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In recent years different setups based on external cavities have been developed, in order to enhance
the performance of pulsed semiconductor mode-locked lasers, namely the peak power and width of the
emitted pulses. Depending on the operating conditions and the cavity configuration, pulse cluster solutions
emerge with a nonidentical temporal interpulse spacing, which limit the performance of such devices. In
this work we present a system of multidelay differential equations to describe the dynamics of a passively
mode-locked vertical-external-cavity surface-emitting laser with V-shaped cavity geometry, that allows
for an effective modeling and detailed studies of parameter dependencies. We apply numeric integration
as well as path-continuation methods to understand the underlying bifurcation scenarios and hence the
parameter regions of stable operation. Our investigations indicate that pulse cluster solutions emerge along
the fundamental periodic solution branch with a critical influence of the cavity round-trip time on the
number of pulses in the cluster. We find regions of multistability of higher-order pulse clusters and predict
how different types of dynamics can be favored by tuning the cavity geometry.
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I. INTRODUCTION

As mode-locked semiconductor lasers offer an efficient
option to generate periodic short optical pulses, they qual-
ify for diverse applications such as frequency comb gener-
ation [1,2] in optical metrology [3] and spectroscopy [4,5]
or optical communication [6–8]. Hence, extensive research
has been performed in the last decades, with the strive
to understand and enhance the performance figures of
such devices [6,8–13]. In order to overcome performance
limitations of edge-emitting mode-locked semiconductor
lasers in comparison to Ti-Sa or solid-state lasers, vertical-
external-cavity surface-emitting lasers (VECSELs) have
been developed [14,15]. These provide high peak pow-
ers in the kW range with pulse durations down to 100
fs at GHz repetition rates [16–18]. One class of mode-
locked VECSELs is configured in a way that the gain
chip is positioned in between a semiconductor saturable
absorber mirror (SESAM) and the out-coupling facet in
a V-shaped geometry. Induced by the interaction of the
active components via the electric field, tuning the cav-
ity configuration leads to diverse dynamical regions, such
as fundamental mode locking (FML), higher harmonic
mode locking (HML) and pulse cluster dynamics (PC)
[19–23]. The latter are characterized by pulses of the same
amplitude with temporal interpulse spacing much smaller
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than the fundamental period at which they occur. These
pulse cluster dynamics have been reported to limit the
peak power and hinder potential applications of mode-
locked VECSELs [19]. In order to model these lasers,
different approaches were investigated in recent publica-
tions. Microscopic models are introduced in Refs. [24–26],
which include the influence of microscopic polarization
and therefore are suitable to describe the loss conditions
on the very-short pulse generation (100 fs). However, their
major drawback lies within the high computational cost,
which makes them undesirable for large parameter scans.
Furthermore, an approach to model the formation of car-
rier gratings induced by colliding pulses at the absorber
is described in Ref. [22]. Adiabatically eliminating micro-
scopic polarization effects in a delay algebraic equation
(DAE) model, describing the VECSEL by two-coupled
microcavities, is derived in Ref. [27]. This set of DAEs
includes microcavity effects and therefore models the com-
plex interplay between filtering and nonlinearity inside the
active sections. Nevertheless, the DAE structure imposes
the introduction of additional artificial timescales and takes
the limit of infinitely fast timescales to reproduce the DAE
structure, which renders an extended bifurcation analysis
very “challenging.” Moreover, delay differential equations
(DDEs) were derived to model a vast range of dynamics in
mode-locked VECSELs such as localized states [28–31],
however these do not include the distinct features of the
external cavity. In this work we present a system of delay
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differential equations also accounting for the influences
of the V-shaped cavity geometry, namely the backwards
traveling pulse. The model is simple enough to apply con-
ventional path continuation methods and therefore conduct
a bifurcation analysis of the pulse cluster dynamics in a
mode-locked VECSEL. Our results can help to further
improve the operation of such devices, as we reveal mul-
tistabilites between different pulse cluster solutions and
further unwanted dynamical regions. Furthermore, we also
show how higher-order pulse-cluster emission dynamics
can be favored by tuning the cavity geometry.

The paper is structured in the following sections: We
start by introducing the system of delay differential equa-
tions used to model the pulse cluster dynamics found in
VECSELs in Sec. II. A bifurcation analysis of the emerg-
ing pulse clusters containing a different number of pulses
is presented in the results, Sec. III. We describe the genera-
tion mechanism of pulse clusters in Sec. III A. A numerical
analysis unraveling the emergence of higher-order pulse
clusters at increased cavity round-trip times is presented
in Sec. III B. In this section we also assess how the pulse
clusters stabilize (Sec. III B 1) and how they become inde-
pendent of the fundamental main solution branch (Sec.
III B 2). Additionally, we discuss the effects of introducing
a slight asymmetry in the cavity geometry in Sec. III C. A
conclusion is given in Sec. IV.

II. MODEL

In order to account for the distinct features of the V-
shaped cavity geometry (see Fig. 1), we derive a DDE-
model starting from the traveling wave equations [32].
As the timescales important for the generation of pulse
cluster dynamics are much slower than the timescales of

FIG. 1. Sketch of a passively mode-locked VECSEL with V-
shaped cavity geometry and symmetric positioning of gain and
absorber, i.e., τ1 = τ2, with τ1 and τ2 referring to the length of
the cavity arms. The active gain and absorber chips are equipped
with a highly reflective distributed Bragg reflector at the bot-
tom side of the chip. The out-coupling facet has a reflectivity of
99% and is indicated by the lens shape. The propagating electric
field is marked by the colored arrows indicating the propagation
direction, with the forward direction in light red and backward
direction in light blue.

material polarization effects, we eliminate the polarization
adiabatically. We then follow a similar procedure as pro-
posed in Ref. [33], taking into account both propagation
directions of the electric field inside the cavity and inte-
grate along the characteristic curves for each section of the
cavity. A detailed description of the derivation is given in
Appendix A.

