
PHYSICAL REVIEW APPLIED 11, 034021 (2019)

Boosting Computational Power through Spatial Multiplexing in Quantum
Reservoir Computing

Kohei Nakajima,1,2,* Keisuke Fujii,2,3,4 Makoto Negoro,2,5,6 Kosuke Mitarai,5 and
Masahiro Kitagawa5,6

1
Chair for Frontier AI Education, Graduate School of Information Science and Technology,

The University of Tokyo, Bunkyo-ku, 113-8656 Tokyo, Japan
2
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

3
The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho,

Sakyo-ku, Kyoto 606-8302, Japan
4
Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku,

Kyoto 606-8502, Japan
5
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka,

Osaka 560-8531, Japan
6
Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research

Initiatives, Osaka University, Osaka 560-8531, Japan

 (Received 6 March 2018; revised manuscript received 3 January 2019; published 8 March 2019)

Quantum reservoir computing provides a framework for exploiting the natural dynamics of quantum
systems as a computational resource. It can implement real-time signal processing and solve temporal
machine-learning problems in general, which requires memory and nonlinear mapping of the recent input
stream using the quantum dynamics in the computational supremacy region, where the classical sim-
ulation of the system is intractable. A nuclear-magnetic-resonance spin-ensemble system is one of the
realistic candidates for such physical implementations, which is currently available in laboratories. In this
paper, considering these realistic experimental constraints for implementing the framework, we introduce
a scheme, which we call a spatial multiplexing technique, to effectively boost the computational power of
the platform. This technique exploits disjoint dynamics, which originate from multiple different quantum
systems driven by common input streams in parallel. Accordingly, unlike designing a single large quantum
system to increase the number of qubits for computational nodes, it is possible to prepare a huge number
of qubits from multiple but small quantum systems, which are operationally easy to handle in labora-
tory experiments. We numerically demonstrate the effectiveness of the technique using several benchmark
tasks and quantitatively investigate its specifications, range of validity, and limitations in detail.
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I. INTRODUCTION

Recent developments in sensing and Internet-of-things
technology follow big data, which consist of a mas-
sive amount of complex time series data. Accordingly,
a novel information processing technique that can deal
with these data efficiently in real time is eagerly required.
Conventional computers are, however, based on the von
Neumann architecture, where the processor and memory
are separately aligned. This structure causes an intrin-
sic limitation in processing speed, which is called the
von Neumann bottleneck. Furthermore, the schemes of
the von Neumann–type models stipulate that to han-
dle complex information processing, the computational
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system should also be built in a complex manner sys-
tematically. While biological systems are complex sys-
tems that are constantly exposed to massive sensory data,
they perform successful real-time information processing
with lower computational costs and energy consumptions.
Their way of information processing is a typical non–von
Neumann type, capitalizing on its natural and diverse
dynamics, and has been a source of inspiration for many
researchers [1].

Reservoir computing is a framework for recurrent neural
network training inspired by the way the brain processes
information [2–5] and it provides a typical example of
a non–von Neumann–type computation [6]. A reservoir
computing system consists of a high-dimensional dynam-
ical system, called a reservoir, driven by time-varying
input streams, which generates transient dynamics with
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fading memory property and can perform nonlinear pro-
cessing on inputs [7]. Its framework can be used for
real-time information processing with complex temporal
structures, which makes it particularly suited to machine-
learning problems requiring memory, such as speech
recognition, prediction of stock markets, and autonomous
motor controls for robots. Conventionally, this scheme is
implemented through randomly coupled artificial neural
networks [i.e., echo state networks (ESN) [2] ] or through
spiking neural networks (i.e., liquid state machines [3])
in the software program running on a PC. As long as
it runs on a conventional PC, the resulting computa-
tion is inevitably a von Neumann type. On this basis,
the physical implementations of the reservoir have been
proposed to exploit the dynamics of native physics for
information processing. The implementations include the
dynamics of the water surface [8], photonics [9,10], spin-
tronics [11–13], and the nanomaterials structured in the
neuromorphic chip [6]. Even the diverse body dynamics
of soft robots have been shown to be used as a suc-
cessful reservoir [14–17], suggesting that this framework
could be applied to physical systems in various scales.
Recently, quantum reservoir computing (QRC) has been
proposed, which implements reservoir computing powered
by quantum physics [18].

Quantum dynamics is difficult to simulate using a con-
ventional or classical computer due to the exponentially
large degrees of freedom. This property is generally termed
a quantum computational supremacy [19] and the frame-
work of QRC relies heavily on this property of quan-
tum dynamics. Quantum reservoir (QR) dynamics are
expressed as transitions of the basis states for quantum
bits (qubits) driven by an input stream [Fig. 1(a)], which
evolve over time through a unitary operator based on
a Hamiltonian. Signals are obtained through projective
measurements from the system, called true nodes, which
are used as direct reservoir states. An exponential num-
ber of degrees of freedom exist behind the measurement
called hidden nodes, which affect the time evolution of the
true nodes. The framework of QRC naturally takes into
account the exponential degrees of freedom of quantum
dynamics, which is intractable for the classical computer,
for information processing. Furthermore, the framework
implements non–von Neumann–type computing through a
reservoir computing scheme, suggesting the full exploita-
tion of assets from physical quantum dynamics. It has
been shown that the QR system can emulate nonlinear
dynamical systems, including classical chaos, and exhibit
robust information processing against noise [18]. As candi-
dates for the physical experimental platform of the scheme,
nuclear-magnetic-resonance (NMR) spin-ensemble sys-
tems [20,21] have been proposed. In these systems, nuclear
spins in molecules are used as the ensemble qubit system.
Usually, when monitoring a quantum system, its observ-
ables are affected by projective measurements, a process
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FIG. 1. Schematics explaining a spatial multiplexing technique
for QRC. (a) A QRC system without spatial multiplexing for
comparison, showing a quantum system with five qubits; the
input is injected into the first qubit. (b) A QRC system with spa-
tial multiplexing. It shows multiple disjoint quantum systems,
each containing five qubits; the input is injected into the first
qubit for each system. (c) Schematic of an experimental imple-
mentation of QRC with a spatial multiplexing technique for the
NMR system.

called backaction. In the NMR ensemble system, this effect
of backaction can be neglected, and the signal can be
successfully obtained by averaging the massive amount
of copies of molecules existing in the ensemble system.
(We here note that the first physical implementation of
NMR-based QR has recently been reported; this exploits
the controllable dynamics of a nuclear spin ensemble in a
molecular solid [22].)

In this paper, we present a scheme for boosting the
computational power of QRs. (Throughout this study, the
term “computational power” implies the system’s expres-
sive capability for function approximations, like that found
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in neural networks, including reservoir computing sys-
tems.) The most prominent and straightforward approach
for improving the computational capability of the system
is increasing its number of computational nodes. In QRC,
this primarily corresponds to increasing the number of
qubits. However, when viewed from a physical implemen-
tation standpoint (e.g., using a NMR spin-ensemble sys-
tem), this approach requires a redesign or reconstruction
of the sample molecules, which is operationally difficult as
well as energy and time consuming.

