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Scanning probe microscopy is often extended beyond simple topographic imaging to study electrical
forces and sample properties, with the most widely used experiment being frequency-modulated Kelvin
probe force microscopy. The equations commonly used to interpret this frequency-modulated experiment,
however, rely on two hidden assumptions. The first assumption is that the tip charge oscillates in phase
with the cantilever motion to keep the tip voltage constant. The second assumption is that any changes
in the tip-sample interaction happen slowly. Starting from an electromechanical model of the cantilever-
sample interaction, we use Lagrangian mechanics to derive coupled equations of motion for the cantilever
position and charge. We solve these equations analytically using perturbation theory, and, for verification,
numerically. This general approach rigorously describes scanned probe experiments even in the case when
the usual assumptions of fast tip charging and slowly changing samples properties are violated. We develop
a Magnus-expansion approximation to illustrate how abrupt changes in the tip-sample interaction cause
abrupt changes in the cantilever amplitude and phase. We show that feedback-free time-resolved electric
force microscopy cannot uniquely determine subcycle photocapacitance dynamics. We then use first-order
perturbation theory to relate cantilever frequency shift and dissipation to the sample impedance even
when the tip charge oscillates out of phase with the cantilever motion. Analogous to the treatment of
impedance spectroscopy in electrochemistry, we apply this approximation to determine the cantilever
frequency shift and dissipation for an arbitrary sample impedance in both local dielectric spectroscopy and
broadband local dielectric spectroscopy experiments. The general approaches that we develop provide a
path forward for rigorously modeling the coupled motion of the cantilever position and charge in the
wide range of electrical scanned probe microscopy experiments where the hidden assumptions of the
conventional equations are violated or inapplicable.

DOI: 10.1103/PhysRevApplied.11.064020

I. INTRODUCTION

The invention of the atomic force microscope [1] (AFM)
led to an explosion of microcantilever-based electric force
microscope (EFM) experiments [2] capable of mapping
the electrical properties of a thin-film sample [3]. In spite
of this progress, a unified, rigorous theory describing the
electromechanical forces at play in such experiments is
lacking. Here, we present a unified Lagrangian treatment
of the coupled motion of the cantilever position, cantilever
charge, and sample charges in an electric force microscope
experiment. This treatment describes a wide variety of
transient and steady-state experiments and reveals the hid-
den assumptions underlying many of the equations widely
used by practitioners of electric force microscopy.

*jam99@cornell.edu

To appreciate why such a generalized treatment is
helpful, consider a noncontact scanned-probe microscope
experiment in which an electrically conductive cantilever
having a sharp tip is used to measure the electrical prop-
erties of a conducting or semiconducting sample—the so-
called “scanning Kelvin probe force microscope” (KPFM)
experiment [4–10]. The cantilever is brought near a sample
surface and is driven into resonant oscillation by applying
a mechanical force to the base of the cantilever. A volt-
age, either static or oscillating, is applied to the cantilever,
and the cantilever’s position or frequency is measured.
The cantilever’s position is shifted by an electrostatic force
acting on the charged tip. This force is usually stated as

F = 1
2

∂C
∂z

(V − �)2 , (1)

with z the axis of cantilever motion, C the tip-sample
capacitance, V the applied voltage, and � the sample’s
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surface potential. The associated electrostatic force gradi-
ent shifts the cantilever’s resonance frequency. This shift
is usually stated as

�f = − f0
4k0

∂2C
∂z2 (V − �)2 , (2)

with f0 the cantilever resonance frequency and k0 the
cantilever spring constant.

While universally used, Eqs. (1) and (2) make assump-
tions about charge motion in the sample that are seldom
explicitly stated or experimentally checked. In the remain-
ing paragraphs of this introduction, we summarize prior
theoretical and experimental work questioning the validity
of Eqs. (1) and (2) and summarize the equations result-
ing from our generalized Lagrangian treatment of electric
force microscopy.

Silveira et al. took up the question of how to rigorously
derive Eqs. (1) and (2) [10]. As a concrete starting point for
subsequent discussion, let us briefly reproduce their anal-
ysis here. In the idealized description of the electric force
microscope experiment presented in Ref. [10], the sample
is grounded and the cantilever-sample system is modeled
as a parallel-plate capacitor. A charge q is transferred from
the sample to the tip as a result of the applied voltage V
and the difference in the electron chemical potential of the
cantilever tip and the sample (μt and μs, respectively). The
energy needed to charge the associated cantilever-sample
capacitor is given by the Helmholtz free energy

A(q, T) = q2

2C
+ q

e
�μ, (3)

with T temperature, C the tip-sample capacitance, e the
electron charge, and �μ = μs − μt. The first term in this
equation accounts for the energy stored in the capaci-
tor’s electric field while the second term accounts for the
change in free energy associated with transferring elec-
trons between two different materials. The tip-sample force
at constant charge is

Fq = −
(

∂A
∂z

)
q,T

= 1
2

1
C 2

∂C
∂z

q2. (4)

With z defined such that z increases as the tip moves away
from the sample, the capacitance derivative ∂C/∂z is neg-
ative. The cantilever therefore feels a negative, attractive
force, as one would expect from Coulomb’s law since the
tip and sample are oppositely charged. For a parallel-plate
capacitor, the capacitance depends on plate separation z as
C ∼ 1/z and consequently ∂C/∂z ∼ −1/z2.

Computing the tip-sample force in a constant-voltage
experiment requires additional analysis. The voltage is

defined as the variable that is conjugate to the charge,

V =
(

∂A
∂q

)
z,T

= q
C

+ �μ

e
. (5)

When the cantilever is set to vibrate, C will become time
dependent and the charge will redistribute between the
plates. If the charge-redistribution time constant is much
faster than the cantilever period, then q(t) = C(t) (V −
�μ/e) and the system will maintain the tip at constant
voltage continuously. Assuming this is the case, the force
may be computed from the grand-canonical free energy,
obtained through a Legendre transformation: �(V, T, z) =
A − qV, where in writing � we must eliminate q as the
dependent variable. The term −qV accounts for the work
required to move the charge through the battery that main-
tains the tip at constant potential. The force experienced
by the cantilever held at constant voltage is obtained
by differentiating the resulting grand-canonical free
energy,

FV = −
(

∂�

∂z

)
V,T

= 1
2

∂C
∂z

(
V − �μ

e

)2

. (6)

The capacitance derivative is negative and the cantilever
feels a negative, attractive force when held at constant volt-
age. Equation (1) reduces to Eq. (6) in the limit where
�μ/e = �. For the case of a more interesting sample, �

contains contributions from the sample’s local electrostatic
potential as well as the difference �μ/e in the chemical
potential of the tip and the sample’s metallic contact [10].
Equation (2) is obtained from Eq. (6) by expanding the
force in a Taylor series about an equilibrium position, iden-
tifying the z-dependent force as a spring constant shift
that modifies the cantilever’s resonance frequency and
neglecting any higher-order terms.

The Silveira-Dunlap analysis reveals that Eqs. (1)
and (2) implicitly assume that charge redistributes instan-
taneously between the tip and the sample as the cantilever
moves. In other words, as the cantilever vibrates sinu-
soidally, it is assumed that the tip and sample charges
oscillate perfectly in phase with the sinusoidal motion of
the cantilever. How valid is this assumption in practice?
Early in the development of the electric force microscope,
Denk and Pohl argued that currents induced in the sample
by the oscillating cantilever would lead to Joule dissi-
pation of energy at a rate that depends on the sample’s
local conductivity [11] (expressed in terms of the spread-
ing resistance [12]). The energy lost to this Joule heating
was supplied by the cantilever, leading to a cantilever dis-
sipation dependent on the electrical conductivity of the
sample below the tip. Stowe et al., motivated by this idea,
used cantilever dissipation to image the concentration of
dopants in silicon [13]. The postulated Joule heating under-
lying both of these experiments implies the existence of
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sample charge oscillating out of phase with the sinusoidal
motion of the cantilever, calling into question the general
validity of Eqs. (1) and (2).

This out-of-phase component of the oscillating sam-
ple charge has since been exploited to create striking
EFM images of individual quantum dots [14–20]. These
experiments relied on the dots operating in the Coulomb-
blockade limit such that scanning the tip’s dc voltage or
position resulted in a step change in the number of elec-
trons n residing on the quantum dot. Adjusting the tip
voltage or height to operate near a n → n ± 1 transition,
individual electrons could be pushed on and off the quan-
tum dot by applying a small modulation to the tip voltage
or height. Because of the finite rate at which electrons
tunneled on and off the dot, the electrostatic force acting
on the cantilever caused a frequency shift and dissipation.
Characteristic oscillations in frequency shift and dissipa-
tion were seen as the tip’s dc voltage or position was
scanned and individual electrons were forced on or off the
dot.

Sample-induced dissipation effects have been detected
in a number of other experiments on semiconducting sam-
ples. A bias-dependent contact friction was observed over
gallium arsenide and modeled as arising from interac-
tions of the tip with trapped charge in the sample [21]. A
measurable increase in noncontact friction was observed
when a polymer-fullerene solar-cell film was illuminated
with light, inducing photochemical damage [22]. Dra-
matic, simultaneous changes in cantilever frequency and
dissipation were observed over an illuminated lead-halide
perovskite sample; these changes were used to follow the
slow relaxation of the sample’s photocapacitance in the
dark in real time [23] and the activation energy of the
underlying relaxation process was measured by repeating
the experiment at various temperatures.

The illuminated-perovskite experiment is sketched in
Fig. 1. The sample is a thin-film semiconductor, CsPbBr3,
prepared on a conductive indium-tin-oxide substrate and
illuminated from above with visible light. The tip-sample
capacitance derivative C ′′ and surface potential � are
inferred, in the usual way, by measuring the cantilever fre-
quency shift �f versus tip-sample voltage Vts. According
to Eq. (2), the curvature of the �f -versus-Vts parabola is
−f0C ′′/4k0, proportional to C ′′. In a semiconductor sam-
ple like CsPbBr3 the free carrier density and therefore
the capacitance should be proportional to the illumination
intensity Ihν ; we consequently expect to see a power-law
dependence of C ′′ on Ihν , which is not observed. The
cantilever dissipation �s is also measured versus Vts and
illumination intensity. Here, we likewise expect to see
a power-law dependence of �s on Ihν with the dissipa-
tion increasing continuously with the free-carrier density.
Instead, as Ihν is increased linearly, the observed voltage-
normalized dissipation increases, reaches a maximum, and
then decreases.

Light

impedance

Vts

f A

Vts

Repeat vs
light 
intensity

Γs

VtsTip-sample voltage

Freq.

curv.

Dissip.

curv.

(a)

(b)

)d()c(

FIG. 1. Apparent violation of Eq. (2) in an illuminated thin-film
semiconductor, CsPbBr3. (a) Experimental schematic. (b) The
cantilever frequency shift �f and amplitude A are measured as a
function of the tip-sample voltage Vts and the sample-induced
dissipation �s is calculated from A. The curvature of the (c)
�f -versus-Vts and (d) �s-versus-Vts parabolas versus illumina-
tion intensity. The circles are measured data and the lines are
fits to the Lagrangian-impedance model discussed in the text.
The plots in (c),(d) are adapted with permission from Ref. [23].
Copyright 2017, American Chemical Society.

How can we explain this nonmonotonic behav-
ior? In contrast with the quantum-dot experiments of
Refs. [14–20], we cannot rely on Coulomb-blockade
physics to describe the frequency-shift and dissipa-
tion effects seen in the semiconductor experiments of
Refs. [21–23]. Moreover, we need to model the sam-
ple as a continuous film, ideally using a complex,
frequency-dependent impedance. Such an approach has
been used to treat a number of related experiments. In
impedance microscopy measurements [24–27], the tip
is brought into contact with the sample and employed
as the top capacitor plate in a conventional impedance
spectroscopy measurement; modeling the signal in these
experiments is straightforward because the cantilever is
not moving. Theoretical treatments of more sophisticated
charged-cantilever measurements like local dielectric
spectroscopy [28,29], broadband local dielectric spec-
troscopy [30], piezoresponse force microscopy [31–34],
and electrochemical strain microscopy [35–37] likewise
treat the sample using a complex dielectric function, but
fail to fully treat the coupled motion of sample charge
and cantilever charge induced by the oscillation of the
cantilever’s position and voltage.
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To understand the data of Figs. 1(c) and 1(d), we
describe the sample using a complex impedance while
employing a Lagrangian formalism to describe the cou-
pled motion of the cantilever displacement, tip charge,
and sample charge. Applying this treatment to the Fig. 1
experiment, below in Sec. VI we obtain the frequency shift

�f = − f0
4k0

{
C ′′

q + �C ′′Re[Ĥ(ω0)]
}

V 2 (7)

and sample-induced dissipation

�s = − 1
4π f0

�C ′′ Im[Ĥ(ω0)] V 2, (8)

with �C ′′ = 2(C ′)2/C and C ′′
q = C ′′ − �C ′′ two distinct

capacitance derivatives, and

Ĥ(ω) = 1
1 + j ωCZ(ω)

(9)

a transfer function that depends on the tip capacitance and
the complex sample impedance Z(ω). In Ref. [23], Tirmzi
et al. derived Eqs. (7)–(9) by considering the components
of the electrostatic force in phase and out of phase with the
oscillating cantilever. Here, we show that these equations
follow from a more general Lagrangian treatment, which
reveals the implicit assumptions undergirding Eqs. (7)–(9).
These equations are one of the primary findings of this
manuscript. Equation (7) should be used in place of Eq. (2)
for semiconductors and other finite-impedance samples.
The physical insight that we gain from these equations
is that the frequency shift and dissipation probe the real
and imaginary value, respectively, of the Eq. (9) transfer
function at the cantilever oscillation frequency.

To explain the data in Figs. 1(c) and 1(d) using Eqs. (7)
and (8), we model the sample as a capacitor Cs and
the light-dependent resistance Rs operating in parallel. In
this model, the transfer function in Eq. (9) has a roll-off
frequency determined by the time constant τ = Rs(C +
Cs) ≈ RsC. The nonmonotonic behavior of �s can be
understood qualitatively as follows: in the Fig. 1 experi-
ment, Rs is large in the dark and small under illumination;
the peak in �s occurs at an illumination intensity where
2πτ matches the cantilever period. The lines in Figs. 1(c)
and 1(d) are a fit of the data to Eqs. (7) and (8) assuming
a sample time constant τ ∝ I−n

hν with n = 0.6, close to the
value of n = 0.5 expected for photogenerated free carri-
ers. The joint fit nicely captures the nonlinear behavior of
both the frequency and the dissipation versus illumination
intensity.

