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We generalize normal mode expansion of Green’s tensor ¯̄G(r, r′) to resonators in open systems, resolv-
ing a long-standing open challenge. We obtain a simple yet robust formulation whereby radiation of energy
to infinity is captured by a complete, discrete set of modes rather than a continuum. This enables rapid
simulations by providing the spatial variation of ¯̄G(r, r′) over both r and r′ in one simulation. Systems
with or without material losses can be treated. Few eigenmodes are often necessary for nanostructures,
facilitating both analytic calculations and unified insight into computationally intensive phenomena such
as Purcell enhancement, radiative heat transfer, van der Waals forces, and Förster resonance energy trans-
fer. We bypass all implementation and completeness issues associated with the alternative quasinormal
eigenmode methods by defining modes with permittivity rather than frequency as the eigenvalue. We
obtain true stationary modes that decay rather than diverge at infinity, and are trivially normalized. Com-
pleteness is achieved both for sources located within the inclusion and the background through use of the
Lippmann-Schwinger equation. Modes are defined by a linear eigenvalue problem, readily implemented
with any numerical method. We demonstrate its simple implementation with COMSOL MULTIPHYSICS using
the default inbuilt tools. The results are validated against direct scattering simulations, including ana-
lytic Mie theory, attaining arbitrarily accurate agreement regardless of source location or detuning from
resonance.
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I. INTRODUCTION

Green’s functions G(r, r′) and Green’s tensors ¯̄G(r, r′)
are essential tools for solving linear wave equations with
source terms, being the fundamental solution of a unit
impulse. Closed-form expressions of ¯̄G(r, r′) are known for
free space and a limited number of simple geometries, but
in a general geometry such as an arbitrarily shaped cavity,
it has a nontrivial variation over r and r′ [1–3]. Numerical
simulation is often the only available option, but the com-
putational burden becomes prohibitive if repeated simula-
tions are required for every source position and orientation.

A more palatable alternative is to expand ¯̄G(r, r′) in the
basis of the cavity’s eigenmodes, which can be obtained
from a single simulation. These provide the full spatial
variation of ¯̄G(r, r′) over r and r′, especially since only a
few eigenmodes are often necessary for expansion. Modal
expansion of ¯̄G(r, r′) has a long history for conservative
systems, such as closed cavities without loss [1]. Here the
eigenmodes are normal modes, which are stationary states
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with real eigenfrequencies. These provide a complete and
orthogonal basis, with completeness being necessary for a
valid expansion of ¯̄G(r, r′). Less straightforward is modal
expansion for open systems, a topical problem on which
research has intensified recently. Conceptually, the sim-
plest generalization of modal expansion to handle radiation
losses is to permit the modes to have complex eigenfre-
quencies, yielding quasinormal modes [4–10]. However,
use of quasinormal modes has a number of unwelcome side
effects.

We adopt a different approach in this paper. We seek
a direct generalization of normal modes to open sys-
tems, thus expanding ¯̄G(r, r′) in true stationary states,
yielding a result valid for real frequencies, thus solv-
ing a problem open since the inception of normal mode
expansions. The formulation is applicable without mod-
ification to both lossless resonators and resonators with
intrinsic material losses. We demonstrate that a general-
ized normal mode expansion (GENOME) recovers both
the simplicity and the rigor of normal modes observed in
conservative systems. We specifically treat the electromag-
netic Green’s tensor, but also remark that GENOME can be
applied to any other wave equation, such as for acoustics,
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elasticity [11,12], quantum mechanical scattering [13], and
linearized gravitational waves [14,15].

The electromagnetic Green’s tensor ¯̄G(r, r′) is funda-
mental to the photonic density of states, relating both to
the power radiated by a classical dipole antenna and to
the spontaneous emission rate of quantum emitters under
a semiclassical treatment [3,16]. Green’s tensor can be
strongly influenced by appropriately designed nanostruc-
tures. A broad range of electromagnetic processes and
quantum-optics phenomena may be enhanced or altered,
including emission from individual atoms and molecules,
known as the Purcell effect, charge transfer between
molecules, known as Förster resonance energy transfer,
and emission from bulk sources, such as in nonlinear wave
mixing, radiative heat transfer, van der Waals forces, quan-
tum friction, super-radiance [17], and strong coupling [18],
among others. All such phenomena are linked to ¯̄G(r, r′),
owing to its fundamental definition,

∇ × (∇ × ¯̄G) − k2ε(r) ¯̄G = ¯̄Iδ3(r − r′), (1)

which gives the electrodynamic response of a detector at r
due to a point source at r′ radiating at frequency ω = ck in
the presence of a scatterer defined by ε(r), where ¯̄I is the
unit tensor.

To place GENOME in context, we provide a brief
review of modal expansions. ¯̄G(r, r′) can be obtained
via numerical simulation by placing a radiating dipole
at r′. Finding the full spatial variation becomes a labori-
ous task, since the location and orientation of the source
dipole must be continuously varied, requiring repeated
simulation. Instead, modal expansion provides

¯̄G(r, r′) = c2
∑

m

Em(r) ⊗ E∗
m(r′)

ω2
m − ω2 (2)

for conservative systems [1–3,16]. Here ωm are the eigen-
frequencies of each mode, and ⊗ defines the outer product
between two vectors. Thus, the fields produced by any
point source is immediately available by simply evaluat-
ing the complex conjugate modal field E∗

m(r′) at r′. The
same eigenmode Em(r) also gives variation over detector
positions r, thus providing unified analytic insight across
a wide variety of optical phenomena. Indeed, often a sin-
gle mode suffices, since the detuning ω2

m − ω2 from the
other resonances is typically large when the nanostruc-
ture is small. All nine tensor components are available,
which would otherwise require nine separate simulations
for each r′ [19]. Finally, the total fields E(r) produced by
bulk sources, or any arbitrary source distribution J(r′),
can be calculated with the same ease: by superposing

contributions from different source positions,

E(r) = iωμ0

∫
¯̄G(r, r′) · J(r′)dV′, (3)

where ¯̄G(r, r′) is expanded using Eq. (2), yielding overlap
integrals between J(r′) and E∗

m(r′).
The expansion (2) is adequate when losses are negligi-

ble. However, resonators with non-negligible losses have
attracted significant research attention recently, particu-
larly plasmonic nanoresonators, consisting, for example,
of a metallic inclusion in a uniform background. Metal-
dielectric interfaces produce sharp field concentrations,
generating electromagnetic hot spots ideal for influenc-
ing the density of states. However, energy is lost due to
material absorption, and is continuously radiated into the
background. These losses can be treated in a modal expan-
sion by coupling to the material degrees of freedom [20],
and the continuum of background electromagnetic modes
[21], respectively. But the utility of Eq. (2) is diminished
since the expansion ceases to be via a limited set of discrete
electromagnetic modes.

Expansion via a discrete set is once again possible
with quasinormal modes, yielding an expression similar
to Eq. (2) [9,22–25]. Discreteness stems from imposing
Sommerfeld radiation boundary conditions to account for
radiation [26]. The imaginary part of the complex eigenfre-
quency relates to the finite lifetime or decay rate of energy
to all loss channels. However, complex eigenfrequencies
introduce their own implementational and interpretational
difficulties, such as a difficult to solve nonlinear eigen-
value problem, the need to define permittivities at complex
frequencies, and exponentially diverging fields, which are
unphysical at real frequencies. More fundamentally, quasi-
normal modes provide only a complete expansion for
source positions r′ inside the resonator [25,27], giving
inaccuracies for exterior sources. Nevertheless, quasinor-
mal modes yield very satisfactory results for many prac-
tical applications, as much progress has been achieved in
the past several years in their development and in over-
coming their previous limitations. See Sec. III for further
details.

GENOME bypasses these complexities, providing many
advantages, both fundamental and practical. Instead of
using complex frequency modes to account for loss, true
stationary modes are obtained by designating the permit-
tivity of the nanostructure εm to be the complex eigenvalue.
Thus, we fix a real k, and also fix the inclusion’s geome-
try and background permittivity of the simulation domain,
consequently determining the complex εm that brings the
system to resonance. Our GENOME approach is based
on the spectral decomposition formalism first developed
in a series of papers by Bergman and coworkers for elec-
trostatics [28,29] and then electrodynamics [30,31], with
similar methods having been developed independently by
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others [32–35]. In the electrostatic limit, the formalism has
been used for applications such as spasers [36], self-similar
antennas [37], disordered media [38,39], and second-
harmonic generation [40,41], as well as for the compu-
tation of effective medium parameters, bounds on them,
and associated sum rules [29,37,42]. In the electrodynamic
limit, it has been used for spherical and Veselago-Pendry
lens geometries [30,31], and for the analysis of lifetime
calculations [43] and second-harmonic generation, in par-
ticular, resolving long-standing ambiguities on the defini-
tions of boundary conditions for surface second-harmonic
generation [44].

Completeness is an important consideration, being nec-
essary for successful modal expansion [1]. Direct expan-
sion using eigenmodes, including our eigenpermittivity
modes, is insufficient to give completeness everywhere.
Key to the success of GENOME is use of the Lippmann-
Schwinger equation, which extends completeness from
interior sources to all exterior sources r′ and all detector
locations r [30]. Use of the Lippmann-Schwinger equation
distinguishes GENOME from other methods that also use
eigenpermittivity modes, such as constant flux states [45].
Thus, GENOME converges to the correct solution with
arbitrary precision as more eigenmodes are considered,
regardless of detuning from the inclusion’s resonances
and source or detector coordinates. Unlike Eq. (2), our
expansion also efficiently reproduces the divergence and
nontransverse components of ¯̄G(r, r′) at the source, without
requiring many modes.

Modal completeness affords great practical utility. Cru-
cially, modes of analytically insoluble systems can be
generated effortlessly and reliably using the modes of a
simpler system as a basis. For example, since quasinor-
mal modes are complete internally, modes of a sphere can
generate modes of wedges or any arbitrary shape enclosed
by the sphere [46], such as split-ring resonators. A com-
pelling benefit of GENOME over quasinormal modes is
that the modes of clusters and arrays of nanostructures
can be obtained from known modes of the constituents
without further numerical simulation, for example, obtain-
ing dimer modes from monomer modes [29,30]. This
constitutes a generalization of the celebrated theory of lin-
ear combination of molecular orbitals to electromagnetic
structures [47,48], and provides a rigorous generalization
of an approximate hybridization approach developed in the
context of nanoplasmonics [49].

