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Spiking neural networks (SNNs) offer an event-driven and more-biologically-realistic alternative to
standard artificial neural networks based on analog information processing. This can potentially enable
energy-efficient hardware implementations of neuromorphic systems that emulate the functional units
of the brain; namely, neurons and synapses. Recent demonstrations of ultrafast photonic computing
devices based on phase-change materials (PCMs) show promise for addressing limitations of electri-
cally driven neuromorphic systems. However, scaling these stand-alone computing devices to a parallel
in-memory computing primitive is a challenge. In this work, we use the optical properties of the PCM
Ge, Sb, Tes to propose a photonic SNN computing primitive, comprising a nonvolatile synaptic array inte-
grated seamlessly with previously explored “integrate-and-fire” neurons. The proposed design realizes an
“in-memory” computing platform that leverages the inherent parallelism of wavelength-division multi-
plexing. We show that the proposed computing platform can be used to emulate a SNN inferencing engine
for image-classification tasks. The proposed design not only bridges the gap between isolated comput-
ing devices and parallel large-scale implementation but also paves the way for ultrafast computing and

localized on-chip learning.
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I. INTRODUCTION

The phenomenal success in the field of deep learning
using artificial neural networks (ANNSs) based on analog
information processing has had far-reaching consequences
recently [1]. Machines driven by such networks have
surpassed humans in various tasks ranging from pattern
recognition to playing complex games such as Go [2] and
chess [3]. However, the growing complexities of com-
putational models involved in such multilayered neural
networks have rendered the training and inferencing tasks
extremely expensive in terms of memory and energy. The
gulf between the energy efficiency of the brain and that of
standard neural-network architectures has led researchers
to explore a bioplausible alternative; namely, spiking neu-
ral networks (SNNs). The event-driven nature and sparse
information encoding of SNNs make them more feasible
for energy-efficient neuromorphic computing, thus paving
the way toward unraveling the elusiveness of the brain.
The fundamental operations performed by SNNs involve
parallelized dot products through the synaptic network fol-
lowed by subsequent integration and thresholding by the
neurons. Neuromorphic systems attempting to leverage
the sparse and event-driven nature of SNNs thus aim at
efficient emulation of these functionalities.
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The initial efforts [4—6] in hardware implementations of
SNNs were based on standard von Neumann architecture
[7] based on complementary-metal-oxide-seminconductor
(CMOS) technology where the synaptic units of the neu-
ral networks are stored in the digital memory and are
repeatedly fetched by the processor for computing oper-
ations. However, the overhead of frequent data transport
between the memory and processor has led to a shift in
the computing paradigm as “in-memory” computing plat-
forms [8,9] attempt to emulate the “massively parallel”
operations of the brain. Although the term “neuromorphic”
was primarily coined [10] with CMOS technology in mind,
this computing domain has branched out to nonvolatile-
memory technologies such as oxide-based memristors
[11], spintronics [12], and phase-change materials (PCMs)
[13,14] in recent years. The natural ability of these resistive
technologies to compute parallelized dot products using
crossbar structures makes them promising candidates for
neuromorphic systems. Despite the extensive efforts in
nonvolatile-memory-based in-memory computing in the
electrical domain, these technologies suffer from different
drawbacks that manifest themselves in form of reduced
energy efficiency, lower speeds and presence of sneak
paths. Moreover, write latencies in memristors [15,16] are
a major reason why memristive devices are not suitable
for temporally scalable architectures. Thus, there is a need
to explore a different memory technology that can enable
computing as well as the possibility of shorter write times.
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Integrated photonics offers an alternative approach to
standard microelectronic in-memory computing platforms
and promises ultrafast neural computing and information
processing. Recent advances in photonics-based neuro-
morphic computing have seen implementations of various
kinds [17,18] of neural processing units on the photonic
platform leveraging the inherent capability of matrix oper-
ations of integrated optical circuits. Spike-based process-
ing systems have also been extensively explored with
excitable lasers [19,20]. However, most of the photonic
systems investigated in the context of neuromorphic com-
puting are based on volatile information processing, which
requires thermal tuners to maintain the modulation states,
which might turn out to be energy expensive for large-
scale systems. Nonvolatility offers the ability to write
and erase information dynamically, which is desirable
for large-scale implementations of neuromorphic systems.
To that effect, recent demonstrations of subnanosecond
writing speeds in PCM technology based on Ge,Sb,Tes
(GST) through optical pulses has opened up a host of
opportunities for in-memory computing in the photonic
domain [21]. The ultrafast switching using light over-
comes the long-standing obstacle of high “write” laten-
cies [15] for PCMs in the electrical domain. The highly
contrasting optical properties of GST in its crystalline
and amorphous phases have led to implementations of
all-photonic memories [22], switches [23], and recon-
figurable nonvolatile computing platforms [24]. More
recently, photonics-based GST devices have also been
explored to emulate biologically plausible synapses [25],
capable of undergoing spike-timing-dependent plasticity,
and “integrate-and-fire” spiking neurons [26]. Despite
these promising investigations into fast neural computing
based on a nonvolatile platform, the challenge of scaling
stand-alone devices to large-scale neuromorphic systems
is enormous. Thus, there is a need to explore nonvolatile-
memory primitives in the photonic domain, which can
perform parallel computing. In this work, we propose an
all-photonic SNN computing primitive, based on GST-
based photonic neural elements, that attempts to bridge
the gap between devices and system-level implementa-
tion of photonic neural networks. We leverage the inherent
wavelength-division-multiplexing (WDM) [27] property
of optical networks to propose a nonvolatile synaptic array,
while exploring and mitigating the challenges arising from
designs based on ring resonators of radii comparable to
the wavelength of operation. Such a synaptic array can
achieve higher densities than current state-of-the-art pho-
tonic computing systems. We show how the proposed
synaptic computing platform can be seamlessly integrated
with previously explored integrate-and-fire spiking neu-
rons to realize an ultrafast and truly integrable spiking
neural network. Finally, we evaluate the performance of
the proposed photonic SNN in the task of classifying
handwritten digits.