In contrast to previous DDE models for passively mode-
locked VECSELs [28,31], we do not approximate the
VECSEL by a ring cavity as we include both propagation
directions. Furthermore, for a qualitative study of the pulse
cluster dynamics it is sufficient to exclude microscopic
effects as opposed to Refs. [24–26].

The investigated VECSEL consists of a SESAM, a
gain-chip and an out-coupling facet. The components are
positioned in a V-shaped geometry as shown in Fig. 1
and as experimentally realized [18,19]. We assume the
width of the active sections (quantum wells) in the gain
and SESAM chip to be infinitesimally small [33]. The
regions between the gain and SESAM are included as two
passive sections, not affecting the electric field. Due to
the normal incidence at the SESAM in the experimental
setup of the semiconductor chips [18], the active region
of the SESAM is passed twice at approximately the same
time. Additionally, the limited bandwidth of the gain is
modeled by a Lorentzian filter at the out-coupling facet.
Taking these assumptions into account, we derive a system
of multidelay differential equations describing the dynam-
ics of the dimensionless electric field E(t) = E+(t, z = 0)

at the out-coupling facet and the carrier dynamics in the
gain G(t) and the absorber section Q(t). On account of
reducing the number of delays in the DDE model [19],
the dynamic variables of carrier densities in the gain G(t)
and the saturable absorber Q(t), are transformed to the co-
moving frame of the forward propagating field. This leads
to the following set of DDEs for our bifurcation analysis,
modeling the dynamics of E(t), G(t), and Q(t):

dE
dt

= −γ E(t) + γ E(t − T)R(t − T), (1)

dG
dt

= Jg − γgG(t) − [eG(t) − 1]

× [|E(t) |2 + |E(t − 2τ2) |2 e2Q(t−2τ2)+G(t−2τ2)
]

,
(2)

dQ
dt

= Jq − γqQ(t) − rs[e2Q(t) − 1]eG(t) | E(t) |2,

(3)

R(t − T) = √
κe

1−iαg
2 [G(t−2τ1)+G(t−T)]+(1−iαq)Q(t−T), (4)

where γ is the gain bandwidth modeled by the linewidth
of the Lorentzian filter, γg,q are the nonradiative carrier
recombination rates in the gain and the absorber section,
Jg is the pump current in the gain section (normalized so
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that Jg = 0 corresponds to transparency), Jq refers to the
unsaturated absorption in the absorber section, κ represents
the nonresonant losses per round trip, rs is proportional to
the ratio of the differential gain coefficients in the gain and
absorber section, and αg,q are the linewidth enhancement
factors in the gain and absorber section, respectively.

The delays τ1 and τ2 are defined by the length of the
corresponding cavity arm as indicated in Fig. 1. Conse-
quently, the cold-cavity round-trip time is defined as T =
2(L/vg) = 2τ1 + 2τ2, where vg is the group velocity of
the electric field and L corresponds to the spatial length
of the cavity. The term R(t − T) defined by the algebraic
Eq. (4), gives the total amplification and losses of the
electric field during one round trip in the V-shaped res-
onator. In comparison to the works assuming a circular
geometry for monolithic mode-locked lasers [13,34–36],
it includes three field-carrier interaction terms, namely
[G(t − 2τ1),G(t − T)] and Q(t − T). These are character-
ized by the (delayed) gain and absorption terms in the
exponential. Specific for the V-shaped cavity, the gain chip
is passed twice per round trip at two different points in
time. The interaction with the active section of the SESAM
during one round trip is reduced to two interactions at the
same time, due to the negligible spatial extent of the active
region. This results in a factor of 2 in front of the SESAM
carrier term Q(t − T) in the exponential in Eq. (4).

The parameters used in this work are chosen to adapt
experimental values [18,19] and are given in Table I. We
perform our bifurcation analysis at values of αg,q = 0 for
several reasons. Firstly, it has been found that the dynam-
ical α factor approaches 0 for short optical pulses in
quantum-well as well as in quantum-dot lasers [37,38].
The reason for that lies within the delay of the refractive
index change induced by a short pulse. The index change
at the optical frequency of the exciting pulse occurs only
after it has already passed the active medium. Secondly,
we are aiming at a qualitative description of the geomet-
ric effect underlying the formation of pulse clusters and
it has been shown that similar DDE models provide an
excellent qualitative agreement with experimentally deter-
mined dynamics [36,39,40] with the α factor set to 0.
Thirdly, we investigate the numerically found dynamics
also for a variety of α factors and the general structure
of the dynamical regimes did not change drastically (see
Appendix B).

TABLE I. Parameter values used in the bifurcation analysis.
Parameters chosen to adapt experimental values [18,19].

Symbol Value Symbol Value

Jq −104 ns−1 γ 240 ns−1

γg 1 ns−1 γq 150 ns−1

αg 0 αq 0
κ 0.99 rs 2

We start our investigations for cavities with a round-trip
times of T = 193 ps, which are comparatively low for
these types of VECSELs, but help to generate a first
understanding of the dynamics. In the following we then
increase the round-trip time up to the region where γgT >

1, which can lead to the occurrence of localized states
[28,30]. The results presented in the first sections of this
work are based on a symmetric arrangement of gain and
absorber chip in the cavity (τ1 = τ2). Thus, it is possible to
rule out that the pulse cluster dynamics emerge due to an
asymmetry of the external cavity.

For the bifurcation analysis presented in the follow-
ing section the path continuation software package DDE-
Biftool [41] is used. Furthermore, numerical solutions of
the DDE system are obtained by utilizing customized
numerical integration software based on the Runge-Kutta
algorithm of fourth order.

