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We analyze the origin of the intrinsic timing jitter in superconducting nanowire single-photon detectors
in terms of fluctuations in the latency of the detector response, which is determined by the microscopic
physics of the photon-detection process. We demonstrate that fluctuations in the physical parameters,
which determine the latency, give rise to the intrinsic timing jitter. We develop a general description of
latency by introducing the explicit time dependence of the internal detection efficiency. By considering the
dynamic Fano fluctuations together with static spatial inhomogeneities, we study the details of the con-
nection between latency and timing jitter. We develop both a simple phenomenological model and a more
general microscopic model of detector latency and timing jitter based on the solution of the generalized
time-dependent Ginzburg-Landau equations for the 1D hotbelt geometry. While the analytical model is
sufficient for qualitative interpretation of recent data, the general approach establishes the framework for
a more quantitative analysis of detector latency and the fundamental limits of intrinsic timing jitter. These
theoretical advances can be used to interpret the results of recent experiments measuring the dependence
of detection latency and timing jitter on photon energy to the few-picosecond level.
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I. INTRODUCTION

When an incident photon is absorbed by a current-
carrying superconducting nanowire, the superconductivity
is locally suppressed in a nonequilibrium region known
as a hotspot [1]. The nonequilibrium dynamics of this
hotspot are a topic of broad interest in superconducting
detectors, but precise modeling of the physical process
remains an open topic of research. While there have been
intense experimental [2–8] and theoretical [9–16] efforts to
understand the details of the detection mechanism in super-
conducting nanowire single-photon detectors (SNSPDs;
sometimes referred to as SSPDs in the literature), there
is still debate over the most appropriate model for under-
standing this nonequilibrium process in different regimes
of photon energy, bias current, and temperature. Consider-
able effort has been focused on understanding the internal
efficiency of nanowire detectors as a means of validating
detection models, but less attention has been given to the
timing properties predicted by these models.

*jallmara@caltech.edu
†Also Department of Applied Physics, California Institute of
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The primary timescale determining the detector response
is its latency. By definition, the latency of a detector,
τlat, is the time interval between the photoabsorption
event and the detector click. During the latency interval,
the system evolves through the initial quasiequilibration
within the excited volume followed by its expansion,
cooling down, and gradual suppression of superconductiv-
ity. Finally, if the deposited energy exceeds the detection
threshold, instability in a current-carrying nanowire devel-
ops and initiates a normal domain and detector click.
An important property of SNSPD systems, in practice,
is the timing uncertainty associated with each detection
event, also known as the timing jitter. There are numer-
ous sources of timing jitter in SNSPD systems. It is now
understood that the principal contributions to the timing
jitter come from electrical and amplifier noise [17,18],
longitudinal geometric jitter due to the finite propaga-
tion speed of microwave signals along the length of the
nanowire [19,20], timing jitter induced by local inhomo-
geneities in the nanowire [21,22], and intrinsic timing jitter
originating from the microscopic physics of the detection
process itself. In a theoretical study, the transverse geo-
metric jitter was investigated by considering the variation
in detection latency as a function of the transverse loca-
tion of photon absorption across the nanowire [23]. An
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experimental study of the jitter associated with meandered
[24] and straight [25] nanowires found asymmetry in the
jitter profile, which was attributed to intrinsic effects, and
more recently, an increase in timing jitter was measured
in straight niobium nitride (NbN) nanowires with increas-
ing magnetic field [26] which was qualitatively explained
by the hotspot model [15]. The same model is used to
study the effects of transverse position dependence on tim-
ing jitter [27]. Experimental progress through the use of
specialized short structures and low noise cryogenic ampli-
fiers has enabled the measurement of record low timing
jitter in NbN nanowires, as low as 2.7 ps FWHM [28].
The photon energy and temperature dependence of tim-
ing jitter observed in these measurements suggests that
intrinsic effects, which derive from the physics of the
photon-detection process, are relevant. The reduction in
instrumental sources of timing jitter to the few-picosecond
level has enabled a new type of experiment where the
latency difference between photons of two energies is mea-
sured directly [28]. By observing the latency distribution
as a function of the physical parameters of the device,
it is now possible to experimentally validate microscopic
models of the photon-detection process more directly.
As timing jitter is a critical parameter in many applica-
tions, a detailed microscopic theory is an essential tool for
engineering higher time-resolution detectors in the future.

We begin by introducing and discussing the general rela-
tionship between latency and timing jitter in SNSPDs in
Sec. II, and develop a simple phenomenological theory.
In the presence of dynamic Fano fluctuations and static
spatial nonuniformities, studying and understanding the
latency distribution of the detector is sufficient to predict
the intrinsic jitter which would be observed in an exper-
iment. We make use of general analytical properties of
the detector latency to demonstrate that the non-Gaussian
instrument response function observed in recent experi-
ments [28] can be attributed to the positive curvature of the
latency vs energy relationship. We analyze the simplified
hotbelt-detection model, its prediction capabilities, and its
limitations. In Sec. III, we derive and discuss the detector
latency using the generalized time-dependent Ginzburg-
Landau (TDGL) equations, together with energy balance
and current continuity equations. The developed formal-
ism is valid for the general case of 2D geometry. In this
paper we analyze the details of solutions for the simpler
1D hotbelt model and demonstrate that the 1D model cap-
tures the majority of the experimental observations for
narrower wires. Section IV presents a general discussion
of the results and directions for future study.

II. LATENCY OF SNSPD RESPONSE AND TIMING
JITTER

While the intrinsic latency of photon detection is an
important parameter for understanding the performance

of a device, it is challenging to measure directly because
of the picosecond timescales involved. While the abso-
lute latency of an SNSPD has still not been charac-
terized directly, recent experiments [28] have measured
the latency difference (relative latency) between detection
events for photons of two different energies (1550 and 775
nm wavelengths) generated in the same optical path. These
experiments were made possible by using a high switch-
ing current device and a low-noise cryogenic amplifier to
reduce the impact of instrumental noise-induced jitter. Fur-
thermore, the length of the active region of the device was
reduced to 5 μm, which decreases the effect of timing jitter
associated with the propagation delay of electromagnetic
signals. Given an estimated transmission speed of approxi-
mately 6 μm/ps [20], this geometric timing-jitter is below
1 ps, and can be neglected. Measurements of the relative
detector latency add a valuable piece of information about
the timescales of photon detection, providing an extra
functional characteristic to test specific models of detection
and performance in application. Both dynamic and static
fluctuations in the detector will affect the detector latency
and manifest themselves in the shape of timing jitter distri-
butions. Therefore, understanding the latency of a detector
and its fluctuations is key to predicting its timing jitter.

The timescales of a typical photodetection event in an
SNSPD are shown schematically in Fig. 1. For clarity
of discussion, we separate the photon-detection process
into four stages: (a) the down-conversion cascade, (b)
the nondissipative suppression of superconductivity, (c)
nucleation and growth of the normal domain, and (d) the
diversion of current to the amplifier chain, and the recovery
of superconductivity and supercurrent flow. Let us con-
sider a photon of energy Eλ absorbed in a nanowire at
an initial instance of time t = 0 resulting in the genera-
tion of a single electron-hole pair in a metal. The typical
energy of the electron and hole of the pair is Eλ/2. Due
to the high energy of the initial excitations (≥ 100 meV)

relative to the Fermi level they rapidly relax converting
the deposited energy mostly into energetic phonon excita-
tions [16,29] described as the phonon bubble. This happens
over the timescale τd of a few tens of femtoseconds.
The variance (δτd

2) of this time is due to the distribu-
tion of initial energies of the primary e-h pair. It is of the
order of the scattering time for electron or hole emitting
a single phonon with a frequency close to the Debye fre-
quency, therefore, |δτd| � τd. Because τd is so small, the
duration of this time interval plays no role in any subse-
quent discussions. It is convenient to consider the phonon
bubble as a highly nonequilibrium initial distribution of
elementary excitations (predominantly phonons, but with a
small number of electronic excitations) with a total energy
Eλ and radius 2

√
Dτd, where D is a characteristic elec-

tron diffusion coefficient [16,29]. This is the initial state,
from which the evolution of nonequilibrium distribution
of interacting phonons and electrons starts and proceeds

034062-2



INTRINSIC TIMING JITTER AND LATENCY... PHYS. REV. APPLIED 11, 034062 (2019)

FIG. 1. Schematic of SNSPD detection stages contributing
to latency and intrinsic timing jitter. We denote the down-
conversion cascade as stage (a), the nondissipative suppression
of superconductivity as stage (b), and the nucleation and growth
of the normal domain as stage (c).

as an energy down-conversion cascade with rapid mul-
tiplication of electron and phonon numbers [15,16]. The
down-conversion cascade ends at t ≈ τth with the electrons
and phonons thermalized at a certain temperature. The esti-
mate of τth in [15] is in the range of 0.36 and 0.57 ps
for WSi and NbN, respectively, for a 1.3-eV photon. This
was derived under the assumption that diffusive expan-
sion can be neglected for this down-conversion time. The
estimates above serve as an indication of the order of mag-
nitude of this process, and must be corrected to account
for the material parameters, diffusion, and density of exci-
tations in the excited volume (photon energy). Accounting
for these changes results in a τth on the order of a few ps
for 1550-nm phonons (0.8 eV). For the typical case of a
NbN SNSPD, this is smaller (much smaller) than the mea-
sured relative latencies, let alone the absolute latency, and
τth � τlat as in Fig. 1. Similarly, the contribution to the
timing jitter from the cascade stage (a) is much smaller
than the latency fluctuations over the nondissipative stage
(b). The notable exception indicated by the experimental
results [28] is when SNSPD is biased close to the depairing
critical current when detector latency decreases and comes
closer to τth. In this situation, fluctuations in duration of
the stage (a) might contribute to the ultimate limits for the
intrinsic timing jitter and will be discussed in more detail
in Sec. IV.