To overcome this problem, we introduce an effective
approach to boost the computational power of the sys-
tem using readily available small-sample molecules, which
are operationally easy to handle in the experiments. Our
scheme is called spatial multiplexing, in which we prepare
multiple different small-sample molecules, inject common
input streams into each system, and use all the signals
obtained from these systems as a big single reservoir
system [Fig. 1(b)]. This procedure has previously been pro-
posed in the applications of conventional ESNs and many
examples have demonstrated its effectiveness (e.g., [2]).
Here, we apply the scheme to QRC and present that its
procedure is particularly suited to overcome the difficulty
in a physically implemented reservoir setting.

In a software-implemented RC, since the scheme of spa-
tial multiplexing exploits multiple disjoint ESNs as a new
reservoir, it is operationally equivalent to assuming a single
ESN having the same total number of computational nodes
in the first place with a specific sparse internal weight
matrix. However, when viewing this scheme from phys-
ical RC perspectives, the situations are different. In the
NMR-implemented QRC, for example, even if the num-
ber of computational nodes is the same, the operational
cost of preparing one huge sample molecule and that of
preparing multiple small-sample molecules are different.
By focusing on this operational difference, we can secure
the scheme as one of the realistic and practical options to
improve the computational power of physical reservoirs,
which are often difficult to design freely and easily. In the
following sections, we argue the effectiveness of the spa-
tial multiplexing technique for the NMR spin-ensemble-
system-based QRC and quantitatively demonstrate how
the scheme improves the computational performance in
QRC. We also provide a detailed theoretical explana-
tion of the specifications and range of validity of the
scheme, which will be useful for evaluating other reservoir
systems.

This paper is organized as follows. In the next section,
we overview the formalization of QRC [18] and intro-
duce spatial multiplexing into the setting. Subsequently,
we theoretically examine the effect of spatial multiplex-
ing in detail from a general standpoint. We then numer-
ically demonstrate the power of the spatial multiplex-
ing technique on QRC using conventional benchmark
tasks in a machine-learning context. Several approaches

to engineer QRs through spatial multiplexing are also dis-
cussed. Finally, its practical aspects, future application
domains in solving real-world machine-learning problems,
and its implications for the reservoir computing framework
in general are discussed.

II. QUANTUM RESERVOIR COMPUTING
THROUGH SPATIAL MULTIPLEXING

A. Quantum reservoir dynamics

Let us consider a quantum state of an N -qubit system,
which is described by a density operator ρ. By denoting
the Pauli operators to be

I = σ00, X = σ10, Z = σ01, Y = σ11, (1)

an N -qubit Pauli product is defined by 2N -bit string i:

P(i) =
N⊗

k=1

σi2k−1i2k . (2)

By using the Pauli products {P(i)} as a basis of the oper-
ator space, the quantum state ρ is represented by 4N real
vectors:

ρ → r =

⎛
⎜⎝

r00···0
...

r11···1

⎞
⎟⎠ , (3)

where each element ri is given in terms of the Schmidt-
Hilbert inner product for the operator space as

ri = Tr[P(i)ρ]/2N . (4)

From the properties of the density operators,

r00···0 = 1/2N , −1 ≤ ri ≤ 1,
∑

i

r2
i ≤ 1. (5)

In QRC, each element ri is regarded as a hidden node of
the network. In quantum mechanics, any physical opera-
tion can be written as a linear transformation via a 4N × 4N

matrix W:

r′ = Wr. (6)

The matrix W can be constructed explicitly from the
quantum operation W as follows:

Wj i = Tr{P(j )W[P(i)]}/2N . (7)

For example, a unitary dynamics under the Hamiltonian H
with a time interval τ is given by

(Uτ )j i = Tr[P(j )e−iHτ P(i)eiHτ ]/2N . (8)

In order to exploit quantum dynamics for information pro-
cessing, we have to introduce an input and the signals
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of the quantum system [see Fig. 1(a)]. Suppose {uk} is
an input sequence, which is a continuous variable (uk ∈
[0, 1]). (We consider the setting of one-dimensional input
for simplicity, but its generalization to a multidimensional
case is straightforward.) A temporal learning task here is
to find, using the quantum system, a nonlinear function
yk = f ({ul}k

l=1) such that the mean-square error between yk
and a target output ŷk for a given task becomes minimum.
Note that, as we see from Eq. (6), there is no nonlinearity in
each quantum operation W. Instead, the time evolution W
can be changed according to the external input uk, namely,
Wuk , allowing the quantum reservoir to process the input
information {uk} nonlinearly, by repetitively feeding the
input. Thus, we can obtain nonlinear terms, for example,
with respect to uk and uk−1, Wuk Wuk−1 via a multiplication
of two linear transformations.

Specifically, as an input in our work, we replace the first
qubit to the quantum state [Fig. 1(a)]

ρuk = I + (1 − 2uk)Z
2

. (9)

The corresponding matrix Suk is given by

(Suk )j i = Tr
{

P(j )
I + (1 − 2uk)Z

2
⊗ Tr1st[P(i)]

}
/2N ,

where Tr1st indicates a partial trace with respect to the first
qubit. A unit time step is written as an input-depending
linear transformation:

r[(k + 1)τ ] = Uτ Suk r(kτ), (10)

where r(kτ) indicates the hidden nodes at time kτ .
A set of observed nodes, which we call true nodes,

{xl}M
l=1 is defined by a 4N × M matrix R,

xl(kτ) =
∑

i

Rliri(kτ). (11)

The number of true nodes M has to be a polynomial
in the number of qubits N . That is, from exponentially
many hidden nodes, a polynomial number of true nodes
are obtained. For simplicity, we take the single-qubit Pauli
Z operator on each qubit as the true nodes, i.e.,

x1 = r010···0, x2 = r00010···0, . . . , xn = x0···01. (12)

Therefore, there are M = N true nodes. Figure 2(a) shows
the typical reservoir dynamics driven by the input stream
{uk} and they consist of signals obtained from the true
nodes. Here, we assume that the system is an ensem-
ble quantum system, which consists of a huge number of
copies of single quantum systems. Therefore, the signals
from the true nodes are obtained without any backaction.
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FIG. 2. Preparing computational nodes through spatial multi-
plexing. (a) A typical example of reservoir dynamics (a time
series of signals obtained from true nodes) in multiple dis-
joint quantum systems driven by a common input stream. The
plot overlays reservoir dynamics from three different quantum
systems with the number of qubits set to 5 and τ� = 8. (b)
The temporal and spatial multiplexing scheme. The upper dia-
gram focuses on the time interval when the input uk is injected.
Signals from the three QR systems are overlaid, where the
parameters τc, Vc, and Nc are set to be the same among the
systems for simplicity. The lower diagram expresses how to pre-
pare the computational nodes in our settings. The linear and
static readout weight is attached to each computational node and
the learning is performed by training the weights. See text for
details.
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Actually, the NMR spin-ensemble system is such a system.
A sample of a NMR spin-ensemble system contains typi-
cally 1018−20 copies of the same molecules. The magneti-
zation of 1014−16 spins out of the sample can be measured
with a rf coil with a sufficient signal-to-noise (SN) ratio,
while the remaining is not affected.