The full frequency dependence of the Eq. (9) transfer
function can be measured directly using a broadband local
dielectric spectroscopy (BLDS) measurement (Fig. 2). In
one version of the experiment, the tip voltage is switched

slowly on and off and, when on, is a sine wave of fre-
quency fm. The observed cantilever oscillation is sent to
a frequency demodulator and the resulting time-dependent
cantilever frequency shift sent to a lock-in amplifier with
reference frequency set to the on/off modulation frequency.
The resulting signal, indicated as �f (fm) in Fig. 2(a),
changes when fm is slowly varied. Using our Lagrangian-
impedance formalism to calculate the measured frequency
shift in such BLDS experiments, below in Sec. VI, we
obtain

�f (fm) = − f0V2
m

16k0

{
C ′′

q + �C ′′Re[H̄ (ωm, ω0)]
}
|Ĥ(ωm)|2,

(10)

with Vm and fm the amplitude and frequency of the applied
oscillating voltage (assumed sinusoidal) and H̄ the aver-
age value of the transfer function at frequencies ωm±ω0.
In deriving Eq. (10), we assume for simplicity that a sinu-
soidal, not on/off, amplitude modulation is employed. In
Fig. 2(b), we show the BLDS frequency-shift spectrum
measured at various light intensities over the semiconduct-
ing CsPbBr3 sample of Fig. 1. The change in the spec-
trum’s knee with increasing light intensity is in qualitative
agreement with the light-dependent Rs used to explain the
Fig. 1 data, validating the use of a relatively simple RC
sample impedance model in explaining a wide range of
experiments.

The treatment of transient effects in electrostatic force
microscopy requires great care. In time-domain EFM
experiments, the response of ions to a step change in tip
voltage is tracked in real time through a shift in can-
tilever frequency [38–43]. EFM has been used to follow
the time evolution of photocapacitance in response to illu-
mination [44–47]. These experiments have pushed the
limits of time resolution in EFM, with claimed time reso-
lutions down to less than 1% of the cantilever period [47].

Vts

Dark

(a) (b)

t
Δf

t
Δf(fm)

FIG. 2. Broadband local dielectric spectroscopy. (a) Experi-
mental schematic. (b) Broadband local dielectric spectra col-
lected at various light intensities over the semiconducting
CsPbBr3 sample of Fig. 1 [23]. The plot in (b) is adapted with
permission from Ref. [23]. Copyright 2017, American Chemical
Society.
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These EFM photocapacitance experiments stand in con-
trast to scanning-probe-microscopy-based variants of opti-
cal pump probe techniques, which exploit a nonlinearity
to infer ultrafast dynamics by measuring differences in a
time-averaged quantity versus a pulse time, delay, or fre-
quency [48,49]. Recent experiments along these lines have
measured the surface photovoltage [50–53] and charge
moving through a transistor [54,55] with ultrafast time res-
olution. In contrast, the origin of subcycle time resolution
in single-shot, transient EFM experiments is not clearly
understood.

Two representative transient EFM measurements are
shown in Fig. 3. The left side of Fig. 3 shows the feedback-
free time-resolved electric force microscopy (FF-trEFM)
experiment [47] and the right side shows the phasekick
electric force microscopy (pk-EFM) experiment [56]. The
objective of both experiments is to observe the tempo-
ral dynamics of light-induced changes in a semiconductor
sample’s capacitance. Applying light initiates a sample-
related change in the tip-sample capacitance derivatives
C ′ and C ′′, which, for simplicity, are sketched as a sin-
gle exponential with rise time τs. In the presence of a finite
tip voltage Vts, transients in C ′ and C ′′ induce the indicated
transients in the tip-sample force Fts and force gradient �k.

On Off On
FF-trEFM pk-EFM

Light
Detect abrupt light-induced 

changes in tip-sample interaction

(a)

(b)

(c)

(d)

ts ts

tsts

FIG. 3. FF-trEFM and pk-EFM timing diagrams. (a) Experi-
mental sketch. Both experiments start when the light is turned on.
(b) The tip-sample voltage during FF-trEFM is constant; during
pk-EFM, the voltage is abruptly stepped to zero after a variable
time tp. In both FF-trEFM and pk-EFM, the tip-sample force Fts
(c) and the spring constant shift �k (d) change, possibly abruptly,
after the start of the light pulse. The simplest model assumes that
the dynamics are single exponential with a rise time τs. In pk-
EFM, the step change in voltage causes Fts and �k to return to
zero at delay time t = tp.

How the sample’s photocapacitance dynamics are
inferred from the data differs in the two experiments. In
the FF-trEFM experiment, the voltage is left on continu-
ously during the measurement; the cantilever oscillation is
demodulated to obtain a plot of the cantilever phase and
frequency shift versus time [Figs. 4(a)–4(c)]. The tran-
sient frequency shift is observed to peak and this time to
first peak tFP [Fig. 4(c)] can be empirically related back
to the photocapacitance rise time τs if suitable control
experiments are carried out. In the pk-EFM experiment,
the voltage is turned to zero abruptly at a time tp after
the light is turned on. The cantilever oscillation is again
demodulated but instead of studying the transient phase or
frequency shift, we measure the light-induced phase shift
as a function of the delay time tp [Figs. 4(d) and 4(e)].
Representative data are shown in Fig. 4(f). In Ref. [56],
the Fig. 4(f) data were analyzed to reveal that the sample’s
photocapacitance had biexponential dynamics.

Treating the effect of a time-dependent force Fts and
force gradient �k on cantilever position and momentum is
challenging, particularly in the case of photovoltaic mate-
rials in which τs can be shorter than the cantilever’s period
of oscillation. Nevertheless, using the Lagrangian formal-
ism in conjunction with the Magnus expansion, below
we obtain closed-form analytical results for both tFP and
�φ(tp). For the phase shift in the pk-EFM experiment,
below in Sec. V, we obtain

�φ(tp) = �C ′
hνV 2

2A0k1

ω1

1 + τ 2
s ω2

1

(
tp − τs + τse−tp/τs

)
, (11)

with A0 the cantilever amplitude and k1 and ω1 the can-
tilever spring constant and resonance frequency, respec-
tively, in the presence of light and tip voltage. By fitting the
�φ versus tp data, we can extract both �C ′

hν and τs. The
corresponding analytical result for tFP is more involved;
see Eqs. (100) and (101) below. The tFP number obtained
in the FF-trEFM experiment depends on �C ′

hν , �C ′′
hν , the

cantilever’s intrinsic dissipation constant γ , and τs. Con-
sequently, the time τs cannot be uniquely determined from
the single number tFP measured in the FF-trEFM exper-
iment. In the pk-EFM experiment, in contrast, the �φ

versus tp data set reveals the full time dependence of the
photocapacitance. Our analysis reveals that the standard
equation for frequency shift in KPFM [Eq. (84)] cannot
be used to analyze these single-shot, transient EFM exper-
iments because the abrupt changes in the tip-sample force
shift the cantilever’s amplitude and phase.

Figure 5 outlines the remainder of the manuscript. Our
overall goal is to explain the results of experiments that
violate the assumptions that (1) the tip charge follows the
cantilever oscillation instantaneously and (2) any changes
in the tip-sample force or force gradient happen slowly.
In Sec. II, we outline the common Lagrangian formalism
that generates coupled differential equations governing the
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100 kW/m²

20 kW/m²

(a)

(b)

(c)

(d)

(e)

(f)

Δf (tp = 94 μs)

Δf (tp = 26 μs)

FF-trEFM pk-EFM

z 
(n

m
)

Time (μs)

Df
 (k

H
z)

Dq
 (°

)

FIG. 4. FF-trEFM and pk-EFM data. In the FF-trEFM experiment, (a) the cantilever displacement z versus time is digitized and
demodulated to produce (b) the cantilever phase shift �φ and (c) frequency shift �f versus time. Abrupt changes in the tip-sample
interaction are inferred from changes in the time to first peak tFP. The data are from a control experiment using a voltage pulse with
rise time τ = 10 ns (blue) and 10 μs (red). In the pk-EFM experiment, (d) the cantilever displacement z versus time is digitized and
demodulated to produce (e) the cantilever phase shift φ versus time. The solid traces are from tp = 94 μs (blue) and tp = 26 μs (purple)
experiments; the dashed lines show the corresponding control experiments with the same pulse time but with no light pulse. For each
pulse time, the total light-induced phase shift during the pulse �φ is determined. Abrupt changes in the tip-sample interaction are
inferred from (f) the light-induced phase shift �φ versus pulse time. Circles show the average phase shift from six consecutive pulse
times, bars show the standard error, and the lines are a fit to a biexponential model. Panels (a)–(c) are reproduced with permission
from Ref. [47] (copyright 2016, American Institute of Physics). Figure (f) is adapted from Ref. [56] (Creative Commons Attribution
Noncommercial License 4.0, American Association for the Advancement of Science).

cantilever displacement, tip charge, and any other charges
necessary to describe the sample and wiring. We derive
linearized versions of these equations that we then use to
treat a variety of EFM experiments. In Sec. III, we develop
an approximate, Magnus-expansion treatment of cantilever
dynamics that accurately describes the cantilever position
in the event that the tip-sample force and force gradient
change abruptly [violating assumption (2)]. This treat-
ment allows us to describe the pk-EFM experiment of
Ref. [56] and the FF-trEFM experiment of Ref. [47] using

a common formalism (Figs. 3 and 4). The experimen-
tal observables are the cantilever amplitude, phase, and
frequency, so in Sec. IV we define these variables in a
way that accounts for abrupt changes in the tip-sample
force. The FF-trEFM experiment is discussed in detail
in Sec. V; here, we use both the analytical results of
Sec. III and numerical simulations to evaluate the time
resolution of the method. In Sec. VI, we return to the
Lagrangian formalism and develop a perturbation-theory
approximation that accurately describes the cantilever

Sec. II

If charge responds quickly, 

cantilever motion (x, p) 

described by ordinary

differential equations

(52) and (53)

Sec. III

Explicit solution x(t), 

p(t) approximated using 

Magnus expansion [Eqs. 

(62) and (63)]

Sec. IV

Amplitude, phase 

and frequency

defined

[Eqs. (72)–(76)]

Sec. V

Cantilever phase during FF-trEFM [Eq. 

(103)] shows how time-to-first-peak  tFP

depends on experimental parameters 

[Eqs. (104) and (105)]

Using perturbation theory, the tip capacitance and sample impedance determine

cantilever frequency shift and sample-induced dissipation [Eqs. (130) and (131)],

frequency-dependent cantilever frequency shift in LDS, BLDS [Eqs.

(132) and (133), (135)]

Experiments with 

Sec. VI

Experiments with abrupt changesUsing Lagrangian mechanics, tip

and sample electrical and mechanical

degrees of freedom Æ coupled

differential equations describing

time evolution [Eqs. (17)–(23)]

FIG. 5. Unified Lagrangian-mechanics treatment of EFM: an outline showing the structure of the paper, highlighting major results.
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position and tip charge in the event that the tip charge
does not follow the cantilever oscillation instantaneously
[violating assumption (1)]. This approximation describes
the cantilever frequency shift and dissipation for an arbi-
trary sample impedance (Fig. 1). This approximation simi-
larly describes frequency shifts measured in local dielec-
tric spectroscopy [23,28] and broadband local dielectric
spectroscopy [23,30] for an arbitrary sample impedance
(Fig. 2).

The Lagrangian approach to understanding electric
force microscopy presented here unifies and significantly
expands the treatment of frequency-shift and dissipation
effects in EFM presented by Tirmzi et al. [23] and Dwyer
et al. [56]. This approach has a number of advantages. It
accounts for dissipation of energy in both the sample and
the cantilever; treats both steady-state and transient phe-
nomena in a unified way; incorporates linearization of the
equations of motion as an explicit approximation late in
the derivation; and captures the effects of subcycle changes
in sample capacitance, conductivity, and tip charge that
are missing from previous treatments of the cantilever-
sample interaction in EFM. We close by outlining potential
avenues of further study in Sec. VII.

II. CANTILEVER DYNAMICS AND TIP-SAMPLE
COUPLING

In this section, we present a general Lagrangian
approach for obtaining coupled equations of motion for
the EFM cantilever, tip-sample charge, and external tip-
sample bias circuitry. The EFM cantilever, sample, and
bias circuitry constitute a coupled electromechanical sys-
tem of the type considered by Wells [57,58], Ogar [59], and
others [60–63]. These authors demonstrate that the equa-
tions of motion for such systems can be developed in a
unified Lagrangian formalism with the electrical behav-
ior treated in the lumped circuit element approximation
of elementary circuit theory. In our analysis, the electri-
cal behavior of the sample is modeled by a single complex
impedance, while the tip-sample coupling is modeled as a
position-dependent capacitance CT, with charge qT, con-
nected in series with the sample impedance. The complete
circuit, consisting of tip, sample, and external bias, could
be analyzed by applications of Kirchhoff’s junction rule
and loop rule; however, we find it advantageous to take the
Lagrangian approach, described in detail below, as the cor-
rect electromechanical coupling terms arise naturally in a
unified framework.

The circuit representing the electrical degrees of
freedom of the EFM consists of branches—discrete
circuit elements wired in series as illustrated in
Fig. 6—interconnected by electrical junctions at each end.
For notational purposes, each circuit branch is identi-
fied by a Latin subscript (e.g., n in Fig. 6), while each
junction is identified by a Greek subscript (e.g., μ and

FIG. 6. The nth branch of the circuit between junctions μ and
ν with instantaneous current in(t). The circuit branch behaves
as a voltage source Vn(t), inductance Ln, capacitance Cn, and
resistance Rn connected in series, while its state is specified by
the generalized coordinate qn and its time derivative q̇n = in(t).
Taking Vn = 0, Ln = 0, 1/Cn = 0, or Rn = 0 is equivalent to
omitting the corresponding circuit element. Each junction α in
the circuit is characterized by a set of branch currents {inα}
directed into the junction and another set of branch currents
{outα} directed out of the junction. Based on the direction of the
current indicated in the illustration, in ∈ {outμ} and in ∈ {inν}.

