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We present an extensive formulation of the inverse grating problem for flexural waves in which the
energy of each diffracted mode is selected and the grating configuration is then obtained by our solving a
linear system of equations. The grating is designed as a lineal periodic repetition of a unit cell comprising
a cluster of resonators attached at points whose physical properties are directly derived by inversion of a
given matrix. Although both active and passive attachments can be required in the most-general case, it
is possible to find configurations with only passive (i.e., damped) solutions. This inverse design approach
is an alternative to the design of metasurfaces for flexural waves, overcoming the limitations of gradient
phase metasurfaces, which require a continuous variation of the surface’s impedance. When the grating
is designed in such a way that all the energy is channeled into a single diffracted mode, it behaves as an
anomalous refractor or reflector. The negative refractor is analyzed in depth, and it is shown that with only
three scatterers per unit cell is it possible to build such a device with unitary efficiency.
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I. INTRODUCTION

The fundamental property of gratings to redirect wave
energy into multiple diffracted modes, transmitted and
reflected, follows from simple considerations of interfer-
ence effects. This can be seen with use of ray theory for the
incident and diffracted directions combined with the unit
spacing on the grating: diffraction modes correspond to
multiples of 2π in the phase difference of the incident and
diffracted modes. However, the related multiple-scattering
problem of calculating the distribution of diffracted wave
energy among the modes is far more difficult, and the
inverse problem of selecting a desired energy distribu-
tion among these orders has been scarcely considered so
far. Recently, some approaches based on complex acoustic
and electromagnetic scatterers [1–6] have been proposed
for the design of gratings in which the energy is chan-
neled toward a given direction. This provides an interesting
alternative method to overcome the limitations of gradient
metasurfaces [7], in which a continuous variation of the
phase at the interface is required to accomplish the direc-
tional channeling. However, despite the recent interest in
metagratings, a systematic method for the design of grat-
ings with specific energy distribution between modes has
so far not been presented.

*dtorrent@uji.es

Recently, Torrent [8] considered a general acoustic
reflective grating and derived a linear relation between
the grating parameters and the amplitudes of the diffracted
orders. By selection of the diffracted amplitudes it is easy
to obtain the grating parameters and therefore to solve the
inverse problem. In this specific case drilled holes in an
acoustically rigid surface were selected as the basic grat-
ing elements. The purpose of this work is to demonstrate
that a similar inverse design approach may be applied
to flexural waves in thin plates. Here the grating com-
prises a one-dimensional periodic repetition of a cluster of
point attachments and the objective is to choose the num-
ber of these per unit cell and their mechanical parameters
(effective impedance) so as to control the diffracted-wave
amplitudes.

The scattering of flexural waves by point attachments
and compact inhomogeneities and its applications have
been widely studied in the literature. Plane-wave scatter-
ing from an array of finite points, an infinite line of equally
spaced points, and from two parallel arrays is considered in
Ref. [9]. Extensions to doubly infinite square and hexago-
nal arrays can be found in Refs. [10,11]. The hexagonal
array introduces the possibility of Dirac cones in the dis-
persion surface, with implications for one-way edge waves
[11,12]. A method for dealing with wave scattering from a
stack of gratings, comprising parallel gratings with pinned
circles in the unit cell, is given in Ref. [13] and used to
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examine trapped modes in stacks of two gratings [13] and
three gratings [14]. The scattering solution for a single
grating is expressed in terms of reflection and transmission
matrices, and recurrence relations are obtained for these
matrices in the presence of a stack. Semi-infinite grating
have recently been studied [15]. The addition of point scat-
terers to plates can produce flexural metamaterials with
double-negative density and stiffness effective properties
[16,17]. Scattering from a two-dimensional array of perfo-
rations in a thin plate designed to give high directivity for
the transmitted wave is considered in Ref. [18]. Scattering
of a Gaussian beam from a finite array of pinned points
is examined in Ref. [19]. Time-domain solutions of flexu-
ral wave scattering from platonic clusters is considered in
Ref. [20]. Infinite arrays of wave scatterers involve lattice
sums for flexural waves, which, as we will see, is relevant
to the present work. Lattice sums have other implications,
for instance, in the context of an infinite square array of
holes where the sums represent the consistency conditions
between the local expansions at an arbitrary perforation
and for the hole in the central unit cell [21], also known
as “Rayleigh identities.”

In this work we consider an infinite array of point scat-
terers with the unit cell comprising a cluster of N point
scatterers characterized by scalar impedances. A schematic
of the grating and the incident and scattered waves is
shown in Fig. 1. We focus on arrays of periodically placed
clusters with the intent of using the cluster properties to
control forward and backward scattering. Our approach is
to first generalize the forward-scattering methods of Evans
and Porter [9] and Torrent et al. [11]. The derived expres-
sions are then used to set up and solve the inverse grating
problem. Most importantly, we note that Torrent et al. [11]
first presented a formalism for dealing with periodically
arranged clusters of scatterers. This approach is the basis
for the present work.

The paper is organized as follows: In Sec. II we formu-
late the diffraction problem of a flexural plane wave by a
periodic arrangement of clusters of N scatterers. In Sec. III
we define the inverse grating problem and show its solu-
tion, and in Sec. IV we apply the theory to the design of a
negative refractor. Finally, Sec. VI summarizes the work.
Some mathematical results are derived in the Appendixes
A and B.