The unique feature of QRC in the reservoir comput-
ing context is that the exponentially many hidden nodes
that originate from the dimensions of the Hilbert space are
monitored from a polynomial number of signals defined as
the true nodes. Based on this setting, in the next section,
two coordinated schemes are introduced to harness QR
dynamics in a physically natural setting. The first is called
“temporal multiplexing,” which was already introduced in
Refs. [18,23], and the second is called “spatial multiplex-
ing,” which is a procedure applied to the QRC from this
study.

B. Temporal multiplexing

In Ref. [18], temporal multiplexing has been found to be
useful to extract complex dynamics on the exponentially
large hidden nodes through the restricted number of true
nodes. In temporal multiplexing, the signals are sampled
from the QR not only at the time kτ , but also at each of
the subdivided V time intervals during the unitary evolu-
tion Uτ to construct V virtual nodes, as shown in Fig. 2(b)
(the upper diagram). After each input by Suk , the signals
are obtained for each subdivided interval after the time
evolution by Uvτ/V (v = 1, 2, . . . V), i.e.,

r[kτ + (v/V)τ ] ≡ U(v/V)τ Suk r(kτ). (13)

Accordingly, as the QR system has N true nodes, we
have NV corresponding computational nodes at each input
timestep k in total, and the virtual nodes are defined by

xl[kτ + (v/V)τ ] =
∑

i

Rliri[kτ + (v/V)τ ]. (14)

This procedure allows us to make full use of input-driven
transient dynamics, which can potentially include the influ-
ence of hidden nodes. Using this technique, it is possible
to effectively increase the total number of computational
nodes employed in the learning process. A similar tech-
nique can also be found, for example, in Ref. [9] under the
same motivations.

It is important to note that, as is obvious from the set-
ting, the parameter τ modulates directly the dynamics of
QR, while the parameter V defines how we observe the
dynamics. In Ref. [18], the relevance of these parameters to
the computational capability of the QR system was inves-
tigated. It was observed that, according to the choice of
the parameter τ , the type of computation that can be per-
formed well has changed and the increase in the parameter
V essentially contributes to an improved computational
performance.

C. Spatial multiplexing

Now, we consider boosting the computational power
in QRC further. The most straightforward and promising
approach that comes to mind is increasing the number of
computational nodes. This naturally leads to an increase in
the number of qubits in the QR system. (The approach of
temporal multiplexing, which secures virtual nodes from
the signals, is also reasonable in terms of increasing the
number of computational nodes.) Considering the physical
implementations of QRC to the NMR system, however,
as we explained previously, this procedure of increasing
the number of qubits corresponds to the enlargement and
redesign of sample molecules, and it is not always easy in
practice. In the NMR system, the local control and mea-
surement of a qubit is accomplished with the difference
of the resonant frequency. The resonant frequency differs
from the nuclear species. Among many species, only a
few species such as 1H, 13C, 15N, and 19F are easy to
handle and thus used as qubits before. The resonant fre-
quency is also slightly shifted due to the difference of the
chemical environment even with the same species, which
enables us to have local control of them. However, it is
not easy to design and synthesize a molecule that includes
many addressable spins with the different species and envi-
ronment. Since a 12-addressable-spin system in a liquid
has been developed in 2006 [24], the record still remains
unbroken.

In this study, based on these physical constraints of
the experimental settings, we introduce an effective and
practical procedure to increase the computational resource,
which is relatively easy to implement under the practi-
cal condition. The procedure is called spatial multiplexing.
We prepare multiple disjoint QR systems, which are spa-
tially distant or uncoupled, and we drive them with a
common input stream in parallel [Fig. 1(b)]. Subsequently,
we collect the signals from each QR system in the pre-
viously explained manner and we use all of these signals
from different QR systems as one entire set of reser-
voir dynamics. (Note that, because of the experimental
constraints, it would be difficult to inject inputs in a per-
fectly synchronized manner into each separate system.
Even in these cases, if I/O timesteps could be coordi-
nated among each system, then the spatial multiplexing
technique could be applied.) For the NMR-implemented
QRC, this approach enables the exploitation of readily
available sample molecules, which already exist in the lab-
oratory, to increase the number of computational nodes.
Compared to redesigning the sample molecules as a com-
putational resource, this approach should be relatively
handy and practical for experimenters. For example, the
aforementioned 12-qubit molecule and another one devel-
oped in 2017 [25] can be potentially utilized for spatial
multiplexed reservoirs [Fig. 1(c)]. To synthesize other 12-
qubit molecules based on the developed molecules with
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chemical modifications may be easier than a molecule with
more qubits. It is important to note that this procedure
of spatial multiplexing combines true nodes from disjoint
quantum systems and this does not generate an exponen-
tial number of hidden nodes against the number of true
nodes. This implies that, even if the number of true nodes
is the same, the expressive power of QR with spatial multi-
plexing is different from that of QR prepared from a single
quantum system in principle.

Let us consider C different QRs driven by a common
input stream uk in parallel. For each QR system c, which
has Nc qubits with a corresponding number of true nodes,
the time interval to inject input τc and the correspond-
ing unitary evolution Uτc can be set differently [Fig. 2(b)].
Each QR system is also equipped with temporal multiplex-
ing having Vc virtual nodes [Fig. 2(b)]. As a result, the
spatial multiplexing induces

∑C
c=1 NcVc nodes in total and

these computational nodes are exploited as a single reser-
voir. We investigate systematically whether the procedure
of spatial multiplexing really boosts the computational
power of the QRC or not and, furthermore, to what extent
it improves the performance in detail in the later sections.

D. Output settings and learning procedure

In the reservoir computing approach, the output is
obtained as a weighted sum of the reservoir states and the
learning of a target function is executed by training lin-
ear and static readout weights attached to the reservoir
nodes in a supervised manner. Here, we explain how to
train the readout weights from the observed signals of QR
after the procedures of temporal and spatial multiplexing.
According to the previous sections, temporal and spatial
multiplexing introduces Ntotal = ∑C

c=1 NcVc computational
nodes in total [Fig. 2(b)]. The state of the computational
node i at timestep k is expressed as x′

ki by rearranging the
subscript from the original and we introduce a constant
bias term x′

k0 = 1.0. The system output of the system is
then expressed as

yk =
Ntotal∑
i=0

x′
kiwi, (15)

where wi is a linear and static weight attached to node i. Let
{ŷk}L

k=1 be the target sequence for learning, where L is the
length of the training phase that is assumed much greater
than Ntotal + 1 and the training of the readout weights
{wi}Ntotal

i=0 is to minimize
∑L

k=1(yk − ŷk)
2. By collecting the

target output ŷ = [ŷ1, ŷ2, . . . , ŷL]T and the corresponding
Ntotal + 1 reservoir states in the learning phase as the train-
ing data matrix X , which is an L × (Ntotal + 1) matrix, the
optimal weight ŵ = [ŵ0, ŵ1, . . . , ŵNtotal ]

T can be obtained
as a least-squares solution ŵ = (X TX )−1X Tŷ.