ν in Fig. 6). Specification of the circuit branches, their
interconnections, the cantilever mechanical properties, and
the position-dependent tip-sample capacitance constitutes
the complete model.

The Lagrangian and Rayleigh dissipation function of the
EFM have contributions arising from the circuit branches,
the circuit junctions, and the mechanical degrees of free-
dom. In the following treatment, we identify contributions
from the circuit branches with the subscript B, contribu-
tions from the circuit junctions with the subscript J, and
contributions from the mechanical degrees of freedom by
the subscript M.

The generalized coordinate specifying the state of the
nth circuit branch is

qn = qn0 +
∫ t

t0
in(t′)dt′, (12)

where qn0 is the charge qn at the initial time t0. Then

q̇n = in(t) (13)

is the instantaneous current through the nth branch. Col-
lectively, the branches of the circuit, as shown in Fig. 6,
contribute the additive terms

LB =
∑

n

Lnq̇2
n

2
− q2

n

2Cn
+ Vnqn (14)

to the Lagrangian and

DB =
∑

n

Rnq̇n
2

2
(15)

to the Rayleigh dissipation function when the correspond-
ing circuit elements are present.

The constraints of charge conservation at the circuit
junctions are fully realized by the application of Kirch-
hoff’s junction rule to a set {α} of all but one of the
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junctions, each of which is characterized by sets {outα}
and {inα} of outward and inward directed branch currents
(see, e.g., Ref. [64]). In our analysis, we enforce these con-
straints via the method of Lagrange multipliers, adding the
term

LJ =
∑

α

λα

⎛
⎝ ∑

in∈{outα}
qn −

∑
in∈{inα}

qn

⎞
⎠ (16)

to the system’s Lagrangian. The Lagrange multipliers λα

are then treated as additional generalized coordinates of
the system, which, when defined as in Eq. (16), can be
identified with the instantaneous electric potential of the
associated junctions referenced to the one omitted junc-
tion.

The mechanical degrees of freedom of the cantilever
and all tip-sample forces F0 not arising from capaci-
tive coupling are included with the usual Lagrangian LM,
Rayleigh dissipation function DM, and generalized forces
Fx. In keeping with the conventional notation for one-
dimensional harmonic oscillators and to avoid confusion
with the convention of using z to represent a complex num-
ber, for the remainder of the article we represent cantilever
displacement with x rather than z, with increasing x cor-
responding to motion of the cantilever tip away from the
sample surface.

Having accounted for all relevant degrees of freedom,
we generate the coupled electromechanical equations of
motion by application of the Euler-Lagrange equation

d
dt

(
∂L
∂ q̇n

)
− ∂L

∂qn
= − ∂D

∂ q̇n
+ Fn (17)

to each generalized coordinate qn, where

L = LB + LJ + LM (18)

and

D = DB + DM. (19)

Note that, in writing Eq. (17), we extend the range of the
index n and understand x and the λα’s to be among the
generalized coordinates qn.

In all of the cases that we consider, the mechanical
EFM cantilever is modeled as a linear harmonic oscilla-
tor with mass m, spring constant k0 = mω2

0, linear damping
coefficient � = 2mγ , and applied drive force Fdr(t), giving

LM = mẋ2

2
− mω2

0x2

2
, (20)

DM = mγ ẋ2, (21)

and

Fx = F0(x) + Fdr(t). (22)

Using Eqs. (20)–(22), and noting that

LB

∂x
= C ′

T(x)q2
T

2CT(x)2 (23)

irrespective of the bias circuitry or sample impedance, we
see that the application of Eq. (17) for the generalized
coordinate x gives

mẍ + 2mγ ẋ + mω2
0x − C ′

T(x)q2
T

2CT(x)2 = F0(x) + Fdr(t). (24)

Throughout the article, we determine the cantilever dis-
placement by solving or approximating Eq. (24). The
equations of motion of the charge degrees of freedom to
which Eq. (24) is coupled, on the other hand, vary from
model to model.

The capacitive coupling and F0(x) terms that comprise
the tip-sample force in Eq. (24) are nonlinear in general.
The nonlinearity of F0(x) is of particular concern in high-
resolution AFM imaging where it has been shown to cause
significant amplitude dependence of the cantilever oscil-
lation frequency [65–67] and lead to bistability in driven
cantilevers with amplitude feedback control of the tip-
sample separation [67–69]. The EFM experiments that we
consider involve minimum tip-sample separations of tens
of nanometers that are beyond the effective range of the
nonlinearities in F0(x) [66]. The approach in the following
analysis is to neglect F0(x) and to solve small-amplitude
linearized approximations of the resulting EFM equations
of motion. These approximations are not too severe in
that this approach is sufficient to explain the data in the
experiments of Figs. 1–4. We defer further discussion of
the significance of the small amplitude approximation and
neglecting the nonlinearities of Eq. (24) until Sec. VII.
With the general theory completely developed, we proceed
to the characterization of specific EFM experiments.

A. Current-induced cantilever dissipation

In this section, we apply the Lagrangian theory to a sim-
ple model that violates the assumption of the tip charge
following the cantilever oscillation instantaneously. In this
model, as shown in Fig. 7, a voltage V(t) is applied
between the cantilever tip and sample, while the tip dis-
placement x changes the tip-sample capacitance CT(x).
The surface potential is represented by the voltage source
� and the sample has a resistance RS. By inspection, the
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(b)

(c)

Δ
k

10−2 1 102

τω0

0

Δ
Γ

(a) FIG. 7. (a) Single-loop circuit model
of an EFM experiment with a resistive
sample. Changes in the effective can-
tilever frequency and damping constant
depend on the cantilever resonance fre-
quency ω0 and the time constant τ as
defined in Eq. (31). (b) Changes to
the effective cantilever spring constant
due to the tip-sample interaction. For
τ � 1/ω0, oscillating charge reduces
the effective spring constant, while for
τ 	 1/ω0, this effect is suppressed. (c)
Additional cantilever damping due to
the tip-sample interaction. The damping
is maximized for τ = 1/ω0.

branch Lagrangian and dissipation function are

LB = − q2
T

2CT(x)
+ [V(t) − �]qT, (25)

and

DB = RSq̇2
T

2
. (26)

As the circuit consists of a single branch, LJ = 0. We
generate the equations of motion by applying the Euler-
Lagrange equation [Eq. (17)]. The equation of motion for
the tip displacement is given by Eq. (24) with F0(x) = 0.
The equation of motion for the tip charge is

RSq̇T = [V(t) − �] − qT

CT(x)
. (27)

We now show that the simple model of Fig. 7 is suf-
ficient to reproduce the characteristic cantilever dissipa-
tion seen in EFM experiments such as those described in
Refs. [11], [16], and [18]. In particular, cantilever dissipa-
tion is proportional to V 2 and C ′2 and is maximized when
the tip charging rate matches the cantilever frequency. In
the experiment of Denk and Pohl [11], an external drive
force Fdr induces a small oscillation at the cantilever’s
resonance frequency. Small changes in the cantilever’s
resonance frequency and dissipation are measured as a
function of the static applied voltage. To model this exper-
iment, we seek solutions to the above system of coupled
nonlinear differential equations in the form of small driven
oscillations about the equilibrium point x0 and tip charge
q0. To this end, we expand the tip-sample capacitance to
second order about x0, giving

CT(x) ≈ C0 + C ′(x − x0) + 1
2

C ′′(x − x0)
2, (28)

and then make the change of variables

x → x + x0,

qT → qT + q0,
(29)

so that x and qT now represent a small change from the
equilibrium point. The linearized equations of motion are

mẍ + 2mγ ẋ + mω2
0x − C ′′V 2

2
x + C ′V

C0
τ q̇T = Fdr(t)

(30)

and

τ q̇T = C ′Vx − qT, (31)

where τ = RSC0 is the tip-sample charging time and we
combine the applied voltage and surface potential as V =
V(t) − � for notational efficiency [70].

We now consider the steady-state solution when the
cantilever is subject to

Fdr(t) = Re[F(ω)e j ωt], (32)

where F(ω) is the complex amplitude of the oscillating
driving force. In the linear-response regime, the position
and tip charge have the form

x(t) = Re[x(ω)e j ωt] (33)

and

qT(t) = Re[qT(ω)e j ωt]. (34)
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Substituting Eqs. (33) and (34) into Eqs. (30) and (31)
gives

(
−mω2 + j ω2mγ + mω2

0

−C ′′V 2

2
+ C ′2V2

C0

j ωτ

1 + j ωτ︸ ︷︷ ︸

⎞
⎠ x(ω) = F(ω). (35)

This equation has the form
[
−mω2 + j ω(� + ��) + (k0 + �k)

]
x(ω) = F(ω),

(36)

which describes the response of a damped harmonic oscil-
lator with additional damping

�� = 2m�γ = V 2C ′2

ωC0

ωτ

1 + ω2τ 2 (37)

and additional spring constant

�k = −V 2C ′′

2
+ V 2C ′2

C0

ω2τ 2

1 + ω2τ 2 (38)

arising from the imaginary and the real parts of the under-
braced term in Eq. (35), respectively. In the limit that
τ → 0, Eq. (38) recovers the simplified Eq. (2) behavior.
In Ref. [23], Eq. (38) was used to analyze the observed
frequency shift.

In the approximation that the tip-sample interaction can
be modeled as a parallel-plate capacitor, Eq. (38) takes on a
particularly simple form. In this approximation, C ′2/C0 =
C ′′/2 and the additional spring constant shift simplifies to

�k = −V 2C ′′

2
1

1 + ω2τ 2 . (39)

In the parallel-plate case, when τ → ∞, �k → 0. In a
scanned probe experiment, the parallel-plate model is a
poor description of the tip-sample interaction; in this case,
�k in the τ → ∞ limit is nonzero and depends on C ′′, C ′,
and C0.

Equation (37) demonstrates the expected �� ∝ V 2C ′2
behavior. Figures 7(b) and 7(c) illustrate the behavior of
�� and �k as τ varies from the fast-charging limit to
the slow-charging limit while the cantilever is driven at
its resonance frequency. For fast charging (τω0 � 1), qT
oscillates in phase with the cantilever, and there is no addi-
tional damping. As τ increases, qT begins to oscillate out of
phase with the cantilever, leading to an increase in �� that
peaks as expected at τ = ω−1

0 . For slow charging, with τ

much longer than the cantilever period, qT no longer oscil-
lates significantly and the additional dissipation vanishes.

This dependence of cantilever damping on the charging
rate agrees with previous results. For example, Miyahara
et al. present the same dependence derived in the context
of cantilever-induced single-electron tunneling [71].

While this single-loop circuit model captures the essen-
tial physics of cantilever damping and frequency shifts due
to finite τ , it neglects many potentially significant fea-
tures of real experiments, such as stray capacitance and
resistance in the external wiring and complex impedance
of the sample. We proceed by treating these features in
the Lagrangian formalism to develop equations of motion
that apply to a wide range of EFM protocols, returning to
address the case of non-negligible sample impedance in
detail in Sec. VI.

B. A more general EFM model

Figure 8 illustrates our generalized EFM model, which
accounts for the applied bias V(t); resistance RW and
capacitance CW in the external wiring; resistance RS and
capacitance CS of the sample; resistance RT between the
cantilever base and tip; and the tip-sample capacitance
CT(x, t). Again, the surface potential is incorporated into
V(t) for notational convenience. In addition to the posi-
tion dependence of CT, which couples the electrical and
mechanical degrees of freedom of the EFM, we consider
the possibility that CT is explicitly time dependent as is the
case in, e.g., photocapacitance measurements. Applying
Eqs. (14)–(16) to the circuit of Fig. 8, we have

LB = − q2
W

2CW
− q2

T

2CT(x, t)
− q2

S

2CS
+ V(t)qV, (40)

FIG. 8. Equivalent circuit of a generalized EFM experiment.
This circuit accounts for stray capacitance CW and resistance
RW in the external wiring, resistance RT in the cantilever tip,
tip-sample capacitance CT, sample capacitance CS, and sample
resistance RS.
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DB = RWq̇2
V

2
+ RTq̇2

T

2
+ RSq̇2

RS

2
, (41)

and

LJ = λW(qW + qT − qV) + λS(qRS + qS − qT). (42)

In total, there are two Lagrange multipliers, five branch
coordinates, and one mechanical coordinate, requiring
eight applications of Eq. (17) to generate the equations
of motion. The time derivatives of the two equations gen-
erated by the Lagrange multipliers simply reproduce the
junction-rule relations

q̇V = q̇T + q̇W (43a)

and

q̇RS = q̇T − q̇S. (43b)

The equations generated by the branch coordinates qW and
qS,

λW = qW/CW (44a)

and

λS = qS/CS, (44b)

give algebraic expressions for the Lagrange multipliers and
confirm the earlier assertion about their relationship to the
electric potential.

Using Eqs. (43) and (44b) to eliminate qV, qRS, λW, and
λS, the remaining four equations of motion can be written
as

mẍ + 2mγ ẋ + mω2
0x − C ′

T(x)q2
T

2C2
T

= Fdr(t), (45)

RTq̇T = qW

CW
− qT

CT
− qS

CS
, (46)

RW (q̇W + q̇T) = V(t) − qW

CW
, (47)

and

RS (q̇T − q̇S) = qS

CS
. (48)

These four equations represent a complete model for a
broad class of EFM experiments. As we show in the next
section, significant simplifications to this system of equa-
tions can be realized in experiments characterized by fast
charging and small oscillations.