II. DIFFRACTION BY A PERIODIC
ARRANGEMENT OF POINT SCATTERERS

A. Scattering by a single point impedance and a
cluster of point impedances

The deflection w(r) on a two-dimensional plate, r =
xx̂ + yŷ, satisfies the Kirchhoff plate equation

D[�2w(r) − k4w(r)] = 0, (1)

where k4 = ρhω2/D, D is the bending stiffness, h is
the plate thickness, and ρ is the density. Time-harmonic
dependence e−iωt is assumed. Equation (1) holds every-
where on the infinite plate except where there are point
impedances attached [9].

Consider first scattering from a single point attachment
located at r = R:

D[�2w(r) − k4w(r)] = μw(R)δ(r − R). (2)

The attached-oscillator impedance μ is modeled as a single
degree of freedom with mass M , spring stiffness κ , and
damping coefficient ν. Two possible models are

μ =

⎧
⎪⎨

⎪⎩

(
1

Mω2 − 1
κ − iων

)−1

(model a),

Mω2 − κ + iων (model b).
(3)

In model a, the mass is attached to the plate by a spring and
damper acting in parallel [11]. Model b assumes the mass
is rigidly attached to the plate, and both are attached to a
rigid foundation by the spring and damper in parallel [9].
An important limit is a pointwise pinned plate, w(R) = 0,
which corresponds to μ → ∞. The point attachments con-
sidered here are based on devices proposed for passive
control of flexural waves using tuned vibration absorbers
(TVAs) [22–24]. A TVA, modeled as a point translational
impedance, can be used to reduce vibration at a specific
frequency or to control transmission and reflection of flex-
ural waves in a beam [23,24]. The alternative term “vibra-
tion neutralizer” [22] is sometimes used. In the present
context, the point impedance, or TVA, is considered as a
device for controlling the scattering of flexural waves in a
two-dimensional setting rather than in a one-dimensional
setting.

The total plate deflection is

w(r) = win(r) + BG(r − R), (4)

where win(r) is the incident field and, by definition of the
point impedance,

B = μw(R). (5)

Also, G is the Green’s function (see Appendix A)

G(r) = C[H (1)

0 (kr) − H (1)

0 (ikr)], (6)

where C = G(0) = i/(8k2D). Note that H (1)

0 (ikr) =
−(2i/π)K0(kr). Setting r = R in Eq. (4) and using Eq. (5),
we obtain

B = win(R)

μ−1 − G(0)
. (7)

If there are N point scatterers located at Rα = xα x̂ + yα ŷ
with impedances μα , α = 1, 2, . . . , N , then the total field
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(a) (b)
FIG. 1. The flexural wave grating problem: a line of
clusters composed of multiple scatterers with possi-
bly different mass, stiffness, and damping properties
within the cluster (but the same for each cluster). Each
scatterer can be modeled as an attached mass-spring-
dashpot system with properly tuned constants M , κ ,
and ν. The schematic shows impedance models a and
b in Eq. (3).

satisfies

D[�2w(r) − k4w(r)] =
N∑

α=1

μαw(Rα)δ(r − Rα). (8)

The solution is given by the incident field plus the field
scattered by all the particles:

w(r) = win(r) +
N∑

β=1

BβG(r − Rβ), Bβ = μβw(Rβ).

(9)

Our setting r = Rα in Eq. (9) gives a linear system of N
equations for the amplitudes:

N∑

β=1

[μ−1
α δαβ − G(Rα − Rβ)]Bβ = win(Rα). (10)

B. Scattering by an infinite set of impedance clusters

The above set of equations provides the solution for the
multiple-scattering problem of a given incident field on a
cluster of small particles once their position and their phys-
ical nature are properly described. We wish to know what
happens when this cluster is copied and distributed along a
line and when the incident field is a plane wave of definite
wavevector k:

win(r) = eik·r. (11)

This defines the grating scattering problem.
Specifically, the grating particle positions are

Rβm = Rβ + Rm, (12)

where β = 1, 2, . . . , N defines the cluster element and
Rm = ma, m ∈ Z, covers the infinite periodic grating. The

total field is then

w(r) = win(r) +
N∑

β=1

∑

Rm

μβw(Rβm)G(r − Rβm). (13)

It is assumed that the cluster-to-cluster relation for the total
field satisfies the same phase relation as the incident field:

w(Rβm) = w(Rβ)eik·Rm . (14)

This crucial identity implies that the total field can be rep-
resented in terms of N amplitudes, Bβ , β = {1, 2, . . . , N }:

w(r) = eik·r +
N∑

β=1

Bβ

∑

Rm

eik·RmG(r − Rβ − Rm). (15)

The amplitudes can be found by the same method as for the
single cluster. Thus, our setting r = Rα in Eq. (15) gives a
linear system of N equations:

N∑

β=1

(μ−1
α δαβ − χαβ)Bβ = eik·Rα , (16)

with

χαβ =
∑

Rm

eik·RmG(Rα − Rβ − Rm). (17)

C. Solution of the forward-scattering grating problem

The N cluster repeats along a line,

Rm = max̂, m ∈ Z, (18)

and therefore we can use the lattice-sum identity (see
Appendix A):

∑

Rm

eik·RmG(r − Rm) = G0

∑

n∈Z

ei(kx+gn)x

×
(

e−ζ−|y|

ζ−
− e−ζ+|y|

ζ+

)