III. RESULTS

A. Emergence of the pulse cluster solution branch

As a starting point of our bifurcation analysis we find an
algebraic expression for the fixed point of cw lasing of the
form:

(E, G, Q) = (E0eiωt, G0, Q0), (5)

similar to Refs. [13,34,42], with ω corresponding to the
frequency of the longitudinal mode relative to the max-
imum gain. Substituting Eq. (5) into Eqs. (1)–(3) yields
the following set of algebraic equations for the different
monochromatic solutions of the cw steady state:

ω2 = κγ 2e2G0+2Q0 − γ 2, (6)
ω

γ
= − tan(αgG0 + αqQ0 + ωT) (7)

G0 = 1
γg

[Jg − (eG0 − 1)(| E0 |2 + | E0 |2 e2Q0+G0)], (8)

Q0 = 1
γq

[Jq − rs(e2Q0 − 1)eG0 | E0 |2]. (9)

The threshold current Jg = Jth of the maximum gain cw
lasing steady state (relative to the transparency current
Jth = Jabs,th − Jabs,trans) can be defined as the bifurcation
point in which the fixed-point solution of the off state
(0,G0,Q0) becomes unstable [13,43]. In the following anal-
ysis, the pump current is given relative to the threshold
current Jth. We remark that there is no one-to-one cor-
respondence between experimental pump powers and the
value of J . Due to the parameter normalization in the
model, a numerical pump current of J = 30Jth corresponds
to approximately seven times the physical threshold cur-
rent. We find an expression for Jth by substituting Eq. (6)
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and Eq. (9) into Eq. (8)

Jth = γg

[
−1

2
ln(κ) − Jq

γq
+ 1

2
ln

(
1 + ω2

γ 2

)]
. (10)

At this value for Jg the cw solution inhibiting the lowest
detuning from the maximum gain, i.e., ω = 0, becomes
stable. As the mode-locking solutions of interest bifurcate
from this solution we only investigate ω = 0 in the follow-
ing. The corresponding input-output curve for cw emission
is shown as a dashed line in Fig. 2(a). As for ring cav-
ity lasers [34,44], a series of Andronov-Hopf bifurcations
can be found along this cw branch (in pump power Jg)
by calculating the dominant eigenvalues (EV). At these
Hopf bifurcation points, harmonic mode-locking branches
emerge, which we follow by numerical path continua-
tion. They can be distinguished according to the period
of the solution born in the respective bifurcation point
(Tperiod ≈ T/N , where N corresponds to the order of the
Hopf bifurcation). The spacing (in Jg) and total num-
ber of Hopf bifurcations along the branch is governed by
the gain bandwidth γ and the round-trip time T. These
parameters also determine the pulse width of the peri-
odic solutions. We choose γ = 240 ns−1, two magnitudes
smaller than the experimental values, in order to achieve
reasonable computation times without drastically chang-
ing the underlying dynamics emerging from the first Hopf
bifurcations. We remark that the qualitative bifurcation
mechanisms remain unchanged for larger values (up to
γ = 1600 ns−1).

On the account of finding fundamental pulse cluster
solutions with a period approximately equaling the cold
cavity round-trip time as observed in experiments [19,20],
we first investigate the solution branch bifurcating from
the first Hopf bifurcation (H1) of the cw solution. The
result is shown as a solid line in Fig. 2(a), with thick
regions indicating stable solutions, i.e., experimentally
observable emission dynamics. We find stable fundamental
mode locking [Fig. 2(b3)] directly after the H1 bifurcation
point, similar to the case of a circular cavity. As the pump
power is increased, the FML solution becomes unstable
in the SN1u saddle-node bifurcation. Here the first sub-
script refers to the number of pulses contained in the pulse
cluster and the second subscript serves as an identifier
to distinguish the saddle-node bifurcations according to
their position along the branch (SNnu upper saddle node,
SNnl lower saddle node). At the SN1u point a side pulse
emerges [see profile Fig. 2(b2)], and closely after this bifur-
cation point, the number of unstable eigendirections is
turned to three in a torus bifurcation (not shown). Fol-
lowing the solution branch, the two pulses grow closer
together in amplitude and temporal spacing, forming a
two-pulse cluster beyond the SN2l bifurcation point. This
bifurcation leads to a change from three unstable to two
unstable eigenvalues. The resulting pulse cluster solution

(a)
nln n

p

c

nu

a

cw

a

FIG. 2. (a) Maximum electric field amplitude along the H1 peri-
odic solution branch (solid line), emerging from the first Hopf
bifurcation of the cw steady state (dashed line) for increasing
pump power. The pump power is normalized to the lasing thresh-
old Jth, the pulse amplitude is dimensionless. Stable (unstable)
solutions are indicated by thick (thin) lines. Red (orange) circles
mark saddle-node bifurcations SNnu (SNnl) that change the sta-
bility at the top (bottom) of the loops. The first subscript refers
to the number of pulses in the cluster. Torus bifurcations Tn are
indicated in green. (b1) Electric field profile for one period of
the stable fundamental mode-locking solution, marked by the
gray diamond in (a). (b2) Pulse profile of the unstable side pulse
emerging shortly before the saddle-node point SN1u, marked by
the blue diamond. (b3) Stable pulse cluster solution (PC2) marked
with the green diamond. Round-trip time T = 193 ps, all other
parameters as given in Table I.