C. Cantilever dynamics in the fast-charging,
small-oscillation limit

For many EFM experiments, including the photocapac-
itance measurements described in Secs. III–V, the capac-
itive charge redistribution times are much faster than one
cantilever cycle and voltage drops across the resistances
[i.e., the left-hand sides of Eqs. (46)–(48)] are negligi-
ble. Taking the resistances in the equations of motion to
zero independently implements this fast-charging limit. In
particular, taking RS → 0 in Eq. (48) implies

qS = 0, (49)

while taking RW → 0 in Eq. (47) implies

qW

CW
= V(t), (50)

and taking RT → 0 in Eq. (46) implies

qT

CT
= qW

CW
− qS

CS
. (51)

When all three resistances are negligible, Eqs. (49)–(51)
require qT/CT = V(t) or

mẍ + 2mγ ẋ + mω2
0x − 1

2
V(t)2 ∂CT

∂x
= Fdr(t). (52)

For a sufficiently small cantilever oscillation amplitude,
the tip-sample capacitance gradient can be linearized in x.
In this approximation, with

p = mẋ, (53a)

Eq. (52) becomes

ṗ + 2γ p + mω2
0x − 1

2
V(t)2 [

C ′(t) + C ′′(t)x
] = Fdr(t).

(53b)

In Eq. (53), we reduce the equations of motion to a pair
of first-order ordinary differential equations that govern
both the pk-EFM and the FF-trEFM experiments described
in Sec. I. Note that, in the FF-trEFM literature, the term
V(t)2C ′′(t)/2 is accounted for as a time-dependent natural
resonance frequency ω0(t), which is an important nota-
tional difference from our usage, where ω0 is the cantilever
resonance frequency in the absence of capacitive coupling
between the tip and sample [46,47]. In the next section,
we demonstrate an approximate solution to Eq. (53) that is
particularly well suited to describe the cantilever motion in
terms of time-dependent frequency and phase shifts.
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III. MAGNUS-EXPANSION TREATMENT OF
PHOTOCAPACITANCE MEASUREMENTS

In this section, we develop a Magnus-expansion solution
for the cantilever motion during a photocapacitance mea-
surement, extending our previous results from Ref. [56]
to include both pk-EFM and FF-trEFM [46,47] experi-
ments in a common formalism. Equations (53) are two
coupled, linear ordinary differential equations with time-
varying coefficients. Noting that the C ′′ term in Eq. (53)
gives rise to a shift �k(t) in the effective spring constant,
we define the fractional change in spring constant

κ(t) = �k(t)
k0

≡ − 1
2mω2

0
C ′′(t)V(t)2. (54)

The C ′ term in Eq. (53) is the tip-sample force Fts(t) =
1
2 C ′V(t)2. The total force is

F(t) = Fts(t) + Fdr(t) ≡ 1
2

C ′(t)V(t)2 + Fdr(t). (55)

Using these definitions, Eq. (53) can be written in terms of
the position-momentum state vector x = (x p)T as

ẋ = A(t)x + b(t), (56)

where

A(t) =
(

0 1/m
−mω2

0 [1 + κ(t)] −2γ

)
, (57)

and

b(t) =
(

0
F(t)

)
. (58)

While there is no general analytic solution to Eq. (56), we
can use the Magnus-expansion technique to obtain a highly
accurate approximation [72,73]. The exact solution can be
written in terms of the system’s (unknown) propagator U,

x(t) = U(t, t0) x(t0) +
∫ t

t0
U(t, t′) b(t′) dt′. (59)

To take the Magnus expansion, we write U(t, t0) as the
exponential of a matrix �:

U(t, t0) ≡ exp �(t, t0), (60)

and approximate U by approximating �. The first-order
Magnus approximation for � is

�(t, t0) ≈
∫ t

t0
A(t′)dt′. (61)

For high-quality-factor cantilevers [Q ≡ ω0/(2γ ) 	 1],
the matrix exponential can be approximated [74] to give
a propagator

U(t, t0) ≈ e−γ�t

⎛
⎜⎝

cos ( ω �t) + sin ( ω �t)
2Q

sin ( ω �t)
m ω

−m ω sin ( ω �t) cos( ω �t) − sin ( ω �t)
2Q

⎞
⎟⎠ , (62)

where �t = t − t0 is the elapsed time and ω is the time-
dependent average frequency defined by

ω ≡ ω0

(
1 + 1

�t

∫ t

t0
κ(t′) dt′

)1/2

. (63)

If κ(t) is constant, then the first-order Magnus expansion is
exact. For a time-varying κ(t), corrections to the exponent
� are on the order of the change in the normalized spring
constant shift �κ . An unrealistically large light-induced
frequency shift of �f = 350 Hz for a f0 = 70 kHz res-
onance frequency cantilever corresponds to a change in
the normalized spring constant �κmax = 2�f /f0 = 0.01.
We are justified in neglecting higher-order terms of the
Magnus expansion because �κmax�1.

To derive the usual EFM expression for cantilever
frequency, we define the cantilever phase accumulated
between t0 and t: θ(t, t0) ≡ ω �t. As we clarify in the next
section, this definition implicitly assumes that the forc-
ing term b does not affect the cantilever phase. Using
Eq. (63) and this definition, we recover a linear relation-
ship between the cantilever phase and the change in the
force gradient by approximating θ to first order in κ:

θ(t, t0) ≈ ω0 �t + ω0

2

∫ t

t0
κ(t′) dt′, (64)

where the approximation is justified because κ � 1. We
obtain the usual expression for the cantilever frequency in
EFM by defining the cantilever’s instantaneous frequency

064020-12



LAGRANGIAN AND IMPEDANCE-SPECTROSCOPY... PHYS. REV. APPLIED 11, 064020 (2019)

as the derivative of the cantilever phase:

f (t) = 1
2π

dθ

dt
= f0 − f0

4k0
C ′′V(t)2, (65)

where, as usual, the voltage is V(t) = V − �. If F(t) = 0,
Eqs. (64) and (65) hold even for arbitrarily fast changes to
κ(t). In principle, then, there is no inherent limit to the time
resolution that can be obtained from EFM measurements of
the cantilever frequency or phase. There are two potential
complications, however.

First, it becomes very difficult to detect changes in the
cantilever frequency directly, by observing the cantilever’s
position over a short time interval, because the can-
tilever frequency measurement bandwidth must be smaller
than the cantilever’s resonance frequency [75–77]. This
seemingly fundamental bandwidth limitation can be sur-
mounted by recording the phase shift as a function of a
pulse delay [78], i.e., indirectly, as Dwyer and coworkers
showed in the “phasekick” EFM experiment they intro-
duced to measure fast, subcycle photocapacitance tran-
sients [56]. In the pk-EFM experiment of Ref. [56] (Fig. 3),
a light pulse applied at time t0 = 0 initiates charge gen-
eration in the sample. The capacitance derivative C ′′ is
now time dependent and the cantilever phase evolves in
time according to Eqs. (54) and (64). At a time t = tp, the
photo-induced advance of the cantilever phase is abruptly
arrested, stepping the tip voltage back to zero:

V(t) =
{

V for t < tp,
0 for t ≥ tp.

(66)

The resulting cantilever phase is

θ(tp) ≈ ω0tp − V 2

2mω0

∫ tp

0
C ′′(t ′) dt ′. (67)

In the experiment of Ref. [56] [Figs. 4(d)–4(f)], cantilever
phase versus time data were collected for a few millisec-
onds before and after the time window during which the
light and voltage pulses were applied. The phase shift θ(tp)
was obtained by extrapolating the “before” phase data to
t = 0 and the “after” phase data to t = tp. The pulse time
tp was stepped and this θ(tp) measurement procedure was
repeated at each tp. Since tp, ω0, m, and V are known, the
full time evolution of the sample’s capacitance derivative
C ′′(t) could be inferred from the resulting θ(tp) versus tp
data. In this way, it is possible to track the evolution of
photocapacitance on timescales much faster than a single
cantilever cycle.

The second potential complication to measuring fast
changes in cantilever frequency or phase is that abrupt
changes to Fts(t) cause additional changes in the can-
tilever’s amplitude, frequency, and phase that we have so
far neglected. To address this problem, we first define the
cantilever amplitude, phase, and frequency in terms of the
cantilever’s position and momentum.

IV. DEFINITION OF AMPLITUDE AND PHASE

EFM-based photocapacitance experiments record light-
induced changes in the amplitude, phase, and frequency of
the cantilever oscillation. We define the cantilever ampli-
tude and phase in terms of the cantilever position and
momentum so we can relate the photocapacitive quantities
C ′(t) and C ′′(t) to the data. We show how abrupt changes
in the tip-sample force Fts = 1

2 C ′(V − �)2 affect the can-
tilever amplitude and phase. The usual expression for the
frequency shift in KPFM [Eq. (2)] ignores these effects,
which become important whenever the tip-sample force
changes on a timescale similar to the cantilever period.

Figure 9 provides a geometrical view of our definition
of the cantilever amplitude and phase. The horizontal axis

A

x

Impulse 1

Impulse 2

(a) (b) (c)

Step

1

2

FIG. 9. Amplitude and phase representation of the cantilever state. (a) The cantilever amplitude and phase are defined in terms of
the cantilever position x (horizontal axis), scaled momentum −p/(mωd) (vertical axis), and equilibrium position xeq (open circle). The
black line and arrows (every eighth of a period) show the normal evolution of the cantilever state in the absence of an abrupt change
in tip-sample force. (b) An impulsive force shifts the cantilever state along the vertical (momentum) axis. An impulsive force applied
at time 1 decreases the cantilever amplitude (green). Applied at time 2, the same impulsive force instead advances the cantilever phase
(orange). (c) A step force shifts the equilibrium position xeq (open circle). Applying the step force at time 1 advances the cantilever
phase (green), while applying the step force at time 2 increases the cantilever amplitude (orange).
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shows the cantilever position x and the vertical axis shows
the scaled cantilever momentum −p/(mωd) (with ωd the
drive frequency). Each point on the graph is associated
with a particular cantilever state x = (x p)T. To define
the cantilever amplitude and phase, however, we also
need to know the equilibrium position that the cantilever
state rotates about. This equilibrium position—neglected
in typical EFM experiments—is

xeq(t) = Fts(t)
k(t)

, (68)

where k(t) is the time-dependent cantilever spring con-
stant. We associate an amplitude and phase with each
cantilever state x = (x p)T using a complex number z:

z(t) = [x(t) − xeq(t)] − p(t)
mωd

j , (69)

where we assume a drive force of the form

Fdr(t) = Fd cos(ωdt + φd), (70)

with Fd the drive amplitude, ωd the drive frequency, and
φd the drive phase. In terms of the complex number z, the
cantilever amplitude is

A = |z|, (71)

and the absolute cantilever phase is

φabs = arg z. (72)

Figure 9(a) shows this definition geometrically; the blue
vector’s length defines the amplitude and the angle with the
x axis defines the absolute phase. With this definition, the
ordinary evolution of the cantilever is z(t) = z(t0)ej ωd(t−t0).
Graphically, the cantilever state vector has length A and
rotates around its equilibrium state (xeq, 0)T at the drive fre-
quency ωd. To remove the effect of the ordinary evolution
of the cantilever, we define the phase difference φ between
the drive force and the cantilever displacement:

φ = φxp = arg
(

z e−j (ωdt+φd)
)

. (73)

We use the subscript φxp to emphasize that this is the phase
calculated from the cantilever position x and momentum
p . With Eqs. (69) and (73), we can approximate the can-
tilever’s phase using numerical simulations or analytic
approximations of the cantilever position and momentum.

We use this definition of amplitude and phase to deter-
mine amplitude and phase shifts caused by abrupt forces.
We consider an experiment where the voltage, capacitance,
tip-sample force, and tip-sample force gradient remain
constant except for some short, abrupt change near t = 0.

For times t < 0, the applied voltage V induces a tip-sample
force Fts(t) = 1

2 C ′V 2 ≡ F0 and a spring constant shift
�k(t) = − 1

2 C ′′V 2 ≡ �k0. The system is still a damped,
driven harmonic oscillator but with a new spring constant

k1 = k0 + �k0 (74)

and resonance frequency

ω1 = ω0 − ω0

4k0
C ′′V 2. (75)

We use a drive force with amplitude Fd, frequency ωd, and
phase φd [Eq. (70)]. The resulting cantilever state vector
near t = 0 is

xord =
(

x(t)
p(t)

)
=

(
F0/k1 + A0 cos(ωdt + φ0)

−A0mωd sin(ωdt + φ0)

)
, (76)

where the equilibrium position is xeq = F0/k1 and the sub-
script xord reflects that this is the cantilever’s ordinary
oscillation. The cantilever’s amplitude A0 = |χ̂ (ωd)|Fd
and initial phase φ0 = φd+arg[χ̂ (ωd)] depend on the
Fourier transform of the oscillator’s impulse response
function

χ̂ (ω) = 1
k1

(
1 − ω2

ω2
1

+ 2j γω

ω2
1

)−1

, (77)

where γ is the linear damping parameter. Equa-
tions (75)–(77) describe the cantilever position, momen-
tum, amplitude, and phase for a constant applied voltage.
To describe amplitude and phase shifts caused by abrupt
forces, we consider adding an additional force �Fabrupt
at t = 0: Fts(t > 0) = F0 + �Fabrupt(t). Our model of the
cantilever is linear so we can add the position and momen-
tum change caused by this additional force to the ordi-
nary, existing oscillation of the cantilever: x(t > 0) =
xord+xabrupt. The change induced by the force is

xabrupt(t) =
∫ t

0
U(t, t′)

(
0

�Fabrupt(t ′)

)
dt ′. (78)

We consider two limits for the abrupt change in tip-
sample force: an impulsive force and a steplike force. For
an impulsive force, the entire change in tip-sample force
occurs over a very short time timpulse�ω−1

1 . The impulsive
force changes the momentum of the cantilever by δp =∫ timpulse

0 �Fabrupt(t ′)dt ′. In Fig. 9(b), the impulse shifts the
cantilever state along the vertical (momentum) axis. An
impulse delivered at time 1 shifts the cantilever ampli-
tude (green), while the same impulse delivered at time 2
shifts the phase (orange). After the impulse, the cantilever
state continues rotating at the frequency ωd. If the change
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in momentum δp is small [|δp/(mωd)| � A0], then the
impulse shifts the cantilever amplitude and phase by

δA = −(mωd)
−1 sin φ0 δp and (79)

δφ = −(A0mωd)
−1 cos φ0 δp , (80)

respectively.
For an abrupt steplike force, the abrupt change in

force is a constant: �Fabrupt(t > 0) = �Fabrupt. The abrupt
change in force does not cause any instantaneous change
in the cantilever state, but it does induce an addi-
tional position oscillation xabrupt(t) = �Fabrupt cos(ω1t)/k1.
This additional oscillation is induced by the abrupt shift
in the cantilever’s equilibrium displacement by δxeq =
�Fabrupt/k1. Figure 9(c) illustrates this result geometri-
cally. The step change in tip-sample force abruptly shifts
the cantilever equilibrium position xeq (open purple circle
denoted “step”). The actual cantilever state is not imme-
diately affected by the abrupt change in force and the
equilibrium position. After the step, the cantilever state
continues rotating at ωd [79], but is rotating around the
new equilibrium position (open purple circle). Over the
next part of the cantilever cycle, however, the effect of this
change in equilibrium position becomes clear. A step at
time 1 shifts the cantilever phase (green), while the same
step at time 2 shifts the cantilever amplitude (orange). If
the change in equilibrium position is small compared to the
cantilever amplitude (|δxeq| � A0), we find that the step
abruptly shifts the amplitude and phase by

δA = − cos φ0 δxeq and (81)

δφ = A−1
0 sin φ0 δxeq, (82)

respectively. According to our definition of amplitude and
phase, A and φ change abruptly as soon as the step force
is applied. However, the shift in phase cannot be readily
observed in the cantilever position (horizontal axis) until
perhaps 1/4 of a cantilever cycle later [notice the time
it takes for the difference between the black and green
curve in Fig. 9(c) to develop]. The cantilever amplitude
and phase are not well determined during the short period
of time when the tip-sample force is changing abruptly. As
discussed in Ref. [56], changes in tip-sample forces occur-
ring on a short timescale compared to the cantilever period
should be detected using a measurement that exploits a
nonlinearity to generate a signal that can be measured at
low frequency.