As we see later in detail, when we actually let the QR
system perform the computational tasks in this study, the

experimental trial consists of a washout phase, training
phase, and evaluation phase. The washout phase is to elim-
inate the influence of initial transients of the reservoir
states, and the trained readout weights in the training phase
are exploited to generate outputs in the evaluation phase.

E. Theoretical insights into the effect of spatial
multiplexing

In this section, we investigate theoretically the effect
of spatial multiplexing and we show its range of validity
and limitations. The argument in this section is not lim-
ited to a quantum system but is generally applicable to
any reservoir system. Initially, we prove concisely that the
procedure of spatial multiplexing always improves com-
putational performance (or, at worst, will not change the
performance).

Let us assume that we have two reservoirs, reservoirs
A and B, which have NA and NB computational nodes,
respectively. Consider the corresponding regression equa-
tions, y = XAwA + rA and y = XBwB + rB, where XA is a
T × NA matrix and XB is a T × NB matrix, with realizations
T satisfying NA + NB ≤ T, and rA and rB are residuals. We
assume that XA and XB are full rank, and wA and wB are
least-squares solutions expressed as wA = (X T

A XA)−1X T
A y

and wB = (X T
B XB)−1X T

B y, respectively. With projectors
PA = XA(X T

A XA)−1X T
A and PB = XB(X T

B XB)−1X T
B , XAwA =

PAy and XBwB = PBy. Accordingly, the residuals can
be expressed as r2

A = ‖y − XAwA‖2 = ‖(I − PA)y‖2 and
r2

B = ‖y − XBwB‖2 = ‖(I − PB)y‖2. We consider com-
bining reservoirs A and B and constructing a new
reservoir “A + B.” Similarly, for XA+B = ( XA XB ), y =
XA+BwA+B + rA+B, where wA+B is a least-squares solu-
tion expressed as wA+B = (X T

A+BXA+B)−1X T
A+By and rA+B

is a residual. We assume that XA+B is full rank. With
projectors PA+B = XA+B(X T

A+BXA+B)−1X T
A+B, XA+BwA+B =

PA+By, and a residual can be expressed as r2
A+B = ‖y −

XA+BwA+B‖2 = ‖(I − PA+B)y‖2. Because wA+B is a least-
squares solution,

r2
A+B = ‖(I − PA+B)y‖2

= ‖y − XA+BwA+B‖2

≤ ‖y − XA+B

(
wA
0

)
‖2

= ‖y − (
XA XB

) (
wA
0

)
‖2

= ‖y − XAwA‖2

= ‖(I − PA)y‖2 = r2
A.

The equal sign can be used only when PA+B = PA. Like-
wise, r2

A+B ≤ r2
B and r2

A+B ≤ min{r2
A, r2

B} holds. This rela-
tion clearly provides the mechanism of the boost of
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the computational power or improvement of the perfor-
mance in spatial multiplexing, specifically implying that
the improvement occurs against the performance of the
original reservoir (reservoir A or B) in terms of the learn-
ing errors, the residuals. Furthermore, this relation shows
the reason why the performance improves by increasing
the computational nodes in the system in general. It also
suggests that the couplings and interactions within the
reservoir are not explicitly required for this improvement
in theory. Conversely, this relation still holds even if there
are some couplings between reservoirs A and B (although
it may be referred to as one reservoir rather than two in this
case).

Estimating the upper limit of the improvement in per-
formance in terms of how the residual decreases by adding
the reservoir B to the reservoir A is also possible. In gen-
eral, projector P satisfies P = PT, PP = P, and if P is a
projector, then I − P is also a projector. Applying these
properties to the above results, with a few transformations,
we obtain

0 ≤ r2
A − r2

A+B = 〈(PA+B − PA)y, y〉,

where 〈·, ·〉 is an inner product. This relation suggests
that QA,A+B := PA+B − PA is positive semidefinite, and the
largest eigenvalue is

λQA,A+B := sup
y �=0

〈(PA+B − PA)y, y〉
〈y, y〉 .

Thus,
0 ≤ r2

A − r2
A+B ≤ λQA,A+B‖y‖2,

where λQA,A+B expresses the supremum of the reductions
of a normalized residual when adding reservoir B to reser-
voir A. Similarly, we obtain 0 ≤ r2

B − r2
A+B ≤ λQB,A+B‖y‖2,

where QB,A+B := PA+B − PB is also positive semidefinite
and λQB,A+B is the largest eigenvalue of QB,A+B. Using the
above relations for r2

B − r2
A+B and r2

A − r2
A+B, and r2

A+B ≤
min{r2

A, r2
B}, we obtain

max{(r2
A − λQA,A+B‖y‖2), (r2

B − λQB,A+B‖y‖2)}
≤ r2

A+B ≤ min{r2
A, r2

B},

where 0 ≤ max{(r2
A − λQA,A+B‖y‖2), (r2

B − λQB,A+B‖y‖2)}.
Thus, we can evaluate and predict the extent of the
improvement without actually performing the task using
reservoir A + B.

We should be careful because the above facts do not
always hold in practice. Two points should be noted. The
first is overfitting. Spatial multiplexing can increase com-
putational nodes drastically, so we should be careful when
balancing between the size of the training data set and
the system size. Since spatial multiplexing always results

in an improved performance for the training data set, if
the performance worsens with spatial multiplexing in the
evaluation phase, we can infer back that it is caused by
overfitting.

Second, the prior facts are based on the assumption that
XA, XB, and XA+B are full rank. This condition does not
always hold in practice. A typical example is a case in
which synchronization occurs, which makes the reservoir
dynamics identical or low dimensional. Notably, even if no
coupling exists between the reservoirs in spatial multiplex-
ing, the synchronization can still occur. This phenomenon
is often called generalized synchronization [26] or com-
mon input (noise) synchronization [27,28]. Ironically, as
investigated in Ref. [27], this property of common input
synchronization is rather a required property for reservoirs
in terms of the reproducibility of the signals (the opposite
case is chaotic dynamics, where an arbitrarily small change
in one state of a deterministic system results in large differ-
ences in a later state). For robust information processing,
the same reservoir is preferred to respond the same accord-
ing to the identical input stream, even if the initial states
of the reservoir differ. For the scheme of spatial multiplex-
ing, however, this property acts as a drawback that avoids
the duplication of the same reservoir in use. Accordingly,
for spatial multiplexing, preparing a different reservoir or
the same setting of the reservoir with different input scal-
ing or with a different choice of qubit for input injections
is recommended.

III. PERFORMANCE ANALYSES

In this section, we use numerical experiments to inves-
tigate the effect of spatial multiplexing. By assessing the
memory capacity and by using a benchmark task that eval-
uates the information processing capability to emulate non-
linear dynamical systems called “nonlinear autoregressive
moving average” (NARMA) systems, we demonstrate how
the order of spatial multiplexing affects the performance of
our QR system systematically. These evaluation schemes
adopted here are popular in the context of recurrent neural
network learning.