is still unstable and contains two pulses (PC2). It is stabi-
lized in a torus bifurcation (T2, subscript referring to the
number of pulses in the cluster). The corresponding sta-
ble electric field profile is shown exemplary in Fig. 2(b3).
The stable PC2 dynamics is again bound by a saddle-
node bifurcation (SN2u) at larger pump powers [Fig. 2(a)].
Beyond SN2u, the solution undergoes a similar bifurcation
scenario as the FML solution before. Thus, an additional,
third, pulse emerges within the pulse profile. After pass-
ing the SN2l point, the pulses merge and a stable region
of single-pulse mode locking, characterized by temporally
wide pulses (pulse width approximately equal to 0.4T),
remains and becomes stable in a torus bifurcation (TR).
This dynamics remains stable for a wide range of pump
powers and due to the width of the pulses there is a
continual field-carrier interaction in the gain. In order to
unravel changes of the dynamics induced by the cavity
length, the H1 branch is continued in pump power for
different round-trip times (T = 190 ps–T = 1 ns). At this
point we stress that the symmetry of the cavity is kept
fixed, i.e., the length of the cavity arms is equally enlarged
(τ1 = τ2).
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FIG. 3. (a1−3): Normalized electric field amplitude profiles
along the fundamental H1 branch plotted as color code for round-
trip times of T = 287 ps (a1), 412 ps (a2) and 537 ps (a3). The
x-axis corresponds to one period of the periodic solution whereas
the y-axis represents the position on the branch. (b1−3): Maxi-
mum electric field amplitude along the solution branch emerging
from the H1 Hopf bifurcation for the same round-trip times as
in (a1−3). Torus bifurcations are marked in green, saddle-node
bifurcations in red lines. Orange circles represent saddle-node
bifurcations, which lead to the disappearance of one unstable
EV, with a minimum of 2 unstable EVs after the bifurcation.
Nomenclature as described in the text. The detached fundamen-
tal mode-locking solution is indicated in light blue, the detached
PC2 region is shown in gray (b3). All other parameters chosen as
in Table I.

In Fig. 3(a) we show a 2D plot of one period of the
normalized electric field amplitude for each point along the
H1 branch, while the corresponding maximum amplitude

along the solution branches are shown in Fig. 3(b) for
three different round-trip times (from top to bottom: 287,
412, and 537 ps). The bright red features in the color
plots [Fig. 3(a)] indicate the maximum pulse amplitudes
and thus the changes of the temporal pulse positions fol-
lowing the upper saddle-node bifurcations (red lines) can
nicely be seen. As the round-trip time is increased, the gen-
eral form of the branch with subsequent looping solutions
stays similar to what is observed in Fig. 2. Nevertheless,
the number of loops created along the branch increases,
which corresponds to an emergence of higher-order pulse
clusters. This can be seen in the color plots where up to
six peaks can be found in the electric field profile of the
laser emission [see Fig. 3(a1−3)]. The more pronounced
looping behavior is based on the emergence of further
pairs of saddle-node bifurcations (SNnu and SNnl) along
the branch. Physically this can be attributed to the higher
round-trip times allowing for lower pulse widths and there-
fore a higher number of pulses in the cavity. In analogy
to the case of low round-trip times discussed in Fig. 2,
the upper saddle-node bifurcations (SNnu, red) change the
dynamics from stable to unstable, whereas in the lower
ones (SNnl, orange) a minimum number of two unstable
eigenvalues can be found after the bifurcation.

The higher-order PCs continuously develop along the
branch with increasing T. Their formation starts with an
additional side pulse emerging at the upper saddle-node
bifurcations [SNnu, red lines in Fig. 3(a1−3)], of the pre-
vious loop and then similar to the mechanism explained
for the PC2 move closer together until they finally stabi-
lize in a torus bifurcation. By inspecting the color codes
in Fig. 3(a) we examine that the pulse amplitudes and the
temporal interpulse distances continuously adjust along the
branch (bright spots move close to each other). The tem-
poral distance between the pulses in the stable regions of
the pulse clusters is given by Tdist ≈ Tperiod/2Np , where Np
corresponds to the number of pulses in one cluster. The
regimes of stable higher-order PCn dynamics [solid lines in
Fig. 3(b1−3)] are bound by torus bifurcations at low pump
powers (green circles) and SNnu saddle-node bifurcations
(red circles) at higher pump powers, respectively. This
means that only the small regions of the solution branch
in between the red and the green circles are stable, and
thus observable experimentally. Note that although we find
the solutions well separated along the branch they actually
occur at similar pump powers [see Fig. 3(b)], which means
that they are multistable for one point of operation. How-
ever, the higher-order PCn solutions are initially unstable,
as can be seen, e.g., for the PC6 solution in Fig. 3(a3). The
corresponding loop along the branch is also already visible
in this case [Fig. 3(b3)]. As observed for low-cavity round-
trip times, the pulses of the highest order PCn merge to a
single pulse at a certain pump power (Jg/Jth > 30). Hence,
a region of single-pulse mode locking with a wide pulse
becomes stable [large red feature at the top of Fig. 3(b1−3)]
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in a torus bifurcation (TR), at large Jg . This solution even-
tually occurs for all considered round-trip times (T < 1200
ps). Another effect induced by increasing the round-trip
time is the detaching of lower-order PC solutions from the
H1 branch. These subsequently become solitary branches
as exemplary shown in Fig. 3(b1) for the FML (light blue)
and in Fig. 3(b3) for the PC2 (gray) solution. However, the
stable dynamical regions are not affected by this mecha-
nism and thus from an experimental point of view it is
not visible. Nevertheless, it is crucial information for dis-
cussing the origin of solutions, as the connection to the H1
branch only exists for low T.

The bifurcation scenarios governing the detaching of the
PC branches as well as the ones leading to the emergence
of higher-order pulse clusters will be discussed in the next
two sections.