The main venue for the current paper is, therefore, the
study of the detector latency and its fluctuations over the
stage (b) as the dominant source of the intrinsic timing
jitter. We expect stage (c) to play only a minor role in con-
tributing to the jitter of the device. Once a normal domain
is nucleated at the transition between stages (b) and (c) its
growth is a nearly uniform 1D process. For a given bias
current, this growth is governed by the balance of Joule
heating, diffusion along the length of the wire, and cou-
pling to the substrate. Once the normal domain is formed,
this growth is independent of the initial conditions, which
formed the domain. There is experimental evidence for this

conclusion based on the photon-energy independence of
pulse slew rate recently measured [28]. While a previous
work considered timing jitter, which originates during this
normal domain growth [22], this process is associated with
the presence of nonuniformities along the length of the
wire and we exclude this contribution from our definition
of intrinsic jitter.

Summarizing, we discuss the model where a thermal-
ized distribution of electrons and phonons (either in the
form of a hotbelt or hotspot [15]) at time τth, is consid-
ered as the initial state for the subsequent evolution of
the superconducting system in a current-carrying nanowire
(top of Fig. 1). For each individual photon count, this state
is characterized by an input energy E, which denotes the
amount of energy added to the superconducting system
as a combination of electronic and phonon excitations in
quasiequilibrium at a temperature T. The subsequent evo-
lution of the system is considered as fully deterministic
with no other random factors affecting the onset of the
resistive transition. We call the period from τth to τth + τlat
in the notation of Fig. 1 the detector latency. It is close to
the absolute latency of the detector provided that τth � τlat.
The timing jitter in this picture is associated with the fact
that τlat is a function of input energy E, which fluctuates,
depending on the actual energy loss from the individual
cascade, and hence from one click to another. The effect
of static spatial nonuniformities on latency also can be
described in the same way as discussed in detail in the
next subsection. All other random sources of timing jitter,
for example, those associated with generation of phase-slip
lines, vortex-antivortex pair unbinding and escape from the
hotspot area, vortex entry from the edges either due to ther-
mal activation or quantum tunneling and vortices moving
across the wire are neglected. We expect these effects to
be important for spatially uniform wires in the absence of
Fano fluctuations or biasing close to the critical depairing
current.

We consider a single-photon detection regime and
introduce the normalized-efficiency single-photon count-
ing rate, PCR, keeping its explicit dependence on time
according to

PCR(t, y, IB, Tb, B, E) = � [t − τlat(y, IB, Tb, B, E)] , (1)

where τlat(y, IB, Tb, B, E) is the SNSPD latency, depending
on the transverse coordinate y, bias current IB, bath temper-
ature Tb, external magnetic field B, and energy absorbed by
the superconductor electronic system and lattice E. �(t)
is the Heaviside function. In this form, the PCR defines
the probability of a detector click within the time interval
[0, t] due to the absorption of energy E. The energy E is
less than the photon energy Eλ due to energy losses dur-
ing the down-conversion cascade. These losses come from
the escape of high-energy phonons from the superconduct-
ing film to the substrate and potentially from coupling to
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plasmon modes in the superconductor. The details of this
energy-loss mechanism are not important in the follow-
ing analysis. In this paper we do not explicitly discuss
the magnetic field dependence, omitting the dependence
of B. This form implicitly assumes perfect locality in the
description of the photon-absorption site and deterministic
evolution of the superconductor after photon absorption.
Fluctuations are introduced by multiplying Eq. (1) by the
normalized Gaussian probability of energy deposition E,

P(E) = 1√
2πσ

e− (E−Ē)
2

2σ2 , (2)

with mean value Ē and standard deviation σ to obtain

PCR(t, y, IB, Tb, Eλ)

=
∫ Eλ

0
dEP(E)�[IB − Idet(y, Tb, E)]

�[t − τlat(y, IB, Tb, E)]. (3)

This is the general expression that is valid for both hotbelt-
(HB) and hotspot- (HS) detection models discussed in the
literature [6,9,10,14–16]. We also introduce the photon
counting rate averaged over the normalized distribution,
p(y) of transverse coordinates of the absorption sites y,

PCR(t, IB, Tb, Eλ)

= 1
W

∫ W/2

W/2
dyp(y)

∫ Eλ

0
dEP(E)�[IB − Idet(y, Tb, E)]

� [t − τlat(y, IB, Tb, E)] (4)

for wire width W, which is useful for describing the HS
model. The first Heaviside function � [IB − Idet(y, Tb, E)]
in the integrand ensures that an ideal detector clicks with
100% probability once the bias current exceeds the detec-
tion current Idet for a photon absorption at the site with
transverse coordinate y. The second Heaviside function
� [t − τlat(y, IB, Tb, E)] allows the click to occur only after
a deterministic interval of time, the detector response
latency τlat, has elapsed. During this time following the
absorption of a photon, a strongly nonequilibrium state
of interacting quasiparticles and phonons evolves in time
and space, suppressing the superconducting order param-
eter. At a certain stage, the superconducting state may
become unstable. In the HS scenario [11,15], either vor-
tices enter from the edge of the wire or vortex-antivortex
pairs are unbound inside the hotspot. In the HB scenario,
phase-slip lines are generated. If the bias current exceeds
a certain threshold, which we call the detection current,
energy dissipation in the current-carrying nanowire results
in the nucleation and growth of a normal domain through
multiple vortex crossings or the formation of phase-slip
lines.

A. Role of spatial nonuniformities

The standard deviation σ =
√

σFano
2 + σnu

2 describes
the combined effect of Fano fluctuations (variance σFano

2)
[16] and spatial nonuniformity of the wire (variance σnu

2).
Spatial nonuniformity is assumed to originate from the
spatial variation of parameters such as the local geome-
try (thickness of the wire) and local material parameters
(critical temperature, density of states, and electron diffu-
sivity). The use of the standard deviation σ in the form of
the quadrature of the two statistically independent contri-
butions as an approximation is justified, because the impact
of the local nonuniformity can be described by fluctua-
tions of the initial temperature in the excited volume for a
fixed energy deposited in the nanowire. This in turn is for-
mally equivalent to a homogeneous medium where local
temperature fluctuations originate from fluctuating energy
depositions with the appropriate variance. Below, we intro-
duce a simple model to take into account the effect of
spatial nonuniformity.

The Fano fluctuations originate during the energy down-
conversion cascade due to the energy loss from the thin
nanowire film. While the Fano fluctuations are dynamic in
nature, the spatial inhomogeneity of the wire is static in
time. To derive the expression for σnu, we write down the
energy conservation law [15] in the form

Ee(Ti) + Eph(Ti) = Ee(Tb) + Eph(Tb) + E, (5)

where Ee(Ti) and Eph(Ti) are the energies for the equili-
brated distributions of electrons and phonons at tempera-
ture Ti some short time following photon absorption and
E is the energy gained by the system following the down-
conversion process. For temperatures exceeding Tc after
the cascade, the energy of the system can be expressed
as Ee(T) + Eph(T) = 1

2 T̄cVi
[
Ce(T̄c)

2 + 1
2 Cph(T̄c)

4
]
, where

the top bar designates the mean value. In the spatially
nonuniform nanowire we have Vi = V̄i + δVi, Ce(T̄c) =
C̄e + δCe and Cph(T̄c) = C̄ph + δCph and δVi, δCe, δCph
describe spatial fluctuations with zero mean values. Here
Vi is the initial volume and Ce and Cph are electron and
phonon specific heat capacities, respectively. For the HS
model [15], Vi = 4ξc

2d, where ξc
2 = �D/kBTc, and d is

the nanowire thickness. For the HB model, Vi = LWd,
where L is the length of a rectangular hotbelt along the
nanowire of width W. Fluctuations in the initial volume of
HS originate from both the intrinsic parameters, the dif-
fusion coefficient D, and the critical temperature Tc, and
also due to varying thickness of the nanowire. In the HB
model, fluctuations are of purely geometric origin. Spatial
fluctuations will result in fluctuations of the temperature of
the initial quasiequilibrated state even if deposited energy
is exactly the same for all absorption sites. Note that if the
spatial fluctuations are characterized by a sufficiently small
length scale r � L, W, their effects may be strong in the HS
case but will be substantially self-averaged and weakened
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for the HB scenario. For small-scale spatial fluctuations
r � 2ξc their effect is substantially weakened also for the
HS scenario.

For Fano fluctuations, the fluctuation in deposited
energy, δE, results in the fluctuation of the initial temper-
ature, δE = Vi

[
C̄e(T) + C̄ph(T)

]
δT. The respective vari-

ance is σ 2
Fano = (δnE)2 = (

T/T̄c
)2 V2

i

[
C̄e + C̄ph

(
T/T̄c

)2
]2

(δT)2. In order to characterize the effect of spatial
nonuniformities we introduce the effective fluctuations
of deposited energy, δEnu. In the effective homogeneous
medium we connect them to δTnu according to δEnu =
Vi
[
C̄e(T) + C̄ph(T)

]
δTnu. Correspondingly we obtain

σ 2
nu = (δEnu)2 = (

T/T̄c
)2 V2

i

[
C̄e + C̄ph

(
T/T̄c

)2
]2

(δTnu)2.
The connection between δTnu and δVi, δCe and δCph is obt-
ained from solving δ{Vi

[
Ce(x2 − x2

b) + 1/2Cph(x4 − x4
b)
]}

= 0 with fixed energy deposition, E (δE = 0), so that
x ≡ T(E)/T̄c + δTnu. Fluctuations in δCe, δCph, and δVi
may be considered as statistically independent, the first
two being proportional to fluctuations in densities of states
for electrons and phonons, respectively, while fluctuations
of the excited volume contain independent contributions
from elastic scattering (diffusion coefficient) and wire
thickness and width. Therefore, after straightforward cal-
culations we obtain, for the variance describing the spatial
nonuniformity effects, a simple expression

σ 2
nu = E2

[(
δVi

Vi

)2

+
(

δCe

Ce

)2

ν2 +
(

δCph

Cph

)2

(1 − ν)2

]

= 
2E2, (6)

where ν = (
x2 − x2

b

)
/
[
x2 − x2

b + 4(π2/5γ )
(
x4 − x4

b

)]
accounts for the fraction of energy in the electronic sys-
tem, xb = Tb/T̄c. For ν → 0 or ν → 1 we have the stan-
dard deviation describing the nonuniformity effect scaling
as the linear power of energy, σnu ∼ E. It may become
sublinear in E only when (δCe/Ce)

2ν2 	 (δVi/Vi)
2 +(

δCph/Cph
)2

(1 − ν)2 with ν < 1. This is an unlikely sit-
uation, because strong disorder in nanowire affects both
electron and phonon properties, besides the remaining fac-
tor (δVi/Vi)

2 is expected to be significant. For (δVi/Vi)
2 ≈(

δCph/Cph
)2 ≈ (δCe/Ce)

2 variation of 
(E, γ ), where
γ = 8π2/5

(
C̄e/C̄ph

)
, does not exceed 5% for 0.1 eV <

E < 3 eV and for the range 10 < γ < 100, and thus we
take σnu ∼ E.