II. PHOTONIC SYNAPSES

The core computational units of any neural network are
neurons and synapses. In SNNs, information is encoded in
the form of spikes, and the neurons and synapses are capa-
ble of processing information through these spike trains.
As shown in Fig. 1(a), the input trains of spikes are mul-
tiplied by the synaptic weights wy,wy,...,w, and the
weighted sum is received by an integrate-and-fire neuron.
The internal state of the neuron, known as the “mem-
brane potential” (Vpem) performs integration of the basis
of the incoming weighted spikes and is compared with
a threshold (V) at every time step. The neuron outputs
a spike once Vyenm reaches V. The synaptic functional-
ity essentially corresponds to a multiplication operation of
the inputs and the corresponding weights of the synapses.
The basic operation performed by a single synapse can be
represented as [;w;. We show how a single-bus micror-
ing resonator with a GST element embedded on top of
it can operate as such a synapse. The device under con-
sideration is a Si-on-insulator structure consisting of a
rectangular waveguide and a ring waveguide as shown in
Fig. 1(b). A GST element is deposited on one arm of the
ring waveguide, which takes the shape of an arc, where
the length of the arc is denoted as the length of the GST
element (Lgst). The fabrication technique of building such
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FIG. 1. (a) The basic functional elements of a SNN are spiking
neurons and weighted synaptic connections. At each time instant,
the inputs are weighted by the synaptic weights to produce
a resultant output represented as ), P;w;. The integrate-and-
fire neuron’s membrane potential (Viem) is updated according
to the weighted sum and compared with a threshold value
(V). (b) GST-embedded single-bus-microring-resonator struc-
ture with Si waveguides on SiO, substrate. (c) Top view of
the device illustrating the different parameters pertaining to the
ring-resonator structure. The synaptic device performs an analog
multiplication of input P;, and transmission 7.
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a structure has been well explored [23,24]. Waves in the
rectangular waveguide are partially coupled to the ring
and constructively interfere when the round-trip phase shift
equals an integer multiple of 27, leading to the resonant
condition:

27 RiingMefiwg = MAm, (1)

where Ry, is the radius of the ring waveguide, nefwg 1S
the effective refractive index of the ring waveguide, and
Am 1s the resonant wavelength. The transmission through
the “Pass” port is dependent on the device dimensions and
material such that

a? — 2arcosf + 12

T, = :
P71 = 2arcosf + a2

2)

where a is the attenuation factor, 7 is the self-coupling coef-
ficient as shown in Fig. 1(c), and 6 is the single-pass phase
shift. Under resonance, 6 equals 27 and the transmission
is given by Tyin = [(@ — r)/(1 — ar)]*.

We leverage the contrasting optical properties of GST
in its amorphous (a-GST) and crystalline (c-GST) states
to manipulate the attenuation in the ring waveguide and
thus vary the transmission 7y, at the resonance wave-
length. The differing imaginary refractive indices of a-GST
and ¢-GST lead to differential absorption of evanescently
coupled light. The difference in optical absorption can
be visibly observed through the cross-section view of
the fundamental-mode profiles in the GST-embedded Si
waveguide when excited by a TE-mode electromagnetic
wave as shown in Fig. 2. ¢-GST introduces a significant
change in waveguide mode in contrast to a-GST due to
higher absorption in the GST element. The attenuation fac-
tor (@) in Eq. (2) can be related to the imaginary refractive
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FIG. 2. Cross-section view of fundamental-mode profiles for
a GST-embedded Si-SiO, waveguide section for (a) a-GST and
(b) c-GST showing visible contrast in optical absorption for the
two boundary states of GST. (c) The variation of the real (#¢x.GsT)
and imaginary (ke gst) refractive indices of GST with the degree
of crystallization.

index as

2 L
o= exp (_ JTKeff,iST GsT a) ’ 3)

where kegrgst is the effective imaginary refractive index of
GST on the Si-SiO; stack, Lgst is the length of the GST
element, and the term “loss” refers to other propagation
losses, such as bending losses. The GST element can be
programmed to partially crystallized levels such that mul-
tilevel states can be achieved [22,24]. From the perspective
of neural networks, significant progress have been made
toward proposing training algorithms [28,29] that preserve
performance even with binarized synapses. Thus, although
multilevel states would be desirable from a device point of
view, modified training techniques can enable reasonable
performance with low-precision synapses.

The refractive indices of partially crystallized GST can
be calculated from effective permittivities approximated by
an effective-medium theory [30,31]:

€er(p) — 1 .
€etr(p) + 2 B

where €, and ¢, are the complex permittivites of c-GST and
a-GST, respectively, calculated from the refractive indices
of GST [32] by «/€(A) = n + ik, and p is the degree of
crystallization. Thus, the different levels of crystallization
of GST lead to various values of keggst, thus leading to
different levels of transmission. We leverage the multi-
level transmission to implement an all-photonic synapse.
For an incident optical pulse of power Py, the synaptic
functionality is realized such that the output power Py is
given by

€, — 1
€,+2

€. — 1
€ +2

p X + 1 =p)x “

Pout = T)»mPiIh (5)

where T}, is the transmission at resonant wavelength
Am. Ty, represents the weight of the synapse, and the
various levels of transmission with differing-degree-of-
crystallization states of GST can be leveraged to represent
an entire range of synaptic weights with appropriate dis-
cretization. We critically couple the resonator to the amor-
phous state such that the transmission is minimum in the
amorphous state and increases with the degree of crys-
tallization. While individual synapses represent a simple
multiplication, the weighted inputs from multiple synapses
are received by a neuron as shown in Fig. 1(a). To emulate
such behavior, it is important to connect these synapses
in an integrated fashion. Such a synaptic network would
perform the most-ubiquitous functionality of any neural
network, a dot product.