B. Two-parameter bifurcation diagram in the (Jg , T)
plane

The underlying mechanism determining the evolution of
higher-order pulse cluster dynamics is found to be simi-
lar for all investigated clusters and can be unraveled by
continuing the saddle-node and torus bifurcations, which
confine the stable regions of the PCn solutions, in (Jg , T)
parameter space. It is already visible from the develop-
ment of the H1 branch with increasing round-trip time
in Fig. 3(b), that PCs emerge from pairs of saddle-node
bifurcations (SNnu and SNnl) enclosing the corresponding
loop along the H1 branch. Following them in the (Jg , T)
plane leads to the bifurcation diagram shown in Fig. 4(a).
The red(orange) lines represent the SNnu (SNnl) bifurca-
tions. Each pair of saddle-node bifurcations vanishes in
the cusp bifurcation point, characterized as the point where
the saddle-node lines of the lower and upper loop merge.
The position of this point decreases in pump power and
increases in round-trip time with the number of pulses in
the corresponding PCn solution. As the PCn solutions can
only exist in the regions enclosed by the corresponding
SN lines, all PC solutions eventually disappear for high
enough pump powers (see the right of Fig. 4). Following
the pairs of saddle-node bifurcations to higher round-trip
times, we see that they rapidly separate directly after the
cusp point. Therefore, the emerging loop along the H1
branch grows in width in this region. However, at only
slightly higher T, the upper-loop SNnu line folds back in
pump power and asymptotically approaches the H1 line
[black line in Fig. 4(a)], which can also be observed for the
SNnl lines. Therefore, the position of the saddle-node pairs
approaches the same values in Jg . Hence, a large number
of stable PC solutions exists simultaneously at higher cav-
ity round-trip times, confined in a small interval of pump
powers. The looping behavior of the solution branch leads
to an almost vertical orientation of the corresponding loops
between the bifurcation points as exemplary shown for the

(a)

(b)

(c)

FIG. 4. Two-parameter bifurcation diagram in the (Jg , T) plane.
(a) Path continuation of the saddle-node SNnu (SNnl) bifurca-
tions, corresponding to the upper (lower) loop (see Fig. 3) plotted
in red (orange). Torus-bifurcation lines Tn are marked in green.
The black line refers to the first Hopf bifurcation of the cw steady
state. (b),(c) Numeric up and downsweep showing the underlying
dynamics indicated by the color code, with FML corresponding
to fundamental mode locking with low pulse width encoded in
light blue and wide pulses repeating at a fundamental frequency
in dark blue, PCn refers to pulse clusters containing n pulses,
Irr1−5 corresponds to irregular pulse clusters, where light yel-
low represents one pulse and orange a minimum of five pulses
in the irregular cluster (see Fig. 5). An enlargement of the blue
rectangle in (a) is shown in Fig. 7.

FML solution in Fig. 3(b3). The findings of the bifurcation
analysis are underlined by numerical calculations shown in
Figs. 4(b) and 4(c). The numeric upsweep indicates that the
upper stability boundary of the PCn regions is given by the
SNnu lines. This can nicely be seen in Fig. 4(c), with PC2
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dynamics in light green, PC3 dynamics in light red, PC4
dynamics in yellow, and pulse clusters with five or more
pulses PC>5 in purple. The different dynamical regions
detected along one upsweep at T = 625 ps are displayed in
Fig. 5 as space-time plots that show the laser emission over
many round trips. If the pump power is swept past a saddle-
node stability boundary in Jg (SNnu), the dynamics does
not directly jump onto the next stable pulse cluster attrac-
tor. Instead irregular pulse clusters emerge first, which are
characterized by a higher pulse width and a temporal drift
[see Figs. 5(b), 5(d), 5(f), 5(h), and 5(i)]. They are color
coded in Fig. 4(c). These regions with irregular dynamics
most likely originate from the high degree of multistability.

At low round-trip times (T < 170 ps), no pulse cluster
dynamics are present. Only the mode-locked solution cor-
responding to wide pulse emission [dark blue region in
Figs. 4(b) and 4(c)] directly emerges from the H1 Hopf
bifurcation. This changes as the first loop emerges from a
cusp of saddle-node bifurcations (SN1u and SN1l), leading
to stable of narrow FML pulses. The transition from wide
pulse FML to narrow pulse-width FML is indicated by the

(a) (b)

(d)

(f)

(h)

(j)(i)

(g)

(e)

(c)
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FIG. 5. Pseudo space-time plot of the electric field amplitude
in the different dynamic regimes for pump powers along an
upsweep at T = 625 ps, marked by the black dotted line in Fig.
4(c). The color code is the same as in Fig. 3 on a logarithmic
scale. Each plot shows 300 round trips after a transient time of
30000 round trips. The time is normalized to the cavity round-
trip time. The pump power values Jg/Jth are as follows: (a) 4,
(b) 6.5, (c) 10, (d) 12.5, (e) 15, (f) 20, (g) 22, (h) 25, (i) 28, and
(j) 32.

blue shading in Figs. 4(b) and 4(c), light blue refers to nar-
row widths of 0.01T, while dark blue marks pulse widths
of 0.35T. The T2 torus emerges from a 1:1 resonance sce-
nario close to the SN cusp point at Jg ≈ 30.8, T ≈ 105 ps
and builds the boundary between FML with side pulses
and wide-pulse emission. However, with increasing cav-
ity round-trip times further torus points emerge along the
branch and hence the upper boundary (transition to wide-
pulse emission) is characterized by different torus bifurca-
tions as T is increased. At this point we want to stress that
the threshold pump power in our model is defined rela-
tive to the transparency value, which is set to Jg = 0. In
Ref. [18], the gain chip was found to be transparent at
an optical pump power of Pabs,trans = 10 kW/cm2, with
a lasing threshold of approximately Pabs,th = 13 kW/cm2

and the experiments were performed at a pump power of
Pabs,pump ≈ 60 kW/cm2, which corresponds to Jg = 20Jth
in our model.

The lower stability boundary of the FML dynamics is
given by the H1 bifurcation. At higher round-trip times
the FML solution detaches from the H1 branch and the
stable FML regions are then confined by the SN1u and
SN1l bifurcations. Two enlargements of the (Jg , T) plane,
marked by the blue and black rectangles in Fig. 4(a), are
elucidated in the following to get a better insight into the
organizing bifurcation scenarios of the stable pulse clus-
ter solutions. At first we elaborate how the stabilizing Tn
torus bifurcations emerge for the different pulse cluster
solutions and then the detaching of solution branches are
discussed.