The main contribution to Fano fluctuations comes from
the down-conversion phonons of the first few gener-
ations, when almost all the photon energy has been
transferred to phonons of high (approximately Debye)
energy. Correspondingly σ 2

Fano = FeffεE, where Feff =
[D/�(0)]

(
lph,D/d

)
f
(
lph,D/d

)
, and ε = 1.75�(0). Here

Feff is the effective Fano factor, and �(0) is the zero

temperature and zero current order parameter value, lph,D/d
is the ratio of the Debye phonon mean free path to the
thickness of the film, and the function f

(
lph,D/d

)
< 1

describes phonon survival chance to reach the escape
interface(s) and get transmitted into the substrate [16].

The total variance of energy fluctuations is given by the
sum of the Fano and nonuniformity variances

σ 2 = σ 2
Fano + σ 2

nu = FeffεEλ + χ2
2E2
λ

= σ 2
Fano(Eλ)

(
1 + Eλ/Eλ0

)
, (7)

where χ is the mean fraction of the photon energy
deposited in the nanowire and Eλ0 is the reference pho-
ton energy for which Fano variance equals the one due
to nonuniformity, Eλ0 = Feffε/χ

2
2. Therefore, if exper-
iments cover a broad range of wavelengths, Fano fluctua-
tions dominate the jitter at the long-wavelength end of the
spectrum λ > λ0, while spatial nonuniformities become
more important for shorter wavelengths λ < λ0. This is the
typical situation in single-photon-superconducting tunnel-
junction detectors, where the Fano-fluctuation limit of
spectral resolution is reached for energies below the hard
ultraviolet, and spatial inhomogeneities become important
at higher energies [30].

B. Timing jitter: hotspot model

The time-dependent photon counting rate PCR(t, y, IB,
Tb, Eλ) gives the probability of a detector click due
to the absorption of a single photon within the
time interval [0, t]. Correspondingly, H(t, y, IB, Tb, Eλ)dt =
[dPCR(t, y, IB, Tb, Eλ)/dt]dt is the probability of a single-
photon detection process within the time interval [t, t + dt],
where H(t, y, IB, Tb, Eλ) = dPCR(t, y, IB, Tb, Eλ)/dt is the
click probability density, also known as the instrument
response function (IRF) for single-photon absorption
events. To calculate the IRF, which is often the observed
characteristic, we define the quantity E(t, y, IB, Tb), which
represents such an energy deposition to the superconduc-
tor, which corresponds to detector latency equal to t. This
amount of energy is given by the single-valued solution of

t − τlat(y, IB, Tb, E) = 0. (8)

Single valuedness follows from the fact that the detector
latency can only be a monotonically decreasing function
of the energy deposition, ∂τlat(y, IB, Tb, E)/∂E < 0. Using
the definition of E(t, y, IB, Tb), we rewrite expression (3) in
the form

PCR(t, y, IB, Tb, Eλ) =
∫ Eλ

0
dEP(E)�[IB

− Idet(y, Tb, E)]� [E − E(t, y, IB, Tb)]

=
∫ Eλ

E(t,y,IB,Tb)

dEP(E)� [IB − Idet(y, Tb, E)] . (9)
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Differentiating (9) we obtain the IRF in the form

H(t, y, IB, Tb) = −P[E(t, y, IB, Tb)]�{IB

− Idet[y, Tb, E(t, y, IB, Tb)]}∂E (t, y, IB, Tb)

∂t
.

(10)

The single valuedness of the solution (8) and negative
derivative of latency as a function of energy ensures
that the derivative ∂E(t, y, IB, Tb)/∂t in expression (10)
is negative. A positive derivative implies the unphysical
possibility of the PCR decreasing with time.

The expression (10) for the IRF is exact under the
assumptions of our model. Defining t̄ = τlat(y, IB, Tb, Ē)

and Ē = E
(
t̄, y, IB, Tb

)
, we transform Eq. (10) to obtain

H(t, y, IB, Tb)

= − 1√
2πσ

exp
{
−
[
E (t, y, IB, Tb) − E

(
t̄, y, IB, Tb

)]2
2σ 2

}

× �{IB − Idet[y, Tb, E (t, y, IB, Tb)]}∂E (t, y, IB, Tb)

∂t
.

(11)

The derived IRF as seen from Eq. (11) is non-Gaussian.
This is the result of the nonlinearity of the function
E (t, y, IB, Tb) versus time t. By definition the timing jitter
is FWHM of the histogram (11).

For small standard deviation σ , we may derive the
dominant term in the approximation to H (t, y, IB, Tb).
Taking a series expansion up to linear terms in

(
t − t̄

)
,

E (t, y, IB, Tb)−E
(
t̄, y, IB, Tb

)=∂E (t, y, IB, Tb)/∂t|t=t̄
(
t− t̄
)

= [∂τlat(y, IB, Tb, E)/∂E|E=Ē]−1
(
t − t̄

)
and substituting

the result into Eq. (11) yields

H(t, y, IB, Tb)

= 1√
2πσj

(
y, IB, Tb, Ē

) exp

[
−

(
t − t̄

)2

2σj
2
(
y, IB, Tb, Ē

)
]

× �
[
IB − Idet(y, Tb, Ē)

]
, (12)

where σj
(
y, IB, Tb, Ē

) = σ |∂τlat(y, IB, Tb, Ē)/∂Ē|. From
Eq. (12), it follows that the shape of the approximate IRF
is a Gaussian. Defining its FWHM as the Gaussian part of
the contribution to the timing jitter ϒG, we have

ϒG ≈ 2.355σj
(
y, IB, Tb, Ē

)

≈ 2.355σ

∣∣∣∣∂τlat(y, IB, Tb, Ē)

∂Ē

∣∣∣∣
Ē=χEλ

. (13)

Averaging the histogram over the transverse coordinate of
photon absorption, we derive an approximate result for the

mean histogram

H(t,IB, Tb) = 1
W

∫ W/2

−W/2
dyp(y)

1√
2πσj

(
y, IB, Tb, Ē

)

× exp

[
−

(
t − t̄

)2

2σj
2
(
y, IB, Tb, Ē

)
]

�
[
IB − Idet(y, Tb, Ē)

]
.

(14)

This averaging results in a distortion of the ideal local
Gaussian IRF.

It is important to emphasize that the detector latency
and its derivative |∂τlat(y, IB, Tb, E)/∂E| may both exhibit
a singularity. They are finite if

IB > Idet (y, Tb, E) or E > Edet (y, IB, Tb) , (15)

where Edet (y, IB, Tb) is the detection (or cutoff) energy.
By definition of the detection current or detection energy,
τlat(y, IB, Tb, E) = ∞ for either IB ≤ Idet (y, Tb, E) or E ≤
Edet (y, IB, Tb) and becomes finite at IB > Idet (y, Tb, E)

or E > Edet (y, IB, Tb). Therefore, at IB = Idet (y, Tb, E) or
E = Edet (y, IB, Tb), the detector latency and its deriva-
tive either diverge or exhibit discontinuity. Vodolazov [27]
argues that due to the dynamical nature of the hotspot
there exists a trade-off between the current-dependent time
window for the destruction of superconductivity within
the expanding hotspot and the current-dependent order
parameter relaxation time, which provides a maximum
finite value for the latency. We believe that for a com-
plicated nonequilibrium system such as a current-carrying
nanowire with an expanding hotspot or hotbelt with slowly
varying temperature profiles, any trade-off must include the
details of the energy-dissipation profiles. The ultimate test
of the actual functional behavior of the detector latency
is the microscopic theory. Here we hypothesize that a
weak (integrable) singularity is present in the latency in
the vicinity of Idet and Edet. This assumption is useful for
the analysis of IRF functions, but because the IRF func-
tions are integrals, the presence of a weak singularity is not
important. In Sec. III we confirm the presence of weak sin-
gularities in latency vs energy for the range of bias currents
for 1D hotbelt geometry by direct simulations.

The important general feature of detector latency as a
function of photon energy is its positive curvature. This
is intuitively sensible, because the increase in energy due
to photon absorption cannot result in an instantaneous
break of superconductivity. Although the initial tempera-
ture of the quasiequilibrated distributions of electrons and
phonons increases with deposited energy, the latency can
only asymptotically approach a small but nonzero value.
As a result, the rate of decrease in the latency slows
down at higher energies. This asymptotic behavior com-
bined with the singularity at the detection energy leads to
a general positive curvature of the latency as a function of
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photon energy. In Sec. III, we examine the detector latency
by solving the generalized TDGL equations and explicitly
demonstrate the accuracy of this statement. The same con-
clusion is reached in [27] using the standard TDGL model
in two dimensions. An important consequence of the pos-
itive curvature of the latency function can be immediately
seen from Eqs. (8) and (11): for latency time increasing
beyond t̄, further reduction of E (t, y, IB, Tb) in the argu-
ment of the exponential function in Eq. (11) becomes more
gradual, resulting in the formation of an extended tail of
the IRF.