Our generalized normal modes remain well behaved
throughout all space, since frequency and background
permittivity remain real and physical. In particular, our
eigenmodes both decay to zero at infinity and satisfy the
vector equivalent of the Sommerfeld radiation condition,
the Silver-Müller condition. In contrast to quasinormal
modes, this corresponds to the physical far-field solution
and yields the correct energy radiated into the background.
Consequently, normalization of modes is also rapid and

trivial, achieved by a volume integral over the inclusion’s
interior.

Our modes are always generated by a linear eigen-
value equation, even when material dispersion is present.
Thus, eigenmode search is simple and readily automated,
with no need for delicate root searches in the complex
plane, instead relying on the many powerful, robust linear-
algebra algorithms. We demonstrate its straightforward
general implementation in COMSOL MULTIPHYSICS, a com-
mercially available finite-element package, by adapting
its inbuilt eigenfrequency solver with a simple substitu-
tion trick. Due to the simplicity of the linear eigenvalue
equation, implementation via any method capable of pro-
ducing eigenmodes is possible, including volume-integral
methods, the discrete-dipole approximation, and plane-
wave expansion. Analytic solutions are also available
for simple spherical, cylindrical, and planar geometries
[30,31,50].

The paper is organized as follows. In Sec. II, we develop
GENOME for lossy, open systems. The exposition is rel-
atively self-contained, but technical proofs are omitted,
focusing instead on conveying underlying insight into the
properties of our method. Special attention is given to
the generalized normal modes in Sec. II B. In Sec. III,
we offer a comprehensive comparison between GENOME
and the alternative quasinormal mode expansion. Section
IV details the brief numerical implementation in COMSOL
MULTIPHYSICS, with numerical examples that demonstrate
the completeness of GENOME. Further discussion on the
properties of eigenpermittivity modes is also provided.
Section V presents a summary and conclusion.

II. GENERALIZED NORMAL MODE EXPANSION

A. Lippmann-Schwinger equation

The foundation of GENOME is the Lippmann-
Schwinger equation for electrodynamics, which is also the
basis of two families of related numerical schemes: method
of moments (MoM) and discrete dipole approximation
(DDA), also known as volume-integral or coupled-dipole
methods, respectively [3,51–53]. In quantum mechanics,
the Lippmann-Schwinger equation is used for scatter-
ing calculations, and is commonly solved using the Born
approximation or Born series.

The Lippmann-Schwinger equation is obtained from
Maxwell’s equations,

∇ × (∇ × E) − k2ε(r)E = iωμ0J , (4)

assuming harmonic e−iωt time variation and nonmagnetic
media. We begin by assuming that the structure defined by
its permittivity profile ε(r) rests in a background of uni-
form permittivity εb. This permits the manipulation of Eq.
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(4) to yield

∇ × (∇ × E) − k2εbE = iωμ0J + k2(ε(r) − εb)E. (5)

In Eq. (4), notice that J , the imposed free-current source,
sits alone on the right hand side, while the response of the
inclusion is on the left hand side. In Eq. (5), both J and the
response of the inclusion are on the right hand side, and
the second term can be interpreted as the bound currents
produced by the inclusion.

Since the operator on the left hand side of Eq. (5) is
no longer a function of r, Eq. (5) can be solved using the
simple Green’s function for uniform media,

∇ × (∇ × ¯̄G0) − k2εb
¯̄G0 = ¯̄Iδ3(r − r′), (6)

which has a simple known analytic form ¯̄G0(|r − r′|)
depending on the dimensionality of the problem [2]. Appli-
cation of Eq. (6) to both terms on the right hand side of
Eq.(5) yields its Green’s function solution, which is the
desired Lippmann-Schwinger equation:

E(r) = E0(r) + k2
∫

¯̄G0(|r − r′|)(ε(r′) − εb)E(r′)dr′.

(7)

The term E0(r) is the known radiation pattern of external
sources in a uniform background,

E0(r) = iωμ0

∫
¯̄G0(|r − r′|)J(r′)dr′, (8)

which is simple to solve since it is independent of the
inclusion. In particular, standard textbook expressions are
available for the E0(r) of point dipoles and other simple
source configurations [54].

Crucial to the Lippmann-Schwinger equation is that the
same simple Green’s tensor appears in both Eq. (7) and Eq.
(8), a property exploited by all resultant methods, includ-
ing GENOME. As mentioned, the Lippmann-Schwinger
equation (7) can be solved numerically. This involves spa-
tial discretization, recasting Eq. (7) in linear-algebra form,
which sometimes requires iterative solution until conver-
gence [55]. This is due to the implicit nature of Eq. (7),
with the desired solution E(r) appearing inside the inte-
gral, thus forming a Fredholm integral equation of the
second kind. The Lippmann-Schwinger equation can also
be expanded in terms of basis functions, such as the cylin-
drical harmonic functions, again yielding a linear-algebra
problem, but obviating the need for iterative solution [56].

We use the Lippmann-Schwinger equation as the foun-
dation of a yet more powerful analytic method. Instead of
solving Eq. (7) directly, we first find its stationary or self-
sustaining solutions, corresponding exactly to the eigen-
permittivity modes of the inclusion. By projecting onto

this basis, we obtain an analytic solution of the Lippmann-
Schwinger equation (7). We then obtain the desired eigen-
mode expansion of Eq. (1), which, unlike Eq. (6), may be
regarded as the dressed Green’s tensor. The solution is rig-
orous and valid everywhere even though the eigenmodes
form a complete set only in the interior. This follows
from a key property of the Lippmann-Schwinger equation,
enabling E(r) to be determined everywhere from knowl-
edge of E(r) inside the inclusion only, where ε(r) − εb is
nonzero.

B. The generalized normal modes

To proceed with GENOME, we define the appropri-
ate normal modes of the system. We also outline some
key properties, from which many of the advantages of
the method stem. The eigenvalue equation is obtained by
neglecting E0 in Eq. (7). At this point, we simplify the
formulation by assuming that the permittivity of the inclu-
sion is uniform so that the simulation domain is defined
by only two permittivities: an eigenpermittivity εm appli-
cable to the inclusion’s interior, and the fixed background
εb. This yields the simplified eigenvalue equation

smEm(r) = −εbk2
∫

¯̄G0(|r − r′|; k2)θ(r′)Em(r′)dr′, (9)

where sm is the mth eigenvalue, known as the Bergman
spectral parameter [57],

sm ≡ εb

εb − εm
, (10)

θ(r) is a step function that is unity inside the inclusion and
zero elsewhere, and the dependence of the Green’s tensor
on k2 is explicitly noted. The eigenvalue (10) is defined to
conform to previous definitions (c.f. Bergman and Stroud
[30]), though some differences in Eq. (9) remain, stemming
from differing definitions of the free-space Green’s tensor
(6).

The eigenvalue in Eqs. (9) and (10) is εm, representing
the inclusion permittivity, which contrasts with the more
prevalent choice, k. In other words, k is held fixed, while
εm is varied until the inclusion is at resonance. As a simple
example, the modes of a sphere can be determined by the
poles of its scattering matrix, which for quasistatic fields
varies as (εi − εb)/(εi + 2εb) [58]. Thus, the eigenpermit-
tivity at long wavelengths is εm = −2εb. By specifying
k to be real, we obtain stationary modes. Moreover, the
free-space Green’s tensor decays appropriately rather than
diverging as r → ∞, as do the resulting eigenmodes. This
choice also leads to a linear eigenvalue problem, since
¯̄G0(|r − r′|; k2) is not a function of εm.

The modes, in general, have complex eigenvalues εm,
with the imaginary part corresponding to gain across the
interior of the inclusion. This gain compensates for the
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energy lost from the inclusion due to radiation, permitting
the mode to remain in a stationary state. Thus, the com-
plex eigenpermittivity has a simple interpretation, being
the lasing threshold of the inclusion at a particular fre-
quency [45,57]. Despite the similarity between Eq. (7) and
Eq. (9), the eigenvalues εm are, in general, unrelated to the
actual permittivity of the inclusion to be solved in Eq. (7).
The actual permittivity is specified later in Eq. (21), with
the modes Em serving as a complete orthonormal math-
ematical basis [30]. The only information from Eq. (7)
that remains in Eq. (9) is the frequency, and the geometry
of the inclusion captured by θ(r). In that sense, our for-
mulation separates the material properties from geometric
properties, so the imaginary part of εm needs to account for
only radiation losses experienced by the geometry. Indeed,
the magnitude of Im(εm) can be used to quickly identify
whether a mode is bright or dark. Furthermore, the eigen-
modes are applicable to any uniform inclusion permittivity,
even complex permittivities, without modification.

In passing, we mention that the restriction to inclu-
sions with a uniform isotropic permittivity in Eq. (9) is not
necessary. Generalizations to nonuniform and anisotropic
inclusions are possible. The eigenmodes would still be
defined by Eq. (9), but θ(r) would no longer be a step func-
tion, requiring generalization to reflect the ¯̄ε(r) profile to be
simulated. The eigenvalues are still sm, but their interpreta-
tion as the eigenpermittivities of the inclusion (10) would
no longer be valid. Lastly, nonuniform or anisotropic back-
ground media are possible, by using the relevant Green’s
tensor in place of G0(|r − r′|) [59,60].