, (19)
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where G0 = 1
4Dk2a

, gn = 2π
a n, and ζ± = [(kx + gn)

2 ±
k2]1/2, where Imζ− ≤ 0. Specifically, Eq. (19) implies that
the total field (15) is

w(r) = eik·r + G0

N∑

β=1

Bβ

∑

n∈Z

ei(kx+gn)(x−xβ)

×
(

e−ζ−|y−yβ |

ζ−
− e−ζ+|y−yβ |

ζ+

)

, (20)

where the N coefficients Bβ follow from Eqs. (16) and (17)
with [instead of the general form (10)]

χαβ = G0

∑

n∈Z

ei(kx+gn)(xα−xβ)

(
e−ζ−|yα−yβ |

ζ−
− e−ζ+|yα−yβ |

ζ+

)

.

(21)

This provides a much-more-computationally-efficient
expression than the slowly convergent Eq. (17). Note that
the semianalytical form for χαβ is a consequence of the fact
that the Green’s function can be expressed as a Fourier
integral. This indicates that the same procedure used in
Appendix A would apply to other wave systems for which
the Green’s function does not have a closed-form solution.

The ζ+ terms in the total field (20) all decay exponen-
tially away from the line, while the ζ− terms also decay
except for those for which ζ− is imaginary. The latter
define the finite set of propagating modes, P with NP
elements, defined as

P = {n ∈ Z : |kx + gn| < k}. (22)

These are the values for which ζ− is purely (negative)
imaginary and they correspond to the far-field diffraction
orders of the grating; all others are strictly near field. Note
that P always includes the value n = 0, so NP ≥ 1.

Let θ0 ∈ [0, π/2] be the angle of incidence relative to
the grating direction, so

k = kxx̂ + ky ŷ = k cos θ0x̂ + k sin θ0ŷ. (23)

In particular, kx = k cos θ0 implies that the direction of the
propagating mode n is defined by the angle

θn = cos−1
(

cos θ0 + 2π

ka
n
)

, θn ∈ (0, π), n ∈ P. (24)

Hence, P can be considered as the set of n for which θn is
real valued. The far-field diffracted displacement is

w(r) = eik·r + iG0

k

N∑

β=1

Bβ

∑

n∈P

1
sin θn

eik[(x−xβ) cos θn+|y−yβ | sin θn], |y| → ∞.

(25)

The individual diffracted modes are therefore

w(r) =
{∑

n∈P
tneik+

n ·x, y → ∞,
∑

n∈P
rneik−

n ·x, y → −∞,
(26)

where k+
n and k−

n are the wavenumbers of the transmitted
and reflected waves, respectively,

k±
n = k cos θnx̂ ± k sin θnŷ, n ∈ P, (27)

and the 2NP transmission and reflection coefficients follow
from Eqs. (25) and (26) as

tn − δn0
rn

}

= iG0

k sin θn

N∑

β=1

Bβ ×
{

e−ik+
n ·Rβ ,

e−ik−
n ·Rβ ,

n ∈ P.

(28)

Note that k+
0 = k, the incident wavevector, and that con-

servation of energy requires
∑

n∈P

(|rn|2 + |tn|2) sin θn ≤ sin θ0 (29)

with equality if the impedances μα are all real valued (no
damping).

Finally, we note that if all the scatterers lie along a line
parallel to the x axis (i.e., yβ = b for all β for some b), then

tn − δn0 = rne−i2kb sin θn , n ∈ P. (30)

The number of independent scattering coefficients is there-
fore greatly reduced. This redundancy has implications in
the selection of scatterer positions for the inverse grating
problem, which is considered next.

III. THE INVERSE GRATING PROBLEM

We are interested in controlling the reflection and trans-
mission coefficients through (inverse) design of the grat-
ing. For instance, Fig. 2 shows a grating that makes all but
one of the scattered modes vanish; in this case all except
the n = −1 mode. Specific designs for this type of grating
are given below. The design and control is achieved with
use of the combined degrees of freedom of the cluster spa-
tial distribution, Rm, the scatterers’ positions, Rα , and their
impedances, μα . We consider the incident direction θ0 and
the nondimensional frequency ka as given quantities. The
inverse problem as posed is still highly nonunique since
there could be multiple configurations that achieve the
same objective. We therefore concentrate on specific geo-
metrical configurations for the cluster distributions, such
as a cluster of N = 3 scatterers positioned at the vertices
of a triangle or along a line. This allows us to focus on
the inverse problem of finding the impedances, and specif-
ically on making them passive but with as little damping
as possible so that all of the incident energy is channeled
into the selected-mode diffraction.
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FIG. 2. A grating that channels all of the wave
energy into the n = −1 diffracted mode.

A. Inverting for impedances

Equation (16) written in matrix form is

E = MB, (31)

where the N × N matrix M follows from Eq. (16) and the
N -vector E contains the incident-wave amplitudes at the N
scatterer positions:

M = μμμ−1 − χχχ , µ =

⎛

⎜
⎜
⎝

μ1 0
μ2

. . .
0 μN

⎞

⎟
⎟
⎠ ,

E =

⎛

⎜
⎜
⎜
⎝

eik·R1

eik·R2

...
eik·RN

⎞

⎟
⎟
⎟
⎠

. (32)

The elements of the N × N matrix χχχ are defined by the
infinite sums (20). Using the fact that μμμ is diagonal, we
can reconsider Eq. (31) as an equation for μμμ in terms of
the amplitudes Bα:

μ−1
α = (eik·Rα + eT

αχχχB)/Bα , (33)

where the elements of the N -vector eα are zero except for
the αth, which is unity. To proceed we need to obtain the
amplitudes B.