The presence of the singularity at Idet (y, Tb, E) results
in the general trend of the detector latency τlat and jitter ϒ

increasing when the bias current decreases, IB → Idet, for
all other parameters fixed and assuming noiseless ampli-
fication. If the bias current and other parameters except
photon energy are fixed, then both the detector latency
and jitter

[
∼ ∣∣∂τlat(y, IB, Tb, E)/∂Ē

∣∣
Ē=χEλ

]
monotonically

increase as the photon energy decreases to Edet (y, Ib, Tb),
due to the latency being a monotonically decreasing func-
tion of energy deposition with positive curvature, as is
observed in experiments [28].

It is worth emphasizing that our formalism is general.
In particular, the influence of magnetic field on timing
jitter can be examined once the dependencies of latency
and detection current and energy on B are reinstated in all
expressions of this subsection. In this way, we can repro-
duce the results of recent work [26]. The asymmetry of the
jitter histogram as shown by our main result, Eq. (11), is
connected with the positive curvature of latency vs energy
deposition. Long-delay tail occurs naturally already in zero
magnetic field. In the 2D hotspot scenario there appears
the component depending on transverse coordinate y both
in the Gaussian part of the histogram and in the tail. In
increased magnetic fields it becomes more prominent due
to transformation of the profiles of the detection energy,
detection current, and latency in the magnetic field follow-
ing exactly the same argument as discussed by the authors
of Ref. [26]. The difference in our approach, however,
is that (i) the histogram derived within the deterministic
model is not an exponentially modified Gaussian, and (ii)
Fano fluctuations affect both the Gaussian part and the tail.
Another recent work [27] studies contributions to intrin-
sic timing jitter in the hotspot scenario originating from
the dependence of detector latency (delay time) on the
transverse coordinates of absorption sites and also with the
account of Fano fluctuations. The model of intrinsic tim-
ing jitter used in this work is the same as our approach.
The IRF functions for the 2D geometry can be obtained
and analyzed within our general formalism.

C. Timing jitter: hotbelt model

In the hotbelt scenario, Idet (y, Tb, E) does not depend on
y. Solving IB − Idet (Tb, E∗) = 0 for E∗ = Edet (IB, Tb) and

replacing � [IB − Idet(Tb, E)] by � [E − Edet(IB, Tb)], we
obtain

PCR(t, IB, Tb, Eλ)

=
∫ Eλ

Edet(IB,Tb)

dEP(E)� [t − τlat (IB, Tb, E)] . (16)

Normalized PCRs in the familiar form [16] are obtained
from Eqs. (3–4) by taking the limit t → ∞ and
� [t − τlat (IB, Tb, E)] → 1. This results in

PCR(IB, Tb, χ , Eλ) = 1
2

{
erf
[
χEλ − Edet (IB, Tb)√

σ

]

+ erf
[

Eλ (1 − χ)√
σ

]}
, (17)

where Edet (IB, Tb) is determined from the energy conser-
vation law. This conservation law can be written

Ee

[(
1 − IB

2/3)1/2
]

+ Eph

[(
1 − IB

2/3)1/2
]

= Ee(Tb) + Eph(Tb) + Edet (IB, Tb) ,
(18)

where IB is in units of the zero-temperature critical
depairing current. The solution of Eq. (18) determines
the threshold for energy deposition into a current-carrying
superconductor with initial temperature Tb such that the
critical current of the superconductor heated by this energy
deposition becomes equal to the bias current IB, using for
the former the Bardeen relation. Similarly, for a given
energy deposition E the solution of Eq. (18) for cur-
rent defines the detection current, Idet (E, Tb). Substituting
Eq. (18) into Eq. (17) yields the explicit expression for
PCR (IB, Tb, χ , Eλ). For the hotbelt model, neglecting the
y dependence of the detector latency and detection current
and simplifying Eq. (11), we arrive at

H(t) = − 1√
2πσ

exp
{

−
[
E (t, IB, Tb) − Ē

]2
2σ 2

}

× dE (t, IB, Tb)

dt
. (19)

The approximate (Gaussian) IRF is similarly obtained
from the general result of the hotspot model, acquiring
the forms of Eq. (12) and (13) where the detector latency,
detection current, and variance are independent of the
transverse coordinate y.

D. Understanding intrinsic jitter in SNSPDs using the
simplified hotbelt model

The phenomenological model described above is suffi-
cient to understand and qualitatively interpret the results of
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recent experiments [28] based on the analytical properties
of the latency function, its singularities, and its monotonic
decrease and positive curvature with increasing energy
deposition. Such an analysis becomes especially straight-
forward for the hotbelt model, where the analytical forms
for the PCR can be used for fitting and for the initial
selection of material parameters. However, a more predic-
tive model requires a more accurate determination of the
latency of the detector for an arbitrary deposition energy,
which is needed to interpret experimental results of the
relative detection latency between a pair of photons with
different energies [28]. This is sensitive to the detection
model, and requires a more sophisticated approach and
more extensive numerical analysis. The practical value of
the above analysis is that we only need to study the detector
latency and fluctuations in order to generate the IRF.

In this subsection we use the simplified hotbelt model.
It is the easiest way to introduce fluctuations and discuss
the shape of the photon counting rates as a function of
the device parameters [16], and it leads to useful qual-
itative insights into the physics of the detector latency
and the intrinsic timing jitter. In Sec. III, we develop a
more advanced hotbelt model based on the solution of the
1D generalized time-dependent Ginzburg-Landau equa-
tions together with current continuity and thermal-balance
equations. We leave the analysis of detector latency in
the context of a fully general hotspot model based on the
generalized 2D TDGL equations for future work.

The main results of the simplified hotbelt model are
described above by Eqs. (17), (18), and (19). To illus-
trate the predictions of the model, we consider the
specific case of an NbN SNSPD described in [28]:
W = 80 nm, d = 7 nm, critical temperature Tc = 8.65
K, D = 0.5 cm2/s, Rsq = 608 /sq, and N (0) = 1/(2e2

DRsqd) = 14.7 × 1021 cm−3/eV. Following [31], we esti-
mate the depairing current at zero temperature for the
nanowire using Idep(0) = 1.491N (0)e [�(0)]3/2 (D/�)1/2

Wd, arriving at Idep(0) ≈ 25.8 μA, where �(0) is the
superconducting order parameter at zero temperature. The
parameter γ is estimated to be 60 based on the acous-
tic properties of NbN [32]. Figure 2 shows the detection
energy and detection current for a hotbelt with L = 40 nm
calculated from Eq. (18). Using the calculations of the
detection energy from Eq. (18) shown in Fig. 2(a) and
expression (17), we can calculate PCR curves.

Figure 3 shows the simulated PCR curves for 1550 and
775 nm photons at Tb = 1 K, which closely follow the
data presented in [28] if we use χ = 0.40 and σFano =
0.1 eV. This value of χ can be justified as follows: energy
loss from the quasiequilibrated quasiparticles and phonons
making up the hotbelt occurs due to the out-diffusion of
quasiparticles and the escape of phonons. Cooling of the
hotbelt and the order-parameter suppression takes a sub-
stantial part of the detector-latency interval, terminating
with the SNSPD entering the resistive state. During this

(a) (b)

FIG. 2. (a) Detection energy Edet vs bias current Ib normalized
by the depairing critical current at zero temperature Idep(0). The
detection energy at a given Ib defines the energy deposition E
above which the detector generates a click. (b) Normalized detec-
tion current Idet/Idep(0) vs deposited energy E. The detection
current defines the current above which the detector generates
a click for a given amount of deposited energy. Results are cal-
culated using the hotbelt model for bath temperature Tb = 1 K
and the material parameters described in the text.

stage, the cooling rate is determined by a combination
of the phonon escape rate τ−1

esc and the thermal conduc-
tivity, both of which are independent of the bias current
and the initial state determined by the photon energy.
Therefore, the energy loss from electrons and phonons is
determined by the ratio τlat

(
IB, Tb, Ē

)
/min {τesc, LW/4D};

the larger this ratio is, the more energy is lost. The
energy of the quasiparticles and phonons in the hot-
belt is a monotonically decreasing function of this
ratio. When τlat

(
IB, Tb, Ē

)
/min {τesc, LW/4D} � 1, there

is no loss of photon energy. In the opposite case, i.e.,
τlat
(
IB, Tb, Ē

)
/min {τesc, LW/4D} 	 1, the loss is substan-

tial. Approximately half the photon energy is lost when
bτlat

(
IB, Tb, Ē

)
/min {τesc, LW/4D} = 1, where b ≤ 1 is a

numerical factor of order unity accounting for the fact
that only the first part of the latency interval is dissipa-
tionless until the superconducting current flow becomes
unstable. In typical situations, τesc = 4d/ηc [33] where
d ≥ 5 nm, the phonon transmission coefficient through the
escape interface η ∼ 0.3, and mean sound velocity c ∼

FIG. 3. Normalized PCR for photon wavelengths of 1550
(blue) and 775 nm (red) at Tb = 1 K using the simplified HB
model.
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5 × 105 cm/s, we find τesc ∼ 15 ps and LW/4D ∼ 30 ps
for L = 40 nm and W = 80 nm, and the detector latency
is either shorter or close to min {τesc, LW/4D}. Under these
conditions we expect the middle of the interval corrected
for volume expansion beyond W × L × d to be a good
representative value and χ < 0.5.