For the dynamics of QR system, we employ the simplest
quantum system, a fully connected transverse-field Ising
model, as an example:

H =
∑

ij

Jij XiXj + hZi, (16)

where the coupling strengths are randomly assigned such
that Jij is distributed randomly from −J/2 to J/2. Further-
more, a scale factor � is introduced to make τ� and J/�

dimensionless. In our numerical experiments, the quantum
dynamics of the above Hamiltonian is exactly calculated
without employing any approximation.

Here, the spatial multiplexing is implemented using QR
systems having the same number of qubits Nc, the input
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interval τc, and the virtual nodes Vc (which we simply
denote N , τ , and V, from now on) but with different random
coupling strengths of Jij . In the following, we see the case
when the number of qubits N of a single QR system, which
implies the case without spatial multiplexing, is set to 5. As
an example, we demonstrate in detail when the parameter
τ� is set to 1 and 2 for the memory capacity analyses and
for the NARMA tasks, respectively. We varied the num-
ber of the virtual nodes V as 1, 5, and 25 and checked the
dependence on the performance. (Note that the analyses
for the different parameter settings, such as the cases for
N = 3, 4 and τ� = 0.5, 1, 2, 3, 4, 8, 16, and 32, are given
in the Appendix.) Throughout the following experiments,
the input stream is randomly drawn from the range [0, 1]
and injected to the first qubit of each QR system. The order
of spatial multiplexing, which is defined as the number of
QR systems driven by a common input stream in parallel,
is varied from 1 (without spatial multiplexing) to 5 for the
analyses.

A. Memory capacity

As discussed earlier, the information processing capabil-
ity of reservoir dynamics can be characterized by its prop-
erty of transforming the input stream. In particular, one of
the important characteristics for the computational systems
in solving a temporal machine-learning task is short-term
memory, which is a property to store information of recent
inputs to the system’s current states. Focusing on this
point, a measure to evaluate the system’s short-term mem-
ory property, which is called memory capacity [29], is
commonly used. In this section, we aim to analyze the
memory capacity of the QR system and to quantify the
effect of the spatial multiplexing in terms of it. To calculate
the measure, the computational system should first learn to
reproduce the injected random input of d timesteps before
by using the current states of the system. This process is
equivalent to setting the target output as ŷk = uk−d, where
uk−d is set as a random sequence ranged in [0, 1] in this
study.

To evaluate the system’s emulatability of the target
sequence, the memory function MFd is defined as

MFd = cov2(yk, ŷk)

σ 2(yk)σ 2(ŷk)
, (17)

where cov(x, y) and σ(x) express the covariance between
x and y and the standard deviation of x, respectively. This
measure can take the value from 0 to 1, and as the value
gets larger, it suggests that the system’s capability to recon-
struct the previous input uk−d gets higher. The memory
capacity (MC) is defined as follows:

MC =
150∑
d=0

MFd. (18)

As explained in the earlier section, the training scheme
of our QR system is based on supervised learning and,
for each setting of d, the experimental trial consists of a
washout phase (2000 timesteps), a training phase (2000
timesteps), and an evaluation phase (2000 timesteps).
Using the time series data of 2000 timesteps in the training
phase and the linear regression explained in Secs. C D, we
optimize the readout weights, which we use to calculate
the corresponding system output in the evaluation phase.
For each order of spatial multiplexing, we iterate the above
procedure by using new QR systems with different random
coupling strengths for 100 trials and obtain the averaged
MFd and MC.

Figure 3(a) shows the averaged MFd over the input
delay d. By observing the behavior of MFd against delay
d, we can see that, according to the increase of the order of
spatial multiplexing, the performance gradually improves,
showing the relatively large value of MFd in the region
of the larger delay. This tendency can be captured more
clearly in the behavior of MC [Fig. 3(b)]. Figure 3(b) plots
how the order of spatial multiplexing affects the memory
capacity of the QR system in each setting of virtual nodes.
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FIG. 3. Dependence of the order of spatial multiplexing on
memory functions according to the delay and on the memory
capacity. (a) The averaged memory functions MFd are shown
with the order of spatial multiplexing varied from 1 to 5. Each
plot is calculated using 100 trials of different runs with differ-
ent QR systems, where the virtual nodes are set to 25. (b) The
averaged MCs are shown according to the order of spatial mul-
tiplexing. Each plot is calculated using 100 trials with different
QR systems, and the cases with virtual nodes set to 1, 5, and 25
are overlaid. As a reference, each plot contains the performance
of the conventional ESN. The notation “ESN20,” for example,
represents the averaged MC of the ESN with 20 nodes. For all
the plots, the error bars show the standard deviations. A single
QR system has five qubits, and the parameter τ� is fixed to 1
throughout this analysis.
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We can observe that, in all cases, the increase of the order
of spatial multiplexing induces the improvement of mem-
ory capacity. Even in other parameter regions (e.g., for
different settings of the parameter τ� and the number
of qubits) of the system, the improved memory capacity,
according to the increased order of spatial multiplexing, is
generally observed (see Fig. 8 in Appendix A for details).
Interestingly, according to the setting of the parameter τ�,
the amount of memory capacity that can be induced is dif-
ferent (Fig. 8 in Appendix A). That is, the memory capacity
reaches relatively larger values when τ� = 0.5 and 1 than
for the other settings of τ�.

B. NARMA tasks

The NARMA task is a commonly used benchmark task
for evaluating the computational capability of the learn-
ing system to implement nonlinear processing with long
time dependence. By calculating the deviations from the
target trajectory in terms of errors, the NARMA task tests
how well the target NARMA systems can be emulated by
the learning system. According to the choice of the target
NARMA system, it is possible to investigate which type
of information processing can be performed in the learning
system to be evaluated. The first NARMA system that we
introduce is a second-order nonlinear dynamical system,
which was used in Ref. [30], expressed as follows:

yk = 0.4yk−1 + 0.4yk−1yk−2 + 0.6u3
k + 0.1. (19)

We call this system NARMA2 in this paper. The next
NARMA system is the nth-order nonlinear dynamical
system, which is written as follows:

yk = αyk−1 + βyk−1

⎛
⎝

n−1∑
j =0

yk−j −1

⎞
⎠ + γ uk−n+1uk + δ,

(20)

where α, β, γ , and δ are 0.3, 0.05, 1.5, and 0.1, respec-
tively. Here, n varies as 5, 10, 15, and 20, and the cor-
responding systems are called NARMA5, NARMA10,
NARMA15, and NARMA20, respectively. In particular,
NARMA10 is frequently used in the context of evaluat-
ing the learning capability of recurrent neural networks
(e.g., [4,30]). Here, we adopt the multitasking scheme,
where the system should simultaneously emulate all the
NARMA systems according to the input stream. For the
input stream to the NARMA systems, the range is linearly
scaled from [0, 1] to [0, 0.2] to set the range of yk into the
stable range.