The goal is to control transmission coefficients, so
we therefore collect the transmission and reflection
coefficients into a 2NP-vector denoted by T = [(tn −
δn0)(sin θn/sin θ0), rn(sin θn/sin θ0)]T with n ∈ P. The vec-
tor length, 2NP, depends on the number of diffraction
orders. We may rewrite the equations for the transmission
and reflection coefficients, Eq. (28), as

T = SB, (34)

with S, a 2NP × N matrix, collecting the exponential terms
related to scatterer positions:

S = iG0

k sin θ0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e−ik+
0 ·R1 e−ik+

0 ·R2 · · · e−ik+
0 ·RN

e−ik−
0 ·R1 e−ik−

0 ·R2 · · · e−ik−
0 ·RN

e−ik+
−1·R1 e−ik+

−1·R2 · · · e−ik+
−1·RN

e−ik−
−1·R1 e−ik−

−1·R2 · · · e−ik−
−1·RN

...
...

...
...

e−ik+
nP ·R1 e−ik+

nP ·R2 · · · e−ik+
nP ·RN

e−ik−
nP ·R1 e−ik−

nP ·R2 · · · e−ik−
nP ·RN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(35)

where nP indicates the NPth diffracted mode.
We focus on the inverse grating problem of eliminating

all but one of the 2NP transmission and reflection coeffi-
cients. Suppose we want all coefficients to vanish except,
for instance, tm or rm; then Eq. (34) provides 2NP − 1 iden-
tities. To have a solvable linear but not overdetermined
system we require that the number of unknowns equals
the number of knowns, implying a relation between the
number of scatterers and the number of diffracted modes:

N = 2NP − 1. (36)

The magnitude of the remaining coefficient must satisfy
Eq. (29), implying

T̂ = ŜB, (37)

where the N -vector T̂ (N = 2NP − 1 vector) follows from
T by removal of the row for tm or rm, and the square N ×
N matrix Ŝ is obtained from the 2NP × 2NP − 1 matrix
S by removal of the row corresponding to the uncon-
strained coefficient (tm or rm). The N -scatterer amplitudes
are therefore

B = Ŝ
−1

T̂. (38)

It is important to note that we are assuming a nonsingu-
lar Ŝ; the possibility and implications of Ŝ being singular
are discussed later. Substitution of B into (33) yields the
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impedances in terms of the transmission/reflection vector
T̂ as

μ−1
α = eik·Rα + eT

αχχχ Ŝ
−1

T̂

eT
αŜ

−1
T̂

, α = 1, 2, . . . , N . (39)

Equation (39) provides a simple inversion procedure at a
given frequency for a given arrangement of scatterers, the
number of which, N , is related to the number of diffrac-
tion orders, NP, by Eq. (36). The latter implies that the
number of scatterers is odd. The solution [Eq. (39)] yields
complex values for the impedances. A realistic solution
requires the further condition that the impedances are pas-
sive, which is the case only if Imμα ≥ 0 (Imμ−1

α ≤ 0) for
all α = 1, 2 . . . , N .

An explicit solution follows for the case in which all
coefficients vanish except for the fundamental transmis-
sion t0. Then T̂ = 0, implying, from Eq. (39), that μα = 0.
The solution is trivial: there is no grating. For every other
case, no matter which of the remaining N = 2NP − 1 coef-
ficients is chosen as the one that is nonzero, the N -vector
T̂ has the same form:

T̂ = (−1, 0, 0, . . . , 0) = −e1. (40)

Equation (39) therefore simplifies to

μ−1
α = eT

αχχχ Ŝ
−1

e1 − eik·Rα

eT
αŜ

−1
e1

, α = 1, 2, . . . , N . (41)

In summary, if the impedances satisfy Eq. (41) then all but
one of the transmission and reflection coefficients vanish.

The matrix Ŝ is invertible if and only if it is full rank
(i.e., with N linearly independent rows). If the scatter-
ers are positioned along a line parallel to the x axis at
the common coordinate yβ = b, then with reference to

Eq. (35), e−ik+
n ·Rα = e−ik−

n ·Rα e−i2kb sin θn . This implies that Ŝ
has at most (N − 1)/2 linearly dependent rows, and there-
fore the rank of the matrix falls precipitously from N to
1
2 (N + 1) = NP; see Eq. (36). Despite this singularity, it
may happen that Eq. (41) has a finite value by virtue of it
containing Ŝ

−1
e1 in the numerator and in the denominator.

Also, Ŝ
−1

e1 itself can be finite even though Ŝ is singular,
as is the case in the example in Appendix B. Finally, the
obvious exception to this discussion is the simplest, N = 1,
which is considered next.

IV. EXAMPLES AND APPLICATIONS

Following the theoretical developments for the inverse
design of gratings outlined in Sec. III, we now present
and discuss examples and applications. We first focus on
the simple case of N = 1, when only one diffracted mode
exists; that is, n ∈ P = {0}. A more-complex design for
N = 3 (with P = {−1; 0}) is then developed with partic-
ular focus on the inverse design of the cluster. This config-
uration is used to find scatterer configurations resulting in
the negative refraction of waves at the grating.