C. Expansion via normal modes

We take as given that the relatively simple task of find-
ing the radiation pattern in the uniform background E0 in
Eq. (8) is complete. The final stage of GENOME is to solve
the Lippmann-Schwinger equation (7) by using its normal
modes, Eq. (9), to expand the source J(r). We largely fol-
low the derivation in Ref. [30]. For notational brevity, we
begin by casting the Lippmann-Schwinger equation (7) in
operator form:

E = E0 + u�̂θ̂E, (11)

where u now describes the permittivity of the actual
inclusion εi,

u ≡ εb − εi

εb
. (12)

�̂ is an integral operator incorporating the Green’s function
along with k, and θ̂ is the operator form of θ(r), which
zeros the field outside the inclusion, so

�̂θ̂E ≡ −εbk2
∫

¯̄G0(|r − r′|)θ(r′)E(r′)dr′. (13)

The formal solution to Eq. (11) is

E = 1

1 − u�̂θ̂
E0. (14)

In spectral theory, the operator (1 − u�̂θ̂ )−1 in Eq. (14) is
known as the resolvent [61]. Our solution for the unknown
field E proceeds by projecting the known E0 onto the
known normal modes Em. Specifically, we define the
projection operator Î , which in bra-ket notation is

Î =
∑

m

θ̂ |Em〉〈Em|θ̂ . (15)

This simple form is valid because the modes obey a
biorthogonality relation [30]. By including θ̂ in Î , we
expand only over the interior fields. This avoids an
unwieldy integral over all space, and also expands only
in the region where the eigenmodes provide a complete
basis. This projection operator assumes that the modes are
normalized,

〈Em|θ̂ |Em〉 = 1. (16)

To ensure that the units are correct, it is convenient to
define the bra and the ket to have inverse units with respect
to each other. The unknown field |E〉 is then

θ̂ |E〉 =
∑

m

θ̂ |Em〉〈Em| θ̂

1 − u�̂θ̂
|E0〉. (17)

Next is the key step of GENOME. Instead of applying
the operator (1 − u�̂θ̂ )−1 to |E0〉, which would result in
a lengthy numerical calculation via the Born series, we
exploit the freedom offered by the unified nature of the
Green’s function in Eqs. (8) and (9) to operate on 〈Em|
instead, immediately yielding an exact analytic solution.
We invoke the adjoint form of eigenvalue equation (9):

〈Em|θ̂ �̂ = 〈Em|sm. (18)

It is critical here that the eigenmodes (9) share a predefined
frequency equivalent to the desired k of the Lippmann-
Schwinger equation (7) to be solved. This enables the
aforementioned freedom to interchange, since the Green’s
tensors represented by �̂ in Eqs. (17) and (18) are identical.
This obtains from Eq. (17) the total interior field θ̂ |E〉,

θ̂ |E〉 =
∑

m

θ̂ |Em〉 1
1 − usm

〈Em|θ̂ |E0〉, (19)

expressed in terms of overlap integrals.
To obtain the fields everywhere, Eq. (19) is inserted into

the original Lippmann-Schwinger equation (11), this time
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operating �̂θ̂ on |Em〉 to give

|E〉 = |E0〉 +
∑

m

|Em〉 usm

1 − usm
〈Em|θ̂ |E0〉. (20)

Thus, with the aid of the Lippmann-Schwinger equation,
we have obtained an expansion valid over all space even
though we expanded the fields only inside the inclusion.
For convenience, Eq. (20) can be expressed explicitly in
terms of permittivities:

|E〉 = |E0〉 +
∑

m

|Em〉 εi − εb

εm − εi
〈Em|θ̂ |E0〉. (21)

Equation (21) expresses the total fields of the system in
terms of the radiation of the source in a uniform medium,
with additional contributions from modes of the inclu-
sion that are excited. The weight of each eigenmode is
determined in part by the detuning between the inclusion
permittivity, εi, and the eigenmode, εm. The eigenmode
with the most similar permittivity is the dominant con-
tributor to the radiated energy, and the series converges
rapidly toward the true solution. Secondly, the electrody-
namic interaction between the source and the inclusion is
entirely encoded within the geometric factor 〈Em|θ̂ |E0〉,
representing the spatial overlap between the incident field
and the mode being excited. The explicit form of this over-
lap integral is presented in Appendix A. The solution (21)
is exact up to truncation in m, since the Born series is
avoided in obtaining Eq. (19), and arbitrary accuracy is
possible by increasing m. The one set of eigenmodes |Em〉
is applicable to all possible inclusion permittivities εi and
excitations |E0〉, the latter requiring only the evaluation of
the overlap integral, which represents a small fraction of
the total simulation time.

The solution (21) is the most suitable form when the
source is in the far field, so |E0〉 has a known form, such
as a plane wave or a beam. If, however, the source is
in the near field, a second formulation is more conve-
nient, expressed directly in terms of sources J(r) [31]. This
begins by casting Eq. (8) into operator form, yielding

|E0〉 = − i
ωε0εb

�̂|J 〉. (22)

After inserting Eq. (22) into Eq. (20), we obtain

|E〉 = |E0〉 − i
ωε0εb

∑
m

|Em〉 usm

1 − usm
〈Em|θ̂ �̂|J 〉. (23)

Again, by applying the operator θ̂ �̂ to 〈Em| via Eq. (18)
rather than |J 〉, we obtain a simple solution:

|E〉 = |E0〉 − i
ωε0εb

∑
m

|Em〉 us2
m

1 − usm
〈Em|J 〉. (24)

In terms of permittivities, Eq. (24) can be rewritten as

|E〉 = |E0〉 + i
ωε0

∑
m

|Em〉 εi − εb

(εm − εi)(εm − εb)
〈Em|J 〉,

(25)

yielding an expression of the form (3). The resulting
equation (25) is largely similar to Eq. (21), but the inte-
gral 〈Em|J 〉 is now no longer restricted to the interior of
the inclusion, and receives contributions from all locations
where J(r) is nonzero. Nevertheless, Eq. (25) remains
a rigorous solution of the Lippmann-Schwinger equation
and still benefits from the completeness of the eigenmodes
within the interior.

Finally, the desired normal mode expansion of Green’s
tensor (1), applicable to resonators in open and lossy sys-
tems, is obtained by choosing J(r) to be a localized Dirac-δ
source. By the sifting property of Dirac-δ functions, the
weight factor 〈Em|J 〉 is simply the amplitude of the adjoint
mode at the source location, E†

m(r). The Green’s tensor is
then constructed from its three components, giving

¯̄G(r, r′) = ¯̄G0(|r − r′|) + 1
k2

∑
m

εi − εb

(εm − εi)(εm − εb)

× Em(r) ⊗ E†
m(r′), (26)

where ¯̄G0(|r − r′|) is the Green’s tensor of the uniform
background, Eq. (6). The adjoint field E†

m(r′) is discussed
in Appendix A. Compared with Eq. (2), three differences
are immediately apparent: the switch from eigenfrequen-
cies to eigenpermittivities, the extra term ¯̄G0(|r − r′|),
and the extra factor (εi − εb)/(εm − εb). The extra term
accounts for the divergence and longitudinal component of
¯̄G(r, r′) at r′, while both the extra term and the extra factor
ensure the validity of Eq. (26) for all external sources, even
though the eigenmodes form a complete basis only in the
interior. The extra factor vanishes at resonance, whereby
Eq. (26) features the more usual weight (εm − εi)

−1. We
demonstrate the importance of the extra term and extra
factor in Sec. IV. Finally, ¯̄G(r, r′) becomes singular as r
approaches r′, and is longitudinal at r = r′. The term ¯̄G0
efficiently captures both aspects, even when expanding in
terms of a small set of exclusively transverse modes.

III. COMPARISON WITH QUASINORMAL
MODES

Quasinormal mode expansion has recently become a
popular and successful generalization of Eq. (2) to lossy
resonators in open systems. Alternatively, such modes are
known as resonant states among other leading propo-
nents [9,46,62,63]. First introduced for quantum mechani-
cal scattering in the context of nuclear physics [4], these
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modes were later also introduced for electrodynamics
problems [5,6]. Quasinormal modes are defined by the
eigenvalue equation

∇ × (∇ × Em) − ω2
m

c2 ε(r, ωm)Em = 0, (27)

which yields the Green’s tensor expansion [9,22–25]:

¯̄G(r, r′) = c2
∑

m

Em(r) ⊗ Em(r′)
2ωm(ωm − ω)

. (28)

A variation of Eq. (28) exists that is equivalent [25], as well
as an alternative based on a scattered-field representation
[64,65]. The fundamental difference between quasinormal
mode expansion and GENOME is the use of complex
eigenfrequencies ωm rather than complex eigenpermittiv-
ities εm to account for loss in lossy and open systems.
However, this one change has many ramifications, rang-
ing from the fundamental to the practical. Because of the
topical nature of quasinormal mode expansions, we devote
this section to a thorough comparison of the advantages
and disadvantages of the two methods.

A. Completeness

The completeness of quasinormal modes has been
extensively discussed in the literature [21,22,27], being
necessary for the validity of Eq. (28). Rigorous proof
shows that quasinormal modes form a complete set inside
the inclusion, since a sharp interface at the inclusion
boundary ensures that fields of sufficiently high spatial fre-
quency are generated within via refraction to represent any
field. However, the lack of sharp boundaries enclosing the
background means that fields of sufficiently high spatial
frequency are not generated [21,27]. Thus, Eq. (28) is rig-
orously valid only when r′ is interior to the inclusion, but
not when it is in the background. In contrast, GENOME
(26) is complete for sources both inside and outside the
inclusion, despite also using modes (9) that are complete
only inside the inclusion. Specifically, GENOME contains
an extra term and extra factor (26) relative to Eq. (28),
which can both be neglected on resonance. Hence, our
expansion always converges to arbitrary accuracy regard-
less of detuning from resonance and the distance from the
resonator. We demonstrate this property with numerical
examples in Sec. IV.

For many practical applications, the formal lack of
completeness of quasinormal modes is not so consequen-
tial, especially for Purcell-factor calculations. Quasinormal
expansion (28) has been demonstrated to provide excel-
lent numerical agreement even for exterior sources in
numerous cases when the response is dominated by a few
resonances [10,24,65–67]. It is also claimed that formal
issues of completeness may be bypassed in some practi-
cal implementations, where infinite space is mapped onto a

finite simulation domain, thus finding all necessary modes
[68]. This logic can be contrasted with the arguments
of Leung et al. [27] and Ching et al. [21]. Neverthe-
less, abnormalities can emerge away from resonance, such
as negative scattering cross sections [10,64]. Meanwhile,
other applications have more-stringent requirements for
completeness. For example, it is vital to the success of
“perturbation” methods, whereby known modes of simple
structures can be used to generate modes of a more-
complex structure, a process described in more detail in
Sec. IV.