To model the jitter, we need to use the approximation
for the detector latency τlat (IB, Tb, E), which must be found
from more advanced detection models as explained in the
previous sections. Here we exploit its singular character at
Edet (IB, Tb) or at Idet (E, Tb) and its monotonic decrease as
E → ∞, choosing the forms

τlat (IB, Tb, E)

= τlat (IB, Tb, E0)

[
E0 − Edet (IB, Tb)

E − Edet (IB, Tb)

]α

(20)

and

τlat (IB, Tb, E)

= τlat (Isw, Tb, E)

[
Isw − Idet (E, Tb)

IB − Idet (E, Tb)

]α

. (21)

Here E0 = 0.8 eV is the reference energy of a 1550-nm
photon and Isw is the switching current of the SNSPD.
Equation (21) reflects the singularity in the latency when

the current approaches the detection current for a deposited
energy E. The exponents in Eqs. (20) and (21) are the
same. When E → Edet (IB, Tb) , we have IB − Idet (E, Tb) ≈
∂Idet/∂E

∣∣Edet(IB,Tb) [E − Edet (IB, Tb)] neglecting higher-
order terms. The derivative ∂Idet/∂E is continuous [see
Fig. 2(b)] and Eq. (21) exhibits the same singularity as Eq.
(20). Combining Eqs. (20) and (21), we obtain

τlat (IB, Tb, E) = τlat (Isw, Tb, E0)

×
[

Isw − Idet (E0, Tb)

IB − Idet (E0, Tb)

]α [E0 − Edet (IB, Tb)

E − Edet (IB, Tb)

]α

. (22)

For simplicity, we assume that the exponential α does
not depend explicitly on IB and Tb, and also that
limE→∞τlat (IB, Tb, E) = 0, i.e., that the detector responds
instantaneously to an infinite energy deposition. Here,
τlat (Isw, Tb, E0) is the latency at some reference energy, in
this case corresponding to λ = 1550 nm, and at IB = Isw.
Solving Eq. (8) we obtain

E (t) = Edet (IB, Tb) + [E0 − Edet (IB, Tb)]

×
[

Isw − Idet (E0, Tb)

IB − Idet (E0, Tb)

] [
τlat (Isw, Tb, E0)

t

]1/α

.

(23)

Substituting this result into Eq. (19) we finally obtain

H (t) = 1√
2πσ

exp

⎛
⎜⎜⎜⎝−

{
Edet (IB, Tb) + [E0 − Edet (IB, Tb)]

[
Isw−Idet(E0,Tb)

IB−Idet(E0,Tb)

] [
τlat(Isw,Tb,E0)

t

]1/α

− χEλ

}2

2σ 2

⎞
⎟⎟⎟⎠

× [E0 − Edet (IB, Tb)]
αt

[
Isw − Idet (E0, Tb)

IB − Idet (E0, Tb)

] [
τlat (Isw, Tb, E0)

t

]1/α

. (24)

The expression (24) can now be used for the analysis of
latency difference and IRF. For illustration, we enter the
parameters for an 80-nm-wide NbN SNSPD with Isw =
21 μA, τlat (Isw, Tb, E0) = 7 ps, and α = 0.6. Figure 4
shows the calculated IRFs for several different currents
for 1550- and 775-nm photons at Tb = 1 K. Figure 5(a)
shows the latency difference for pairs of 1550- and 775-
nm photons extracted from the simulations shown in Fig. 4.
Figure 5(b) presents the results for the FWHM of the IRF
calculated with the use of Eq. (22)–(24).

The simulated curves in Figs. 3–5 are qualitatively
consistent with the results of recent experiments [28],
providing support to the conclusion that intrinsic jitter
was observed in this experiment. It is remarkable that

FIG. 4. Instrument response functions for 1550 nm (dark) and
775 nm (light) photons at bias currents of 14 μA (red), 17 μA
(blue), and 20 μA (black). The critical depairing current at zero
temperature is 25.8 μA.
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(a) (b)

FIG. 5. (a) Relative latency vs bias current for 1550/775 nm
photons; (b) Timing jitter vs bias current for 775 nm (red) and
1550 nm (blue) incident photons.

incorporation of the general features of detector latency
alone, namely singularities at the detection current and
detection energy, together with monotonic positive curva-
ture variation with energy deposition, is sufficient to qual-
itatively reproduce the intrinsic timing jitter. The model
succeeds in reproducing all the primary experimental fea-
tures: strong dependence of the jitter on bias current, simi-
lar functional behavior of the latency difference and timing
jitter, and transformation of the IRF distributions with the
bias current. In addition, it allows for satisfactory fitting
of the observed PCR vs bias-current curves for different
wavelengths. Even the magnitudes of the observed latency
difference, timing jitter, and counting rates fall in the same
range with reasonable accuracy. Nonetheless, the results of
the simulations are sensitive to the exact functional depen-
dence of τlat (IB, Tb, E), the magnitudes of τlat (Isw, Tb, E0)

and α, and the possibility to model detector latency in
the form of Eq. (22). The primary disadvantage of the
simple hotbelt theory is its inherent incapability, because
of its phenomenological character, to derive the detec-
tor latency from the basic principles of nonequilibrium
superconductivity.

III. TIME-DEPENDENT GINZBURG-LANDAU
MODEL OF DETECTOR LATENCY

The simple phenomenological hotbelt model of latency
and timing jitter described above is insufficient to provide
a quantitatively predictive picture of the latency charac-
teristics of SNSPDs. To rigorously describe the detector
latency, we must use a more advanced technique, which
includes the simulation of the evolving nonequilibrium
superconducting state in combination with numerical mod-
eling. To analyze the evolution of the nonequilibrium
state caused by photon absorption in a superconducting
nanowire and understand the characteristics of detector
latency in SNSPDs, we use the generalized time-dependent
Ginzburg-Landau model.

We limit our generalized TDGL analysis to one dimen-
sion for numerical simplicity, but expect the results to

be representative of the main behavior of narrow NbN
nanowires. Given the recent observation of relative latency
on the order of 5–25 ps [28], the criterion for describing
the crossover between 1D and 2D detection must be re-
evaluated because these measurements imply a delay time,
which is comparable to the characteristic diffusion time
to establish a hotbelt τD,W  w2/16D − w2/4D  8 ps −
32 ps for W = 80 nm and D = 0.5 cm2/s. Therefore, the
1D regime is of interest because the transition between
1D and 2D detection behavior is not well understood. The
generalized TDGL equations are fully capable of describ-
ing the detector response in the 2D HS scenario and in
an external magnetic field. The use of the generalized
equations is not expected to change the qualitative con-
clusions reached by Refs. [26,27], respectively, regarding
these effects. However, the quantitative difference is sub-
stantial, and such a correction is necessary to describe the
relative latency results of Ref. [28]. The use of the 1D
model is acceptable for making this comparison because
the absolute latency of detection does not change substan-
tially in moving from 1D to 2D for the standard TDGL
equations once scaling for changes in the detection energy
for a given bias current. In this sense, the 1D model is
informative about the timescales of detection even if it
neglects some of the finer details of detector performance.

A. Generalized TDGL formulation

Different microscopic models can be compared and val-
idated by predicting the detector latency and comparing it
to experiments. At present, the most advanced microscopic
model of an SNSPD uses electrothermal equations cou-
pled to TDGL equations describing the superconducting
order parameter in a 2D system [15]. In this formulation,
the energy balance equations in the electron and phonon
systems take the form

d
dt

[
π2kB

2N (0)Te
2

3
− EcEs (Te, |�|)

]

= ∇ks∇Te − 2π2kB
2N (0)

15τep (Tc)

Te
5 − Tph

5

Tc
3 + �j · �E (25)

dTph
4

dt
= γ

2π2τep (Tc)

Te
5 − Tph

5

Tc
− Tph

4 − Tb
4

τesc
, (26)

where ks is the thermal conductivity of the electron system
in the superconducting state

ks = 2Dπ2kB
2N (0)Te

3

[
1 − 6

π2

∫ |�|/kBTe

0

x2exdx
(ex + 1)2

]

(27)

and Joule heating is included in the electron energy
equation as the dot product of the total current density �j
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and electric field �E. The energy gain of the electron sys-
tem due to transitioning to the superconducting state Es is
given by

Es =
∫ |�|/kBTe

0
ε̃nε̃dε̃

−
∫ ∞

|�|/kBTe

ε̃

⎡
⎢⎢⎣ ε̃√

ε̃2 −
(

|�|
kBTe

)2
− 1

⎤
⎥⎥⎦ nε̃dε̃

+
( |�|

2kBTc

)2 [1
2

+ ln
(

�(0)

|�|
)]

. (28)

The superconducting order parameter at zero temperature
is given by �(0) = 1.764 kBTc, ε̃ = ε/kBTc, and nε̃ in Eq.
(28) is the Fermi distribution with the electron temperature
in units of Tc. The total current density �j = �jn + �js is the
sum of the normal current

�jn = −σn∇ϕ (29)

and the supercurrent, for which we use an expression
derived for the limit of small superfluid momentum, which
turns out to be a close approximation to the general Usadel
result [15]

�js = �j Us
s  πσn

2e�
|�| tanh

( |�|
2kBTe

)
�

(
∇φ − 2e

�c
A
)

,

(30)

where ϕ is the electrostatic potential and σn is the conduc-
tivity in the normal state. The order parameter � = |�| eiφ

is described by the dynamics of the TDGL equations.
It is commonly known that the standard TDGL equa-
tions are only valid when the temperature is close to Tc
and deviations from equilibrium are small. The equations
also only apply in the limiting case of a gapless super-
conductor satisfying |�| τs_mag � �, where τs_mag is the
spin-flip scattering time. In what follows, we use a more
general version of the TDGL equations with less strin-
gent requirements [34,35]. For a dirty superconductor with
strong impurity scattering, the assumptions of slow vari-
ations in time and space are no different from those of
the standard TDGL. Derivation of the generalized TDGL
equations does not require the strong limitations neces-
sary for gapless superconductivity. Correspondingly, the
generalized TDGL equations better suit simulating the sup-
pression of the gap over extended intervals of time when
both the superconducting order parameter and the energy
gap remain finite. This is exactly the case for the order-
parameter dynamics following the absorption of a photon.
The precise details of the order-parameter evolution are
required for reliable description of temporal properties of
SNSPDs such as the latency and timing jitter.