The negative refractor consists of a grating that diverts
an incoming wave in such a way that if the angle the wave
makes with the x axis is θ0, that of the transmitted wave
is π − θ0. This is indeed the “refraction” version of the
retroreflector, in which the incident wave is retroreflected.
From the diffraction point of view we assume that the
selected angle of incidence θ0 allows two diffracted modes
P = {−1; 0}. We also want the angle of the n = −1 mode
to be θn = π − θ0; therefore, with k = 2π/λ Eq. (24) gives

− cos θ0 = cos θ0 − λ

a
, (42)

which sets up the ratio λ/a = 2 cos θ0 (or ka = π sec θ0).
A configuration of N = 3 scatterers is used to demonstrate
the negative refractor.

(a) (b) FIG. 3. Two investigated clus-
ter configurations: linear (left) and
triangular (right).
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FIG. 4. Imaginary parts of the complex-valued impedance μ1 (left) and μ2 (right) in the unit of a2/D as functions of d and θd for
a fixed incident-wavevector angle θ0 = π/4 and k = π/(a cos θ0) (for a = 1) for the N = 3 linear-cluster negative refractor. The plot
shows only regions for which the impedances are passive: Imμ1, μ2 ≥ 0.

A. The simple grating: N = 1

By assumption, the fundamental is the only diffracted
order and the only transmission/reflection coefficients are
related by t0 = r0 + 1, assuming with no loss in generality
that it is positioned at R1 = 0. Equation (41), the condi-
tion for total reflection (t0 = 0 ⇒ r0 = −1), reduces to a
scalar relation:

μ−1 = χ − iG0

k sin θ0
, (43)

where χ = χαα follows from Eq. (21). In particular [9],
since P = {0},

χ − iG0

k sin θ0
≡ χ1 = −G0

k
√

1 + cos2 θ0

+ G0

∑

n∈Z\0

[
1

√
(kx + gn)2 − k2

− 1
√

(kx + gn)2 + k2

]

,

(44)

where χ1 is real. Total reflection can therefore be achieved
with real impedance μ = χ−1

1 , a result previously obtained
in Ref. [9].

Since there is only one scattering coefficient in this case
(because t0 = r0 + 1), it is of interest to see what other
values of t0 can be achieved. Instead of using Eq. (40),
we retain t0 	= 0 and set T̂ = t0 − 1. Equation (39) then
simplifies to

μ−1 = iG0t0
k sin θ0(t0 − 1)

+ χ1. (45)

Equation (45) provides an explicit expression for the
impedance for a given incident direction θ0, lattice spacing
a, wavenumber k, and transmission t0. The impedance is
complex valued, indicating damping is necessary, except
for the two limiting values t0 = 0, discussed above, and
t0 = 1, which is the trivial limit of μ = 0 (i.e., no grating).

What other values of t0 can be achieved with a pas-
sive impedance? Recall that a passive impedance main-
tains or dissipates energy, as opposed to an active

FIG. 5. Real parts of the impedances μ1 (left) and μ2 (right) in the unit of a2/D as functions of d and θd for incident-wavevector angle
θ0 = π/4 and k = π/(a cos θ0) (for a = 1) for the N = 3 linear-cluster negative refractor. The plot is restricted to passive impedances;
see Fig. 4.
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FIG. 6. Magnitude of the transmission coefficient t−1 for the
designed linear three-cluster negative refractor as a function of
(d, θd) plotted in polar coordinates. The regions shown corre-
spond to passive μα for all α, and the labels on the selected points
correspond to the clusters in Table I.

impedance, which requires an external energy source. The
impedance is passive if and only if Imμ−1 ≤ 0 [see, e.g.,
Eq. (3)]. Equation (45) gives a passive μ if and only if
Re[t0/(t0 − 1)] ≤ 0. Hence,

t0 = |t0|eiφ , |t0| ≤ cos φ ⇔ passive μ. (46)

In addition to the limits t0 = 1 and t0 = 0 discussed above,
this provides the entire range of transmission coefficients
achievable with N = 1.

B. The next-simplest grating: N = 3

There are two diffracted modes, P = {−1; 0}, if the
angle of incidence θ0 is large enough, which is now
assumed. Following the discussion in Sec. III, we need
three scatterers, N = 3, to control three of four reflection
and transmission coefficients. With the goal of designing
a negative refractor, we want the only propagating mode,
among all modes transmitted through or reflected from the
grating, to be the transmitted n = −1 order. A grating that
sends all of the incident energy into the transmitted n = −1

mode has matrix Ŝ:

Ŝ = iG0

k sin θ0

⎛

⎜
⎝

e−ik+
0 ·R1 e−ik+

0 ·R2 e−ik+
0 ·R3

e−ik−
0 ·R1 e−ik−

0 ·R2 e−ik−
0 ·R3

e−ik−
−1·R1 e−ik−

−1·R2 e−ik−
−1·R3

⎞

⎟
⎠ . (47)

We consider two particular geometrical setups for N = 3
clusters; namely, a linear cluster and a triangular clus-
ter, as shown in Fig. 3. In each case we parametrize
the cluster by the spacing between the scatterers and
the rotation angle of the cluster, d and θd, respectively.
The positions of the scatterers in the cluster are then
R1 = (0, 0) and R 2