For both impulsive and steplike changes to the tip-
sample force, the resulting change in the cantilever’s
position and momentum can be determined by integrating
Eq. (78). After the end of the abrupt changes in tip-sample

force, the two components of the cantilever state vec-
tor can be added back together and propagated as usual.
In each case, the same shift in equilibrium position or
momentum can cause an amplitude shift or a phase shift
depending on the cantilever’s initial phase when the abrupt
force occurs, as illustrated by the geometric depiction in
Figs. 9(b) and 9(c). The change in position or momentum
affects the cantilever phase more when the cantilever’s ini-
tial amplitude A0 is smaller. The results of the previous
two sections allow us to analyze experiments involving
abrupt changes in the tip-sample force and force gradient.
In Ref. [56], we analyzed pk-EFM, which was developed
to measure light-induced changes in capacitance with sub-
cycle time resolution. In the next section, we analyze the
alternative technique, FF-trEFM.

V. FF-trEFM TIME RESOLUTION

Feedback-free time-resolved electric force microscopy
[45–47] is a variant of tr-EFM designed to resolve
photocapacitance dynamics with better time resolution.
Ordinary tr-EFM measurements directly fit the cantilever-
frequency-shift-versus-time data to extract the sample’s
photocapacitance rise time τs. In FF-trEFM, the cantilever
is driven at a fixed frequency ωd with a fixed tip volt-
age V. The light is turned on at a specific point in the
cantilever cycle and the cantilever oscillation data are
signal-averaged and demodulated to obtain the cantilever’s
instantaneous frequency shift δf versus time. The time
to first frequency-shift peak tFP is calculated from δf (t)
[Fig. 5(c)]. To calibrate the measurement, voltage pulses
with different rise times τv are applied to the sample
and tFP is measured versus τv. The sample photocapac-
itance rise time τs is estimated using the tFP versus τv
calibration curve. Karatay et al. have shown that subcy-
cle time resolution can be obtained with this technique.
Through numerical simulations, they demonstrated that the
cantilever tip-sample force Fts∝C ′ is responsible for the
subcycle time resolution [47].

In this section, we apply our Magnus-expansion approx-
imation for cantilever dynamics to the FF-trEFM exper-
iment. We show that the FF-trEFM experiment is only
sensitive to the total magnitude of the force-induced phase
shift at short times. To extract a specific time constant
in the limit that τs�ω−1

0 , an assumption must be made
about the magnitude of the abrupt change in the tip-sample
force. This result demonstrates how our approach reveals
the hidden assumptions implicit in commonly used models
of EFM experiments.

Figure 10 illustrates our analysis of the FF-trEFM exper-
iment. To explain the origin of the subcycle time reso-
lution in FF-trEFM, we need to connect the experimen-
tal and sample parameters [Fig. 10(a)] to the measured
frequency-shift-versus-time data that are used to calcu-
late the first peak time tFP. We start from the description
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FIG. 10. Analysis of the FF-trEFM experiment. (a) The experimental parameters are used to estimate the cantilever phase 3 ways:
(b) analytically using an approximation for x, p and Eq. (73); (c) analytically using a model that determines the phase directly from the
experimental parameters; and (d) by numerically integrating the equations of motion to determine x, p and applying Eq. (73). (e) The
position x(t) from (d) is analyzed using the FF-trEFM analysis package [47,80]. (f) The 3 cantilever phases φ are (g) low-pass filtered
to determine (h) the measured cantilever phase φmeas. (i) The measured frequency δfmeas determines the first peak time tFP. (j) The first
peak time tFP versus sample rise time τs experimentally measured by Karatay et al., reprinted from Ref. [47] with the permission of
AIP Publishing.

of EFM derived in Sec. III, assuming that the tip-sample
force Fts and force gradient �k both evolve with the
same photocapacitance rise time τs after the light turns
on [Fig. 10(a)]. We use the tip-sample force and force
gradient to determine the cantilever’s phase φ in multi-
ple ways [Figs. 10(b)–10(d)]. To isolate the effect of the
sample parameters on the phase and frequency, we model
the measured cantilever phase as the convolution of the
cantilever’s actual phase and a demodulation or lock-in
amplifier low-pass filter [Figs. 10(f)–10(h)]. The measured
cantilever phase shift is

φmeas(t) = [HL ∗ φ](t), (83)

where HL is the lock-in amplifier or demodulation filter
impulse response function, ∗ denotes convolution in the
time domain, and φ is the actual phase difference between
the tip displacement and drive force. The measured can-
tilever frequency shift is the derivative of the measured
phase:

δfmeas(t) = 1
2π

dφmeas

dt
. (84)

At the time of the first frequency shift peak (t = tFP), the
derivative of the measured frequency shift is equal to zero
[Fig. 10(i)]. The specific value of tFP is sensitive to the
choice of lock-in amplifier filter HL. Once a particular HL
is chosen, any differences in tFP are related to differences
in the cantilever’s actual phase φ(t). To avoid artifacts in
φmeas and δfmeas related to filter ringing, Karatay et al. used

a filter function that was strictly positive [47]. As shown
in Fig. 10(j), they observed a monotonic, nonlinear rela-
tionship between tFP and τs for rise times faster than the
cantilever period of 2 μs under carefully chosen exper-
imental conditions. We connect the observed tFP to φ(t)
and, therefore, to experimental parameters using the model
of the cantilever dynamics developed in Secs. III and IV.

In the following calculation, we will verify the relation-
ship between experimental parameters and φ by estimating
the phase in multiple ways. In particular, we estimate
the phase from simulations of the cantilever position and
momentum [Fig. 10(d)]. We separately analyze the sim-
ulated cantilever position data using the analysis code of
Karatay et al. [80]. We calculate the same tFP with both
approaches, which connects our analysis (the shaded green
region of Fig. 10) to that used by Karatay et al.

A. Analytic treatment of FF-trEFM

We use the description of the cantilever amplitude and
phase developed in the previous section to determine
the cantilever phase during a FF-trEFM experiment. The
applied voltage is V, and the drive force has amplitude
Fd, frequency ωd, and phase φd [Eq. (70)]. At t = 0, the
sample is illuminated, inducing a change in the tip-sample
capacitance and its derivatives, which we assume has the
form

C ′(t) =
{

C ′, t < 0,
C ′ + �C ′

hν(1 − e−t/τs), t ≥ 0,
(85)
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where �C ′
hν is the light-induced change in the tip-sample

capacitance at long times and τs is the sample’s photoca-
pacitance rise time. Similarly, we assume that the second
derivative of the tip-sample capacitance is

C ′′(t) =
{

C ′′, t < 0,
C ′′ + �C ′′

hv(1 − e−t/τs), t ≥ 0,
(86)

where �C ′′
hν is the light-induced change in the second

derivative of the capacitance.
The goal of the experiment is to infer τs from the first

frequency-shift-peak time tFP. We analyze the experiment
using the Magnus-expansion approximation (Sec. III). The
exponential rise in C ′(t) causes an exponential rise in the
tip-sample force:

Fts(t) =
{

F0, t < 0,
F0 + Fhν(1 − e−t/τs), t ≥ 0,

(87)

where the initial force is F0 = 1
2 C ′V 2 and the light-induced

change in force is Fhν = 1
2�C ′

hνV 2. The exponential rise
in C ′′(t) causes an exponential rise in the tip-sample force
gradient

�k(t) =
{

�k0, t < 0,
�k0 + �khν(1 − e−t/τs), t ≥ 0,

(88)

where the initial spring constant shift is �k0 = 1
2 C ′′V 2

and the light-induced change in the spring constant shift
is �khν = 1

2�C ′′
hνV 2.

Our goal is to understand and explain the case where
the photocapacitance rise time is faster than the cantilever
period. In this case, we expect the steplike change in tip-
sample force to cause an abrupt change in the cantilever
amplitude and phase [Fig. 9 and Eqs. (81)–(82)]. To focus
on the effect of the tip-sample force Fts, we first assume
�C ′′

hν = 0 so that �k(t) = �k0. We are interested in times
much shorter than the cantilever ringdown time (t � γ −1),
so we neglect cantilever dissipation and the drive force
by setting γ = 0 and Fdr(t) = 0. The Magnus-expansion
approximation for the cantilever state [Eq. (59)] is

x(t) = Ũ(t)
(

x0
p0

)
+

∫ t

0
Ũ(t − t′)

(
0

Fts(t′)

)
dt′, (89)

where

Ũ(t) =
⎛
⎝ cos (ω1t)

1
mω1

sin (ω1t)

−mω1 sin (ω1t) cos (ω1t)

⎞
⎠ (90)

is the propagator of a simple harmonic oscillator with
a shifted spring constant k1 and resonance frequency ω1

Force

Position

FIG. 11. Cantilever response to step changes in force with dif-
ferent rise times τs: (a) the tip-sample force Fts and (b) cantilever
position x(t) versus time t (in units of ω−1

1 ). The solid lines in (b)
show the position calculated using Eq. (91). For reference, the
dashed lines in (b) show x = Fts(t)/k1, the cantilever position for
a cantilever with a much higher resonance frequency such that
Fts changes slowly relative to the cantilever period.

given by Eqs. (74) and (75) respectively. The integral in
Eq. (89) can be evaluated in closed form, giving

x(t) =
(

x0 − F0

k1

)
cos(ω1t) + p0

mω1
sin(ω1t)

+ F0

k1
+ Fhν

k1

(
1 − ω2

1τ
2
s

1 + ω2
1τ

2
s

e−t/τs

)

− Fhν

k1
(
1 + ω2

1τ
2
s

)[
cos(ω1t) + ω1τs sin(ω1t)

]
︸ ︷︷ ︸

xosc

(91)

for the cantilever position. The first line of Eq. (91) is
the unperturbed continuation of the cantilever’s ordinary
oscillation xord(t) [Eq. (76)]. The second line describes
the change in the cantilever’s time-dependent equilibrium
position xeq [Eq. (68)]. The final, underbraced line (xosc) is
the persistent contribution of the step change in Fts(t) to
the cantilever oscillation, which, depending on the phase
of the cantilever oscillation at t = 0, manifests as an abrupt
amplitude or phase shift.

Figure 11 illustrates the effect of the abrupt change in
tip-sample force on the cantilever oscillation for various
time constants τs. We focus on the effect of the abrupt,
steplike change in tip-sample force by starting the can-
tilever at rest at its equilibrium position [81] so that the
first line of Eq. (91) equals zero. The solid lines in Fig. 11
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plot the cantilever position versus time for the different
rise-time forces. The cantilever position contains both an
exponential component (the dashed line) and an oscillatory
component. The oscillatory component is largest in magni-
tude for the shortest rise-time forces and approaches zero
for τs	ω−1

1 . From Eq. (91), the amplitude of the induced
oscillation is Fhν/[k1(1 + ω2

1τ
2
s )]. When the tip-sample

force changes abruptly, the ordinary KPFM frequency shift
given by Eq. (2) is incomplete; the cantilever oscillation
is better described using the cantilever phase, which is
advanced by both the usual frequency shift given by Eq. (2)
and the abrupt effects described by Eqs. (78)–(82).

The two forces on the cantilever, the drive force and the
tip-sample capacitance force, affect the cantilever’s phase
very differently. The drive force determines the cantilever’s
oscillation frequency. Together, the properties of the drive
force and the propagator determine the cantilever’s ampli-
tude and phase difference relative to the drive force. In
contrast, Fts only determines the equilibrium displacement
about which the cantilever oscillates unless it contains
significant energy at the cantilever resonance frequency.

To apply the results of this section to ion-conductance
experiments, the exponential rise-time change in capaci-
tance could be replaced with a stretched exponential rise-
time change in capacitance by replacing e−t/τs with e−(t/τs)β

in Eqs. (85)–(88). In this case, the integral in Eq. (89)
cannot be evaluated in closed form. The magnitude and
phase of the induced oscillation at the cantilever frequency
could be determined by numerical integration or using the
Laplace transform of the stretched exponential [82].

B. Approximate phase shift model

To gain insight into the dynamics of the cantilever
phase, we develop an approximate model to describe small
cantilever phase shifts [Fig. 10(c)]. When the light is
turned on, changes in capacitance affect the phase differ-
ence between the drive force and the cantilever through
(1) changes in the tip-sample force gradient and (2) abrupt
changes in the tip-sample force.