A key advantage of modal expansions that use either
quasinormal modes or eigenpermittivity modes is that they
treat open systems using only a discrete set of modes,
avoiding the cumbersome continuum of radiation modes.
Unfortunately, this advantage of quasinormal modes is lost
when treating certain geometries, such as two-dimensional
(2D) structures or three-dimensional resonators mounted
on substrates [9,68,69]. In addition to the usual discrete set
of modes, a continuous set of modes now emerges from
the eigenvalue equation (27) to account for a branch cut in
the underlying dispersion relation. These modes transform
the expansion (28) into an expression involving both a sum
and an integral. Neglecting the continuum can lead to sig-
nificant errors, especially for subwavelength resonators.
However, when it is included, the continuum requires an
additional discretization scheme [9]. In contrast, we have
demonstrated in the context of 2D dispersion relations
that our eigenpermittivity modes do not experience any
branch cuts, and a discrete set emerges from our eigenvalue
equation (9) [50].

Lastly, our generalized normal modes are always
biorthogonal, and projection and expansion always pro-
ceed via Eq. (26), so the relative modal contribu-
tions remain obvious from the detuning. Meanwhile, the
biorthogonality normally enjoyed by quasinormal modes
is disrupted by material dispersion, which requires a
more elaborate projection procedure when more than one
mode provides a significant contribution [10,24]. This
involves evaluating overlap integrals between the modes
and then inverting a linear system of equations [10,24].
This issue can be avoided by expansion via the Mittag-
Leffler theorem, which shows that Eq. (28) remains true for
interior sources even in the presence of dispersive ε(r, ω)

[70,71].

B. Far fields and normalization

A hallmark peculiarity of quasinormal modes is their
far-field behavior, diverging exponentially as r → ∞. This
is unphysical behavior when treating problems associated
with real frequencies, and arises as an unavoidable conse-
quence of complex eigenfrequencies in conjunction with
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radiating boundary conditions [7]. Divergence is imper-
ceptible near the resonator, but dominates at further dis-
tances, with the divergence becoming noticeable earlier
as Im(ωm) increases. Both source and detector coordi-
nates of ¯̄G(r, r′) are affected, producing incorrect Pur-
cell factors and radiation patterns (see, e.g., Ref [65]).
A remedy for quasinormal modes exists by numerically
generating regularized modes from the original modes,
via the Lippmann-Schwinger equation [65]. However, this
assumes the response is dominated by a single mode,
neglecting all other modes. Meanwhile, our eigenpermit-
tivity modes are valid over the entire domain, both satis-
fying radiating boundary conditions and decaying to zero
as r → ∞. This is the advantage of using eigenmodes of
the Lippmann-Schwinger equation itself, defined at real
frequencies.

The divergence of quasinormal modes complicates nor-
malization, since any integral over the entire domain
correspondingly diverges. Normalization is necessary for
projection, so quasinormal modes were previously unsuit-
able for quantitative studies. More recently, pioneering
efforts by several groups have led to several successful nor-
malization schemes. Firstly, the diverging volume integral
during normalization can be counterbalanced by a surface
integral [7–9,25]. However, some care is required when
positioning the surface integral to avoid numerical sensi-
tivity issues [25,72]. See, for example, Ref. [72] and asso-
ciated comments and replies [73,74] for a detailed discus-
sion. The procedure is also inapplicable for backgrounds
with nonuniform permittivity ε(r, ω). Next, divergence can
be quelled by perfectly matched layers along the simu-
lation domain boundary, yielding a finite normalization
integral [10]. But this method can be inconvenient or even
impossible to use unless a perfectly matched layer is used
during simulation [72]. For example, resonators coupled to
waveguides or periodic boundary conditions require sep-
arate treatment [75–77]. Estimates of the normalization
constant can also be reverse engineered by comparing the
quasinormal mode expansion with a separate simulation
using a test source, though this approximation is valid only
for individual isolated resonances [64].

In comparison, a simple, general, and robust method
exists to normalize our generalized normal modes,
achieved by simply integrating the modes over the inte-
rior of the inclusion. Indeed, in our COMSOL MULTIPHYSICS
implementation, we evaluate the necessary overlap integral
of the mode with itself using simply the builtin volume
integration tool.

C. Other comparisons

A vital practical consideration is the ease of gen-
erating the eigenmodes. Generalized normal modes are
always defined by a single linear eigenvalue problem
(9), and a rapid robust solution is possible via the many

powerful linear-algebra packages. Furthermore, immediate
implementation with a range of off-the-shelf simulation
packages is possible. Quasinormal modes are relatively
more difficult to find numerically since they are defined
by a nonlinear eigenvalue problem (27). The nonlinearity
originates from the boundary conditions of the open sys-
tem, since the eigenfrequency explicitly enters the Som-
merfeld radiation condition [23]. This can be avoided
in many numerical implementation through use of per-
fectly matched layers. An additional nonlinearity is intro-
duced when material dispersion is present, since frequency
appears within ε(r, ω) in Eq. (27). This nonlinearity can
also be eliminated. The first method involves perturbing
modes of a nondispersive system [71], while the second
introduces auxiliary fields [78–80], though this requires
additional implementational effort and increases the num-
ber of equations to be solved.

To handle the nonlinearity, solutions for quasinormal
modes commonly rely on a complex root search, requir-
ing numerical iteration of Eq. (28) until a resonance is
located. Accurate initial guesses of the eigenfrequencies
are paramount, and it is impossible to guarantee that all
relevant solutions have been found. These difficulties can
be ameliorated by first analyzing the scattering spectrum
of the target nanostructure, obtained through a separate
numerical simulation using a broadband source. The real
and imaginary parts of ωm can be estimated from the peaks
and linewidths of the spectrum. However, dark modes,
low quality-factor modes, and members of closely spaced
resonances can remain elusive.

Finally, quasinormal modes require the inclusion per-
mittivity ε(r, ω) to be defined for complex frequencies,
which is awkward to measure experimentally. Further-
more, the search for quasinormal modes cannot proceed
unless ε(r, ω) is a sufficiently smooth function of fre-
quency. This can preclude use of tabulated or experimen-
tally measured permittivity data. Hence, approximations
such as the Drude model are necessary, requiring extension
to complex frequencies by analytic continuation.

The preceding discussion and subsections surveyed the
advantages of GENOME over quasinormal mode expan-
sion. Currently, quasinormal modes hold one key advan-
tage over generalized normal modes: Eq. (28) is valid for
all frequencies [25] so long as all aforementioned provi-
sos are heeded. An approximate analytic expression can
also be derived for the line shapes of lossy resonators
when a single quasinormal mode is dominant [10,24]. This
enables great utility, as line shapes are often the most-
accessible quantity in experiments. In contrast, generalized
normal modes are defined for an individual frequency. To
obtain expansions (26) at other frequencies, a new set of
eigenmodes must be generated for each frequency. This
represents the sacrifice necessary at present for a rigorous,
robust eigenmode expansion of Green’s tensor in an open,
lossy system.

044018-8



GENERALIZING NORMAL MODE EXPANSION... PHYS. REV. APPLIED 11, 044018 (2019)

However, this limitation of generalized normal modes
is not fundamental. Firstly, once the eigenmodes have
been obtained at one frequency, its eigenpermittivities at
neighboring frequencies can be obtained perturbatively. To
first order, the eigenmodes are also valid for a range of fre-
quencies [32]. This allows the detuning factor in Eq. (26)
to be reexpressed in terms of frequencies [32]. Further-
more, since the eigenmodes are complete, modes defined
for one frequency are always able to represent modes at
any other frequency via linear combination. Correspond-
ingly, the variation of eigenpermittivities with frequency
εm(ω) can be obtained to arbitrary precision. Work in this
direction is currently under way.

IV. IMPLEMENTATION AND NUMERICAL
EXAMPLES

In practical terms, the key step in using GENOME
is finding the eigenmodes and their eigenvalues. In this
section, we describe some possible numerical implemen-
tations for the eigenmodes, before proceeding to detail our
COMSOL MULTIPHYSICS implementation. We present some
example eigenpermittivity modes produced by COMSOL
MULTIPHYSICS. We then use these eigenmodes to expand
the Green’s tensor of the structure, thereby demonstrat-
ing GENOME. Finally, we compare GENOME with an
incomplete naive modal expansion that also uses eigen-
permittivity modes, demonstrating that only GENOME
reproduces the real and imaginary parts of the Green’s
tensor correctly.

The linear eigenvalue equation for our modes is defined
by Eq. (9) in integral form. Since the kernel of Eq. (9) is the
Green’s tensor of a uniform medium, the integral takes the
form of a convolution, so efficient Fourier-domain solu-
tions are possible. However, the eigenmode equation need
not be solved in integral form, and the differential form can
be used instead,

∇ × (∇ × Em) − εbk2Em = 1
sm

θ(r)k2Em, (29)

obtained from Eq. (5) by setting J = 0. This is the form
we use for implementation in COMSOL MULTIPHYSICS.
Additionally, simple structures such as spheres, slabs, and
infinite cylinders admit analytic solutions via their well-
known step-index dispersion relations [30,31,50]. In par-
ticular, we have recently applied the argument-principle
method to the step-index fiber dispersion relation, enabling
its efficient and robust solution [50]. The supplied code
can also easily be adapted to solve other transcendental
equations.

Finally, Eq. (9) can be efficiently solved for clusters
of inclusions using the eigenmodes of its constituents as
a basis. This exploits the fact that ¯̄G0(|r − r′|) is com-
mon to all inclusions, even if they have different shapes

or compositions, while θ(r′) is nonzero only inside the
inclusions [30]. The procedure then amounts to evaluating
overlap integrals between known modes and diagonaliz-
ing a small dense matrix. Rapid convergence is obtained
because a complete set of modes is being used to represent
another mode, all of which are smooth functions. Previous
demonstrations include using modes of a sphere to gen-
erate modes of arbitrary clusters [30], and periodic arrays
[29,42]. Completeness over all space is necessary for the
success of this procedure. This procedure bears similarities
to “perturbative” methods such as resonant-state expansion
[9,46,62], which uses known complex frequency modes
of a simple inclusion to generate modes of any enclosed
inclusion [46]. Completeness of quasinormal modes inside
the inclusion ensures that the series always converges for
“perturbations” of any depth. In this regard, our proce-
dure is analogous, but is applicable to “perturbations” both
within the inclusion and of the background.