3
= ±d(cos θd, sin θd), d > 0, for the

linear cluster and R1 = d/
√

3(− sin θd, cos θd) and R 2
3

=
d/

√
3[sin(θd ∓ π/6), − cos(θd ∓ π/6)] for the triangular

cluster.
The design process for a grating consists in finding the

scatterers’ impedances and positions (d, θd). Among all
possible solutions, we are interested in passive cluster con-
figurations, (i.e., Imμα > 0 for all α) that correspond to
the largest-possible transmission coefficient |t−1|. The lat-
ter would imply that possibly a large portion of the energy
of the incident wave is sent into the transmitted n = −1
mode, resulting in the negative refractor. From a practical
perspective, a particularly interesting cluster setup would
satisfy Imμα = 0, resulting in spring-mass configurations
of the scatterers only (no damping).

In the following examples we assume the incident
wavevector k = π/(a cos θ0) at angle θ0 = π/4. In each
case all but t−1 reflection and transmission coefficients in
T̂ are set to zero. We also assume, for simplicity, D = 1
and a = 1.

C. Numerical examples

1. Results for the linear cluster

We begin by inverting Ŝ from Eq. (47) and using
Eq. (39) to solve for impedances. Figures 4 and 5 show,
respectively, the imaginary and real parts of the complex-
valued impedance μ1 and μ2 (μ3 is similar to μ2 due to the
symmetry of the cluster) for θd ∈ (0, 2π) and d ∈ (0, a).
As we are interested in passive solutions only, the plots in
Figs. 4 and 5 are limited to (d, θd) combinations, result-
ing in Imμα > 0 for respective scatterers independently. A
cluster with passive damping properties can be constructed

TABLE I. Selected cluster configurations for N = 3; see Fig. 3. The factor 102 applies to all values except those in the first row.

Linear cluster 1 Linear cluster 2 Triangular cluster 1 Triangular cluster 2

(d, θd) (0.225, π/2) (0.751, π/2) (0.7484, 0.9237) (1.438, 1.281)

μ1a2/D 9.7253 + 0.2878i −1.2684 + 0.0095i −1.8861 + 0.0141i −3.4707 + 0.1240i
μ2a2/D 2.2272 + 0.0022i −0.8477 + 0.0043i −0.6507 + 0.5238i −4.0771 + 0.0308i
μ3a2/D 2.1609 + 0.0370i −0.8308 + 0.0120i 1.5165 + 0.0588i −0.4929 + 0.3752i
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FIG. 7. Reflection and transmission coefficients for linear clus-
ter 1 computed for impedances given in Table I for complex
values of μα and for Imμα = 0. The vertical dash-dotted line
at k × a = π/ cos π/4 indicates the operating frequency of the
grating. coe, coefficient; LHS, left-hand side.

only by selection of scatterers’ positions corresponding to
impedances satisfying Imμα > 0 for all α. Those combina-
tions of (d, θd) with the values of |t−1| are shown in Fig. 6.

Cluster configurations corresponding to the highest val-
ues of |t−1| are preferred. The largest values of |t−1| in
Fig. 6 are obtained for clusters oriented vertically. Figure 6
also indicates that zero-transmission points occur at cluster
angles perpendicular or parallel to the incident wavefront.
For detailed investigation we select (d, θd) pairs with large
values of |t−1|; namely, (0.225, π/2) and (0.751, π/2). The
corresponding impedances of the scatterers are listed in
Table I. The two selected clusters differ only in the (ver-
tical) spacing d, and the difference between the two values,
d2 − d1 ≈ 0.5, corresponds to a phase change of ky(d2 −

FIG. 8. Reflection and transmission coefficients for linear clus-
ter 2 computed with impedances from Table I for complex values
of μα and for Imμα = 0. The vertical dash-dotted line at k × a =
π/ cos π/4 indicates the operating frequency of the grating. coe,
coefficient; LHS, left-hand side.

d1) ≈ π/2. Other points with the same high transmission
correspond to 2π phase change in the y direction, and
are situated outside the region shown above (and below)
clusters 1 and 2.

It might seem surprising that the optimal orientation of
the linear cluster is vertical, since it is clear from Eq. (47)
and the identities k±

−1 = −k∓
0 for the negative refractor that

if the three scatterers are on a line parallel to the y axis,
then the second and third rows of Ŝ are identical, making
the matrix singular. However, it is shown in Appendix B
that even though the matrix Ŝ is indeed singular for θd =
π/2, the vector Ŝ

−1
e1 that appears in Eq. (41) remains

finite. The symmetry of the three-cluster for θd = π/2 also

FIG. 9. Real parts of the complex-valued impedance μ1 (left) and μ2 (right) in the unit of a2/D as functions of d and θd for the
incident wave θ0 = π/4 and k = π/(a cos θ0) (with a = 1) for the N = 3 triangular-cluster negative refractor.
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FIG. 10. Imaginary parts of the impedance μ1 (left) and μ2 (right) in the unit of a2/D for the incident wave θ0 = π/4, k =
π/(a cos θ0) (for a = 1) for the N = 3 triangular-cluster negative refractor.

implies that the matrix χχχ in Eq. (17) is symmetric with
only three independent elements, since χ11 = χ22 = χ33
and χ12 = χ13.

