup-
porting the idea that a specific physical signature changes
state during conditioning, influencing at the same time the
velocity and the attenuation coefficient, and the very same
feature relaxes back during the recovery process.

The same dependencies of the slow-dynamics parame-
ters on the conditioning amplitude are observed for sample
P18 as well, as shown in Fig. 10, for which condition-
ing is monitored as a function of amplitude (relaxation is
not studied in these experiments). We also note here that
in the case of the damaged sample X4 we do not find
a clearly defined dependence of the three parameters on
the amplitude. Indeed, their distribution is rather scattered.
The results are not shown here and could be linked either
to the strong localized heterogeneity of the sample or to
the fact that relaxation to the original state is not always
perfectly complete. Therefore, small variations in the orig-
inal state of the material from one experiment (i.e., at one
conditioning amplitude) to another could be present.
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The results of our observations regarding the correlation
between the attenuation coefficient and the velocity during
conditioning are reported in Fig. 11 and are discussed in
the Conclusions.

V. CONCLUSIONS

We investigate, experimentally and quantitatively, the
effects of conditioning and relaxation in different hysteretic
elastic materials as a function of the conditioning ampli-
tude, that is, of the energy of the perturbing waves. The
excitations cause fully reversible modifications of the main
elastic properties of the samples: the velocity and the atten-
uation coefficient. Even though conditioning and relax-
ation have been known in the literature for two decades, we
have, to a certain extent, quantified the effect and described
some important features of the two phenomena:

(a) For all materials investigated, there is a linear corre-
lation between the evolution of the attenuation coefficient
and that of the velocity during slow dynamics, in both
the conditioning and the relaxation phases. This implies
that the same physical features are causing nonequilibrium
effects affecting the modulus and damping, as shown in
Fig. 11(a). However, some differences are also evident in
the correlation, particularly for the cracked specimen, in
which the correlation coefficient seems to be amplitude-
dependent or, in other words, the correlation is not linear
(Fig. 8). Our results are not conclusive, but indicate that
it is highly desirable to further analyze the differences in
the behavior of materials with different heterogeneity at
the microstructural level and/or with very localized non-
linearity. Moreover, the correlations of the nonequilibrium
parameters shown in Fig. 11(a) feature the same qualita-
tive behavior as that of the nonlinear parameters, already
well known, reported for the same sample in Fig. 11(b).

(b) For most of the materials analyzed here, correlations
exist also between the parameters related to condition-
ing and relaxation (Fig. 9), thus indicating that the same
physical features which are modified during conditioning
subsequently relax slowly to their initial physical state.
This behavior, however, does not seem to be completely
true for the damaged sample, which features nonlinear-
ity and heterogenity at the microscale which is also, most
probably, very localized.

The phenomena reported here are very well reproducible
(see, for example, Fig. 3), and hence the conclusions
drawn are relevant for a deeper comprehension of non-
linear elasticity in mesoscopic elastic materials. Indeed,
introducing measurable quantities to characterize slow
dynamics and demonstrating that different classes of mate-
rials (e.g., intact vs damaged samples) have significantly
different behavior (and not only in terms of the strength

of the effects) is the first step needed in order to fos-
ter applications for materials characterization. Further-
more, since slow dynamics is a peculiar feature of non-
classical nonlinearity, separating effects due to modulus
and damping nonlinearity and quantifying them is cru-
cial for understanding the physics behind the phenomenon
and linking macroscopic (measurable) ultrasonic obser-
vations to microscopic materials features. Further stud-
ies will be carried out to extract conclusions with gen-
eral validity and then to use them both as an input
in the determination of the specific physical mecha-
nisms responsible for hysteresis and in applications such
as, for example, quantitative nondestructive testing and
evaluation.

APPENDIX

1. Determination of velocity and attenuation coefficient

The data analysis used to quantitatively characterize
conditioning and relaxation is based on extracting, for
each amplitude of excitation, an effective wave velocity
c and attenuation coefficient α for the sample considered.
This is possible if the propagation medium is quasi-1D,
as discussed here. Let us consider the propagation of a
monochromatic wave of angular frequency ω in a lin-
ear medium of length L. The wave is generated by a
forcing transducer located at one end of the specimen
(x = 0), inducing a longitudinal displacement Ainp cos(ωt
+ φ0), which is superimposed on the displacement due to
the (multiply reflected) traveling wave. The displacement
u recorded at x = L is still a sinusoidal wave, of amplitude
B and phase �, and an analytical expression for it can be
derived by considering the superposition of the multiply
reflected waves, as demonstrated in Ref. [47]:

u(L, t) = Bej (ωt+�), (A1)

where

B = Ainp√
cosh2(αL)− cos2(kL)

, (A2)

� = φ0 + φ = φ0 − arctan
(

tan(kL)
tanh(αL)

)
. (A3)

Here, k is the wave number and α the attenuation coeffi-
cient.