III. PHOTONIC DOT-PRODUCT ENGINE

We leverage the characteristics of the proposed non-
volatile photonic synaptic device to map the synaptic

014063-3



CHAKRABORTY, SAHA, and ROY

PHYS. REV. APPLIED 11, 014063 (2019)

weights of a neural network in a photonic synaptic net-
work capable of performing the dot product of the inputs
and the weights.

A. Network design

We leverage the WDM technique to compute dot-
product operations between incoming spikes and synaptic
weights. We represent the synaptic weights in terms of the
transmission 7 of the microring resonator as discussed in
the previous section. To represent multiple wavelengths,
we use multiple ring resonators of increasing ring radius to
represent different synapses in a row as shown in Fig. 3.
The number of synapses (V) in each row is dependent
on the free spectral range (FSR) of the ring resonator
and this governs the dimension of the input vector of
the dot-product engine. A WDM spike enters the straight
waveguide through the input port, and the GST element on
each ring resonator modulates the amplitude of the corre-
sponding wavelength by the representative synaptic weight
according to Eq. (5). Thus, at the output port we obtain a
multiwavelength spike comprising different T P; products
corresponding to different wavelengths. This spike is then
fed to a photodiode (PD) array, which produces a current
given by the sum of all the amplitudes given by

L =R TP, (6)

where R is the responsivity of the PD expressed as amperes
per watt. This current is equal to the dot product of the
input vector P and weight vector 7;. The operation is
illustrated in Fig. 3.

B. Synapse design constraints

Use of the WDM technique for the proposed photonic
synaptic array imposes certain constraints on the design
of the synaptic devices. For accurate dot-product opera-
tion, it is necessary to achieve significant isolation between
the channels to minimize channel-to-channel interaction.
The important parameters that constrain the design space
of the synaptic device are finesse (F') and channel spacing
(Agir). Finesse is the ratio of the FSR and the full width at

Input Ri< Ry<

.. <Rn.4< Ry

half maximum (FWHM). For a single-bus ring resonator,
the FWHM and FSR are expressed as [33]:

(1 — ra))\2
AL = 7
FWHM = N (7
)\‘2
Adpsg = 8
FSR 3 )
A\
F=_—lBR 9)
AAFWHM

where L = 27 Ry is the circumference of the ring, ng is
the group index, and the rest of the parameters have the
same meaning as defined earlier. The interference due to
adjacent channels can be modeled as

T =i = Tulamry X Toglimiey X Dola=a

i+1 i—12

(10)

Txi|)»=)»i = o, T lr=s;

where T} [i=;, is the modified transmission due to inter-
ference from the adjacent resonant wavelengths, 75, [5—;,,
Tyilr=2;4,> and Ty, |3=3,_, are the transmissions of the ith
ring at the ith, (i + 1)th, and (i — 1)th resonant wave-
lengths respectively, and o, represents the nonideal factor,
which should ideally be close to 1; o, decreases with
decreasing channel spacing (Aqir) and increasing FWHM.
For our design, we set the minimum radius of the ring to be
1.5 um to achieve a high-density synaptic array for better
scalability. Rings of similar size have been demonstrated
previously [34] with certain modifications that we discuss
next. The rest of the parameters concerning the synapses
are chosen to maximize the number of rings in a single row
(N) while maintaining «;, close to 1 under the condition
that N Agir < AAfsr.

A number of challenges arise for rings of radius
comparable to the wavelength of operation. Firstly, to
achieve a critical coupling in the low-loss amorphous state,
the power coupling gap between the bus and the ring
waveguide needs to be small (less than 100 nm). This is
because the interaction length between the ring and the
straight waveguide is quite short and hence to achieve rea-
sonable coupling, even to match the small intrinsic loss in
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Synaptic dot-product engine showing the arrangement of ring resonators with increasing radii representing the trans-
T, ). WDM signals are modulated by weights corresponding to the respective wavelength and the

photodetector array collects the signals to generate a current /,, representing the dot product of the transmission vector 75 and inputs

={P1,....Pn}.
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the ring in low-loss a-GST, we require a small power cou-
pling gap. Such gaps are extremely difficult to fabricate.
An alternative to using smaller gaps has been demonstrated
[34] for rings of small radii. Reducing the width of the
bus waveguide increases the spatial period of the propagat-
ing mode due to the lower effective refractive index. This
results in a better phase match with the mode in the tightly
curved ring waveguide. For the rest of our analysis, we use
a bus waveguide of width 0.35 um and a coupling gap of
135 nm.

IV. PHOTONIC INTEGRATE-AND-FIRE
NEURONS

The proposed photonic dot-product engine (PDPE)
needs to be interfaced with spiking neurons to realize
a photonic SNN inferencing platform. In this work, we
explore a photonic integrate-and-fire neuron that we pro-
posed previously [26]. The neuron consists of an “inte-
gration unit” and a “firing unit”. The “integration unit” of
the neuron consists of two add-drop ring resonators with
GST deposited on top of each as shown in Fig. 4(a). The
purpose of the two ring resonators is to perform bipolar
integration (i.e., the respective devices are fed by pos-
itive and negative weighted sums from the synapses to
perform integration in the appropriate direction). The sig-
nificance of positive and negative weighted sums will be
clearer in the next section. The neuron operates in alter-
nate “write” and “read” cycles. The GST elements on the