With use of impedances and cluster configurations from
Table I, reflection and transmission coefficients and plate
displacements at the scatterers are computed for a wide
range of k × a. Results for linear clusters 1 and 2 are shown
in Figs. 7 and 8, respectively.

Horizontal continuous red lines in Figs. 7 and 8 (and
later figures) define the energy-conservation threshold
sin θ0 of Eq. (29), while the dotted red lines depict the
energy associated with all propagation modes; that is, the
left-hand side of Eq. (29). Conservation of energy requires

FIG. 11. Transmission magnitude |t−1| of the designed
triangular-cluster negative refractor as a function of the scatter-
ers’ radial, d, and angular, θd, coordinates. The plotted regions
correspond to passive μα for all α, and the labels correspond to
the selected clusters in Table I.

that the continuous line is above the dotted line, which is
always the case in the examples considered.

Figures 7 and 8 illustrate relatively high transmission
coefficients (approximately 0.97) for the n = −1 diffracted
mode for the linear clusters, meaning that almost all energy
incident on the grating is converted to this mode. Of the
two configurations, cluster 1 is more broadband (i.e., it
achieves similar transmission properties for a wider range
of k × a).

We next relax the restrictions on the impedances given
in Table I by using only their real parts, with the results
shown in Figs. 7 and 8 for linear clusters 1 and 2,
respectively. It can be seen that for both clusters, the
reflection and transmission coefficients of the diffracted

FIG. 12. Reflection and transmission magnitudes for trian-
gular cluster 1 defined in Table I for complex values of μα

and for Imμα = 0. The vertical dash-dotted line at k × a =
π/ cos π/4 indicates the operating frequency. coe, coefficient;
LHS, left-hand side.
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FIG. 13. Reflection and transmission magnitudes for triangu-
lar cluster 2 with properties from Table I for complex values of
μα and for Imμα = 0. The vertical dash-dotted line at k × a =
π/ cos π/4 indicates the operating frequency of the grating. coe,
coefficient; LHS, left-hand side.

modes that were previously almost zero are now slightly
increased; however, the target t−1 coefficient is still near
unity (0.999). Also, cluster 1 displays better broadband

characteristics than cluster 2, the latter being more sensi-
tive to precise selection of k. It is interesting to note that
cluster 2 has small damping to begin with. Also, the real
parts of the impedances in both clusters are all positive
(cluster 1) or negative (cluster 2).

2. Results for the triangular cluster

Figures 9 and 10 show, respectively, real and imaginary
parts of the complex-valued impedance μ1 and (symmet-
ric) μ2 (μ3 is also symmetric with respect to μ2 due to the
symmetry of the cluster) for θd ∈ (0, 2π) and d ∈ (0, a) for
the triangular cluster. Again, Figs. 9 and 10 only show the
parts of the (d, θd) plane for which Imμ > 0. Combinations
of (d, θd) with the values of |t−1| satisfying Imμα > 0 for
all α (i.e., a passive cluster) are shown in Fig. 11.

As for the linear cluster, we select (d, θd) pairs with rel-
atively large values of |t−1|. For the triangular cluster these
are (0.7484, 0.9237) and (1.438, 1.281), with impedances
listed in Table I. Figures 12 and 13 show the reflection
and transmission coefficients as a function of k × a for
the chosen triangular clusters 1 and 2. Triangular cluster
1 displays a moderate broadband response, while the tri-
angular cluster 2 exhibits a narrowband response, and thus
sensitive to the frequency of the incident wave.

Figures 12 and 13 also show the reflection and trans-
mission characteristics for triangular clusters 1 and 2,

FIG. 14. Field maps of the diffraction of a plane wave by the different clusters of resonators as defined in Table I. The upper panels
show the full solution and the lower panels show the same cluster but with Imμα = 0. The black dots represent the point impedances
within one period of the infinite grating.
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FIG. 15. The total field amplitude for plane-wave incidence on finite gratings of 30 clusters. The parameters are otherwise the same
as in Fig. 14 for the infinite grating.

respectively, computed with only the real parts of the
impedances, given in Table I. Our setting the imaginary
parts of the impedances to zero results in a significant
drop in grating performance. The reflection and trans-
mission coefficients that were zeroed out with the com-
plex impedance now assume high values, exceeding the

transmission coefficient of the n = −1 diffracted mode
in all cases. This contrasts with the linear clusters, for
which the effect of setting Imμα = 0 is minimal; see
Figs. 7 and 8. The difference can be explained by the
observation from Table I that the impedances of the lin-
ear clusters are all lightly damped, while each of the

FIG. 16. Multiple-
scattering simulations
of finite gratings under
Gaussian-beam excitation.
The parameter σ repre-
sents the degree of random
disorder that has been
added to all the scatterers
of the cluster.
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FIG. 17. Sensitivity parameters for linear cluster 1 (d = 0.225, θd = π/2): (a) sensitivity parameters for individual changes in scatter-
ers’ (S1–S3) positions (x and y) for the four reflection and transmission coefficients of the diffracted modes (for fixed μ); (b) sensitivity
parameters for individual changes in scatterers’ real and imaginary parts of impedances (μ1–μ3) for the four diffracted modes reflection
and transmission coefficients (fixed S1–S3 positions).

triangular clusters has one impedance that is significantly
damped.