The learning scheme of our QR system is exactly
the same as explained in the previous MC analysis.
Each experimental trial consists of a washout phase
(2,000 timesteps), a training phase (2,000 timesteps), and

an evaluation phase (2,000 timesteps). We evaluate the
performance by comparing the system output with the tar-
get output, which is the normalized mean-squared error
(NMSE), expressed as follows:

NMSE =
∑6000

k=4001(ŷk − yk)
2

∑6000
k=4001 ŷ2

k

, (21)

where ŷk and yk are the target output and the system out-
put at timestep k, respectively. For each τ setting, NMSEs
for all the trials are calculated and averaged for the analy-
sis. For each order of spatial multiplexing, we iterated the
above procedure by using new QR systems with different
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FIG. 4. Typical system output time series for the NARMA
tasks during the evaluation phase according to the order of spa-
tial multiplexing. The uppermost plot shows the random input
sequence, and the lower plots show the corresponding task per-
formances for NARMA2, 5, 10, 15, and 20 in order from top to
bottom. Each plot overlays the time series of the target output
and system outputs, which exhibit multiplexing until five quan-
tum systems with the number of qubits set to 5, the number of
virtual nodes set to 25, and the parameter τ� set to 2.
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random coupling strengths for 100 trials and obtained the
averaged NMSE.

Figure 4 shows the typical output time series for the
NARMA tasks in the evaluation phase. First, it is clearly
observed that according to the increase in the order of
the NARMA system, the overall task performance grad-
ually worsens, reflecting an increase of the difficulty of the
tasks. For each NARMA task, according to the increase
of the order of spatial multiplexing, we can see that the
traceability of the QR system is improved (we can visu-
ally confirm this especially for the NARMA5, NARMA10,
and NARMA15 tasks in Fig. 4). These observations can
be quantitatively confirmed in the analyses of the averaged
NMSE in Fig. 5. For each setting of the number of virtual
nodes (V = 1, 5, and 25), the figure plots how the averaged
NMSE behaves according to the increase of the order of
spatial multiplexing in each NARMA task. Figure 5 shows
that for all the NARMA tasks, the increase of the order of
spatial multiplexing induces improvements in the task per-
formance. In particular, when the order of the NARMA
system is 2, 5, and 10, the effect of the increase of the
order of spatial multiplexing is significantly high. We have
checked that this tendency of the effect generally holds for
other parameter settings of the QR system (see Fig. 9 in
Appendix A for details). Furthermore, we have found that,
for each NARMA task, a different setting of τ� exists
that shows the best performance through spatial multiplex-
ing. For example, in the case for the NARMA2 task and
NARMA5 task, the averaged NMSE shows the minimum
value when τ� = 32, while in the case for the NARMA15
task and NARMA20 task, τ� = 1 shows the minimum,

both through spatial multiplexing of order 5 (Fig. 9 in
Appendix A). These findings imply that the parameter τ�

can regulate which type of task the QR system is good at.

C. Temporal versus spatial multiplexing

Sections III A and III B demonstrate that, as the order
of spatial multiplexing increases, the memory capaci-
ties increase and the performance of the NARMA tasks
improves. In this section, we analyze the extent to which
the order of spatial multiplexing plays a part in these
improvements quantitatively.

Figure 6 plots how the improvement ratio behaves
according to the increase of spatial multiplexing in each
experimental case. The improvement ratio is defined by
setting the performance (in terms of the averaged NMSE or
MCs) when the order of spatial multiplexing is set to 1 as
a basis. For both analyses, it is calculated by dividing each
averaged MC and NMSE by those when the order of the
spatial multiplexing is 1 in each parameter setting, respec-
tively. As a comparison, the improvement ratios when the
number of virtual nodes is increased from 1 to 5, from 1 to
25, and from 5 to 25, without spatial multiplexing (reflect-
ing the effect of temporal multiplexing only), are shown in
each plot of Fig. 6. We can clearly observe that, in almost
all cases, the increase of the order of spatial multiplexing
induces the improvements of the performance.

For the memory capacity, we can observe remarkable
improvements, where the improvement ratio marks more
than twice in all of the setting of virtual nodes, when
increasing the order of the spatial multiplexing from 1 to 5
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FIG. 5. Analysis of the averaged NMSE for the NARMA tasks according to the order of spatial multiplexing. For each plot, the
cases with virtual nodes set to 1, 5, and 25 are overlaid. In all the plots, a single QR system has 5 qubits, and the parameter τ� is fixed
to 2. The averaged NMSE is calculated using 100 trials with different QR systems. Note that the y axis for the plots of NARMA2 and
NARMA5 tasks are in the logarithm scale. As a reference, each plot contains the performance of the conventional ESN. The notation
“ESN20,” for example, represents the averaged NMSE of the ESN with 20 nodes. For all the plots, the error bars show the standard
deviations. See text for details on the experimental conditions.
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FIG. 6. Analyses of the effect of the spatial multiplexing based on the improvement ratio and comparisons with that of the temporal
multiplexing. Improvement ratios according to the order of spatial multiplexing in terms of the averaged memory capacity (left) and the
averaged NMSE for the NARMA tasks (right) are investigated (the parameter settings are the same as those of the analyses in Secs. III
A and III B). In the plot for the memory capacity, the solid line expresses y = x as a reference. In each plot, the improvement ratios for
the temporal multiplexing when the number of virtual nodes is increased from 1 to 5, from 1 to 25, and from 5 to 25 (without spatial
multiplexing) are overlaid as a comparison. For all the analyses, the averaged MC and NMSE used to calculate the improvement ratio
in each condition are obtained from the results of 100 trials with different QR systems.

(Fig. 6, left diagram). In particular, the effect of increas-
ing the order of spatial multiplexing from 1 to 5 with the
virtual node fixed to 1 [ratio(order = 1 → 5)] is similar or
slightly superior to that of increasing the number of virtual
nodes from 1 to 5 without spatial multiplexing [ratio(V =
1 → 5)] in terms of capacity (Fig. 6, left diagram). These
features are commonly observed in all the experimented
parameter settings in this study. For example, when the
order of spatial multiplexing is varied from 1 to 5, the aver-
aged improvement ratio of the memory capacity calculated
using all the parameter settings is 2.11, and the maximum
improvement ratio among all is 3.23 when τ� = 0.5, V =
1, and N = 5 (Fig. 7, upper left diagram). Furthermore,
we observe “ratio(order = 1 → 5) > ratio(V = 1 → 5)”
in almost all the parameter settings (Fig. 7, upper right dia-
gram), which characterizes the range of effectiveness of the
spatial multiplexing.

For the NARMA task, by increasing the order of spa-
tial multiplexing, the value of the improvement ratio
is decreased, suggesting the improvements of the per-
formance (Fig. 6, right diagrams). In particular, in the
NARMA5 task when V = 25, the value decreased by a
factor of 10 when the order of spatial multiplexing is var-
ied from 1 to 5. Interestingly, this improvement ratio is far
superior to that of increasing the virtual node from 1 to
25 despite the larger increase in the computational nodes,
which implies that cases exist in which the increase of the
order of spatial multiplexing behaves superior to that of
temporal multiplexing. This outcome is caused by the dif-
ference between the type of information processing that
the spatial multiplexing and that temporal multiplexing

can provide, as well as the type of information process-
ing capability that would be needed to perform the task.
These tendencies follow in all the experimented parameter
settings in this study. The performance of each NARMA
task improves in each parameter setting by increasing the
order of spatial multiplexing (Fig. 7, lower left diagram).
For example, when the order of spatial multiplexing is var-
ied from 1 to 5, the average improvement ratio calculated
using all the parameter settings is 0.39 in the NARMA5
task and the minimum improvement ratio among all is
0.15 when τ� = 2, V = 25, and N = 5 in the NARMA5
task (Fig. 7, lower left diagram). Similarly to the case for
the memory capacity, in each NARMA task, we observe
“ratio(order = 1 → 5) < ratio(V = 1 → 5)” in almost all
the parameter settings (Fig. 7, lower right diagram). These
results suggest that in some cases, spatial multiplexing
adds a more effective number of computational nodes than
does temporal multiplexing.