ring resonators are initially in the crystalline state. With
incident “write” pulses, the GST element begins to be
partially amorphized. During the “read” phase, with par-
tial amorphization, transmission at the “through” port of
each ring resonator decreases and that at the “drop” port
increases. Essentially, with incoming pulses, the transmis-
sion through the “drop” and “through” ports is positively
and negatively integrated, respectively. These properties
of the device can be combined to mimic the behavior of
a bipolar integrate-and-fire neuron. The “drop” port and
“through” port of the positive and negative integrating ring
resonator, respectively, are connected to an inteferometer.
The output of the interferometer represents the membrane
potential of the spiking neuron. To perform the threshold-
ing action, the membrane potential is fed to the “firing
unit” of the neuron. This unit consists of an amplifier, a cir-
culator, and a rectangular waveguide with GST deposited
on top. During the “read” phase of the neuron, the resulting
membrane potential, after being amplified and directed by
the circulator toward the rectangular waveguide, attempts
to amorphize the initially crystalline GST element on the
rectangular waveguide. Initially, the output of the amplifier
(Pamp) 1s insufficient to amorphize the GST on the rect-
angular waveguide and hence render it unable to transmit
an output spike. However, when the membrane potential
integrates enough to cross the threshold, on incidence of
several “write” pulses, Pamp is ensured to be high enough
to amorphize the GST on the rectangular waveguide, thus
enabling it to transmit a spike. Once the neuron fires, a

(a) I FIG. 4. (a) A bipolar integrate-and-fire neuron
wg\t/aengu%ir based on GST-embedded ring-resonator devices
[Drop GST Elimen " showing the integration and firing units. (b) Tim-
GST ing diagram showing the integration of membrane
Positive Element potential for various incident pulses demonstrat-
Weighted — ing the operation of the proposed neuron.
Sum Input  Through Membrane /A\Pamp C £ P prop
Drop Potential \_/
Amplifier
Negative O outll
Weighted —» utpu
sum Input  Through
FIRING UNIT
ike Even
(b) Spike Event
. B Pthresh
Membrane
Potential
o e ettt sttt ittt S i Prest
Inqdent Write Pulses Reset Pulse
Spikes |

014063-5



CHAKRABORTY, SAHA, and ROY

PHYS. REV. APPLIED 11, 014063 (2019)

“reset” pulse resets the states of the devices to their ini-
tial states and the membrane potential drops to the resting
potential (Pyest) as shown in Fig. 4(b). Further details of the
writing and reading schemes were presented in Ref. [26].

V. OPERATION OF AN ALL-PHOTONIC SPIKING
NEURAL NETWORK

Implementation of a SNN based on the PDPE and
integrate-and-fire neurons described above involves inte-
gration of the proposed structures. As elucidated above,
the basic computational function of a neural network is a
dot product. To realize parallel instances of such a func-
tionality with use of the aforementioned PDPE, we use a
splitter to feed the WDM input spikes to multiple PDPE
rows with the input vector and obtain the dot products of
each row from respective PD arrays as shown in Fig. 5.
Essentially, the output vector thus obtained from the PD
arrays gives us the multiplication of the vector of input
spikes P; with an N x M synaptic network 7};. The M out-
puts /; obtained from the PD arrays are fed to laser diodes,
which convert the electrical current to optical spikes, thus
completing the parallel dot-product operations, which can
be represented as:

O, Ty T2 ... Ty

0, Ty T ... oy

: o« (P1 Py Py) S

OM TN1 TN2 TNM
(1)

We now present how such a photonic synaptic network can
be integrated with the proposed bipolar integrate-and-fire
neurons to realize a photonic SNN. A schematic of such
a photonic SNN is illustrated in Fig. 6. To account for
negative weights in a neural network, we represent the ele-
ment of the weight matrix T as comprising a positive and a

negative component:

Ty =T; + Ty,
Ty =T;,T; = Tiow whenTj; >0, (12)

T} = Tiows T, = |Ty| when Ty <0,

where Tjow is the transmission corresponding to the lowest
programmable state considered. Two PDPE arrays are used
to map the positive and negative components as depicted in
Fig. 6. The dot-product outputs from the laser-diode arrays
of the two dot-product engine arrays can be represented as:

(13)
q:Zaq

These outputs from the jth rows are received by the jth
integrate-and-fire neuron discussed earlier. The outputs
from the positive and negative PDPE arrays are received
by the positive and negative integrating ring resonators
in the neuron, respectively. The two ring resonators inte-
grate the membrane potential in the opposite direction
on the basis of the two inputs, and the resulting inte-
gration mimics the desired integration that a biological
integrate-and-fire neuron performs, given by

Vinemg () = Vinemj (t — 1) + Y _P;Ty,  (14)

where Y, PiT; = Y ,(PiT;; — P;T;) and Vipem,(?) is the
internal state or the membrane potential of the jth neu-
ron at time ¢. The resulting membrane potential is passed
to a firing unit as described in Fig. 4 such that the neu-
ron produces an output spike once Vpem;(f) reaches a
threshold. The output spikes from all the neurons of the
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FIG. 6.

An all-photonic spiking neural network. Two dot-product-engine (DPE) arrays are used to represent the positive and negative

components of the weights. The outputs of the DPE arrays are converted to optical spikes and passed to integrate-and-fire neurons.
The structure of an integrate-and-fire neuron is illustrated in the oval. Each neuron has two inputs, corresponding to outputs from the
positive and negative DPE arrays. The neuron outputs a spike when the membrane potential crosses its threshold.

current layer are then fed to the next synaptic array layer.
Figure 6 delineates the operation of basic building blocks
of a neural network. We perform large-scale system-level
simulations by emulating the behavorial model of the pro-
posed spike processing system to assess the performance
of neuromorphic systems based on this fabric.