A. COMSOL MULTIPHYSICS Implementation

COMSOL MULTIPHYSICS is a commercial numerical sim-
ulation package for the finite-element method. We choose
COMSOL MULTIPHYSICS for our eigenmode solver to
demonstrate its ease of implementation on a widely used
platform. COMSOL MULTIPHYSICS features an inbuilt eigen-
mode solver designed for complex eigenfrequency modes
(27). However, this solver is easily repurposed to solve for
eigenpermittivity modes, reexpressed in differential form
as Eq. (29). This is accomplished via a substitution trick,
eventually allowing the eigenfrequencies found by COM-
SOL MULTIPHYSICS to be reinterpreted as sm. Furthermore,
the eigenmodes found by COMSOL MULTIPHYSICS are the
true eigenpermittivity modes.

More specifically, we define a simulation material to
act as the background medium, set to have an artificial
frequency-dependent permittivity

ε̃b(k̃) := εb
k2

k̃2
, (30)

where the tilde denotes COMSOL MULTIPHYSICS simulation
variables, while εb and k are fixed simulation input param-
eters. This ensures the equality ε̃bk̃2 = εbk2, or in other
words, the simulation propagation constant remains equal
to the desired propagation constant

√
εbk regardless of the

COMSOL MULTIPHYSICS eigenfrequency. Note that k̃2 may
become complex during COMSOL MULTIPHYSICS’s eigen-
value search, even if the parameters εb and k2 are real. In
this case, ε̃b also becomes complex, so the product ε̃bk̃2

remains real and the far-field behavior is always that of a
passive lossless medium. Secondly, we define a simulation
material to act as the scatterer, with permittivity unity:

ε̃i := 1. (31)
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This choice allows the eigenpermittivity to be identified
via the equality ε̃ik̃2 = εmk2, thus yielding

εm = k̃2

k2 . (32)

Turning to other simulation considerations, an adaptive
mesh with finer resolution near the surface is desirable.
This enables greater accuracy when finding the plasmonic
modes, which have evanescent fields. We also enclose the
simulation domain with perfectly matched layers to reduce
unwanted reflection. But this is not necessary, unlike with
quasinormal modes, since our generalized normal modes
are well behaved at infinity. Thus, it is possible to forgo
the use of perfectly matched layers in generating the
modes if their implementation is difficult. For example,
we have also sucessfully generated the modes of Fig. 3
using instead the inbuilt scattering boundary conditions of
COMSOL MULTIPHYSICS.

Once found, the eigenmodes Em require normalization
according to Eq. (16) before use. This is accomplished
by numerically evaluating Em · Em across the interior of
the inclusion using the inbuilt integration function, yield-
ing the normalization constant. As discussed in Appendix
A, this integral can evaluate to zero for symmetry rea-
sons, especially for analytic eigenmodes constructed with
cylindrical or spherical harmonics. While this can be easily
remedied, it was unnecessary since in our experience COM-
SOL MULTIPHYSICS already generates modes with nonzero
normalization integrals, even for highly symmetric inclu-
sions, such as cylinders. This is true even if no attempt is
made to incorporate the symmetry of the inclusion into the
simulation using symmetric boundary conditions.

With the eigenmodes in hand, use of GENOME (26)
proceeds by evaluating the detuning factors and adding
the known ¯̄G0(|r − r′|) term for a point source, finally
plotting the fields as desired. These steps were performed
using MATLAB, interfacing with COMSOL MULTIPHYSICS via
LiveLink.

B. An alternative naive expansion

To demonstrate the importance of completeness, and
thus use of the Lippmann-Schwinger equation in con-
structing GENOME, we first introduce an alternative naive
expansion based on eigenpermittivity modes. Here we
expand ¯̄G(r, r′) directly in terms of the modes (9), with
some coefficient αm(r′),

¯̄G(r, r′) ≈
∑

m

αm(r′) ⊗ Em(r). (33)

Implicit to this expansion is the false assumption that our
eigenmodes are complete everywhere. Inserting Eq. (33)
into Eq. (1) and projecting using the biorthogonality of

eigenpermittivity modes, we arrive at the naive, erroneous
expansion

¯̄G(r, r′) ≈ 1
k2

∑
m

Em(r) ⊗ E†
m(r′)

εm − εi
, (34)

which is not valid when the source r′ is placed in the
background. Analogous assumptions and procedures are
sometimes employed by other expansion methods (e.g.,
when quasinormal modes are used). The performance of
Eq. (34) is compared with that of Eq. (26) in the following
subsection.

C. Numerical examples

Before proceeding to the COMSOL MULTIPHYSICS exam-
ples, we first demonstrate the capabilities of GENOME on
a cylindrical scatterer of infinite extent in the third dimen-
sion. This is effectively a 2D geometry for which analytic
solutions are available. Firstly, we generated a set of eigen-
permittivity modes using the step-index fiber-dispersion
relation [50]. To confirm GENOME, Eq. (26), we com-
pared results against a direct calculation using cylindrical
Mie theory, expanding the fields of a point source using
Graf’s addition theorem [81]. As demonstrated in Fig. 1,
agreement was obtained, improving as more modes were
included.

The metric we employed is a pseudo-L2-norm of the rel-
ative difference, separating the real and imaginary parts.
For example, for the real part we define, using the

FIG. 1. An L2 norm of the relative difference between cylin-
drical Mie theory and either GENOME or a naive expansion
(34). The simulation geometry is similar to that in Fig. 2, except
the inclusion is circular. Its diameter is λ/4, with permittivity
εi = 12. An in-plane point source is situated λ/20 from the cir-
cumference of the inclusion, oriented parallel to the surface. The
relative difference of the real (red)and imaginary (blue) parts
is shown. Convergence of GENOME (solid lines) continues to
improve, while the naive expansion (dash-dotted lines) quickly
saturates. Data for the real part of the naive expansion are not
shown, as the integral diverges and is meaningless.
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decibel scale,

�Re(G) = 10 log10[∫
Re(Gxy − Gxy,ref)

2 + Re(Gyy − Gyy,ref)
2dA

NA

]1/2

,

(35)

where the reference is taken to be the Mie solution, A is
the area of the integration domain, and N is a normaliza-
tion factor taken to be the maximum square modulus of
the imaginary part of the Mie solution. A similar definition
applies to the imaginary part, using the same value of N .
The integration domain is a square twice the width of the
cylinder but excluding the interior of the inclusion. This
choice of domain was arbitrary, and the domain could be
extended to infinity, since our expansion does not suffer
from divergences there. However, this extension would
dilute the discrepancy between GENOME and the refer-
ence Mie simulation, and would not give useful results.
Integrals were approximated using the midpoint rule.

To ensure a fair comparison, the same angular orders
were used for both GENOME and Mie-theory simula-
tions, ranging from m = −5 to m = 5. Rapid agreement
up to −30 dB was attained when only a few modes were
included. Agreement continued to improve, increasing to
−70 dB in all cases tested, which was achieved after 400
modes. Similar accuracy was achieved for both the real
part and the imaginary part, even though the real part is
divergent at the source location. Indeed, arbitrary accuracy
is attainable, providing a numerical demonstration of the
completeness of GENOME for exterior sources. Although
the example shown involves a dielectric inclusion (εi =
12), very similar convergence behavior was observed for
lossy metallic inclusions. We also tested sources positions
placed further from the cylinder. Slightly better perfor-
mance is obtained, since the convergence curve is initially
steeper.

For comparison purposes, the alternative expansion
method, described in Sec. IV B, was also benchmarked.
The naive expansion (34) uses the same set of modes but
the expansion is not complete, so its accuracy quickly sat-
urates and never improves. Furthermore, the accuracy of
the real part is poor, since the naive expansion is unable
to reproduce the 1/r2 divergence in the real part of the
Green’s tensor.

We proceed to demonstrate our COMSOL MULTIPHYSICS
implementation of GENOME using a simple but nontriv-
ial geometry, an inclusion with a triangular cross section
shown in Fig. 2 and infinitely extending in the third dimen-
sion. Its corners have been rounded to avoid unphysical
fields that would otherwise arise from geometric singular-
ities. The inclusion size is λ/4, which is subwavelength,
but not small enough such that an electrostatic treatment
would suffice. This choice serves to showcase GENOME

FIG. 2. The simulated inclusion geometry, an equilateral trian-
gle with rounded corners. Its height is λ/4 from the base to the
imaginary unrounded apex, while the radius of the rounded seg-
ments is λ/60. The point-dipole source is offset by λ/20 from the
imaginary apex, with its position indicated by the double headed
arrow, and its orientation parallel to the arrows.

as an electrodynamic tool. Note that choosing the inclu-
sion size is equivalent to fixing the frequency of operation,
since material dispersion is irrelevant to eigenpermittivity
modes, which separate geometric properties from material
properties.

Two types of symmetry are relevant to our chosen struc-
ture. Firstly, the 2D nature of the geometry separates all
modes into strictly transverse magnetic or transverse elec-
tric polarizations. Secondly, the inclusion belongs to the
C3v point group, which has three irreducible representa-
tions, A1, A2, and E, of which E has a twofold degeneracy.
In generating the eigenmodes, we chose not to incorporate
any of these symmetries into the simulation. Neverthe-
less, COMSOL MULTIPHYSICS produces eigenmodes with
either in-plane or out-of-plane fields that are zero to within
numerical noise. Furthermore, COMSOL MULTIPHYSICS nat-
urally recognizes modes of degenerate pairs when a fine
enough mesh is used.

We now present some representative eigenpermittivity
modes found by COMSOL MULTIPHYSICS. We categorize
all modes into two types. The first we denote as plas-
monic modes, typically with eigenpermittivities Re(εm) <

0. These have evanescent fields concentrated along the
inclusion surface. The second type are dielectric modes,
with Re(εm) > 0, and field distributions more typical of a
finite potential well. There are an infinite number of both
types of modes.