The generalized TDGL equations can be written as the
time dependent partial differential equations

π�

8kBTc

[
� (Te)

∂

∂t
|�| + i |�|

� (Te)

∂

∂t
φ + 2ie |�|

� (Te) �
ϕ

]

= ξmod (Te)
2
[
∇ + i

(
∇φ − 2e

�c
A
)]2

|�|

+
[

1 − Te

Tc
− |�|2

�2
mod (Te)

]
|�|

+ i

(∇ · �j Us
s − ∇ · �j GL

s

)
|�|

�eD

σn
√

2
√

1 + Te/Tc
, (31)

where the parameter � (Te) =
√

1 + 4 |�|2 τsc (Te)
2 /�2

modifies the rates of phase and magnitude evolu-
tion of the TDGL equations. The terms ξmod (Te)

2 =
π�D/

(
4

√
2kBTc

√
1 + Te/Tc

)
and �2

mod (Te) = [�(0)

tanh
(
1.74

√
Tc/Te − 1

)]2
/ (1 − Te/Tc) are modified as

suggested in Ref. [15] in order to closely match the correct
temperature dependencies well below Tc. The general-
ized TDGL equations break the symmetry between the
evolving phase and magnitude of the order parameter
because the relaxation of the order-parameter magnitude
is controlled by a different process than the relaxation
of its phase. Consequently, they cannot be written in
the standard TDGL form. Inelastic scattering incorpo-
rates both electron-electron and electron-phonon interac-
tions according to τsc (Te) = 1/

[
1/τee (Te) + 1/τep (Te)

]
,

where τee (Te) and τep (Te) are the electron-electron and
electron-phonon inelastic scattering times respectively.
The temperature dependence of these scattering rates
is defined by τee (Te) = τee (Tc) Tc/Te and τep (Te) =
τep (Tc) (Tc/Te)

3. The final term of Eq. (31) enforces the
conservation of the Usadel supercurrent in the stationary
state following Ref. [15]. Conservation of total current
density, ∇ · �j = 0, is enforced with an additional equation

σn∇2ϕ = ∇ · �js. (32)

The boundary conditions at the ends of the nanowire
are defined by Te = Tc, Tph = Tb, |�| = 0, �js |n = 0, and
�jn |n = I/Wd. The introduction of current to the simulation
domain through �jn is numerically easier than through �js,
but leads to runaway Joule heating of the superconductor.
This is solved by limiting Joule heating to the domain of
interest in the center of the nanowire and enhancing cool-
ing through electron-phonon coupling near the nanowire
edges. Demagnetization effects are negligible in thin and
narrow nanowires, so the vector potential A is neglected in
the absence of a magnetic field. The system of equations
described by Eqs. (25), (26), (31), (32) is solved numer-
ically in one dimension. The system is first allowed to
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evolve to a stationary-state configuration for a fixed bias
current. Once the system has stabilized, a fixed amount of
energy is added to the electron and phonon systems in a
hotbelt of length L such that Te = Tph �= Tb. This excita-
tion serves as the initial conditions for the system, and the
resulting evolution models the response of the nanowire to
an excitation of known energy.

For simplicity, we consider a constant bias current in
our model. In electrothermal simulations, SNSPDs are typ-
ically modeled as a variable resistor in series with an
inductor representing the kinetic inductance of the super-
conductor [36]. This circuit is then coupled to an external
readout circuit used to record the electrical pulse generated
during a detection event. In an SNSPD, current is diverted
from the nanowire to the readout path once a significant
potential forms across the hotspot. The electric potential
rises quickly after the first phase slip or vortex crossing
occurs, but remains small until that point. Therefore, the
current will not be diverted until multiple phase slips have
occurred and the growth of the normal domain is domi-
nated by the thermal balance of Joule heating and cooling
through diffusion or phonon coupling to the substrate. In
the 1D hotbelt model at bias currents high enough for
photodetection, the first phase-slip event leads to runaway
Joule heating. This further justifies the use of a constant
bias current for determining the relative latency character-
istics within this simplified model because the latency is
primarily determined by the time for the first phase slip to
occur. This behavior is unlike the case of the 2D model
where vortices can cross the nanowire without nucleating
a normal domain at low bias currents [15], but we leave
the analysis of the generalized TDGL equations within a
2D framework for the future. The choice of constant bias
current is further supported by experimental evidence that
photon energy does not affect the shape of the electrical
signal generated during a photodetection event [28].

B. Detector latency

Calculations are performed for the same 80-nm-wide
nanowire parameters listed in Sec. II D at a substrate tem-
perature Tb = 2 K. This choice allows for easier numerical
computation compared to 1 K and is expected to be rep-
resentative of experimental results at 1 K based on the
temperature dependence measurements of Ref. [28]. The
parameter defining the electron-electron inelastic scatter-
ing time τee (Tc) is taken as an unknown parameter, while
τesc is 20 ps and τep (Tc) is 24.7 ps based on measurements
of τep (Tc) of 16 ps for NbN with a Tc of 10 K scaled
by an inverse cubic power law [15,37]. An initial hotbelt
length of L = 40 nm is used for all simulations. The exact
choice of τep (Tc) and τesc does not change the qualita-
tive nature of the results and has only a small quantitative
impact. Once the temperature of the hotbelt is elevated to
the initial temperature governed by the photon energy, the

(a)

(b)

FIG. 6. Voltage curves for a bias current of 12.35 μA for (a)
τee (Tc) of 0 ps and (b) τee (Tc) of 5 ps. For τee (Tc) = 0 ps,
the deposited energies are 0.6316 eV (black), 0.4737 eV (red),
0.3947 eV (orange), 0.3454 eV (green), 0.3392 eV (blue), and
0.3385 eV (violet) while for τee (Tc) = 5 ps, the deposited ener-
gies are 1.5789 eV (black), 0.9868 eV (red), 0.7895 eV (orange),
0.7105 eV (yellow), 0.6447 eV (green), 0.6217 eV (teal), 0.6143
eV (blue), and 0.6127 eV (violet). The voltage is initially greater
than zero due to the temperature dependence of the definition of
the Usadel supercurrent (30) and the instantaneous increase in Te
due to the photon energy deposition. The oscillations are due to
individual phase slips in the 1D superconductor.

system evolves until either a normal domain forms or the
photon-induced excitation relaxes back to the supercon-
ducting state. Simulated voltage traces are shown in Fig. 6
for a bias current of 12.35 μA and τee (Tc) of 0 ps and 5
ps under different energy depositions. Lower-energy depo-
sitions that are above the detection energy lead to longer
waiting times before a voltage pulse appears. For τee (Tc)

of 0 ps, the shape of the voltage traces resembles that of the
standard TDGL equations in 2D (see Fig. 8 of [15]) while
a value of τee (Tc) of 5 ps leads to qualitatively different
behavior. This change is a result of the use of the gener-
alized TDGL equations where the magnitude and phase
of the order parameter evolve at different rates, as modi-
fied by the parameter � (Te). The slower evolution of the
magnitude of the order parameter increases the latency of
the detection process compared to the limit of the standard
TDGL equations with τee (Tc) of 0 ps. During this slow
suppression of the magnitude, the phase rapidly adjusts to
maintain the supercurrent flowing through the HB region.
After some time, the order parameter is suppressed suffi-
ciently in the HB region that no reconfiguration of phase is
able to maintain the supercurrent, at which point the elec-
tric potential rapidly appears. The voltage ripples, which
appear after this initial jump in potential are individual
phase slips, which occur during the final suppression of
the order parameter. These phase slips have an oscillation

034062-12



INTRINSIC TIMING JITTER AND LATENCY... PHYS. REV. APPLIED 11, 034062 (2019)

frequency faster than that of the τee (Tc) = 0 ps limit due to
the faster phase evolution, which occurs in the generalized
TDGL equations with � (Te) > 1.

By selecting a fixed voltage threshold, characteristic
latency curves are determined as a function of energy
deposited in the superconducting system. In typical experi-
ments, this threshold is chosen to maximize the slew rate of
the rising edge of the pulse in order to minimize the effect
of electrical noise-induced timing jitter [28]. In our model,
the choice is less crucial because a given bias current leads
to normal domain growth at a fixed rate once the first phase
slips nucleate this normal domain. As a result, the slopes of
the voltage curves are approximately the same and a shift
in the threshold leads to a latency offset, but no change
in the relative latency characteristics for different amounts
of deposited energy. The hotbelt TDGL model predicts
a monotonically decreasing positive curvature latency as
photon energy increases, as predicted by the phenomeno-
logical arguments of Sec. II D. The expression (22), which
was used to describe the latency within the framework of
the simplified HB model, only approximately captures the
behavior of the 1D TDGL model. While other analytical
forms can provide better fits to the TDGL results, we use
interpolation between closely spaced simulation points in
order to faithfully capture the behavior of the model near
the singularity. This is necessary for evaluating the latency
of each energy to derive the instrument response function
for the deposited energy distribution.

It is worth noticing that the detection energy curve
for the simple HB model of Sec. II D, which was derived
from Eq. (5) and shown in Fig. 2(a), is approximately even
with the blue curve of Fig. 7(b), but is significantly below
the red and black curves. This is understandable because
the HB model of Sec. II D uses the instantaneous criti-
cal current of the hotbelt section of the nanowire while the
generalized TDGL model accounts for the finite suppres-
sion time of the order parameter. During this suppression,
energy diffuses away from the HB along the length of
the nanowire and couples to the phonon system and sub-
strate. Due to these energy losses, more energy is required
to break superconductivity within the TDGL model with
� > 1 compared to the simple HB model. Furthermore, the
detection energy increases as the electron-electron scatter-
ing parameter τee (Tc) increases. At temperatures around
or below Tc, as experienced in the hotbelt model, the
magnitude of the parameter � (Te) is dictated by τee (Tc).
This parameter has the dominant influence on the latency
compared to other parameters such as τesc or τep (Tc).
Increasing τee (Tc) leads to slower suppression of the order
parameter and significantly longer detector latency. This
increase in delay time leads to additional dissipation of
energy so the detection energy for a given bias current
increases, as seen in Fig. 7(b).