It is important to consider the architecture-level facets
of any computing primitive. The proposed design is anal-
ogous to memristive crossbars, where the high fan-in into
the neurons is resolved by the inherent parallelism of the
computing framework. In our design, each neuron receives
two inputs, from the positive and negative synaptic arrays,
and the output of that neuron is fed to one of the 16 inputs
of the synaptic array of the next layer. In reality, neural
networks are of far bigger sizes than the proposed design
can accommodate. As a result, multiple instances of the
proposed primitive can be used with time multiplexing
to perform the entire vector-matrix multiplication opera-
tion. The partial sums from these instances are collected
and added before being fed to the neuron. Output from a
neuron again serves as inputs to the synaptic arrays stor-
ing the weights of the next layer of the neural network.
Similar architectures have been explored with use of mem-
ristive technologies [16,35]. This work is concerned with

device and circuit primitives of a spike-based photonic
nonvolatile inferencing engine that will act as a comput-
ing core of a large-scale system similar to technologies in
the electrical domain.

VI. RESULTS

A. Simulation framework
1. Device simulations

We evaluate the performance of the proposed all-phot-
onic SNN fabric by designing a device-circuit-algorithm
cosimulation framework. First, the device characteristics
of each ring resonator in a dot-product-engine row are sim-
ulated for four different degrees of crystallization of the
GST element with use of the simulator FDTD SOLUTIONS
from Lumerical [36] based on the finite-difference time-
domain (FDTD) method. The fixed parameters used for
these simulations are listed in Table I. The mode profiles
are obtained through electromagnetic simulations with the
finite-element method in COMSOL MULTIPHYSICS [40].

2. Device-to-system framework

The device characteristics, obtained from the FDTD
simulations, are analyzed and a Gaussian fit is applied
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TABLE I. Simulation parameters.

Value

0.45 x 0.25 um?
0.35 x 0.25 um?

Parameter

Si-ring-waveguide cross section
Si-bus-waveguide cross section

Coupling gap (Lgap) 0.135 um
GST length (Lgst) 170-220 nm
GST thickness (fGst) 10 nm
GST width (WGST) 0.44 Mm
Si refractive index (ns;) [37] 3.5
SiO; refractive index (nsio, ) [38] 1.4
¢-GST refractive index 72419
(ne-gst + ike.gst) [39]
a-GST refractive index 4.6 4+ 0.18i

(na-gsT + ikagst) [39]

on the data for interpolation. We develop a device-to-
system codesign framework by building behavorial models
of the proposed synapses and neurons based on the fitted
device characteristics. The models are used to evaluate the
inferencing performance of the standard neural-network
topology on a standard digit-recognition task based on
the MNIST dataset with use of the DEEP LEARNING TOOL-
BOX [41] in MATLAB. The MNIST dataset consists of
60 000 images in the training set and 10 000 images in the
testing set.

B. Device simulations

We consider 16 ring resonators of radius linearly
increasing from 1.5 to 1.59 um in any particular dot-
product-engine row. The choice of the number of devices,

N, in a single row was discussed earlier. The length of the
GST element is increased accordingly and chosen itera-
tively to ensure uniform transmission characteristics across
the wavelength range of operation. We perform FDTD
simulations for each device with four different degrees
of crystallization of GST (30%, 50%, 80%, 100%); the
observed transmission characteristics for the rings are
shown in Fig. 7(a). As expected, the transmission for each
device decreases with decreasing degree of crystallization.
The observed FSR is 53.1 nm, and the difference between
the highest and lowest resonant wavelengths is 47 nm,
which is well within the FSR, thus ensuring no interference
from resonant wavelengths beyond the region of opera-
tion. Figures 7(b) and 7(c) show the contrast in electric
field absorption by the GST element in the ring resonator
for 30% and 100% crystallized GST. We observe certain
variations across different wavelengths, which can be min-
imized by further adjustment of the length of the GST
element. However, from the perspective of neuromorphic
applications, these variations prove to be insignificant. We
explore the impact of such variations in our evaluation of
the proposed neuromorphic processing engine. We use the
dependence of transmission on the degree of crystallization
to realize the synaptic behavior of the rings. Figure 8(a)
shows the Gaussian fit of the simulated data across degrees
of crystallization ranging from 0% to 100%. The Gaussian
fit provides a fairly accurate representation of the observed
data and is a powerful tool to speed up our analysis in light
of the computationally expensive FDTD simulations. It
can be observed that transmission has a nonlinear relation-
ship with p, and hence operation of the rings as synapses

(@

1.04
0.8+
0.61
0.4-

0.2 Ring 1

Normalized Transmission

0.01 FSR 53.1nm

—30%
—50%
—80%
—100%

Ring 16

FIG. 7. (a) Normalized trans-
mission for 16 different rings
for four degrees of crystalliza-
tion (30%, 50%, 80%, 100%)
showing a decreasing trend
with decreasing degree of
crystallization. The wavelength
range for the 16 rings is less
than the FSR for the design.
(b),(c) Electric field profile

Crystallization

1.54 1.56

Wavelength (um)

1.52

Electric field

(b) _ 30% c-GST High (c)

Low

in the ring-resonator system
showing visible contrast in
optical absorption and field
transmission at the “pass” port
in the GST element for ¢-GST
and 30% c-GST, respectively.

Electric field
100% c-GST
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GST
Element
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FIG. 8. (a) Gaussian fit of simulated data points for degree of

crystallization ranging from 0% and 100%. (b) Linearly vary-
ing transmission across 16 different programmable states (lev-
els) of the GST. The inset shows the degrees of crystallization
corresponding to the levels.

would require the GST element to be programmed to states
with nonlinearly increasing p. This can be achieved with
an appropriate amplitude of the programming stimulus.
Figure 8(b) shows the transmission levels for each ring cor-
responding to 16 discretized programmable states or levels.
The degree of crystallization, p, for each state is shown in
the inset in Fig. 8(b). The linear relationship between trans-
mission and levels is a necessity for the target application
(i.e., a dot-product operation for neuromorphic comput-
ing), which leads us to the choice of programmable states
with the nonlinear distribution of p.