Equations (A2) and (A3) can be used to extract k and
α from experimental data. The amplitude B and phase
� = φ + φ0 of the signal can be derived by fitting the
experimental data with a cosine function, while Ainp and φ0
can be obtained through a suitable calibration of the exper-
iment [47]. By inverting Eqs. (A2) and (A3), we obtain the
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physical parameters. In particular, we have

c = ω

k
= ω

(1/L)
(
πn ± arctan

√
z/(2 cos2(φ))

) , (A4)

α = 1
L

arctanh
√

z
2 sin2(φ)

, (A5)

where the sign is plus if φ + φ0 > 0, n is the order of the
closest mode to ω, and

z = −(B/Ainp)
2 − cos(2φ)

+
√

1 + (B/Ainp)4 + 2 cos(2φ)(B/Ainp)2.

As mentioned before, the solution, which is exact for a
linear medium, allows one to obtain the velocity and the
attenuation coefficient. For small nonlinear effects, the fit-
ting with a cosine function is still excellent, and Eqs. (A4)
and (A5) allow one, for each amplitude (or time, in our
case), to extract an “equivalent” attenuation coefficient and
velocity.

2. Theory

The results shown in Fig. 2(c) suggest that the behav-
ior of the velocity as a function of strain amplitude should
depend on two contributions: the first one, instantaneous, is
due to the actual strain, while the second, which is explic-
itly time-dependent, is related to the maximum amplitude
of the strain.

Let us consider a case in which we start with a fully
relaxed sample. For each value of the strain, fast dynamics
contributes to the velocity with a term δcNL, while condi-
tioning is responsible for a nonequilibrium contribution to
the velocity equal to δcneq. Let us assume, for simplicity,
that these two terms are independent, and let us define cL
as the linear velocity, that is, the velocity measured at a
low excitation amplitude. Then, during conditioning at a
given excitation amplitude Ai, the velocity ci evolves with
time as

ci = cL − δci,NL − δci,neq f (t − tc), (A6)

where tc is the instant at which conditioning starts, and
f (t − tc) is a monotonically increasing function satisfying
the condition f (0) = 0 and limt→∞ f (t − tc) = 1. Exper-
iments indicate that f (t − tc) should be approximately
a logarithmic function (except at early and asymptotic
times), but its exact functional dependence is not relevant
in this context. This behavior is qualitatively illustrated in
Fig. 12(a).

As soon as the excitation is removed, and the mea-
surements are performed again at a very low excitation
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FIG. 12. Upper plot: predictions of the temporal evolution of
velocity when the excitation amplitude is switched on (condition-
ing) and off (relaxation). Lower plot: predictions of the temporal
evolution of velocity when the excitation amplitude is switched
from A0 to A1 > A0 and then to A2 > A1 (red curve), compared
with the case in which the amplitude goes to A2 directly from A0
(blue curve).

amplitude, both the velocity and the attenuation coefficient
slowly relax back to the linear value:

c0 = cL − δci,neq [1 − g (t − tr)] , (A7)

where tr is the instant at which relaxation starts, and
g(t − tr) is again a monotonically increasing function sat-
isfying the condition g(0) = 0 and limt→∞ g(t − tr) = 1.
The functions f (t − tc) and g(t − tr) could, in princi-
ple, be different. However, experiments suggest the same
functional dependence for both conditioning and relax-
ation [47].

The situation is more complex when the sample is
initially not completely relaxed, that is, when the exci-
tation amplitude is switched from one amplitude A0 to
a larger one A1 and then is increased again to an even
larger value, A2. This situation is represented, for the con-
ditioning phase, in Fig. 12(b) (red curve). As expected,
the final equilibrium value reached is the same as when
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switching directly from the relaxed state to amplitude A2
(blue curve). The equation describing the evolution of the
velocity during conditioning at amplitude A2 becomes

c2 = c1 − ψ −�f (t − tc), (A8)

where tc is the instant at which the excitation ampli-
tude is switched to the value A2, ψ = δc2,NL − δc1,NL,
and� = δc2,neq − δc1,neq. Similar considerations hold also
for describing relaxation when the excitation amplitude
switches back to A1 and then to A0.
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