The lowest-order plasmonic modes are shown in
Figs. 3(a)–3(c), along with their eigenpermittivities.
Im(εm) of the fundamental plasmonic mode is larger than
that of the higher-order modes, indicating that it is a bright
mode and the others are dark. All plasmonic modes shown
are members of the E representation of the C3v group,
and are thus excited by in-plane dipole moments. Higher-
order plasmonic modes feature progressively more nodes
along the surface of the inclusion. Inclusion of more modes
within GENOME gives better quantitative agreement,
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FIG. 3. (a)–(c) A degenerate member of a pair of plasmonic modes, along with their common eigenpermittivity. Since the fields of
these modes are concentrated along the inclusion interface, the location of this interface is well delineated by the fields themselves. (d)
The first two dielectric modes, with their respective eigenpermittivities. Here we superimpose an outline of the triangular inclusion.
All plots show |E| in arbitrary units. Eigenpermittivities of the modes are (a) εm = −2.7 − 1.3i, (b) εm = −0.46 − 0.13i, (c) εm =
−0.87 − 0.04i, and (d) εm = 2.4 − 2.7i, εm = 11.7 − 2.5i.

especially for expansion of the real part of the Green’s
function, and particularly when the source point is close
to the surface. Progressively higher-order modes have
eigenpermittivities that asymptotically approach εm = −1,
which represents an accumulation point for the eigen-
value equation (9) [29,31]. In particular, the imaginary
parts of their eigenpermittivities become infinitesimal,
indicating that they are nonradiative. Their contributions
to GENOME also become increasingly negligible because
their fields are increasing confined to the inclusion surface,
and so have little overlap with any excitation.

The first two dielectric modes are also shown in
Fig. 3(d). The first mode belongs to the A1 representa-
tion, and is thus excited by an out-of-plane dipole moment.
The second mode belongs to the E representation, and
is a member of a degenerate pair (not shown). Higher-
order dielectric modes have more nodes, both in the radial
direction and in the azimuthal direction. They also have
larger positive Re(εm), so their contributions to GENOME
become increasingly small as they become detuned from
any realistic inclusion permittivity.

We now demonstrate the use of these modes within
GENOME via Eq. (26). We provide three examples, with
inclusion permittivities of εi = 12, εi = −2.70 + 3.55i,
and εi = −2.70, all relying on the same modes. The first
example places the scatterer close to a dielectric mode,
while the latter two examples are “on resonance” with the
bright plasmonic mode. To produce plots, we choose to
locate the source dipole near the leftmost tip of the trian-
gular inclusion and orient its moment along y, as shown
in Fig. 2. This means we in fact use Eq. (25), plotting the
components of the resulting |E〉 separately.

To proceed, we first obtain the field due to a line dipole
in free space, representing |E0〉. Since this is not frequently
encountered in the literature, we devote Appendix B to
its derivation. Then the contributions of the modes are
summed according to their weights given in Eq. (25).
The resulting Ex and Ey fields thus represent Gxy and
Gyy , and are plotted in Figs. 4–6, showing both real and
imaginary parts. We chose a dipole strength of p/ε0 =
1 V m, where p is the dipole moment per unit length
in the perpendicular direction, oscillating at frequency
ω/c = 1 m−1 in a vacuum background. This choice of
units allows the figures to simultaneously represent the
electric field, in the unit of volts per meter, and the
Green’s tensor, which is a unitless quantity in two dimen-
sions.

To provide a benchmark for GENOME, we plot a direct
simulation of a radiating dipole source produced by COM-
SOL without using any eigenmode expansion. Also plotted
is the result of the naive expansion described in Sec.
IV B. The spatially resolved difference between the direct
simulation and the two expansions is plotted in Fig. 7. Out-
of-plane electric fields are not shown, as they are of the
order 10−8, representing numerical noise.

Figure 4 shows the simulation of the εi = 12 inclusion.
The dominant pair of modes excited is the second mode
in Fig. 3(d), with eigenpermittivity εm = 11.7 − 2.5i, and
its partner (not shown). As demonstrated in Fig. 4 and the
first row in Fig. 7, GENOME obtains quantitative agree-
ment with the benchmark direct simulation, reproducing
both the real part and the imaginary part of the Green’s
tensor. Graphical accuracy is obtained, and in particular,
the agreement of the imaginary parts [Figs. 4(c) and 4(d)]

044018-12



GENERALIZING NORMAL MODE EXPANSION... PHYS. REV. APPLIED 11, 044018 (2019)

(a) (b) (c) (d) FIG. 4. Three different simula-
tion methods of an identical geom-
etry, with an x-oriented dipole
placed near a triangular inclusion
of εi = 0.87. The first row shows
the results of GENOME, the sec-
ond row shows direct COMSOL
MULTIPHYSICS simulation with a
point source, and the third row
shows the naive expansion (34)
derived in Sec. IV B. The scal-
ing is identical between each row.
Each column displays a differ-
ent component of Green’s ten-
sor, corresponding to (a) Re(Gxy),
(b) Re(Gyy), (c) Im(Gxy), and (d)
Im(Gyy). We omit the outline of
the inclusion from Fig. 3(d) as the
location of the boundary is clear
from the fields themselves.

is better than 2% throughout the domain. The agreement
of the real parts is not as consistently good, but the dis-
agreement is mostly localized to the region around the
source. The speckled nature of the error here, visible in
Fig. 7(a), suggests that it originates from the direct COM-
SOL MULTIPHYSICS simulation, specifically, the difficulty
of reproducing the singularity using a piecewise polyno-
mial basis on a triangular mesh. In other words, GENOME
is likely to be more accurate than our benchmark since the
singularity is handled analytically as part of ¯̄G0 in Eq. (26).

In all plots, 50 modes were included in the expansions,
including 11 plasmonic modes. We show in Fig. 8 the
convergence as a function of the number of modes, using
the same metric (35) as in Fig. 1. The integration domain
is now the whole visible domain in Figs. 4–7. However,
we plot only the difference in the imaginary parts, since
the difference in the real parts is likely to be dominated
by the aforementioned errors of the direct COMSOL MUL-
TIPHYSICS simulation. The agreement between GENOME
and the benchmark begins to saturate, so only data up

(a) (b) (c) (d) FIG. 5. As in Fig. 4, but the
permittivity of the triangular
inclusion is εi = −2.70 + 3.55i.
Columns show (a) Re(Gxy), (b)
Re(Gyy), (c) Im(Gxy), and (d)
Im(Gyy).
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(a) (b) (c) (d) FIG. 6. As in Fig. 4, but the per-
mittivity of the triangular inclu-
sion is εi = −2.70. Columns show
(a) Re(Gxy), (b) Re(Gyy), (c)
Im(Gxy), and (d) Im(Gyy).

to 25 modes are plotted. This contrasts with the ana-
lytic results in Fig. 1, where the agreement continues to
improve. The saturation is likely due to numerical errors in
the direct COMSOL MULTIPHYSICS simulation, the COMSOL
MULTIPHYSICS generated modes, or both.

We now compare the naive expansion (34) with the
direct simulation. The first notable difference is that the
singularity in the real part of Green’s tensor is not correctly
reproduced. As seen in Fig. 7(b), the disagreement is at
least of the order of unity across large portions of the plot

domain, even far away from the source. The agreement is
also poor for the imaginary parts, where the weighted aver-
age discrepancy is approximately 26%, as seen in Fig. 8.
Indeed, the large quantitative discrepancy leads to notice-
able qualitative discrepancies, particularly in the Im(Gyy)

component.
For the metallic example, we chose an inclusion

permittivity of εi − 2.7 + 3.55i, corresponding to gold at
502 nm, according to Johnson and Christy data. The inclu-
sion is thus approximately “on resonance” with the bright

(a) (b) (c) (d) FIG. 7. Shows the relative
difference between direct COMSOL
MULTIPHYSICS simulation and
expansion via either GENOME
or the naive expansion. The
metric used is similar to Eq. (35),
but shows instead the spatially
resolved relative difference of
the Gyy component on a decibel
scale. Each row corresponds to
a different set of simulations,
with the first row correspond-
ing to Fig. 4, the second row
corresponding to Fig. 5, and
the third row corresponding to
Fig. 6. Only differences in Gyy
are shown, arranged into columns
corresponding to (a) Re(Gyy),
(b) Re(Gyy), (c) Im(Gyy), and (d)
Im(Gyy).
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FIG. 8. As in Fig. 1, but an L2 norm of the relative difference
between the imaginary parts of direct COMSOL MULTIPHYSICS
simulation and either GENOME (solid lines) or the naive expan-
sion (dash-dotted lines). Blue lines are for inclusion permittivity
εi = 12, yellow lines are for εi = −2.7 + 3.55i, and red lines are
for εi = −2.7, corresponding, respectively, to Figs. 4, 5, and 6.

modes of Fig. 3(a), with eigenpermittivity εm = −2.7 −
1.3i. However, the radiative nature of this pair of modes
means that they have a relatively large negative Im(εm),
so their detuning from a passive medium can never be
arbitrarily small. Consequently, the bright pair of modes
is not dominant, and their contribution is roughly equal
to that of the next dominant pair. As seen in Fig. 5,
we observe agreement similar to that of our dielectric
example, obtaining graphical accuracy compared with the
benchmark direct simulation. This is also demonstrated in
Fig. 7, where agreement in the imaginary parts is good
across the domain, while the agreement in the real part is
good except near the source. As before, large discrepancies
are observed when the naive expansion is used, particularly
the real parts and the Im(Gyy) component.

Finally, we show in Fig. 6 the effect of artificially
neglecting loss by simulating an inclusion of permittiv-
ity εi − 2.7. Consequently, the inclusion is brought closer
to the resonance, εm = −2.7 − 1.3i, so its contribution to
the expansion is more dominant. As seen in Figs. 7 and
8, an improvement in the performance of GENOME is
observed. However, more remarkable is the improvement
of the naive expansion, with the average discrepancy in
the imaginary part dropping to 4%, though some quali-
tative differences in Im(Gyy) remain. This example helps
to demonstrate that the naive expansion is incomplete,
as somewhat satisfactory results from Eq. (34) can be
obtained only if a single on-resonance mode is dominant.
This is demonstrated by Fig. 8 and supported by the ana-
lytic results in Fig. 1, where it can be seen that none of
the subsequent, more detuned modes improve the conver-
gence. The success of the analogous quasinormal mode
expansion, which is also incomplete for exterior sources,
can be explained in such terms, as it is well suited to
situations where a handful of on-resonance modes are

dominant. Conversely, GENOME continues to converge
as more modes are considered, so the modal completeness
of GENOME ensures accuracy regardless of whether the
structure is on resonance or detuned from resonance.