C. Interference errors

The transmission characteristics of the different rings for
different states of the GST element are used to evaluate the
accuracy of the dot-product operation performed with the
proposed synaptic network. The error in the computation
stems from the premise of overlapping frequency response
between adjacent channels. The advantage of the proposed
implementation over electrical counterparts is that in the
electrical domain the losses due to line resistance are a
function of the input and the weights, thus rendering them
difficult to model. The impact of the error in this setup is
dependent only on the weight level and hence can be easily
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FIG. 9. Map of nonideality factor (;,) arising due to interfer-
ence from adjacent rings for each ring in the dot-product-engine
row.

modeled, analyzed, and even corrected in light of the pro-
posed application. In Eq. (9), we formulate a behavorial
model of the error arising from interference due to adja-
cent channels. Figure 9 shows the map of the nonideality
factor «;, for all 16 rings for 16 different levels. This is cal-
culated by our fitting of the extracted o, from Fig. 7(a) on
the basis of Eq. (9). We observe that the errors are high-
est for rings of greater radius and for the highest levels.
This can be attributed to greater FWHM for rings of greater
radius due to the longer lengths of the GST element used
to achieve uniform transmission levels across the operating
wavelength range. We include these error characteristics
corresponding to each ring for our system-level evaluation
of the proposed photonic SNN inferencing framework.

D. System-level SNN performance

We develop a device-to-algorithm-level framework to
perform system-level analysis of the photonic SNN imple-
mentation. A SNN, like any other neural network, con-
sists of multiple layers of neurons connected through
synapses. The unique property of SNNs is that the inputs
to the network are discretized spike events instead of
analog values. The synapses act as weights that are mul-
tiplied by the amplitude of the incoming stimulus and the
resulting weighted sum (i.e., dot product of all impulses
coming from different synapses) is received by the neu-
ron. We map the device characteristics of each individ-
ual synapse and integrate-and-fire spiking neurons dis-
cussed previously to explore the validity of operation of
the proposed devices as synapses and neurons in such a
SNN. We now explain how we perform the evaluation
of a SNN on the proposed PCM-based photonic infer-
encing framework. We consider a fully connected neural
network consisting of three layers—the input layer, the
hidden layer, and the output layer—as shown in Fig.
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FIG. 10. (a) Fully-connected-neural-network topology consist-
ing of an input layer (M), a hidden layer (N), and an output
layer (P) of neurons. The resulting synaptic networks are of
size N x M and P x N. (b) Evolution of classification accu-
racy of handwritten-digit-recognition task based on the MNIST
dataset comparing the performance of our proposed photonic
SNN with ideal-SNN performance. Here “ideal SNN” corre-
sponds to software-level functionalities without consideration of
device characteristics.

10(a). This type of topology has been well explored
[42]. For our analysis, we consider a network with
M =784, N =500, and P = 10. We analyze the accu-
racy of such a network in a standard handwritten-digit-
recognition task based on the MNIST dataset [43]. A
popular way of implementing spike-based inferencing sys-
tems is to train a network as an ANN and then convert it
to a SNN by well-explored conversion algorithms [42,44].
The weights of the network are trained with the backpropa-
gation algorithm [45] as in the case of ANNs. The neurons
in ANNs are usually nonlinear mathematical functions,
such as rectified linear units (ReLU) [46], sigmoid func-
tions or hyperbolic tangent functions, with ReLUs being
the most-popularly-chosen neuron functionality. During

conversion, an artificial neuron with ReLU functionality
can be directly converted to an integrate-and-fire neuron
mathematically [42]. The details of the operation of the
integrate-and-fire neuron were elucidated in our earlier
work [26]. The trained weights of the network after the
ANN are converted to a SNN and mapped to the observed
characteristics of each synaptic device in the proposed
synaptic network. The synaptic network has the provision
of operating 16 synapses simultaneously. To perform the
dot product of larger dimensions, the synaptic network
needs to be time multiplexed, as discussed earlier. To simu-
late large-dimension operations with the proposed synaptic
network, we repeat the device characteristics every 16
synapses. The weights of the network can be negative. To
account for negative weights, two dot-product engines are
used, shown in Fig. 6, as described earlier.

The pixels of input images of size 28 x 28 are divided
into streams of spikes whose frequency is proportional to
the pixel intensity. At every time step, the input can either
be “0” when there is no spike or “1” in the event of a spike.
The behavorial model of the SNN inferencing framework
described above is implemented with the MATLAB DEEP
LEARNING TOOLBOX [41] with the network topology shown
in Fig. 10(a). The network is evaluated at every time step
by our passing the inputs through the forward path from
the input layer to the output layer through the synaptic net-
work and recording the activity of the network. Finally, the
output neuron with the highest spiking activity is compared
with the label of the input image to determine the accuracy
of the recognition system. The classification performance
of the proposed photonic SNN is compared with that of
an ideal SNN in Fig. 10(b). Here “ideal SNN” essentially
means software-level evaluation without device character-
istics being taken into consideration. There is a degradation
in accuracy of 0.52% after 35 time steps from the ideal
case arising from the different variations in device charac-
teristics discussed earlier. The concept of time steps here
corresponds to how many times we evaluate the network
over the Poisson-distributed input spikes generated from
the image. The duration of a time step is not relevant in
this context as we do not include any temporal dynamics in
the system. We further attempt to isolate the contribution
of synaptic device variations to the observed degradation
in accuracy by considering a comparison test case: ideal
synapses with proposed neurons. The accuracy degrada-
tion amounted to 0.1% after 35 time steps. This implies
0.42% degradation due to synaptic variations.