The changes in the force gradient shift the cantilever’s
natural resonance frequency ω(t), which results in a phase
shift. For κ = �k/k0 � 1, the cantilever’s resonance fre-
quency is

ω(t) = ω0[1 + �k(t)/(2k0)], (92)

where we differentiate Eq. (64) to obtain Eq. (92). At
steady state, the phase difference between the cantilever
and the drive may be computed from the Fourier transform
of the oscillator impulse response function. We find

φSS(t) = arg

{[
1 − ω2

d

ω(t)2 + j ωd

Qω(t)

]−1}
. (93)

For small phase shifts, the cantilever response to changes
in φSS is first order with a characteristic frequency equal to
the linear damping parameter γ = ω0/(2Q):

φ̇fg = −γφfg + γφSS(t), (94)

where we use the subscript “fg” for force gradient. The
drive force and force gradient induce a slow evolution of
φfg.

The change in tip-sample force affects the cantilever
phase differently. Abrupt changes in the tip-sample force
Fts induce an additional oscillation at the cantilever reso-
nance frequency (Fig. 11). For the FF-trEFM experiment,
the existing oscillation near t = 0 is x(t) = −A0 sin(ωdt),
so the cosine term from Eq. (91) causes an abrupt phase
shift:

�φf = Fhν/k1

A0

1
1 + ω2

1τ
2
s

, (95)

where A0 is the cantilever zero-to-peak amplitude near t =
0 and �φf is in units of radians. For times t ≤ τs, the phase
shift oscillates and approaches �φf. For the sake of our
model, we assume

φf(t ≥ 0) = �φf(1 − e−t/τs). (96)

With the force contribution to the cantilever phase
accounted for, we need to correct Eq. (94) to take into
account φf. The total cantilever phase is the sum of the
force-gradient phase φfg and φf:

φ = φfg + φf(t). (97)

We describe the combined effects of the force and force-
gradient terms with the differential equation

φ̇fg = −γ [φfg + φf(t)] + γφSS(t). (98)

If the phase φ = φfg+φf is equal to the steady-state phase
φSS, the derivative φ̇fg = 0 and the normal oscillator
dynamics do not change the cantilever phase. Together,
Eqs. (97) and (98) describe a state space model with two
inputs φSS(t) and φf(t), one state variable φfg, and one out-
put φ. With this model, we can write closed-form expres-
sions for the cantilever phase when exponential rise-time
inputs are applied to φSS and φf. With either simulations of
the cantilever position and momentum or the approximate
phase-shift model, we can write the cantilever’s actual
phase φ.

C. Simulations

To verify the phase model developed above, we sim-
ulate cantilever dynamics for a cantilever similar to that
performed by Karatay et al. in their demonstration of
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FIG. 12. Actual and measured cantilever phase and frequency calculated using models and simulations. (a) Relative phase φ between
the cantilever position and the drive force for sample photocapacitance rise-time constants τs from 1 ns to 1 ms. The phase is calculated
from simulations of cantilever position and momentum (φxp, solid lines) and the approximate small-phase-shift model of Eq. (97)
(φmod, dashed lines). (b) Phase difference between the two models r = φxp−φmod. (c) The lock-in amplifier filter (green line) used to
determine φmeas from φ and the band-pass filter used to determine φmeas from simulated cantilever position data. (d) The actual phase
shift φmod (dashed lines) and the measured phase shift calculated from φmod (solid lines) and from simulated position versus time data
using the analysis package FFTA of Karatay et al. [80] with band-pass filter Hbandpass (circles). (e) Phase difference between the two
calculated, measured phases r = φmod

meas−φFFTA
meas . (f) Actual frequency shift calculated from φmod (dashed lines) and the corresponding

measured frequency shift calculated from φmod
meas (solid lines) and φFFTA

meas (circles). (g) Frequency shift difference r = δf mod
meas −δf FFTA

meas .
For simulated data [circles in (d) and (f)], only every thousandth point (every 10 μs) is shown for clarity.

10-ns time resolution [47]. We use a cantilever frequency
at t = 0 equal to ω1 = 2π × 526 315 Hz. The cantilever
spring constant and quality factor are k1 = 72.7 N m−1 and
Q = 499, respectively. We set the drive frequency ωd =
ω1. We use a drive amplitude Fd = k1 × 10 nm/Q and a
drive phase φd = π for maximum time resolution [83]. The
cantilever’s simulated zero-to-peak amplitude at t = 0 is
A0 = 10 nm. The light-induced change in spring constant
is �khν = −2k1 × 10−4, corresponding to a cantilever fre-
quency shift of �ωhν = 2π × 52.6 Hz. The light-induced
change in the tip-sample force is Fhν = −k1 × 0.06 nm,
inducing a 0.06 nm shift in the cantilever’s equilibrium
displacement xeq.

D. Results

Figure 12 demonstrates the close agreement between
the different models for the cantilever phase shift illus-
trated in Fig. 10. In Fig. 12(a), we show the results of
simulations for a series of sample photocapacitance rise
times τs from 1 ns to 1 ms. From the simulated can-
tilever position and momentum, we calculate the cantilever
phase φxp using Eq. (73). In Fig. 12(a), we plot φxp con-
volved with a rectangular filter with width T = 2π/ω0 to
remove phase oscillations at multiples of the cantilever

frequency (solid lines). We also plot the modeled phase
φmod (dashed lines), which is calculated using the approx-
imate phase model of Sec. V B [Eqs. (93)–(98)]. The
simulated phase φxp agrees closely with the phase pre-
dicted by the analytic model φmod. Figure 12(b) shows that
the phase difference r = φxp−φmod is small and approaches
zero at long times. Both the analytical model and sim-
ulations indicate that the cantilever phase versus time is
identical for any photocapacitance rise time τs≤100 ns.
This result sets the first limit on the possible time resolution
of FF-trEFM. Figures 12(a) and 12(b) demonstrate good
agreement between our different models of the cantilever’s
actual phase [Figs. 10(b)–10(d)].

Next, we determine the measured phase shift φmeas.
First, we calculate φmeas using φ from Fig. 12(a) and
the convolution model illustrated in Figs. 10(f)–10(h)
[Eq. (83)]. To demonstrate the agreement between this
description of the phase and the phase calculated from
the FF-trEFM workup, we use the same simulation data
used to calculate φxp to perform the FF-trEFM analysis
of Karatay et al. using their publicly available pack-
age [47,80]. The band-pass filter applied to the x(t) data
in the FF-trEFM analysis serves the same role as the low-
pass filter HL in our analysis. For the FF-trEFM data
analysis protocol of Ref. [47], we use a Parzen window
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band-pass filter that passes frequencies between f0 − b
and f0 + b [Fig. 10(e)]. We use the analogous Parzen-
window low-pass filter with cutoff frequency b in our
analyses. Figure 12(c) shows the two filters, with b =
5.1 kHz. Figure 12(d) shows that the measured phases
calculated using the model (solid lines) and the FFTA
analysis (dotted-dashed lines) agree closely. For compar-
ison, the input to the low-pass filter φmod (dashed lines) is
also shown. The low-pass filter blurs and delays the phase.
Figure 12(e) shows that the maximum difference between
φmod

meas and φFFTA
meas is 8 μrad. Figures 12(f) and 12(g) show

that the corresponding measured frequency shifts and time
to first frequency shift peaks agree closely as well. The
maximum frequency difference is 0.1 Hz.

The data of Fig. 12 demonstrate that the generalized
models we introduce to describe the measured phase in
the FF-trEFM experiment agree closely with the measured
phase as calculated by Karatay et al. [47]. We examine
the dependence of φ on experimental parameters to bet-
ter understand how the experimental parameters affect the
measured phase and time-to-first frequency shift peak.

The analytic model of Eqs. (97) and (98) gives a closed-
form expression for the cantilever phase during a FF-
trEFM experiment. In the analytic model, the cantilever’s
actual phase is

φ(t ≥ 0) = φ0 + �φSS − �φfe−t/τs

+ �φSS − �φf

1 − γ τs
(γ τse−t/τs − e−γ t), (99)

where φ0 is the phase difference between the cantilever and
drive force at t = 0, �φSS is the steady-state phase shift
�φSS = φSS(∞) − φSS(0) [Eq. (93)], and �φf is the total
phase shift induced by the abrupt change in the tip-sample
force [Eq. (95)].

Figure 13 shows how the modeled cantilever phase
depends on �φf and the photocapacitance rise time τs. We
plot the inputs to the model in Figs. 13(a) and 13(b) and the
cantilever phase calculated using Eq. (99) in Fig. 13(c).
The orange curve shows the case where the steady-state
phase shift is �φSS = −100 mrad, the force-induced phase
shift is �φf = −3 mrad, and the photocapacitance rise
time is τs = 100 ns. The two blue curves show the effect of
varying the photocapacitance rise time: τs = 10 ns (light
blue circles) and τs = 1 μs (dark blue squares). The two
green curves show the effect of varying the magnitude of
the force-induced phase shift: �φf = −6 mrad (light green
triangles) and 0 mrad (dark green stars). Changing the
magnitude of �φf causes large, persistent differences in the
resulting phase-versus-time data [Fig. 13(c)]. In contrast,
changing τs by an order of magnitude causes almost no
difference in the resulting phase-versus-time data after the
first few microseconds. The small, transient differences in
phase caused by changes in τs would be even more difficult
to detect after convolving with the 64 μs FWHM low-pass

)
(

)
(

)
(

(      )

(a)

(b)

(c)

SS

FIG. 13. Dependence of φ on photocapacitance rise time and
force-induced phase shift. (a) The steady-state photocapacitance
φSS for different photocapacitance rise times (10 ns, light blue
circles; 100 ns, orange line; 1 μs, dark blue squares). (b) The
force-induced phase shift for different photocapacitance rise
times (blue) and different magnitudes of �φf (−6 rmad, light
green triangles; −3 mrad, orange line; 0 mrad, dark green stars).
(c) The phase determined from the inputs in (a) and (b), offset by
the initial phase shift π/2.

lock-in amplifier or demodulation filter. The persistent dif-
ferences in the modeled phase related to �φf indicate that
the measured phase versus time and calculated first peak
time should be very sensitive to changes in �φf, the mag-
nitude of the phase shift induced by the abrupt shift in the
tip-sample force.

Figure 14 illustrates how differences in phase relate to
differences in the measured frequency shift δfmeas and time
to first frequency shift peak tFP when the sample pho-
tocapacitance rise time is faster than the inverse of the
lock-in amplifier or demodulation bandwidth. Figure 14(a)
shows δfmeas for a series of photocapacitance rise times
from 1 ns to 1 μs with the magnitude of the change in can-
tilever tip-sample force Fhν = −k1 × 0.06 nm. The time
to first frequency shift peak tFP becomes shorter at faster
photocapacitance rise times. From Eq. (95), we know
that the magnitude of the force-induced phase shift �φf
increases dramatically as τs becomes faster than the can-
tilever inverse angular frequency because the exponential
rise-time change in force starts to contain significant con-
tent at the cantilever resonance frequency. To illustrate
the importance of this effect, we show δfmeas for a series
of photocapacitance rise times from 1 ns to 1 μs, with
the magnitude of force-induced frequency shift held con-
stant as �φf = −6 mrad, equivalent to �φf for the fastest
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Decreasing

(a) (b) (d)(c)
Const.Const. Const.

FIG. 14. (a) Demodulated frequency shift versus pulse time for simulated photocapacitance dynamics with rise time τs = 1 ns to
τs = 1 μs, keeping the light-induced tip-sample force Fhν = −k0 × 0.06 nm. (b) Demodulated frequency shift versus pulse time for
simulated photocapacitance dynamics with rise time τs = 1 ns to τs = 1 μs, keeping the total phase shift induced by the change in the
tip-sample force constant: �φf = −6.0 mrad. The steady-state phase shift �φss = −99.5 mrad for both (a) and (b). (c) The time-to-first
frequency shift tFP calculated from the data in (a),(b) as well as a series of data points with τs = 100 ns and �φf = 0 mrad to −6 mrad.
The dashed line shows the inverse cantilever frequency ω−1

1 . (d) The time-to-first frequency shift tFP plotted versus the force-induced
phase shift �φf.

photocapacitance rise times in Fig. 14(a). With �φf held
constant, there is very little change in tFP over the range
of photocapacitance rise times. This result is expected
because the maximum bandwidth at which the cantilever
amplitude and phase can be demodulated is a fraction of
the cantilever’s resonance frequency: b ≤ f0/4, for exam-
ple. For a 500-kHz cantilever, dynamics faster than 1 to
10 μs are significantly blurred by the demodulation fil-
ter. For this reason, dynamics on these fast time scales
are typically detected with pump-probe-based techniques
[48,49,52,55,84–86].

Figure 14(c) plots the time to first frequency shift peak
calculated from the data in Figs. 14(a) and 14(b). We also
plot in green the time to first frequency shift peak calcu-
lated by fixing the photocapacitance rise time τs = 100 ns
and varying the magnitude of the force-induced phase shift
�φf from 0 mrad to −6 mrad. Together, the blue and green
curves show that tFP is not a reliable measure of the sam-
ple photocapacitance rise time τs. Figure 14(d) plots the
same tFP data versus the force-induced phase shift �φf.
The three different curves from Fig. 14(c) collapse to a sin-
gle line, with tFP linearly related to �φf over this range
of time constants and force-induced phase shifts. The the-
ory and simulations indicate that for photocapacitance rise
times τs much smaller than the inverse filter bandwidth
1/(2πb), FF-trEFM mainly detects the total magnitude
of the force-induced phase shift �φf. The force-induced
phase shift depends on both the magnitude of the change
in force and the photocapacitance rise time. To relate tFP to
a specific photocapacitance rise time, additional informa-
tion must be known or assumed about the magnitude of the
abrupt change in tip-sample force.