The fitting parameters χ , σFano, and σnu are chosen in
order to achieve the best possible match to the measured

(a) (b)

(c)

FIG. 7. (a) Latency vs energy simulation results for τee (Tc) of
5 ps for bias currents of 5.7 μA (violet), 7.6 μA (blue), 9.5 μA
(teal), 11.4 μA (green), 13.3 μA (yellow), 15.2 μA (orange),
17.1 μA (red), 19.0 μA (grey), and 20.9 μA (black). The associ-
ated interpolation fits (lines) are shown for each bias current. (b)
Detection energy vs bias current for τee (Tc) of 0 ps (blue), 5 ps
(red), and 10 ps (black). (c) Model PCR curves for 775 nm (light)
and 1550 nm photons for τee (Tc) of 0 ps (blue), 5 ps (red), and 10
ps (black). The experimental PCR curves of Ref. [28] reasonably
match the blue curves.

PCR curves of Ref. [28] as shown in Fig. 7. The values of
χ are 0.37, 0.65, and 0.79, σFano are 0.064, 0.088, and 0.104
eV, and σnu are 0.024, 0.040, and 0.048 eV for τee (Tc) of
0, 5, and 10 ps, respectively. When evaluating the distri-
bution of energies for a given photon energy, the Gaussian
distribution with a mean energy fraction χ and standard
deviation σFano has a high-energy cutoff at Eλ. This dis-
tribution is convolved with a Gaussian distribution with
standard deviation σnu to give the final energy distribution
used to evaluate the PCR response and IRF. For τee (Tc)

of 10 ps, the high-energy cutoff is extended beyond Eλ

to maintain a smooth PCR response and IRF, enabling a
comparison to the lower values of τee (Tc).

C. Instrument response function

The interpolated latency function can be used to gen-
erate the detector IRF according to Eq. (11) as shown
in Fig. 8(a). The FWHM of the jitter profile is extracted
and shown in Fig. 8(b) for 1550 and 775 nm photons
for different values of the parameter τee (Tc). In the pres-
ence of energy fluctuations, the increase in τee (Tc) and
corresponding increase in the detector latency leads to an
increase in the timing jitter. As can be seen in Fig. 8(b),

034062-13



J. P. ALLMARAS et al. PHYS. REV. APPLIED 11, 034062 (2019)

(a) (b)

FIG. 8. (a) IRF for bias currents of 15.2 μA (black), 17.6 μA
(blue), and 20.0 μA (red) for τee (Tc) of 5 ps for 775-nm (light)
and 1550-nm (dark) photon wavelengths. For each bias current,
the 775-nm histogram is normalized to a unit maximum while the
corresponding 1550-nm histogram is subsequently normalized to
have the same area. (b) Jitter FWHM vs bias current for 1550-
nm (solid) and 775-nm (dashed) photon energies. The results are
shown for τee (Tc) values of 0 ps (blue), 5 ps (red), and 10 ps
(black). The case of τee (Tc) reduced to 0 ps corresponds to the
standard TDGL formulation, which follows from Eq. (31) in the
limit τee → 0.

the generalized TDGL equations show significantly differ-
ent quantitative behavior when compared to the standard
TDGL equations represented by τee (Tc) = 0. This correc-
tion is necessary to simulate intrinsic jitter on the same
scale as observed experimentally [28].

The instrument response function is often fit with an
exponentially modified Gaussian (EMG) profile to account
for a notable tail observed experimentally [24,28,38]. The
histograms generated using the generalized TDGL hotbelt
formulation are not strictly defined by an EMG, but share
the same characteristics of a mostly Gaussian profile with
a tail at longer latency times. As a comparison, we fit our
simulation IRFs with an EMG distribution and extract the
Gaussian FWHM (2.355σ ) and exponential (1/λ) contri-
bution as done in Ref. [28]. Figure 9 shows the relative
contribution of the Gaussian and exponential components

(a) (b)

FIG. 9. Gaussian (a) and exponential (b) contributions to the
timing jitter as a function of bias current for 1550-nm (solid) and
775-nm (dashed) photon energies when fitting the IRF with an
exponential modified Gaussian function. The results are shown
for τee (Tc) values of 0 ps (blue), 5 ps (red), and 10 ps (black).

FIG. 10. Latency difference between photons of 1550- and 775-
nm wavelength. Results are shown for τee (Tc) values of 0 ps
(blue), 5 ps (red), and 10 ps (black). Increasing τee (Tc) leads to
larger relative latency difference.

of the fit. The contributions are similar, with the expo-
nential portion contributing slightly more to the timing
jitter. This is qualitatively consistent with the experimental
findings of Ref. [28].

D. Photon pair latency difference

Recent experiments [28] show that the latency differ-
ence between pairs of photons with 1550- and 775-nm
wavelengths ranges from 5 to 25 ps depending on the
bias current. The latency difference is extracted from sim-
ulated IRFs by calculating the time difference between
the maxima of the histograms of photon energies of 1550
and 775 nm. Figure 10 shows the extracted latency differ-
ence for various bias currents and values of the parameter
τee (Tc). The latency difference shows a decreasing trend
as the bias current increases, which is consistent with
experiments. Only by moving to the generalized TDGL
formulation with nonzero τee (Tc) is it possible to find
latency differences on the order of 5 to 25 ps, as measured
experimentally [28]. The curves in Figs. 8(b), 9, and 10
indicate slowing of the increase of timing jitter and latency
with bias current decreasing close to the onset of detec-
tion. Nonmonotonic behavior is even observed for the jitter
FWHM for values of τee (Tc) > 0 ps. Within the discussed
model this is connected with the decreasing likelihood of
the large energy depositions needed for detector response
at small bias currents.

IV. DISCUSSION

In an SNSPD, the four main stages governing the detec-
tor response are (a) the initial equilibration in the system
of interacting electronic excitations and phonons; (b) a
nondissipative stage over which the system evolves with
the order parameter being gradually suppressed until the
superconducting state becomes incapable of supporting
the current through the wire as a supercurrent. In this
stage, instability results in the generation of phase-slip
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lines or vortices, depending on the symmetry of current
flow through the region of suppressed order parameter (i.e.,
HB or HS regime); (c) a dissipative stage resulting in the
nucleation and expansion of the normal domain; and (d)
current diversion into the readout and relaxation of the nor-
mal domain. Stages (a) to (c) contribute to the intrinsic
timing jitter of SNSPDs.

During stage (a) both Fano fluctuations and spatial
nonuniformities cast their imprints onto the duration of
stage (b). To derive a simple expression for δτth at the end
of stage (a), we write 1/τth(Te) = 1/τep(Te) + 1/τee(Te)

incorporating both electron-phonon and electron-electron
scattering. The mean electron (and phonon) temperature
after thermalization is found from the energy conserva-
tion law (5). Due to Fano fluctuations, the amount of
energy deposited into the film fluctuates, which causes
fluctuations in Te. Differentiating (5) we have

δE
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= δTe
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where β = τep(Tc)/τee(Tc) and x = Te/Tc. The contribu-

tion to the timing jitter becomes ϒth ≈ 2.355
√

(δτth)
2 and

FIG. 11. Down-conversion cascade timing jitter estimate for
NbN. Calculations use the initial hotspot volume Vinit = 2ξc ×
2ξcd [15] and β = 0.1 (black), 1 (red), and 2 (blue). Larger β

reduces the cascade jitter ϒth(E). As the photon energy increases,
the cascade jitter decreases.

is shown in Fig. 11. As seen from this estimate, the cas-
cade contribution ϒth for typical NbN material parameters
is in the subpicosecond regime (≤ 0.3 ps for 1550-nm pho-
tons). The only likely situation when the cascade duration
may start contributing to the total latency τth + τlat, and the
cascade jitter to the total jitter, is when biasing the SNSPD
at large currents close to the switching (critical depair-
ing) current. In this case, τlat is expected to decrease with
current, while the thermalization process at temperatures
exceeding the critical temperature of a superconductor is
practically independent of the current value. The main
contribution to Fano variance comes from losing phonons
of the first few generations, where most of the deposited
energy is in the form of phonons and their numbers are
small [16]. In contrast, the total amount of energy loss
is accumulated over the whole latency time of the detec-
tor. The Fano fluctuations reflect the stochastic nature of
phonon loss from the film. The variance remains almost
unchanged as the cascade enters the later stages of thermal-
ization when approaching τth (and beyond). This is due to
both the multiplication of phonon numbers in subsequent
generations, so that the relative fluctuations for larger num-
bers become progressively smaller, and the gradual energy
flow from phonons to electronic excitations while nonequi-
librium state cools down. For exactly the same reason, the
cascade jitter is expected to be the same for both the HS
and HB detection scenarios.

To minimize the intrinsic timing jitter, the variances
σFano

2 and σnu
2 must be reduced as much as possible.

Perfecting the technologies of superconducting thin-film
growth and nanowire fabrication are the principal ways
to minimize the effects of spatial nonuniformities. Their
contribution to energy fluctuations relative to Fano fluctu-
ations is expected to increase as the photon energy extends
into the ultraviolet region. Reducing the variance of Fano
fluctuations generally requires reducing the escape of high-
frequency phonons, including Debye phonons and the next
generation of down-converted phonons. One way of imple-
menting this is by increasing the thickness of the wire,
making it as large as possible with respect to character-
istic phonon mean free path d > lp−c. Another approach is
to control the acoustic properties of the escape interfaces
between the nanowire and the substrate and the nanowire
and the dielectric passivation layer. The latter may not
work for acoustically soft metal films on rigid substrates,
but may be of interest for acoustically fast NbN films,
where higher-frequency phonons may not escape if they
face a gap in the phonon spectrum across the interface. It
is important to emphasize that when the escape of high-
frequency phonons of the first generations of the down-
conversion cascade has been greatly reduced or eliminated,
lower-frequency phonons, �ω < 2�, may stay decoupled
from the condensate for longer than the duration of the
latency and/or equilibration. Fluctuations in their num-
ber occur due to the energy partition between electrons
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and phonons and are described by the standard Fano vari-
ance σ 2 = FεEλ, where F ∼ 0.2 [39,40]. Thus, in the ideal
case the Fano-fluctuation effect can be reduced down to
that described by the standard deviation σFano ∼ √

FεEλ.
This is nearly a factor of 4 smaller than the σFano for
1550 nm used for simulations in Figs. 3–5 and 8–10. Such
a dramatic decrease in the strength of fluctuations will
move the intrinsic timing jitter (neglecting spatial inhomo-
geneities) into the subpicosecond range. Even if such ideal
performance cannot be easily achieved, the potential for
improvement is significant, and further work is needed in
acoustic matching and the control of interface properties
and phonon fluxes including internal phonon bottleneck-
ing in acoustically soft metal films on rigid substrates and
with rigid passivation layers [41].