We evaluate the energy consumption of the basic build-
ing blocks for our system, the synaptic array and the
neurons. The energy consumed by each synapse can be
estimated by the transmission (or the weight) of the synap-
tic device. As the information being processed is based on
spike events, the input can either be “1” or “0.” Experi-
mental demonstrations [22] have shown that read-out for
GST-based Si photonic devices can be achieved by pulse
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energies of 0.48 pl. For our case, because of smaller
GST footprints, we consider input “1” to correspond to
a pulse of amplitude 0.25 mW. The power consumed by
the synapse is thus given by (1 — 7) mW, where T is
the transmission of the synapse. As these read pulses will
eventually write into the neurons, we choose a pulse width
of 200 ps, which is the minimum pulse width required
to write into the GST, as we observed previously [26].
Considering these metrics for the read pulses and power
calculations for each synapse, we estimate the energy con-
sumption of the entire classification operation described
above. The resulting average energy consumption for first
layer of the neural network in the synaptic array is cal-
culated to be approximately 12.5 fJ per synapse per time
step of evaluation. For the second layer, the energy con-
sumption is approximately 1.6 fJ per synapse per time
step. The difference is energy consumption in the two lay-
ers is due to sparser spiking activity in the second layer.
The energy consumed by each neuron was calculated in
our previous work to be 5 pJ per time step. The writing
energies for PCM devices of similar feature sizes [47,48]
in the electrical domain can amount to 14—19 pJ while
operating at speeds of 40—100 ns. The total energy con-
sumption for an image classification is calculated to be
approximately 261 nJ (178 nJ consumed by the synaptic
operations and 83 nJ consumed by the neurons). Although
the energy consumption is comparable to that of CMOS
technology [49], photonics potentially offers a faster oper-
ation at subnanosecond speeds. In this work, we have
consider a significantly-high-amplitude read pulse (0.25
mW) through the synapses, which is reflected in the high
energy per inference operation. The proposed synapses can
be potentially read with a pulse of lower amplitude on the
basis of the sensitivity of the photodetectors and that will
significantly reduce the energy requirements of the system.
Moreover, the speed of operation in the photonic domain
is significantly greater since read latencies of neuromor-
phic systems based on memristors are usually on the order
of nanoseconds. These benefits encourage us to further
explore the possibility of neuromorphic hardware design
based on this technology.

VII. DISCUSSION

The proposed photonic SNN inferencing framework fills
a major void of scaling from device to systems in cur-
rent state-of-the-art photonic neuromorphic studies based
on PCMs. However, a few challenges that stand in the
way of physical demonstration of the proposal need to be
overcome. Firstly, reconfigurability of the proposed non-
volatile synaptic array is a necessity. Various reconfigura-
bility schemes have been explored on phase-change-based
photonic platforms [24,32]. We explore the possibility of
adding an input bend waveguide (W Gyyite ) as a writing port
for each synapse at a distance such that the inferencing

framework is unaffected. The width of WGyrite (Wwrite)
is intentionally considered to be much lower than that of
the ring waveguide of the synaptic device. This is done to
achieve asymmetric coupling such that during writing the
wave leaks out of WGy appropriately for efficient writ-
ing, while during the standard inferencing operation, the
wave remains mostly confined within the ring. Figure 11(a)
shows the structure and arrangement of WGy, adjacent
to the proposed synaptic device. 74, denotes the distance
between the ring waveguide and WGy, We observe that
error in transmission during normal inferencing opera-
tion due to the presence of WGy 1s around 0.5% for
tgap ~ 300 nm. For the same distance, we calculate the
transient field coupling from WGyt to the ring to be 70%.
Thus, this writing scheme is a viable option for achieving
reconfigurability in the proposed network.

The dimensions chosen for our analysis are aimed at
our achieving desirable functionality for ring resonators
of small radius of approximately 1.5 um. The main moti-
vation behind use of small ring resonators is to achieve
high area density for scalability. We explore a number of
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FIG. 11. (a) Structure and arrangement of input write wave-
guide at a distance fg,, to the synaptic device. The width of
the write waveguide (Wyuite) is smaller than that of the ring
waveguide (Wy,) for asymmetric coupling. (b) Transmission
characteristics of a 1.59-pm ring for different values of #4,, com-
pared with the case without a write waveguide. The inset on the
right shows an enlarged view of the transmission characteristics
to show the different cases clearly. The inset on the left shows
the variation of the percentage error in transmission at a read
wavelength of 1562.85 nm with fg,p.
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challenges arising from such small rings such as nonuni-
form bending and coupling losses across the range of
wavelength and fabrication difficulties to achieve critical
coupling. We attempt to mitigate such challenges by appro-
priate design. Further, we delineate the design constraints
for scaling individual synapses to a network of synapses,
which is necessary for large-scale neuromorphic systems.
GST-based photonic platforms also experience a small res-
onance shift between the different programmable states of
the PCM. The resonance shift between the any two states
can be quantified by [23]

Adm  Anergst Lest

(15)

)\m,in Ng off 27'[Rring ’
where A, i, is the resonant wavelength in the initial state,
Anegrgst 1s the difference in effective refractive index
between the states, and 7, ¢ is the group index. For our
case, it amounts to approximately 0.012 nm. In addition
to the variations arising from device characteristics, we
also explore errors arising due to interference from adja-
cent channels and their impact on the performance of
the proposed photonic SNN. From our analysis, it can
be observed that the network size, N, considered in our
synaptic fabric is rather conservative. N can be further
increased, which would result in higher errors. However,
the effect of such variations is modeled in Eq. (9), and the
resulting accuracy degradation can be recovered by modifi-
cation of the training algorithm as explored for memristive
technologies [50].

The errors arising due to interference between adjacent
rings essentially stem from the use of WDM-based compu-
tation; therefore, the limitations of array size due to WDM
merits discussion. WDM, while introducing parallelism in
the system, is constrained by the finesse of the rings. In
this work, we show that we can use 16 rings in a single
dot-product-engine row, which implies that the array can
process 16 inputs in parallel. The size of the array is thus
limited to 16 x N, where N is limited by the area and not
design constraints. However, analogous computing units
in the electrical domain using memristive crossbars are
also limited in size due to electromigration limits, sneak
paths, and line resistances. The photonic array on the other
hand, although limited in one direction due to finesse, can
be possibly extended to larger sizes in the direction of N.
Moreover, time multiplexing is a popular practice when
one is implementing large-scale neural networks on mem-
ristive networks, as alluded to earlier. The possibility of
fast writing into PCMs can potentially make these photonic
arrays more suitable for temporally scalable architectures.