IV. TOWARD ENGINEERING QUANTUM
RESERVOIR THROUGH SPATIAL

MULTIPLEXING

As we see in Sec. II E and demonstrate in Sec. III, spa-
tial multiplexing improves the performance of the system.
In this section, we provide a few notes on the possibility to
engineer QR through the spatial multiplexing scheme. As
we discussed in Sec. II E, although we can improve per-
formance by increasing the order of spatial multiplexing
in theory, this does not always apply in actual experi-
ments because of overfitting. In such cases, limiting the
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FIG. 7. Analyses of the averaged improvement ratios in terms
of the averaged memory capacity (upper row) and the averaged
NMSE for the NARMA tasks (lower row). According to the
order of spatial multiplexing, the improvement ratios are calcu-
lated in all the combinations of the number of qubits (3, 4, and 5);
virtual nodes (1, 5, and 25); and τ� (0.5, 1, 2, 3, 4, 8, 16, and 32)
and they are averaged using all these combinations (left diagram
in each row). Note that the solid line in the upper left diagram
expresses y = x as a reference. The error bars show standard
deviations, and the maximum or minimum improvement ratio
among all the experimental conditions in each order of spatial
multiplexing is also plotted. The right diagram in each row shows
the averaged improvement ratios for spatial multiplexing against
those for temporal multiplexing in each analysis. The ratio is cal-
culated when the order is increased from 1 to 5 with the virtual
node fixed to 1 for the spatial multiplexing (x axis) and when the
virtual node is increased from 1 to 5 without spatial multiplex-
ing for the temporal multiplexing (y axis) to make the increased
number of computational nodes the same for comparison. The
plots for all the experimental conditions are overlaid. For all
the analyses, the averaged MC and NMSE used to calculate the
improvement ratio in each condition are obtained from the results
of 100 trials with different QR systems.

number of computational nodes is preferable. If we have
two QRs with the same number of true nodes and if these
true nodes originate from different quantum systems (or

different combinations of quantum systems) with differ-
ent numbers of qubits, then—as we see in the previous
sections—the computational capability of the QRs differs
in general. This outcome is largely due to the difference
of the number of hidden nodes, the exponential numbers
of degrees of freedom based on the number of qubits
behind the measurements, which influence the dynamics
of the true nodes. Then, which combination is most effi-
cient and can exert the performance the best? Given a
fixed number of computational nodes, we investigate in
this section a method to engineer the efficient combinations
of reservoirs.

Similar to Sec. II E, let us assume that we have
three reservoirs, A, B, and C, with reservoir A having
N computational nodes and reservoirs B and C hav-
ing the same number of nodes N ′. We also assume
that these reservoirs satisfy the basic properties of the
regression equation setting and least-squares solutions pre-
sented in Sec. II E. At first, the inequality r2

A+B+C ≤
min{r2

A, r2
B, r2

C, r2
A+B, r2

B+C, r2
A+C} suggests that combining

reservoirs A, B, and C performs best if we could avoid
overfitting in practice. Now, by retaining the total number
of nodes fixed to N + N ′, we determine the better choice
between reservoir B or C for combination with reservoir A
to improve performance.

At first glance, choosing the reservoir that has better per-
formance is preferable. However, this is not always the
case. Given that reservoir B has better performance than
reservoir C, that is, r2

B ≤ r2
C, then r2

A+B ≤ r2
A and r2

A+C ≤ r2
A

hold, but r2
A+B ≤ r2

A+C does not hold in general. [We can
easily find a counterexample such as y = ( 1 1 1 )T, XA =
( 0.25 1 0 )T, XB = ( 1 0 0 )T, XC = ( 0 1 −1 )T.] We then apply
the relations we obtain in Sec. II E to reservoirs A + B and
A + C, which are

max{(r2
A − λQA,A+B‖y‖2), (r2

B − λQB,A+B‖y‖2)}
≤ r2

A+B ≤ min{r2
A, r2

B}
and

max{(r2
A − λQA,A+C‖y‖2), (r2

C − λQC,A+C‖y‖2)}
≤ r2

A+C ≤ min{r2
A, r2

C}.
Given r2

B ≤ r2
C, to evaluate r2

A+B and r2
A+C, we need to

check how these ranges overlap. Only if no overlap exists
can we safely predict the reservoir to add without actu-
ally performing the task. When r2

A ≤ r2
B ≤ r2

C, these two
ranges always overlap because r2

A+B ≤ r2
A and r2

A+C ≤
r2

A. When r2
B ≤ r2

A ≤ r2
C or r2

B ≤ r2
C ≤ r2

A, and if r2
B <

max{(r2
A − λQA,A+C‖y‖2), (r2

C − λQC,A+C‖y‖2)} holds, then
we can safely decide to choose reservoir B as the appro-
priate partner for combination without actually performing
the task, because it satisfies r2

B < r2
A+C and accordingly

r2
A+B < r2

A+C holds.
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Furthermore, although we demonstrate spatial multi-
plexing by combining QR systems that have different
coupling strengths with the other parameters fixed in our
numerical experiments, note that the combination can con-
sist of any reservoirs if they are not synchronized. The
choice of the combination depends on the efficiency of the
usage in each experimental setting. For example, param-
eter τ� is dependent on the energy applied to the experi-
mental platform and can be regulated if we consider energy
efficiency.

V. DISCUSSION

In this paper, we introduce a scheme, spatial mul-
tiplexing, to boost the computational power in QRC.
Considering the physical experiment, this scheme is oper-
ationally easy to implement but is remarkably effective,
and we theoretically show that the scheme inevitably
increases the computational power. The effect is demon-
strated through numerical experiments using a number
of benchmark tasks and the performance of learning is
observed to be improved. We also examine the theoreti-
cal implications of the proposed scheme and discuss its
range of validity and limitations. This scheme is useful and
applicable not only for QRC but also for reservoir comput-
ing in general, including the case of conventional software
implementations.

Although the scheme of spatial multiplexing allows us
to efficiently increase the computational nodes, we should
be sensitive to the case of overfitting in practical appli-
cations. In our experiments, we observe several perfor-
mances, which are thought to be caused by overfitting
[e.g., the results of NARMA tasks in higher values of τ�

(Fig. 9 in Appendix A)]. To avoid these situations, one
can introduce a Ridge regression or Lasso for the training
procedure, which assigns a penalty to readout weights for
regressions. By combining with these sparse regressions,
one can establish a scheme to selectively exploit effec-
tive degrees of freedom from massive computational nodes
increased by spatial multiplexing.