1. Emergence of torus bifurcations

Although the PCn loops develop in cusps of saddle-node
bifurcations, stable dynamics can only be found above the
round-trip time at which the respective stabilizing torus
bifurcation Tn (dark green lines Fig. 4) emerges. These
bifurcations also characterize the lower stability bound-
ary of the PCs as shown in the numeric downsweep in
Fig. 4(b). For the PC2 solution, the stabilizing T2 bifur-
cation emanates at lower round-trip times than the saddle-
node bifurcations bounding the corresponding branch loop
(SN2u, SN2l cusp point). Therefore, a stable PC2 region
can be found directly above the SN2u, SN2l cusp point in
the (Jg , T) plane, with the lower boundary given by the T2
bifurcation line. For the PC3 dynamics, we find a different
stabilizing behavior, as we can see in the inset of Fig. 4(a)
showing a close up of the region marked by a black square.
Here theT3 bifurcation emanates from a torus-torus con-
nection point (T3-T3u). In Fig. 6 we separately concentrate
on the bifurcations around this connection point with Fig.
6(a) again showing an enlargement into the (Jg , T) plane.
The blue lines indicate the round-trip times at which the
pulse amplitudes along the H1 branch are shown in the
subplots (b)–(e) of Fig. 6. As the torus lines do not exist

044055-7



HAUSEN, MEINECKE, LINGNAU, and LÜDGE PHYS. REV. APPLIED 11, 044055 (2019)

for round-trip times below the connection point [Fig. 6(b)],
we only find unstable PC3 dynamics along the H1 branch
[see Fig. 6(b)]. At the connection point [see Fig. 6(c)],
the two torus bifurcations (T3 and unstable T3u) emerge
along the branch and enclose a stable PC3 region. They
separate with increasing round-trip time [see Fig. 6(a)] and
the width of the stable region increases in pump power.
As we continue the T3u bifurcation to higher round-trip
times, it loops back to lower pump powers. This leads to
the T3u bifurcation point passing the SN3u point along the
branch [see Fig. 6(d)] resulting in the previously discussed
confinement of the stable regions by torus and SN bifurca-
tions. Further torus bifurcations stabilizing PCs with more
than three pulses also emerge from torus-torus connection
points as can be seen from the T4 line in Fig. 4, with a
mechanism similar to the case discussed in Fig. 6.

(a)

(b)

(d) (e)

(c)

u

u

u

u

-
tim

e
a

a

FIG. 6. (a) Close up of the two-parameter bifurcation diagram
in the (Jg ,T) plane, showing the torus connection point marked as
a black rectangle in Fig. 4(a). Blue lines indicate the round-trip
times at which the maximum pulse amplitude along the H1 solu-
tion branch in the region of PC3 dynamics is shown in (c)–(e).
The number of unstable EVs is indicated by the numbers and is
color coded with (0) unstable EVs in black, (2) unstable EVs in
green, and (3) unstable EVs in cyan. The SN3u saddle-node point
is marked as a red circle, torus bifurcations as green circles. Other
parameters as given in Table I.

2. Detaching of solution branches

With increasing round-trip time the emergence of
higher-order pulse cluster solutions is accompanied by a
detaching of lower-order PCs as well as the FML solu-
tion from the H1 branch [see Fig. 3(b)], which then further
exist as solitary branches. The bifurcation scenario lead-
ing to this effect can be unraveled by investigating cusps
of saddle-node bifurcations along the SNnl lines. One of
these cusps is marked exemplary in Fig. 4(a) by a blue
square and a close up is shown in Fig. 7(a). For round-
trip times below the cusp point [marked in yellow in Fig.
7(a)], the PC2 solution is connected to the H1 branch and at
the lower loop only the SN2l bifurcation exists as can also
be deduced from the plotted amplitudes for increasing Jg
in Fig. 7(e). Above the cusp point, two saddle-node bifur-
cations (SN2a, SN2b) emerge, which are also observable as
two additional curves in the electric field amplitudes along
the branch[Fig. 7(d)]. At a distinct cavity size, marked by
the transition from white to red background in Fig. 7(a),
the SN2a bifurcations collides with the SN2l bifurcation
at the lower loop of the solution branch. This results in
a degenerate saddle-node point (unfolding of transcriti-
cal bifurcation) in which the pulse cluster solution is still
attached to the H1 branch [see Fig. 7(c)]. For higher round-
trip times the SN2a and SN2l bifurcations vanish and hence
the pulse cluster solution becomes an independent branch
[see Fig. 7(b)]. This mechanism is observable for the fun-
damental mode-locking solution as well as for higher-order

(d)

(c) (c)

(b)
(b)

(a)

(d)

(a)

-

FIG. 7. Close up of the two-parameter (Jg ,T) bifurcation dia-
gram in the region of the blue square in Fig. 4(a). The orange
line depicts the saddle-node bifurcations and C marks the cusp
point. Red-shaded background corresponds to a detached branch,
whereas in the yellow-shaded region the branch is still connected.
(b)–(e) Corresponding plots of the solution branch for slices of
the round-trip times marked by blue lines in (a), with the SN
bifurcations marked with orange circles. Other parameters as
given in Table I.
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pulse clusters as this kind of saddle-node cusp can also be
found along the respective saddle-node lines (see orange
lines in Fig. 4). However, as the bifurcations governing the
stability of the dynamics are not affected by the detaching,
the stable PCs are not changed in this process. However,
the lower stability boundary of the FML solution changes
with the detaching of the branch as it is given by the
SN1u bifurcation after the detaching and by the H1 Hopf
bifurcation prior to it.