V. SUMMARY

In this paper, we develop GENOME, a modal expansion
for the electromagnetic Green’s tensor based on stationary
normal modes generalized to handle lossy resonators in
open systems. Its foundation is the Lippmann-Schwinger
equation, Eq. (7), introduced in Sec. II A. Expansion
proceeds using eigenmodes of the Lippmann-Schwinger
equation, defined in Sec. II B. Crucially, we define the per-
mittivity of the inclusion as the eigenvalue, resulting in the
linear eigenvalue equation (9). Physical interpretations of
eigenpermittivity modes and some of their properties are
also discussed in Sec. II B. The expansion itself is derived
in Sec. IIC, culminating in the final GENOME expression
(26).

Since GENOME uses true normal modes, it has a num-
ber of advantages, as discussed in Sec. III. The modes
remain discrete and are biorthogonal, which greatly facil-
itates modal expansion. The modes are complete, ensur-
ing that the expansion always converges toward the true
solution of the target inhomogeneous differential equation
(4). This remains true for the far fields, where our
modes intrinsically satisfy the governing source-free dif-
ferential equation, thus simultaneously obeying Sommer-
feld boundary conditions and decaying to zero. This has
the additional benefit of trivializing normalization. We
describe numerical implementation of GENOME in Sec.
IV, focusing on the key step of generating the eigenper-
mittivity modes. Since the defining eigenvalue equation
is linear, several possibilities are described. In particular,
preexisting eigenmode solvers can be adapted with a sim-
ple substitution trick, described in Sec. IV A. In Sec. IV B,
we present results from our COMSOL MULTIPHYSICS imple-
mentation, based on the differential form of the defining
eigenmode equation (29). We obtain the modes of a tri-
angular inclusion, and provide some further discussion on
the characteristics of eigenpermittivity modes. We then
proceed to use these modes in GENOME, comparing our
expansion with a direct COMSOL MULTIPHYSICS simulation
of a point source. Graphical accuracy in the radiated fields
is obtained, particularly for the imaginary part. Finally, we
demonstrate the importance of completeness by comparing
GENOME with a naive expansion that also uses eigenper-
mittivity modes, Eq. (34), that never converges toward the
true solution, regardless of the number of modes used.
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APPENDIX A: ADJOINT MODES

We now give the explicit forms for the overlap integrals
in Eq. (21),

〈Em|θ̂ |E0〉 =
∫

θ(r)E†
m(r) · E0(r)dr, (A1)

and in Eq. (25),

〈Em|J 〉 =
∫

E†
m(r) · J(r)dr. (A2)

The adjoint field E†
m(r) in Eqs. (A1) and (A2) is not nec-

essarily the complex-conjugate field E∗
m(r), which is the

familiar form of 〈Em| for a self-adjoint or Hermitian oper-
ator. Instead, the operator �̂θ̂ in Eq. (13) is symmetric, so
the adjoint field is identical to the direct field [30]:

E†
m(r) = Em(r). (A3)

Equation (A3) is true unless the structure itself possesses
symmetry. For example, an infinite cylinder has both con-
tinuous translational symmetry and continuous rotational
symmetry, giving rise to eiβz and eimθ variations in the
respective directions. In this case, Eq. (A3) must be modi-
fied, and the adjoint field is obtained by the substitutions
β → −β and m → −m, while leaving the radial varia-
tion of the mode unchanged [7,30,31,72]. Alternatively,
the modes may be constructed using sine and cosine linear
combinations of e±iβz and e±imθ , and Eq. (A3) once again
becomes true [7,9,72].

APPENDIX B: FIELDS OF A LINE DIPOLE

We aim to obtain the fields radiated by a line-dipole
source, which is of infinitesimal extent in two dimensions
but is infinite in extent in the third dimension. The line
dipole is defined by its components p = (px; py ; pz), with
dimension of dipole moment per unit length. The line
dipole may have harmonic eiβz variation along the third
dimension.

To derive the dipole fields, we proceed via the Green’s
tensor of free space, defined by Eq. (1), which is related to
the Green’s scalar for the Helmholtz equation by the well
known relation

¯̄G0(r) =
(

¯̄I + 1
k2 ∇∇

)
G0(r), (B1)

where without loss of generality, we have placed the source
at the coordinate origin, so r itself represents the dis-
tance separation. Furthermore, the background permittivity

ε may simply be absorbed into k2. For our 2D geometry,

∇ = ∇⊥ + iβ ẑ, (B2)

where ∇⊥ applies only to the in-plane directions. The
appropriate Green’s scalar is the 2D version,

G0(r) = i
4

H0(αr), (B3)

where α is the in-plane propagation constant, α2 + β2 =
k2.

In explicit form, the nine components of Green’s tensor
in Cartesian form are

¯̄G(r) = 1
k2

⎡
⎣

k2 + ∂2
x ∂x∂y iβ∂x

∂y∂x k2 + ∂2
y iβ∂y

iβ∂x iβ∂y α2

⎤
⎦ i

4
H0(αr). (B4)

However, it is more convenient to evaluate the derivatives
in polar coordinates (r, θ), so the chain rule is used to
obtain

∂x = (∂xr)∂r = cos θ∂r, ∂y = (∂yr)∂r = sin θ∂r, (B5)

where derivatives corresponding to ∂θ may be neglected
since H0(αr) is invariant with θ . Second derivatives are
similarly obtained, though this time ∂θ cannot be ignored.
Next the Cartesian unit vectors should also be transformed
into cylindrical unit vectors, with the usual transforma-
tion matrix. However, the cylindrical unit vectors are not
appropriate for sources located at the coordinate origin,
where they are not well defined. Instead, we introduce the
rotational or angular momentum unit vectors

ê+ = 1
2
(x̂ + iŷ), ê− = 1

2
(x̂ − iŷ), (B6)

so the dipole moments instead have the components
(p+; p−; pz). Application of these transformations to Eq.
(B4) yields

¯̄G(r) = 1
k2

⎡
⎣

β2 − 1
r ∂r β2 − 1

r ∂r iβ∂r

−i
(
k2 + 1

r ∂r
)

i
(
k2 + 1

r ∂r
)

0
iβ∂r iβ∂r α2

⎤
⎦

×
⎡
⎣e−iθ 0 0

0 eiθ 0
0 0 1

⎤
⎦ i

4
H0(αr). (B7)

In arriving at Eq. (B7), simplifications were performed
using Bessel-function identities.

Alternatively, in two dimensions it is sufficient to spec-
ify the fields using Ez and Hz alone, from which all other
field components can be derived using the Maxwell curl
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equations. The Ez field produced by a line dipole can be
calculated using Eq. (3) with the explicit form (B7) to yield

Ez = α

4εb

[
iα

pz

ε0
H0(αr)− β

p+
ε0

H−1(αr)e−iθ

+β
p−
ε0

H1(αr)eiθ
]

eiβz, (B8)

while the Hz field can be obtained from the curl of Eq. (B7)
to yield

√
μ0

ε0
Hz = − i

4
kα

[
p+
ε0

H−1(αr)e−iθ + p−
ε0

H1(αr)eiθ
]

eiβz,

(B9)

where we have restored εb, the background permittivity.
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Joannopoulos, Marin Soljačić, and Steven G. Johnson, Fun-
damental limits to optical response in absorptive systems,
Opt. Express 24, 3329 (2016).

[36] David J. Bergman and Mark I. Stockman, Surface Plas-
mon Amplification by Stimulated Emission of Radiation:
Quantum Generation of Coherent Surface Plasmons in
Nanosystems, Phys. Rev. Lett. 90, 027402 (2003).

[37] Kuiru Li, Mark I. Stockman, and David J. Bergman,
Self-Similar Chain of Metal Nanospheres as an Efficient
Nanolens, Phys. Rev. Lett. 91, 227402 (2003).

[38] Mark I. Stockman, Sergey V. Faleev, and David J.
Bergman, Localization Versus Delocalization of Surface
Plasmons in Nanosystems: Can One State Have Both Char-
acteristics? Phys. Rev. Lett. 87, 167401 (2001).

[39] Mark I. Stockman, Sergey V. Faleev, and David J.
Bergman, Coherent Control of Femtosecond Energy Local-
ization in Nanosystems, Phys. Rev. Lett. 88, 067402
(2002).

[40] Mark I. Stockman, David J. Bergman, Cristelle Anceau,
Sophie Brasselet, and Joseph Zyss, Enhanced Second-
Harmonic Generation by Metal Surfaces with Nanoscale
Roughness: Nanoscale Dephasing, Depolarization, and
Correlations, Phys. Rev. Lett. 92, 057402 (2004).

[41] Kuiru Li, Mark I. Stockman, and David J. Bergman,
Enhanced second harmonic generation in a self-similar
chain of metal nanospheres, Phys. Rev. B 72, 153401
(2005).

[42] David J. Bergman and Keh-Jim Dunn, Bulk effective
dielectric constant of a composite with a periodic micro-
geometry, Phys. Rev. B 45, 13262 (1992).

[43] David J. Bergman, Uri Evra, and Xiangting Li, Radiative
Life Times of Mano-Plasmonic States (International Society
for Optics and Photonics, 2005), p. 59270I.

[44] K. Nireekshan Reddy, Parry Y. Chen, Antonio I. Fernández-
Domńguez, and Yonatan Sivan, Revisiting the boundary
conditions for second-harmonic generation at metal-
dielectric interfaces, J. Opt. Soc. Am. B 34, 1824 (2017).

[45] Li Ge, Y. D. Chong, and A. Douglas Stone, Steady-state
ab initio laser theory: Generalizations and analytic results,
Phys. Rev. A 82, 063824 (2010).

[46] M. B. Doost, W. Langbein, and E. A. Muljarov, Resonant-
state expansion applied to three-dimensional open optical
systems, Phys. Rev. A 90, 013834 (2014).

[47] Robert S. Mulliken, Spectroscopy, molecular orbitals, and
chemical bonding, Science 157, 13 (1967).

[48] James E. Huheey, Ellen A. Keiter, and Richard L. Keiter,
Inorganic Chemistry: Principles of Structure and Reactivity
(Prentice Hall, New York, NY, 1997), 4th ed.

[49] E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A
hybridization model for the plasmon response of complex
nanostructures, Science 302, 419 (2003).

[50] Parry Y. Chen and Yonatan Sivan, Robust location of opti-
cal fiber modes via the argument principle method, Comput.
Phys. Commun. 214, 105 (2017).