An alternative way to implement photonic neural net-
works is through the use of inteferometers [18], where
the weights of the network are controlled through phase
shifters. Such phase shifters can consume a significant
amount of power per synapse to maintain the weight.

On the other hand, nonvolatile elements based on PCMs
can potentially encode the weights without requiring any
power to maintain their states. However, we do not use
the concept of phase shift for our design. We encode
the weights in terms of levels of partial crystallization.
Nonvolatility is necessary for large-scale neuromorphic
systems for primarily two reasons: (i) it eliminates the
need for phase shifters as constant tuning is not required
and (ii) it provides a platform for in-memory comput-
ing rather than storing the synaptic weights in a separate
memory. In this work, the intention to use a nonvolatile-
material-based memory primitive is to eliminate the need
for thermal tuners. We propose of a photonic neuro-
morphic platform from a scalable-system point of view
based on a nonvolatile-memory primitive. Recent pro-
posals [51,52] have looked at scalable systems to realize
complex neural dynamics for dynamic learning. However,
the flux-based memory in such systems is dependent on
temperature and also on the run time of operation. Such
detailed neurobiological functionalities make them more
suitable for brainlike simulations similar to NeuroGrid
simulations [53] in the electrical domain. In this work,
we do not incorporate complex biological dynamics of
SNNs in our system and rather focus on leveraging the
inherent sparsity of spike-based processing while perform-
ing image classification for energy efficiency. The primary
motivation behind our exploring this primitive stems from
the building of a potentially reconfigurable neuromor-
phic system that performs energy-efficient inferencing. To
build such neuromorphic platforms to perform spike-based
processing in standard architectures, in-memory comput-
ing offers significant promise. To that effect, nonvolatile-
memory primitives are quintessential and more suitable
as they potentially eliminate the need for off-chip DRAM
accesses, thus alleviating memory bottlenecks.

A popular way of implementing such spike-based infer-
encing systems is to train a network as an ANN and
then convert it to a SNN by well-explored conversion
algorithms [42]. This method has seen considerable suc-
cess [44] in image classification, far beyond the scope of
spike-based training algorithms. The neurons in ANNSs are
usually nonlinear mathematical functions, such as ReLUs,
sigmoid functions, or hyperbolic tangent functions, with
ReLUs being the most-popularly-chosen neuron function-
ality. During conversion, an artificial neuron with ReLU
functionality can be directly converted to an integrate-and
fire neuron mathematically [44]. This explains why we
choose integrate-and-fire neurons as the spiking neurons in
our proposal. Integrate-and-fire neurons are not associated
with time constants as they do not include leak factors and
the operations are fairly simple, unlike with other spiking
neurons. The proposal concerns our building a spike-
based photonic neuromorphic inferencing platform for
image classification task. The neuron does not bear exact
resemblance to a biological neuron; however, the design
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leverages the event-driven behavior of biological neurons.
The aim of this work is to build a fast neuromorphic infer-
encing platform in the spiking domain to perform machine-
learning tasks such as image classification. Several studies
[53] previously explored brainlike neuron and synaptic
functionalities with more-significant resemblance for com-
plex neural simulations, albeit in the electrical domain.
The major advantage of building neuromorphic systems
based on photonics rests in the speed of operation. The
primary bottleneck in “write” latencies arises from the pro-
gramming time of the integrate-and-fire neuron, which can
be as low as 200 ps for the technology explored. Although
the current technology is power expensive during writing,
the speed of writing still enables us to achieve a reasonable
energy efficiency. With further optimization of switch-
ing techniques or by use of alternative PCMs with lower
switching power, further energy benefits can also be aimed
for to achieve energy consumption comparable with that
of other technologies in the electrical domain. In turn, the
proposed photonics computing platform eliminates vari-
ous drawbacks usually faced in the electrical counterparts,
such as metal-wire resistance, electromigration, and sneak
paths. Despite the inherent challenges in the design and
implementation, our proposed SNN framework based on
GST-on-silicon photonic neuromorphic fabric enables par-
allelism through integration of a synaptic network with
integrate-and-fire neurons. Such a design paves the way
for scalable photonic architectures suitable for large-scale
neuromorphic systems able to perform fast computations.

VIII. CONCLUSION

We propose a photonic SNN computing primitive
through seamless integration of nonvolatile synapses and
integrate-and-fire neurons based on phase-change mate-
rials. The microring-resonator devices explored for such
synapses and neurons leverage the differential optical
absorption of GST for nonvolatility. We use the WDM
technique to scale individual synapses into a large-scale
synaptic array capable of performing parallelized dot prod-
ucts. Our design is based on ring resonators of radius
comparable to the wavelength of operation to achieve
high area density while maintaining performance. We
explore several challenges involved in such small ring
resonators and propose certain design modifications to
achieve uniform and desirable characteristics across the
entire operating wavelength range. Finally, we develop
a device-to-system-level framework to evaluate the per-
formance of the proposed photonic in-memory comput-
ing primitive and integrate-and-fire neurons as a SNN
inferencing engine by building behavioral models of the
photonic neuromorphic fabric and achieve performance
comparable to that of an ideal network. Neuromorphic
systems based on integrated photonics offer an alternative
dimension to the current wave of exploring beyond-von

Neumann computing frameworks, and our proposed pho-
tonic SNN inferencing engine achieves a significant step
toward proposing individual nonvolatile devices capable
of performing in-memory computing and scaling to a net-
work of such devices to realize a truly integrated spiking
neural network.
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