The NMR ensemble system has been regarded as a
strong candidate for a physical platform of QRC. In the
NMR quantum reservoir system, the spatial multiplexing
with some different molecules, introduced in Sec. II C,
is an easier option to increase the computational power
than increasing the number of addressable qubits. Another
option is increasing the number of unaddressable qubits
and virtual nodes, which will be introduced in detail in our
future work. We can also introduce an easier implementa-
tion of spatial multiplexing even with the same molecule
with NMR pulse techniques to change the interaction
Hamiltonian effectively [31,32]. The pulse techniques are
often utilized for quantum simulation experiments. For
example, the Ising-type Hamiltonian XiXj can be changed
to XiXj + YiYj + aZiZj for any parameters a, by applying

multiple pulse sequences [33]. It was shown in a quantum
simulation experiment [34] that the dynamical behavior of
a nuclear spin system with the interactions XiXj + (2a −
1)YiYj − 2aZiZj is substantially different depending on a.
Just by changing the parameter of applying the pulse,
we can easily implement the spatial multiplexing with
some different quantum dynamical systems in the same
molecule.

Spatial multiplexing offers an opportunity to increase the
computational nodes and boost the computational power
not only for QRs but also for any interacting systems that
contain components that are operationally or experimen-
tally difficult to manipulate and increase. By extending this
line of thought, we can develop a concept of composing
multiple reservoirs, each with different physical systems.
For example, it might be worth composing photonic and
quantum systems and treating them as one entire reser-
voir in some applications. According to how this scheme is
applied in the real world, this concept would create options
from which to flexibly choose the physical systems to use
as a computational resource in a given situation.

Finally, one of the intriguing flavors in the framework
of QRC is its exploitation of the quantum computational
supremacy region, where the system possesses exponential
degrees of freedom as hidden nodes. We reiterate that, as
spatial multiplexing increases true nodes proportionally to
its order, its increase of hidden nodes is also proportional,
while increasing the number of qubits in the interacting
system will directly lead to an exponential increase in hid-
den nodes. This fact implies that, even if we have the
same number of true nodes, the number of hidden nodes
can differ according to how the spin-ensemble molecu-
lar samples are prepared; hence, the computational power
and preference also differ. We suggest that each experi-
menter regulate how to prepare their reservoirs based on
their given experimental conditions and their operability
of the system, and we believe that the spatial multiplexing
technique will become one of the common and practical
options for boosting the computational power of QRs in
the near future.
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APPENDIX A: EXTENDED NUMERICAL
EXPERIMENTS AND ANALYSES

In the main text, we show the results of the numerical
experiments for the QR system with its system param-
eters set to N = 5 and τ� = 1, 2. In this appendix, we
show thorough and systematic analyses of different param-
eter settings, varying N as 3, 4, and 5 and varying τ�

as 0.5, 1, 2, 3, 4, 8, 16, and 32, which are summarized in
Figs. 8 and 9.

APPENDIX B: ECHO STATE NETWORK
SETTINGS FOR COMPARISON

To characterize the computational capability of our sys-
tem, in the main text, we compare its performance of the
NARMA tasks and its memory capacity with those of a
conventional ESN [2,35,36]. This appendix explains in
detail the settings of the ESN used for the comparisons.

The ESNs are a type of random recurrent neural network
that consists of internal computational nodes (the number
of internal computational nodes is denoted as NESN), input
nodes, and output nodes. The activation of the ith internal
node at timestep k is expressed as xi

k. The weights wij for
the internal network connect the ith node to the j th node,
and the input weights wi

in connect the input node to the ith
internal node. Internal computational nodes with one bias
are connected to the output unit through readout weights
wi

out, where x0
k = 1 and w0

out is assigned for the bias term.

Learning of the readout weights wi
out is performed using

the same procedure explained in the main text for each
task. The internal weights wij are randomly determined
from the range [−1.0, 1.0] and the spectral radius of the
weights is regulated according to the setting for each task,
as explained below. Similarly, the input weights wi

in are
randomly determined from the range [−σ , σ ], where σ is
a scaling parameter explained later. The time evolution of
the ESN is expressed as follows:

xi
k = f

⎛
⎝

NESN∑
j =1

wij xj
k−1 + wi

inuk

⎞
⎠ , (B1)

yk =
NESN∑
i=0

wi
outx

i
k, (B2)

where f (x) is set as tanh(x) in this paper. To make a fair
comparison of the task performance, the I/O setting of the
ESN is set to be the same as that of our system for each
task. For example, the lengths of the washout, training, and
evaluation phases and the evaluation procedures are kept
the same. The detailed experimental conditions are given
for each of these comparisons below.

For the NARMA task, we first prepare 10 different ESNs
for each setting of NESN, which vary as 5, 10, 20, 30, 40,
50, 100, 150, 200, 250, and 300. The scaling parameter of
the input weights σ is varied as 1.0, 0.5, 0.2, 0.1, 0.05,
0.01, 0.005, and 0.001, and the spectral radius of the inter-
nal weights is also varied from 0.1 to 2.0 in increments of
0.1. For each ESN, by fixing the spectral radius and the
parameter σ , we run 10 different trials, driven by different
random input sequences, and test the emulation tasks of all
the NARMA systems (NARMA2, 5, 10, 15, and 20) using

τΔ = 0.5
11
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FIG. 8. Plots showing the effect of the spatial multiplexing in terms of the averaged MC for each number of qubits of a single QR
system, each number of virtual nodes, and each parameter τ�. For each plot, the horizontal axis represents the total computational
nodes in a QR system and the vertical axis represents the averaged MC. The parameter τ� is varied as 0.5, 1, 2, 3, 4, 8, 16, and 32.
The number of qubits in a single QR system is represented by different point shapes (squares, circles, and triangles indicate the cases
for 3, 4, and 5 qubits, respectively). The number of virtual nodes is represented as a difference in color (the numbers of virtual nodes
V = 1, 5, and 25 are represented as black, red, and green, respectively). The plots connected with lines represent the results when
the order of spatial multiplexing is increased from 1 to 5 (this can be seen from the increase in the total number of computational
nodes) with other system parameters fixed. As a reference, each plot contains the performance of the conventional ESN. The notation
“ESN20,” for example, represents the averaged MC of the ESN with 20 nodes.
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a multitasking scheme for each trial. After performing all
the trials of the NARMA tasks with all the parameter set-
tings varied for each ESN having the computational node
NESN, we collect the lowest NMSE, which indicates the
best performance in this experiment corresponding to the
ESN, and calculate the averaged NMSE for each NARMA
task over 10 different ESNs for each setting of NESN. These
averaged NMSEs are used for comparison.

To evaluate the memory capacities, 100 different ESNs
are driven by different random input sequences with a spec-
tral radius fixed at 0.9 and the scaling parameter of the
input weights fixed to σ = 0.01. The emulation tasks of
five dynamical systems with different degrees of nonlin-
earity, which are explained in the main text, are performed
for each trial using a multitasking scheme. Analyses of
the performance are conducted using the same procedures
used by our system and defined in the main text. The aver-
aged capacities are calculated using these 100 trials and
used for comparison.
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