[51] Edward M. Purcell and Carlton R. Pennypacker, Scattering
and absorption of light by nonspherical dielectric grains,
Astrophys. J. 186, 705 (1973).

[52] Roger F. Harrington, Field computation by moment meth-
ods (IEEE Press, Piscataway, NJ, 1993).

[53] Akhlesh Lakhtakia, Macroscopic theory of the cou-
pled dipole approximation method, Opt. Commun. 79, 1
(1990).

[54] John David Jackson, Classical Electrodynamics (John
Wiley & Sons, New York, 2007).

[55] Olivier J. F. Martin, Alain Dereux, and Christian Girard,
Iterative scheme for computing exactly the total field prop-
agating in dielectric structures of arbitrary shape, J. Opt.
Soc. Am. A 11, 1073 (1994).

[56] Philip Trst Kristensen, Peter Lodahl, and Jesper Mørk,
Light propagation in finite-sized photonic crystals: Multiple
scattering using an electric field integral equation, J. Opt.
Soc. Am. B 27, 228 (2010).

[57] Mark I. Stockman, Spaser Action, Loss Compensation, and
Stability in Plasmonic Systems with Gain, Phys. Rev. Lett.
106, 156802 (2011).

[58] Craig F. Bohren and Donald R. Huffman, Absorption and
Scattering of Light by Small Particles (John Wiley & Sons,
New York, 1983).

[59] Hollis C. Chen, Theory of Electromagnetic Waves: A
Coordinate-Free Approach (McGraw-Hill, New York,
1983).

[60] Cristian L. Cortes and Zubin Jacob, Super-coulombic atom-
atom interactions in hyperbolic media, Nat. Commun. 8,
ncomms14144 (2017).

[61] Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert
Grynberg, Atom-Photon Interactions: Basic Processes and
Applications (Wiley-VCH, New York, 1998).

[62] E. A. Muljarov, W. Langbein, and R. Zimmermann,
Brillouin-wigner perturbation theory in open electromag-
netic systems, EPL 92, 50010 (2010).

[63] Not to be confused with resonant-state expansion, which is
a perturbation method using resonant states.

[64] Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne,
Efficient and intuitive method for the analysis of light scat-
tering by a resonant nanostructure, Opt. Express 21, 27371
(2013).

[65] Rong-Chun Ge, Philip Trst Kristensen, Jeff F. Young, and
Stephen Hughes, Quasinormal mode approach to modelling
light-emission and propagation in nanoplasmonics, New J.
Phys. 16, 113048 (2014).

[66] Rong-Chun Ge and S. Hughes, Design of an efficient single
photon source from a metallic nanorod dimer: A quasi-
normal mode finite-difference time-domain approach, Opt.
Lett. 39, 4235 (2014).

044018-18

https://doi.org/10.1103/PhysRevA.93.063844
https://doi.org/10.1007/s11468-012-9403-z
https://doi.org/10.1103/PhysRevLett.112.123903
https://doi.org/10.1364/OE.24.003329
https://doi.org/10.1103/PhysRevLett.90.027402
https://doi.org/10.1103/PhysRevLett.91.227402
https://doi.org/10.1103/PhysRevLett.87.167401
https://doi.org/10.1103/PhysRevLett.88.067402
https://doi.org/10.1103/PhysRevLett.92.057402
https://doi.org/10.1103/PhysRevB.72.153401
https://doi.org/10.1103/PhysRevB.45.13262
https://doi.org/10.1364/josab.34.001824
https://doi.org/10.1103/PhysRevA.82.063824
https://doi.org/10.1103/PhysRevA.90.013834
https://doi.org/10.1126/science.157.3784.13
https://doi.org/10.1126/science.1089171
https://doi.org/10.1016/j.cpc.2016.11.009
https://doi.org/10.1086/152538
https://doi.org/10.1016/0030-4018(90)90166-q
https://doi.org/10.1364/josaa.11.001073
https://doi.org/10.1364/JOSAB.27.000228
https://doi.org/10.1103/PhysRevLett.106.156802
https://doi.org/10.1038/ncomms14144
https://doi.org/10.1209/0295-5075/92/50010
https://doi.org/10.1364/OE.21.027371
https://doi.org/10.1088/1367-2630/16/11/113048
https://doi.org/10.1364/OL.39.004235


GENERALIZING NORMAL MODE EXPANSION... PHYS. REV. APPLIED 11, 044018 (2019)

[67] Jianji Yang, Harald Giessen, and Philippe Lalanne, Sim-
ple analytical expression for the peak-frequency shifts of
plasmonic resonances for sensing, Nano Lett. 15, 3439
(2015).

[68] Philippe Lalanne, Wei Yan, Kevin Vynck, Christophe
Sauvan, and Jean-Paul Hugonin, Light interaction with
photonic and plasmonic resonances, ArXiv:1705.02433
[Phys] (2017).

[69] Benjamin Vial, Frédéric Zolla, André Nicolet, and Mireille
Commandré, Quasimodal expansion of electromagnetic
fields in open two-dimensional structures, Phys. Rev. A 89,
023829 (2014).

[70] P. T. Leung, S. Y. Liu, and K. Young, Completeness and
time-independent perturbation of the quasinormal modes
of an absorptive and leaky cavity, Phys. Rev. A 49, 3982
(1994).

[71] E. A. Muljarov and W. Langbein, Resonant-state expan-
sion of dispersive open optical systems: Creating gold from
sand, Phys. Rev. B 93, 075417 (2016).

[72] Philip Trøst Kristensen, Rong-Chun Ge, and Stephen
Hughes, Normalization of quasinormal modes in leaky
optical cavities and plasmonic resonators, Phys. Rev. A 92,
053810 (2015).

[73] E. A. Muljarov and W. Langbein, Comment on “nor-
malization of quasinormal modes in leaky optical cavi-
ties and plasmonic resonators,” Phys. Rev. A 96, 017801
(2017).

[74] Philip Trøst Kristensen, Rong-Chun Ge, and Stephen
Hughes, Reply to “comment on ‘normalization of quasi-
normal modes in leaky optical cavities and plasmonic
resonators,” Phys. Rev. A 96, 017802 (2017).

[75] Philip Trøst Kristensen, Jakob Rosenkrantz de Lasson, and
Niels Gregersen, Calculation, normalization, and perturba-
tion of quasinormal modes in coupled cavity-waveguide
systems, Opt. Lett. 39, 6359 (2014).

[76] T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Lang-
bein, and E. A. Muljarov, From Dark to Bright: First-Order
Perturbation Theory with Analytical Mode Normalization

for Plasmonic Nanoantenna Arrays Applied to Refractive
Index Sensing, Phys. Rev. Lett. 116, 237401 (2016).

[77] T. Weiss, M. Schäferling, H. Giessen, N. A. Gippius, S. G.
Tikhodeev, W. Langbein, and E. A. Muljarov, Analytical
normalization of resonant states in photonic crystal slabs
and periodic arrays of nanoantennas at oblique incidence,
Phys. Rev. B 96, 045129 (2017).

[78] Tatsuya Kashiwa and Ichiro Fukai, A treatment by the FD-
TD method of the dispersive characteristics associated with
electronic polarization, Microw. Opt. Technol. Lett. 3, 203
(1990).

[79] Rose M. Joseph, Susan C. Hagness, and Allen Taflove,
Direct time integration of maxwell’s equations in linear
dispersive media with absorption for scattering and prop-
agation of femtosecond electromagnetic pulses, Opt. Lett.
16, 1412 (1991).

[80] Aaswath Raman and Shanhui Fan, Photonic Band Structure
of Dispersive Metamaterials Formulated as a Hermitian
Eigenvalue Problem, Phys. Rev. Lett. 104, 087401 (2010).

[81] In cylindrical Mie theory, the incident field H0 under trans-
verse electric polarization is expanded by

∑
AmJm(kr)eimθ .

Quantities are scalar since both our geometry and excita-
tion are objects on a 2D plane, with translational invari-
ance in the perpendicular direction. The scattered field is∑

BmH (1)
m (kr), while the interior field is

∑
CmJm(nkr)eimθ .

The Mie coefficients relate the scattered and interior fields
to the incident field, Rm = Bm/Am and Tm = Cm/Am. How-
ever, once the coefficients Bm are found, it is more accurate
to calculate the total exterior electric field from the deriva-
tive of H0 + BmH (1)

m (kr)eimθ rather than from the expansion∑
[AmJm(kr) + BmH (1)

m (kr)]eimθ , thus partitioning the field
into E0 and the response of the structure, much like Eq. (26).
For the interior fields, no such option is available to Mie
theory, where

∑
CmJm(nkr)eimθ always represents the total

field, including the portion attributable to H0. This expan-
sion is less accurate than Eq. (26), unless the truncation
order m is very high. Thus, we limit the comparison to the
exterior domain.

044018-19

https://doi.org/10.1021/acs.nanolett.5b00771
https://doi.org/10.1103/PhysRevA.89.023829
https://doi.org/10.1103/PhysRevA.49.3982
https://doi.org/10.1103/PhysRevB.93.075417
https://doi.org/10.1103/PhysRevA.92.053810
https://doi.org/10.1103/PhysRevA.96.017801
https://doi.org/10.1103/PhysRevA.96.017802
https://doi.org/10.1364/OL.39.006359
https://doi.org/10.1103/PhysRevLett.116.237401
https://doi.org/10.1103/PhysRevB.96.045129
https://doi.org/10.1002/mop.4650030606
https://doi.org/10.1364/OL.16.001412
https://doi.org/10.1103/PhysRevLett.104.087401

	I. INTRODUCTION
	II. GENERALIZED NORMAL MODE EXPANSION
	A. Lippmann-Schwinger equation
	B. The generalized normal modes
	C. Expansion via normal modes

	III. COMPARISON WITH QUASINORMAL MODES
	A. Completeness
	B. Far fields and normalization
	C. Other comparisons

	IV. IMPLEMENTATION AND NUMERICAL EXAMPLES
	A. comsol multiphysics Implementation
	B. An alternative naive expansion
	C. Numerical examples

	V. SUMMARY
	ACKNOWLEDGMENTS
	A. APPENDIX A: ADJOINT MODES
	B. APPENDIX B: FIELDS OF A LINE DIPOLE
	. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