C. Asymmetric cavity geometry

So far we have only presented results including a sym-
metric cavity, i.e., τ1 = τ2. In order to further investigate
the influence of the cavity geometry, we also look at the
case in which the gain chip is moved towards the out-
coupling facet or the SESAM, i.e., τ1 �= τ2, but the total
length of the cavity is kept fixed with T = 2τ2 + 2τ1 =
const. To visualize the changes to the bifurcation structure
induced by the asymmetry we compute scans in the(τ2, Jg)
plane (see Fig. 8), where τ2 = 0.2 (τ1 = 0.3) refers to
the case of the gain being shifted towards the absorber,
while τ2 = 0.3 (τ1 = 0.2) corresponds to a shift towards
the out-coupling facet. The length of the cavity arms is nor-
malized to the total round-trip time T. By investigating the
bifurcation lines confining the stable regions of the pulse
cluster dynamics, i.e., the saddle-node and torus bifurca-
tions, we can assess that depending on the position of the
gain chip, different dynamical regions can be favored. The
torus bifurcations (dark green) do not change their position
in Jg when a slight asymmetry is introduced. However, the
SNnu bifurcations move to a maximum value in Jg for a
slightly asymmetric setup. A proper tuning of the cavity
geometry could thus be used to increase the pump-power
interval for which a chosen pulse cluster (or the FML)
solution is stable. The bifurcation structure exhibits a sym-
metry in τ2 about the symmetric cavity case τ2 = τ1 (see
Fig. 8).

This can be explained by the fact that the distance
between gain and absorber (τ2) is still much larger than
the relaxation time of the carriers in the SESAM, i.e.,
τ2 � γ −1

q . Hence, for the small shifts of the gain investi-
gated here, there is only a slight difference whether the gain
chip is moved towards or away from the SESAM because
both propagation directions are included. As the induced
asymmetry favors a higher multistability, the direct numer-
ical integration leads to very different forms of dynamics
for high pump powers.

It can also be concluded that a slight asymmetric posi-
tioning favors FML mode-locking applications as the sta-
bility boundary is shifted to higher pump powers. This has
been also observed in experiments, as the highest pulse
powers in a mode-locked VECSEL were obtained for a
slightly asymmetric cavity configuration [18].

(a)

(b)

FIG. 8. Regions of pulse cluster emission in the (τ2, Jg) plane,
calculated by a numerical downsweep (a) and upsweep (b) in
pump power. The gain-chip position τ2 is defined with respect
to the absorber and normalized to the round-trip time. The color
code is the same as in Fig. 4, the blue FML shading is propor-
tional to the pulse width, which is 0.01T = 6.25 ps for the values
chosen here. The red (orange) lines represent the upper (lower)
saddle-node bifurcations, while green lines indicate torus bifur-
cations. The round-trip time is constant at T = 625 ps. Other
parameters as given in Table I.

IV. CONCLUSION

With our new multidelay differential equation model
for passively mode-locked semiconductor lasers with V-
shaped cavity geometry, a complete characterization of
the dynamics is possible within reasonable computation
time. We are able to identify the experimentally found
pulse cluster emission of different order and can describe
the generating bifurcations. Namely, these are series of
saddle-node bifurcations, which lead to a looping behavior
of the H1 solution branch originating from the first Hopf
bifurcation of the cw branch. These pulse cluster solutions
stabilize in torus bifurcations. Furthermore, increasing the
cavity size leads to a detaching of the pulse cluster solu-
tions from the H1 branch, which makes them hard to
identify solely using path-continuation techniques. Thus,
numeric integration has to support the analysis. Our results
indicate a high degree of multistability between different
multipulse solutions. Further we show that certain stable
solutions can be favored by introducing an asymmetry to
the cavity geometry. This qualitatively reproduces recent
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experiments [18], where a slightly asymmetric cavity leads
to the best FML performance.

We also find pulse cluster solutions in the parameter
regions that allow for the existence of localized states,
Tγg > 1, as found in Refs. [28,29]. Preliminary results
indicate that localized states can emerge from the same
solution branch as the pulse cluster solutions. In this case,
the solution branches of localized states emerging from the
Hopf bifurcations along the continuous-wave steady state
have a very similar shape as the ones presented in Ref.
[28,43]. Additionally, further research has to be conducted
regarding the case of a strongly asymmetric cavity [23,45].

To summarize, our results enable the control of the laser
pulse emission from passively mode-locked VECSELs via
the tuning of the cavity configuration, as they provide an
understanding of the generation of unwanted pulse cluster
dynamics.
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APPENDIX A: DDE MODEL DERIVATION

In order to derive a DDE model, we subdivide our laser
into four sections. Two active sections, namely gain and
absorber, which have a spatial width of �zg and �zq
(see Fig. 9). The regions neighboring the active sections
are assumed to be passive, i.e., have no influence on the
electric field. Their optical length is defined as τ1 × vg
and τ1 × vg , with the group velocity vg . Specific to this
laser the width of the gain and the absorber active sec-
tions is much smaller than the fastest timescale of the
system �zg,q � vgγ

−1, where γ represents the gain band-
width. We start the derivation of our DDE model from
the traveling wave model as introduced in Ref. [46,47],
with equations for the forward and backward propagating
electric field E± and the carrier dynamics N (z, t):
[
±∂z + 1

vg
∂t

]
E±(z, t) = 1 − iα(z)

2
N (z, t)E±(z, t), (A1)

∂tN (z, t) = J (z, t) − γ (z)N (z, t) − r(z)N (z, t)