To illustrate this point, we show the predicted tFP by con-
volving the modeled phase φmod with a low-pass lock-in
amplifier filter with cutoff frequency ωf. In this case, the
first frequency shift peak occurs at

tFP = (ωf − γ )−1

× log
(

ωf(τ
−1
s − γ )(�φSSωf − �φfγ )

γ 2(τ−1
s − ωf)(�φSS − �φf)

)
. (100)

To connect this result back to experimental parameters, we
expand to first order in τs and �φf near zero and we find

tFP = (ωf − γ )−1 log
(

ω2
f

γ 2

)

+ τs + �C ′
hν

k1QA0ωf�C ′′
hν(1 + ω2

1τ
2
s )

. (101)

In this limit, the time to first frequency shift peak is the
sum of a constant factor related to the cantilever damp-
ing parameter (or ringdown time) and the chosen filter
function, the sought-after photocapacitance rise time, and
a factor that depends on the light-induced changes to the
capacitance derivatives and the photocapacitance rise time.
Figures 13 and 14 and the previous results of Karatay et
al. [47] show that, for small photocapacitance rise times
(τs<2π/ω1), the final term dominates and, unfortunately,
the measured tFP depends nonlinearly on τs with a coef-
ficient that is sensitive to small changes in �C ′

hν/�C ′′
hν .

In contrast, pk-EFM can detect small changes in photo-
capacitance rise time because the measurement indirectly
senses the total cantilever phase accumulated versus time
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using a series of voltage and light pulses [56]. The effect of
the steplike change in tip-sample force (�C ′

hν) is explic-
itly accounted for. For a photocapacitance having single-
exponential kinetics, the resulting phase shift for short
photocapacitance rise times is

�φ(tp) = �C ′
hνV 2

2A0k1

ω1

1 + τ 2
s ω2

1

(
tp − τs + τse−tp/τs

)
,

(102)

where tp is the pulse time. By measuring the phase shift �φ

versus the pulse time tp, the photocapacitance rise time τs
can be extracted along with �C ′

hν .

VI. IMPEDANCE SPECTROSCOPY EFM THEORY

In this section, we analyze experiments where the
assumption that tip charge responds instantaneously to
changes in the tip-sample separation or voltage breaks
down. We consider steady-state measurements so the
assumption that there are no abrupt changes in the
tip-sample force or force gradient is valid. This case
covers dissipation measurements [11], local dielectric
spectroscopy (LDS) [28,29], and broadband local dielec-
tric spectroscopy [23,30]. In the literature, these exper-
iments are normally described by assuming a time- or
frequency-dependent complex capacitance, a basically
phenomenological approach that fails to clearly separate
the contributions of the tip and sample impedance.

When the assumption that tip change responds instanta-
neously breaks down, the Lagrangian equations of motion
derived in Sec. II are, in general, a set of coupled, non-
linear, differential algebraic equations. As shown in the
derivations of Secs. II A and II B, the Lagrangian equations
of motion can be reduced to a set of coupled, nonlinear
ordinary differential equations. Even this simplification,
however, necessitates keeping track of numerous extrane-
ous charge variables, requires starting over if the model
of the sample and wiring impedance is changed, and most
importantly, retains the coupling between the evolution of
the charge variables and the evolution of the tip position.
In Sec. II A, we addressed these limitations by linearizing
both the charge and displacement coordinates about some
equilibrium position. This approach is not suitable when

large modulation voltages are applied, which is the case
for experiments such as local dielectric spectroscopy and
frequency-modulated Kelvin probe force microscopy (FM-
KPFM). Motivated by the idea that the coupling between
the charge and tip position is in some sense small, we make
a carefully controlled set of approximations designed to
decouple the charge and tip position so that we can relate
the measured observables (cantilever frequency shift and
sample-induced dissipation) to the sample impedance and
cantilever response function.

We start from the Lagrangian, dissipation, and general-
ized forces developed according to the procedure in Sec. II.
We describe the sample with a general impedance Z that
could, in principle, contain any number of linear circuit
elements or even impedances such as the Warburg diffu-
sion element that cannot be expressed using only linear
circuit elements [87] (Fig. 15). Our experimental observ-
ables are the cantilever frequency and dissipation, so we
focus on the equation of motion associated with the tip
position x [Eq. (45)] and the tip-sample electromechanical
force

Fts(qT, x) = C ′
T(x)q2

T

2CT(x)2 , (103)

which depends on the cantilever tip charge and the
position-dependent tip capacitance. Equation (103) is only
of limited use because we need to solve a system of cou-
pled, nonlinear differential equations to determine qT and
x. In Sec. II A, we proceed by linearizing both the tip dis-
placement x and the tip charge qT. However, in this section,
we are interested in modeling experiments that involve
large-amplitude, high-frequency modulations of the tip
charge, so we cannot linearize the tip charge qT. Instead,
we follow the series of approximations and calculations
outlined in Fig. 16. The first assumption we make is that
the tip oscillation is small so we can linearize the equations
of motion in x. The tip-sample force then becomes

Fts = 1
2

C ′ q2
T

C 2 + 1
2

C ′′
q

q2
T

C 2 x︸ ︷︷ ︸, (104)

Sample impedance

(a) (b)Significant
sample
impedance

ts

FIG. 15. Impedance spectroscopy model
of EFM. (a) We consider experiments at
steady-state conditions with significant sam-
ple impedance Z. (b) The Lagrangian model
for the experiment.
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Tip fixed
ts

ts

FIG. 16. An outline of the approximations necessary to describe EFM using impedance spectroscopy.

where C = CT(0), C ′ = C ′
T(0), and

C ′′
q = C ′′ − 2

C ′2

C
∝

(
∂Fts

∂x

)
qT (105)

describes the tip-sample force gradient at constant
charge [88]. The first term in Eq. (104) describes the force
detected in amplitude-modulation EFM or KPFM experi-
ments. Both terms contribute to the force gradient because
the charge qT oscillates as the tip oscillates. For writ-
ing experimental quantities, it is convenient to define the
difference between C ′′

q and C ′′,

�C ′′ = 2
C ′2

C
. (106)

Some of the charge variables qi contain a term propor-
tional to qix, which arises from linearizing terms involving
the tip capacitance. For example, in the simplest case
where the sample impedance is purely resistive (Z = RS,
the case treated in Sec. II A), linearizing Eq. (27) gives

V(t) = q̇TRS + qT

C
− C ′

C
qT

C
x︸ ︷︷ ︸, (107)

where we assume � = 0 here and throughout this section.
The underbraced terms in Eqs. (104) and (107) couple the
evolution of the tip position and the tip charge. The second
assumption we make is that the coupling is small so that we
can treat the underbraced terms as perturbations of order ε

and apply perturbation theory to dramatically simplify the
system of differential equations [89]. We expand the tip
position x in powers of ε:

x = x(0) + ε x(1) + . . . , (108)

where x(0) is the zeroth-order approximation of the tip posi-
tion and x(1) is the first-order correction to the tip position.
Analogously, we expand the tip charge qT and any other

necessary charge variables (abbreviated qi) as

qT = q(0)
T + ε q(1)

T + . . . , (109)

qi = q(0)
i + ε q(1)

i + . . . . (110)

By design, q(0)
T is independent of the tip position x [see

Eq. (107)]. Physically, q(0)
T is the tip charge assuming the

tip is fixed at x = 0. For a given circuit and applied tip-
sample voltage, we determine q(0)

T using ordinary circuit
analysis techniques. We are interested in experiments that
probe frequency shift or dissipation at steady state, so
we can neglect transients and use the transfer function
between the tip voltage drop Vt and the applied tip-sample
voltage V to determine qT:

Ĥ(ω) = V̂t(ω)

V̂(ω)
= 1/(j ωC)

Z(ω) + 1/(j ωC)
, (111)

where Z is the sample impedance and V̂ denotes the Fourier
transform of V with respect to time. The Fourier transform
of the zeroth-order tip charge is

q̂(0)
T (ω) = C Ĥ (ω)V̂(ω). (112)

Next, we can determine the zeroth-order cantilever posi-
tion x̂(0), which is the sum of an oscillation at frequency ω

(amplitude A0 determined by the driving force Fdr) and the
small oscillation induced by the zeroth-order tip-sample
force,

F (0)
ts = 1

2
C ′q(0)

T q(0)
T

C2 . (113)

In the frequency domain, the additional oscillation induced
by q(0)

T is

x̂Fts(ω) = χ̂ (ω)F̂ (0)
ts (ω), (114)
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where

χ̂(ω) = 1
k0

(
1 − ω2

ω2
0

+ j ω
Qω0

)−1

(115)

is the transfer function of the oscillator and

F̂ (0)
ts (ω) = 1

2
C ′

C2 [q̂(0)
T ∗ q̂(0)

T ](ω) (116)

is the Fourier transform of the zeroth-order tip-sample
force, with ∗ denoting convolution in the frequency
domain. We can describe EFM force measurements with
just Eq. (114). In order to describe force-gradient measure-
ments, we need to compute F (1)

ts , which reintroduces the
coupling between the tip charge and tip position and causes
small changes in the cantilever’s amplitude, frequency, and
phase.

At this point, we have zeroth-order approximations for
the tip charge and tip position. Next, we determine the
additional charge oscillation q(1)

T induced by the oscillat-
ing tip. The sample impedance is unchanged and, because
we have assumed that the tip oscillation is small, the tip
capacitance during each oscillation is approximately con-
stant. The first-order tip charge is driven by the effective
voltage source

Vx = C ′

C 2 q(0)
T x(0). (117)

The resulting first-order correction to the tip charge is

q̂(1)
T (ω) = C Ĥ (ω)V̂x(ω), (118)

where the transfer function Ĥ is given by Eq. (111) and the
Fourier transform of the effective voltage source is

V̂x(ω) = C ′

C 2 [q̂(0)
T ∗ x̂(0)](ω). (119)

Finally, we can determine the first-order correction to
the tip-sample force and, therefore, determine how the
cantilever amplitude and frequency depend on sample
properties and the applied modulation voltage. Our final
approximation is that this first-order correction is suffi-
cient to approximate the cantilever frequency shift and
sample-induced dissipation. The first-order correction to
the tip-sample force is

F (1)
ts = C ′q(0)

T q(1)
T

C 2 + 1
2

C ′′
q

q(0)
T q(0)

T x(0)

C2 . (120)

It is useful to recall the limiting behavior of the tip-
sample force, frequency shift, and sample-induced dissi-
pation in the case of a purely resistive sample (Sec. II A).

In the limit that the sample impedance Z(ω0) is large
compared to the tip impedance 1/(j ω0C), the tip charge
remains constant throughout the oscillation cycle so
that q(1)

T = 0. In this case, the force gradient is deter-
mined entirely by C ′′

q , which is related to the change
in electric field between the tip and sample at con-
stant charge [90]. The usual approximation is that the
sample impedance Z(ω0) is negligible compared to the
tip impedance so that the tip charge responds instan-
taneously to any change in tip position. In this case,
q(1)

T = C ′2q(0)
T x(0)/C 2 and the force gradient reduces to

1
2 C ′′Vt(t)2. Both the oscillating charge induced by the
oscillating tip and the effect of the oscillating tip on the
electric field between tip and sample contribute to the mea-
sured force gradient. Note as well that as long as the tip
voltage is not determined from the tip position using feed-
back, the oscillating force caused by the second term in
Eq. (120) will be purely in phase with the cantilever oscil-
lation and cause a frequency shift. In contrast, the first term
can give rise to a frequency shift or dissipation.

To determine the frequency shift and sample-induced
dissipation, we first take the lock-in amplifier signal to be

FLIA = F (1)
ts e−j ω0t, (121)

where we assume that the oscillation induced by the drive
force is x = A0 cos(ω0t). The real part of F̂LIA(0) corre-
sponds to a force in phase with the cantilever oscillation,
which causes a frequency shift

�f = − f0
2k0

Re[F̂LIA(0)]
A

, (122)

while the imaginary part of FLIA corresponds to a force
out of phase with the cantilever oscillation, which causes a
sample-induced dissipation

�s = − 1
ω0

Im[F̂LIA(0)]
A

. (123)

In many experiments, we modulate the tip voltage and
detect the frequency shift at some nonzero frequency. In
this case, we isolate the force component responsible for a
frequency shift by taking

Fin-phase = Fts cos(ω0t) (124)

and then we obtain the frequency shift as a function of
frequency by taking the Fourier transform,

�f̂ (ω) = − f0
2k0

F̂in-phase(ω)

A
, (125)

where �f̂ (ω) is a complex number representing the output
of both the X and Y channels of a lock-in amplifier set to
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frequency ω. Below, we apply the procedure outlined in
Eqs. (111)–(125) to determine the frequency shift and/or
sample-induced dissipation in different experiments as a
function of the sample impedance.

A. Frequency and dissipation versus voltage

We first consider applying a constant tip-sample voltage
Vts = V + � and driving the cantilever at its resonance fre-
quency using a phase-locked-loop controller (PLL) [91].
Using the procedure outlined above, we obtain the can-
tilever frequency shift

�f = − f0
4k0

{
C ′′

q + �C ′′Re[Ĥ (ω0)]
}

V 2 (126)

and sample-induced dissipation

�s = − 1
2ω0

�C ′′ Im[Ĥ(ω0)] V2, (127)

where we have assumed that the sample impedance Z has a
resistive component so that Ĥ(0) = 1. In the limit that the
sample impedance Z = RS, we recover the results derived
in Sec. II A.

B. Local dielectric spectroscopy

In local dielectric spectroscopy (LDS), the applied
tip-sample voltage is Vts = Vm cos(ωmt), with Vm the
modulation-voltage amplitude and ωm the modulation-
voltage frequency. The cantilever is driven at its resonance
frequency using a PLL. The cantilever frequency shift
component at a frequency 2ωm is monitored with a lock-
in amplifier as the frequency ωm is stepped from low to
high frequency, with the high-frequency limit still signif-
icantly less than the cantilever resonance frequency. The
frequency shift, in this case, is found to be

�f̂ (2ωm) = − f0V2
m

8k0

[
C ′′

q + �C ′′H̄(ωm, ω0)
]
Ĥ 2(ωm),

(128)

where H is the average response at frequencies ωm±ω0:

H̄(ωm, ω0) = 1
2

[
Ĥ(ωm + ω0) + Ĥ(ωm − ω0)

]
. (129)

In LDS, H̄(ωm, ω0) is typically well approximated by
Re[Ĥ (ω0)] because ωm�ω0. We see that the experiment
mainly probes the response of the sample charge at the
modulation frequency ωm.