Stage (b) comprises a longer part of the detector latency
compared to the down-conversion, during which the cool-
ing of the affected area due to phonon escape and thermal
conduction is accompanied by the suppression of the order
parameter, resulting in an instability of the superconduct-
ing state and transition into the resistive state. The con-
trol parameters, which govern the behavior of this stage,
describe the energy exchange between quasiparticles and
phonons τep , the exchange and loss of phonons to the
thermal bath τesc [important in energy balance over the
duration of stage (b) and controlling the fluctuations in
stage (a)], the thermal conductivity in the electronic system
ks, and the energy relaxation time, τsc (Te).

As evidenced by our analysis and pointed out in Sec. III,
the strongest potential impact on reducing the latency and
jitter is to make the suppression of superconductivity as
fast as possible. We modeled the presence of an extra chan-
nel of inelastic scattering by adding the electron-electron
scattering in parallel with the electron-phonon interaction.
However, in a disordered 2D metal film, the energy transfer
in the diffusion channel is small, making the energy relax-
ation in electron-electron collisions slower than the phase
relaxation time [42]. The thermalization time was reported
as 7 ps in NbN [43], which is consistent with the predic-
tion of the Altshuler-Aronov formula [44]. The relatively
weak effect of electron-electron scattering was incorpo-
rated in the form of an electron-electron collision integral
in the kinetic theory of photon detection [15]. However,
it is known that in disordered mesoscopic metal wires
[45], dilute magnetic impurities less than 1 ppm can cause
both anomalous decoherence and fast energy exchange.
Whether this is the case for the material used in recent
experiments [28], making it closer to optimum in terms
of intrinsic jitter performance, is not immediately clear.
Nonetheless, the prospect of improving detector latency
and timing jitter by introducing a controlled amount of
spin-flip scattering, affecting the energy relaxation time,
deserves further attention.

Nonmonotonic behavior of the intrinsic timing jitter
with increasing bias current has been predicted in both

the MoSi [46] and NbN [26] systems in the probabilistic
detection regime. Within the deterministic 1D generalized
TDGL model, nonmonotonic behavior is observed for the
lowest detection efficiencies as shown in Fig. 8 for τee (Tc)

of 5 and 10 ps. This behavior is a result of the Gaussian dis-
tribution of energies deposited in the superconductor and
the nature of the singularity, which occurs at the detection
energy for a given bias current. As the mean photon energy
drops well below the detection energy for a given bias
current, higher-energy depositions are excluded from the
energy distribution, which leads to a smaller distribution
of allowable energies. Depending on the exact shape of the
latency curves at different bias currents, this can result in
a decrease in jitter FWHM as the bias current decreases.
While nonmonotonic behavior is not reported in Ref. [28],
measurements were not shown for bias currents far into the
probabilistic regime, and the noise contribution to the jitter
was not subtracted from the measured jitter, so it is prema-
ture to conclude if nonmonotonic behavior is a universal
feature of the intrinsic jitter of nanowire devices.

In the 1D generalized TDGL model described in Sec.
III, the effect of the transverse coordinate dependence on
detector latency is neglected. This simplification is par-
tially supported by recent measurements [28]. When the
IRF was measured for nanowire widths ranging from 60 to
120 nm, the timing jitter ranged from approximately 25
ps to 5 ps independent of the width, once the bias cur-
rent was scaled according to the detection energy. This
suggests that the timing differences due to vortex crossing
and the varying geometry of phase-slip lines as a function
of transverse absorption coordinate may be much smaller
than those due to energy fluctuations as described above. If
timing jitter due to transverse coordinate dependence were
to dominate, the intrinsic jitter would be expected to show
a more significant dependence on nanowire width, because
the vortex transit times would change. Furthermore, the
estimates of the timing jitter due to vortex crossing based
on a model of vortex entry from the nanowire edge sug-
gest that this effect is small compared to the measured
intrinsic jitter [23]. Note that this work neglected the effect
of vortex-antivortex unbinding due to detections near the
center of the nanowire, which will alter the expected IRF.
In the recent work [27], the transverse coordinate depen-
dence of timing jitter was studied using the standard TDGL
equations, which includes the vortex-antivortex unbinding
mechanism, and the FWHM was found to be < 5 ps for the
energies and bias currents reported, which is significantly
smaller than those measured experimentally [28]. For all
data available at this time, as evidenced by the period of
voltage oscillations (see our Fig. 6, Fig. 8 of [15]), and
Fig. 6 of [27], vortex crossing times appear to be too short
in comparison with the observed latencies of the detector
to be dominant. Therefore, the contribution of these effects
to timing jitter must be of lesser importance, at least at bias
currents well below the critical depairing current.
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The measurement of detection latency differences on the
order of 25 to 5 ps between 1550 and 775 nm photons
further supports the usefulness of a 1D model, because
the absolute latency must be of the same magnitude. The
characteristic diffusion time to establish a hotbelt based
on the parameters of NbN used in Sec. III is τD,W 
8 − 32 ps for W = 80 nm, which is comparable to the
measured latency. The generalized TDGL model captures
this behavior through the introduction of the parameter
�, which modifies the characteristic time of the variation
of the order parameter under the standard TDGL model,
τ|�|. Under this modification, the condition for quasi-
1D-detection, �τ|�|  τD,W, can be satisfied even when
calculated according to the standard TDGL formation sug-
gests that a 1D model is inappropriate because τ|�| � τD,W.
As the bias current approaches Isw, the latency falls below
the characteristic diffusion time and the 1D approxima-
tion becomes less appropriate. In this regime, the effects of
transverse-coordinate dependence may become important.
More advanced modeling using the 2D generalized TDGL
formulation will provide information about the impact of
the transverse coordinate of absorption relative to energy
fluctuations. The inclusion of the full 2D dynamics is also
expected to change the behavior of the longer latency tail
observed experimentally and through modeling. Detailing
the nature of this non-Gaussian behavior may be another
way to experimentally probe the details of the detection
mechanism.

Within our 1D model, stage (c) is less significant. Due
to the uniform nature of the current flow within the cross
section, the normal domain expands at the same rate for
excitations of different energy at the same bias current. In
the 2D case, the initial stage of the growth of the normal
domain may contribute to timing jitter because the expan-
sion depends on the initial coordinate of detection. In this
case, the resulting timing jitter would be correlated with the
transverse-coordinate dependence caused by vortex nucle-
ation and motion. While not important within the model of
intrinsic jitter, the rate of normal domain growth plays a
role in an experimental system where electrical noise con-
tributes to timing jitter. The slew rate of the rising edge
of the electrical signal from a detection event determines
the timing jitter associated with the electrical noise in the
system. Maximizing the rate at which the normal domain
grows and diverts current [stages (c) and (d)] can reduce
the electrical-noise contribution to the total timing jitter.

Comparing the results of Sec. III to recent experiments
[28], we find a semiquantitative match for a value of
τee (Te) ∼ 5 − 7 ps, which is consistent with the value
of thermalization time reported in experiment [43], but
smaller than that predicted by theory [44]. The detec-
tion latency difference between pairs of 1550 and 775 nm
photons shows the same monotonically decreasing behav-
ior with increasing bias current and similarly shows an
inflection within the range of bias currents that do not

saturate the internal detection efficiency. The qualitative
behavior of the IRF FWHM also matches the experiment
for the same values of the inelastic scattering time. In
both experiment [28] and the model, the IRF FWHM for
1550-nm photons decreases with an inflection point occur-
ring at a bias current just below the current where internal
efficiency saturates. For 775-nm photons, no inflection
point is observed. The simple model predicts a somewhat
higher exponential contribution to the total jitter compared
to the Gaussian contribution than found experimentally,
but the qualitative behavior of the two components each
match experiment. Despite the adopted 1D approximation,
the generalized TDGL model simultaneously captures the
PCR, jitter FWHM, and relative latency behavior observed
for the 80-nm sample measured in Ref. [28]. The use of
the 1D model has limitations. It is well known that the
detection process for most SNSPDs is dependent on the
transverse coordinate of the absorption site [5]. Such a
mechanism is needed to qualitatively understand the detec-
tor response in a magnetic field [5,26]. However, at the
present time, the model used to understand this behavior
has only been applied qualitatively. When extended to two
dimensions, the generalized TDGL approach will not only
describe the cross-over from 1D to 2D geometry, but more
importantly, is expected to be fully capable of reproducing
the qualitative conclusions mentioned above, but within a
framework which more accurately captures the appropri-
ate timescale of detection. Given the intimate connection
between detector latency and timing jitter, this is a neces-
sary step for generating a detection model which is capa-
ble of reproducing all experimentally observed features
of SNSPDs.

V. CONCLUSION

We demonstrate how the introduction of detector latency
in the presence of Fano fluctuations and spatial inhomo-
geneities accurately reproduces the qualitative features of
the intrinsic timing jitter recently measured in SNSPDs.
In the characteristic latency vs energy curve, the presence
of a singularity at the detection energy combined with
monotonic scaling and positive curvature leads to a non-
Gaussian IRF with an extended tail at longer delay times,
which has been observed in multiple experiments. Within
the framework of the generalized TDGL model, the inelas-
tic scattering time plays a dominant role in determining
the detector latency and timing jitter. The addition of this
contribution to the standard TDGL model is necessary to
reproduce the detector latency observed in experiment. By
engineering materials with smaller τsc (Te), it may be pos-
sible to reduce this component of the intrinsic jitter in
the future. The structural features of detector IRFs such
as FWHM, asymmetry characteristics, and latency differ-
ences between pairs of photons with different energies
offer a new means of studying the detection mechanism
in SNSPDs in more detail going forward.
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