×[|E+(z, t)|2 + |E−(z, t)|2], (A2)

with the rescaling of the charge carrier density n(z, t) in the
quantum-well active medium N (z, t) = g(z)	(z)[n(z, t) −
ntr(z)], the pump term J (z, t) = g(z)	(z)[j (z, t) − γ (z)
ntr(z)], and the differential gain r(z) = g(z)	(z)vg . Where
ntr(z) is the transparency threshold, g(z) is the differen-
tial gain, 	(z) is the optical confinement factor, α(z) is
the linear amplitude phase coupling factor, j (z, t) is the
electrical pump current, and γ (z) is the carrier relaxation

rate. Following the ideas published in Ref. [33], we inte-
grate the electric field Eq. (A1) along the characteristics in
the active sections. We obtain the following algebraic field
propagation equations in the active sections:

E+(zg′,q′) = E+(zg,q, t − �tg,q)e
1−iαg,q

2 Sg,q(t), (A3)

E−(zg,q, t) = E−(zg′,q′ , t − �tg,q)e
1−iαg,q

2 Sg,q(t), (A4)

with the integrated carrier densities in the gain section
Sg(t) = G̃(t) and absorber section Sq(t) = Q̃(t) defined
according to

Sg,q =
∫ zg′ ,q′

zg,q

dz N
(

z, t − �tg,q

2

)
, (A5)

where tg,qvg = �zg,q corresponds to the optical length
of the respective section and the integral boundaries are
defined as indicated in Fig. 9. Additionally we assume the
differential gain gg (gq), the confinement factors 	g (	q),
and the relaxation rate γg (γq) to be constant along the
gain (absorber) active sections. Using the same steps as
proposed in Ref. [33] we obtain the following differential
equation for the integrated carrier densities in the different
sections. This leads to

dSg,q

dt
= Jg,q − γg,qSg,q − rg,q(eSg,q − 1)

× [|E+(zg,q, t)|2 + |E−(zg′,q′ , t)|2], (A6)

with subscript index g for the gain section and q for
the absorber section. We model the finite gain bandwidth
by applying a Lorentzian spectral filter [f (ω) = γ (γ +
iω)−1] in a lumped-element approach localized at the out-
coupling facet (z = 0), similar to Refs. [34,48]. The filter
is implemented by the following boundary condition in the
frequency domain:

E+(0, ω) = E−(0, ω)f (ω)
√

κ , (A7)

with κ describing the accumulated nonresonant losses per
round trip. Transforming Eq. (A8) to the time domain by
utilizing the convolution theorem and then taking the total
derivative with respect to time t yields

dE+(0, t)
dt

= γ [E−(0, t)
√

κ − E+(0, t)]. (A8)

In order to obtain a single equation for the electric field
E+(t) = E+(0, t) at the out-coupling facet, we express
E−(0, t) in terms of E+(0, t) by using propagation Eqs.
(A3) and (A4). Additionally we neglect reflection losses at
the absorber and gain chip so that E+(t, zq′) = E−(t, zq′) at
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the absorber. Inserting all boundary conditions and taking
the limit �zg,q → 0 then leads to

E−(z0, t) = E+(z0, t − 2τ1 − 2τ2)

× e
1−αg

2 [G̃(t−τ1)+G̃(t−2τ2−τ1)]

× e(1−iαq)Q̃(t−τ1−τ2), (A9)

where τ1 and τ2 correspond to the propagation times in the
cavity arms, as indicated in Fig. 9. Inserting Eq. (A9) into
the electric field equation yields

dE(t′)
dt′

= −γ E(t′) + γ
√

κE(t′ − 2τ2 − 2τ1)

× e
1−iαg

2 [G̃(t′−τ1−2τ2)+G̃(t′−τ1)]

× e(1−iαq)Q̃(t′−τ1−τ2), (A10)

where we rescale the dynamical variable of the elec-
tric field E = √

Tvggg	gE , with the cold-cavity round-trip
time T. The time is rescaled as t′ = t/T, rates are rescaled
by a multiplication T [44]. Dynamical equations for the
carrier dynamics can be found for G and Q by expressing
the electric fields E± in Eq. (A6) by the electric field at the
out-coupling facet using the boundary conditions and the
propagation equations. This leads to

dG̃(t′)
dt′

= Jg − γgG̃(t′) − [eG̃(t′) − 1]

× [| E(t′ − τ1) |2 + | E(t′ − τ1 − 2τ2) |2

× e2Q̃(t′−τ2)+G̃(t′−2τ2)] (A11)

dQ̃(t′)
dt′

= Jq − γqQ̃(t′) − rs[e2Q̃(t′) − 1]

× eG̃(t′−τ2) | E(t′ − τ1 − τ2) |2, (A12)

FIG. 9. Sketch of the cavity containing the active sections
of gain and absorber with the spatial width of the components
denoted as �zg and �zq.

FIG. 10. Two-parameter bifurcation diagram (upsweep in Jg)
in the (Jg , T) plane with color code and parameters as described
in Fig. 4 except for αg = 2 and αq = 1 similar as given in
Ref. [18].

where we have introduced the ratio of differential gain
coefficients rs = 	qgq(	ggg)

−1 = rqr−1
g . For computa-

tional convenience G̃ and Q̃ are transformed according
to the coordinate transformation t′ = t + τ1 for Eq. (A11)
and t′ = t + τ1 + τ2 for Eq. (A12). We further redefine the
variables according to

G̃(t + τ1) = G(t), Q̃(t + τ1 + τ2) = Q(t). (A13)

This leads to the Eqs. (1)–(4).

APPENDIX B: NONZERO ALPHA FACTORS

On account of investigating the influence of large α fac-
tors on the bifurcation structure, we perform a numerical
upsweep for α factors of αg = 2 and αq = 1, based on
the characterization presented in Ref. [18]. The obtained
bifurcation diagram is shown in Fig. 10 and it can be
seen that the irregular regions between the PC regimes
[see Fig. 4(c)] shrink. We remark that the experimentally
obtained values resemble static α factors, which corre-
spond to lower dynamical α factors, than the exemplarily
chosen values. The high dynamical α factors result in a
higher multistability making a numerical analysis more
complex, especially at high pump powers.
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