To show that the first-order perturbation theory approx-
imation is good, we compare the analytic approximation
of Eq. (128) to numerical simulations of the equations of
motion for a sample impedance that shows dynamics over
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FIG. 17. Analytical and numerical analysis of local dielectric
spectroscopy. Comparison between frequency shift determined
from numerical simulations (points) and the impedance-theory
approximation (lines). Simulation parameters and details are
given in the Appendix.

multiple timescales (Fig. 19 and the Appendix). Figure 17
shows the real and imaginary components of �f̂ (2fm),
which correspond to the outputs of the X and Y channels
of a lock-in amplifier set to 2fm at various sample interfa-
cial resistances RI. There is good agreement between the
numerical simulations (points) and analytic approximation
(lines) across the entire range of modulation frequencies.

C. Broadband local dielectric spectroscopy

While local dielectric spectroscopy probes sample
charge at frequencies ωm�ω0, broadband local dielec-
tric spectroscopy (BLDS) probes the response of sample
charge at higher frequencies by exploiting the nonlinear
relationship between applied voltage and frequency shift to
mix a high-frequency signal to a convenient intermediate
frequency. In BLDS, the tip-sample voltage is

V(t) = Vm

[
1
2

+ 1
2

cos(ωAMt)
]

cos(ωmt), (130)

with Vm the modulation-voltage amplitude, ωm the
modulation-voltage frequency, and ωAM the amplitude-
modulation frequency. The amplitude-modulation fre-
quency ωAM is a convenient intermediate frequency; it
must be within the PLL frequency detection bandwidth
[ωAM/(2π) < 1 kHz, typically]. The cantilever is driven

064020-25



DWYER, HARRELL, and MAROHN PHYS. REV. APPLIED 11, 064020 (2019)

A
M

FIG. 18. Analytical and numerical analysis of broadband
local dielectric spectroscopy. Comparison between frequency
shift determined from numerical simulations (points) and the
impedance-theory approximation (lines). Simulation parameters
and details are given in the Appendix.

at its resonance frequency using a PLL. The cantilever fre-
quency shift component at a frequency ωAM is monitored
with a lock-in amplifier as the modulation frequency ωm is
stepped from low to high frequency. The frequency shift is

�f̂ (ωAM; ωm) = − f0V2
m

16k0

{
C ′′

q + �C ′′Re[H̄(ωm, ω0)]
}

× |Ĥ(ωm)|2, (131)

where H̄ is the average response at frequencies ωm±ω0
[Eq. (129)]. In contrast to LDS, which retains informa-
tion about both the real and imaginary components of the
sample response at the modulation frequency, in BLDS

FIG. 19. A circuit illustrating the types of dynamics observed
in perovskite and organic-semiconductor solar cells.

the frequency mixing necessary to measure the response
of sample charge at high frequencies results in the loss of
phase information.

Just as for LDS, we compare the analytic approxi-
mation for the BLDS frequency shift in Eq. (131) to
numerical simulations of the equations of motion (Fig. 19
and the Appendix). Figure 18 shows �f̂ (fAM) versus the
applied modulation frequency at various sample interfa-
cial resistances RI. There is good agreement between the
numerical simulations (points) and analytic approximation
(lines) across the entire range of modulation frequencies.
Overall, the procedure outlined in this section provides
a way to analyze any steady-state force or force-gradient
measurement for an arbitrary sample impedance.

D. Parallel resistance and capacitance sample
impedance

Just as in impedance spectroscopy, a specific model of
the sample impedance is needed to extract relevant infor-
mation about the sample from these experiments. Here, we
describe a model that was useful in interpreting the exper-
imental results in Ref. [23]. We model the sample using a
parallel resistance RS and capacitance CS so that the sample
impedance Z = (R−1

S +j ωCS)
−1. In this case, the transfer

function Ĥ is

Ĥ(ω) = RSCSω − j
RS(CS + CT)ω − j

. (132)

The circuit is a lag compensator with time constant τ and
gain parameter g, given by, respectively,

τ = RS(CS + CT) and g = (CS + CT)/CS. (133)

This model provides an intuitive way to interpret the rep-
resentative BLDS data of Fig. 2. As the light intensity is
increased (from bottom dark points to top light points), the
decrease in �f occurs at higher modulation frequencies,
indicating that the time constant τ decreases as the light
intensity increases. According to Eq. (133), the decrease in
τ could be caused by a decrease in sample resistance RS or
a decrease in sample capacitance CS. We can distinguish
between these two possibilities by examining the limit-
ing behavior at high frequencies. According to Eq. (132),
at high frequencies the transfer function H approaches
CS/(CS+CT). In the dark, �f approaches zero at high fre-
quencies, which indicates CS�CT. As a result, the time
constant is relatively insensitive to changes in the sample
capacitance. Consequently, τ ≈ RSCT. We can therefore
ascribe the decrease in τ with increasing light intensity to a
decrease in sample resistance RS. This conclusion is robust
to the sample impedance model used because even for
a more complicated sample impedance model, any resis-
tances behave as an open circuit at high frequencies, and
in the high-frequency limit, only the capacitance across
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the sample is important. Moreover, the careful analysis
of the BLDS sheds light on the frequency shift and dis-
sipation versus light intensity data in Figs. 1(c) and 1(d).
At the point of maximum dissipation, RSCT = ω−1

0 . We
can use dissipation as a measure of the local sample resis-
tance (or conductivity) [11]. The clear separation of the tip
capacitance CT from the sample impedance Z is a major
advantage of the method presented here. In Ref. [23], the
model helped us relate changes in the sample time constant
and dissipation to light-induced changes in the sample
conductivity.

VII. CONCLUSIONS

The usual description of the EFM experiment [Eqs. (1)
and (2)] implicitly assumes that tip charge redistributes
instantaneously as the tip oscillates and that the tip-sample
force and force gradient do not change abruptly. In the
Introduction, we summarize a broad range of experiments
where these assumptions are violated. To lift these assump-
tions, we turn to Lagrangian mechanics to describe the
coupled motion of the tip charge, tip coordinate, and
sample charge. The resulting coupled differential equa-
tions are exact but nonlinear and insoluble; we linearize
these equations to obtain an approximate closed-form solu-
tion. This linearization is a good approximation in the
limit of small-amplitude charge and position oscillations
about equilibrium. Moving beyond this approximation
would bring in nonlinear oscillator physics such as an
amplitude-dependent frequency and bistability. In con-
trast to high-resolution AFM experiments, these nonlinear
effects have not, to our knowledge, been significant in
most high-sensitivity EFM experiments carried out to date.
The Lagrangian-mechanics approach outlined here is nev-
ertheless an excellent starting point for treating nonlinear
effects in electrical scanning probe experiments. Nonlinear
terms would have to be measured experimentally, how-
ever, and the associated nonlinear equations of motion
solved numerically. Within the small-amplitude approxi-
mation, we develop an analytical framework (Sec. II) of
closed-form equations for interpreting a broad range of
EFM measurements, where the usually employed but often
inapplicable adiabatic-charge-redistribution and abrupt-
�k-change assumptions are violated.

Sections III–V show how our framework can be used
to quantitatively analyze photocapacitance measurements
that involve abrupt changes in the tip-sample force and
force gradient when the light intensity or applied voltage
is abruptly changed. We derive how an abrupt change to
the tip-sample force induces an abrupt change in the can-
tilever’s amplitude and phase and we use this result to
obtain an analytical expression for the tFP observable in the
FF-trEFM experiment. Taken together with our prior anal-
ysis of the pk-EFM experiment [56], we see that the results
of Secs. III to V give us a framework for fully evaluating

the subcycle time resolution of ultrafast electrical scanning
probe experiments. While we focus on the photocapac-
itive effects that are most important for understanding
the relevant experimental results [46,47,56], our analy-
sis also applies to situations where the dominant factor is
light- or voltage-induced changes in the sample’s surface
potential [50–52,54,55].

In Sec. VI, we introduce a procedure to relate frequency
shift and/or sample-induced dissipation during steady-state
EFM experiments to an arbitrary sample impedance Z.
This procedure helps us analyze the frequency shift and
dissipation in local dielectric spectroscopy and broadband
local dielectric spectroscopy measurements using a com-
mon framework. The primary finding of Sec. VI is that
Eq. (2), ubiquitously employed to describe the FM-KPFM
experiment, should be replaced by Eq. (126) when interro-
gating any sample having finite resistance and capacitance.
While we focus in Sec. VI on analyzing light-induced
changes to the sample impedance, the model could also
accommodate light-induced changes to the surface poten-
tial � or describe how the sample impedance would impact
novel Kelvin probe force microscopy measurements such
as heterodyne KPFM [92,93], dissipative KPFM [94,95],
or open-loop KPFM [96,97] that seek to combine the spa-
tial resolution of force-gradient measurements with the
temporal resolution of force measurements. Our approach
reveals how the signal in these experiments changes when
the sample impedance becomes significant.

The general approach outlined in Secs. II and VI
provides another possible, rigorous route to describe
the tip-sample interaction and cantilever parameters in
piezoresponse and electrochemical strain microscopy. In
this case, an electromechanical model of the sample, with
a sample displacement variable, would be necessary. With
such a model, the Lagrangian formalism could be used
to generate the coupled equations of motion and the
tip-sample force, frequency shift, and friction could be
derived.

The impedance theory description of EFM also provides
an interesting perspective on the photocapacitance exper-
iments discussed in the previous section. In the context
of that theory, an apparent increase in capacitance could
be caused by an increase in sample capacitance and/or
a decrease in sample resistance. Just as the combination
of dissipation and broadband local dielectric spectroscopy
was informative for the perovskite materials of Ref. [23],
performing photocapacitance measurement in tandem with
broadband local dielectric spectroscopy on the organic
bulk heterojunction films of Refs. [46] and [56] could help
resolve the origin of the photocapacitance signal.
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APPENDIX: IMPEDANCE SPECTROSCOPY
SIMULATIONS

This appendix lays out how the simulations shown in
Sec. VI are performed. First, we apply the procedure of
Sec. II to the circuit shown in Fig. 19. This procedure gen-
erates eight equations: one for the tip position x; five for
the charge variables qT, qS, qI, qRI , and qRS; and two for
the Lagrangian multipliers λ1 and λ2. In the limit that the
tip resistance RT approaches zero, there are two differential
equations and five algebraic equations for the charge vari-
ables and Lagrangian multipliers. We reduce the dimen-
sionality of the system by solving for qT, qRI, qRS, λ1, and
λ2 in terms of the remaining variables qS and qI. The eight
differential and algebraic equations are reduced to three
differential equations:

mẍ = −mω0x − 2γ mẋ + C ′
T(x)q2

T

2C2
T(x)

+ Fdr(t), (A1)

RIq̇RI = −qRI

CI
+ qRS

CI
, and (A2)

RSq̇RS = −
(

1
CS + CT(x)

+ 1
CI

)
qRS + qRI

CI

+ CT(x)
CS + CT(x)

V(t), (A3)

with the tip charge given by

qT = CT(x)
CS + CT(x)

qRS + CSCT(x)
CS + CT(x)

V(t). (A4)

So far, we have rewritten our equations of motion in
a form that will be easier to simulate numerically but
have not introduced any approximations. The equations of
motion above are linearized in x about x = 0. The result-
ing equations of motion, shown below, are used in the
simulations:

ẋ = p/m, (A5)

ṗ = −mω2
0x − 2γ p + C ′q2

T

2mC 2 + ε
C ′′

q q2
Tx

2mC 2︸ ︷︷ ︸
Fts/m

+Fdr(t)
m

,

(A6)

q̇Ri = − qRi

CIRI
+ qRs

CIRI
, (A7)

q̇Rs = −
(

1
CS + C

− ε
C ′x

(CS + C)2 + 1
CI

)
qRs

RS

+ qRi

RSCI
+

(
C

CS + C
+ ε

CSC ′x
(CS + C)2

)
V(t)
RS

. (A8)

For both the LDS simulations of Fig. 17 and the BLDS
simulations of Fig. 18, the cantilever mechanical param-
eters are the spring constant k0 = 3.5 μN μm−1, quality
factor Q = 26 000, and angular resonance frequency ω0 =
2π × 0.065 MHz, so that the cantilever mass is m =
21.0 ng and the linear damping parameter is γ = 7.85 ×
10−6 μs. The drive force is Fdr(t) = 0 and the initial can-
tilever amplitude is A0 = 0.05 μm. The tip-sample capaci-
tance parameters are CT(x = 0) = C = 1 × 10−3 pF, C ′ =
−1.80 × 10−4 pF μm, and C ′′ = 1.3 × 10−4 pF μm−2, so
that C ′′

q = 6.5 × 10−5 pF μm−2 [Eq. (105)]. As defined
in Fig. 19, the sample impedance parameters are RS =
200 M�, CS = 1 × 10−3 pF, and CI = 1 × 10−3 pF. The
value of the resistance RI is given next to each trace
in Figs. 17 and 18. The given units are those used in
the simulation. For LDS, the applied tip-sample volt-
age is V(t) = Vm sin(ωmt) with the modulation voltage
Vm = 5 V. For BLDS, the applied tip-sample voltage is
V(t) = Vm

( 1
2+ 1

2 cos ωAMt
)

sin(ωmt), with Vm = 5 V and
the amplitude-modulation frequency ωAM = 2π × 160 ×
10−6 MHz [Eq. (130)]. The parameter ε = 1 marks
terms considered small perturbations in the model of
Eqs. (103)–(125).

The simulations are performed in Python using the
odeint method in Scipy [99], which calls the LSODE
solver. Each LDS experiment is simulated for 40 000 μs
and each BLDS experiment is simulated for 20 000 μs. The
initial cantilever state is x = A0, p = 0. Simulation tran-
sients are avoided by defining the initial charge variables
qRI and qRS using the appropriate response function:

qRs = V
C + CCIRIs

1 + (RI + RS)CTSs + RICIs(1 + RSCTSs)
and

qRi = V
C

1 + (RI + RS)CTSs + RICIs(1 + RSCTSs)
, (A9)

where s = j ω, CTS = C + CS, and the charges at t = 0
are determined by setting V = Vm exp(j ωt − j π/2) and
evaluating the real part of qRS and qRI at t = 0 for ω =
ωm. While LSODE controls the integration method, order,
and step size, inspection of the full output of the solver
shows that a fifth-order backward differentiation formula
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(BDF) Gear method is typically used with time steps of
approximately 0.2 μs.
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