3. Infinite and finite retroreflector gratings with disorder

Figure 14 shows the field distributions for the designed
N = 3 gratings. The upper panels show the simulation of
an incident plane wave from the negative y direction with
angle of incidence θ0 = π/4 and incident wavenumber for
the different configurations defined in Table I. The lower
panels show results for the same cluster after our setting the
imaginary part equal to zero. The negative refraction is evi-
dent in the simulations, and it is clear as well that the larger
the imaginary part of μα , the weaker the refracted wave.
This is a consequence of the loss of wave energy caused
by the highly damped resonators, although it is noted that

the channeling of all the energy toward the n = −1 mode is
still efficient in the sense that other modes are zeroed out,
as designed. Overall, we see how ignoring the imaginary
part has no visible effect in the linear cluster but drastically
diminishes the amplitude of the refracted mode in the trian-
gular clusters. As noted above, the reason for this may be
understood from the fact that scatterers of the linear clus-
ters are lightly damped but the triangular clusters have at
least one highly damped impedance; see Table I.

Finally, Figs. 15 and 16 demonstrate that the effects
predicted for the infinite grating are robust under finite lim-
itations on the grating size, for finite incident beams, and in
the presence of positional disorder. Thus, the same effects
as observed for the infinite grating in Fig. 14 are appar-
ent in Fig. 15, which shows the total field for incidence

FIG. 18. Sensitivity parameters for linear cluster 2 (d = 0.75, θd = π/2): (a) sensitivity parameters for individual changes in scatter-
ers’ (S1–S3) positions (x and y) for the four reflection and transmission coefficients of the diffracted modes (for fixed μ); (b) sensitivity
parameters for individual changes in scatterers’ real and imaginary parts of impedances (μ1–μ3) for the four diffracted modes reflection
and transmission coefficients (fixed S1–S3 positions).
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FIG. 19. Sensitivity parameters for triangular cluster 1 (d = 0.75, θd = 0.92): (a) sensitivity parameters for individual changes in
scatterers’ (S1–S3) positions (x and y) for the four reflection and transmission coefficients of the diffracted modes (for fixed μ); (b)
sensitivity parameters for individual changes in scatterers’ real and imaginary parts of impedances (μ1–μ3) for the four diffracted
modes reflection and transmission coefficients (fixed S1–S3 positions).

on a finite grating of 30 clusters of the linear and tri-
angular configurations. The same finite configuration is
considered in Fig. 16 for Gaussian-beam incidence and
for imperfections in the grating. The simulations indi-
cate that good agreement with the infinite system under
plane-wave incidence is expected for zero and small levels
of disorder.

V. PRACTICAL CONSIDERATIONS ON
SCATTERERS AND CLUSTERS

The grating performance, in terms of its reflection and
transmission properties, depends on deviations of actual
operation conditions from designed ones. Here we con-
sider the performance as a function of deviations in scat-
terer positions, impedances, and the operating wavelength.

Anomalous refractors and reflectors are obviously nar-
rowband, since the effect is due to diffraction, which by
definition is wavelength dependent [see Eq. (24)]. How-
ever, this dependence is smooth, so small deviations from
the angle of incidence or desired wavelength produce
small deviations in the diffracted angle. This is also true
for the channeling of energy; as can be seen in Figs. 7
and 8, the frequency dependence of the energy exchange
between modes is smooth around the optimal value. Small
variations about the optimal point produce small addi-
tional scattered waves, while the overall effect remains
unchanged.

We have already seen in in Figs. 7, 8, 12, and 13 how the
reflection and transmission coefficients depend on changes
in the incident wavenumber for linear and triangular

FIG. 20. Sensitivity parameters for triangular cluster 2 (d = 0.75, θd = 0.92): (a) sensitivity parameters for individual changes in
scatterers’ (S1–S3) positions (x and y) for the four reflection and transmission coefficients of the diffracted modes (for fixed μ); (b)
sensitivity parameters for individual changes in scatterers’ real and imaginary parts of impedances (μ1–μ3) for the four diffracted
modes reflection and transmission coefficients (fixed S1–S3 positions).
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clusters, respectively. Figures 17–18 illustrate the influ-
ence of changes in scatterer positions [Figs. 17(a), 18(a),
19(a), and 20(a)] and impedances [real and imaginary
parts, Figs. 17(b), 18(b), 19(b), and 20(b)] on reflection
and transmission coefficients for the linear and triangular
clusters.

These sensitivity studies show that dependence on the
horizontal (x) positions of the grating scatterers is negli-
gible. They also indicate that linear clusters display small
sensitivity to the position of the central scatterer. Linear
cluster 1 (i.e., a linear configuration with small scatterer
spacing) shows sensitivity measures related to position
changes that are 2 orders of magnitude smaller than for
the other clusters (linear cluster 2 and triangular clusters 1
and 2). The target transmitted mode coefficient, t−1, is the
least-sensitive parameter to changes inthe scatterers’ posi-
tions [see Figs. 17(a), 18(a), 19(a), and 20(a)], meaning
that grating performance will be affected more by increase
in other diffracted-mode amplitudes than by decrease in the
target-mode amplitude, t−1.

In general, it can be seen that for both cluster types
(i.e., linear and triangular) small (negligible) variations
in reflection and transmission coefficients are expected
for small shifts of all scatterers’ positions, as shown
in Figs. 17(a), 18(a), 19(a), and 20(a). Also, for the
impedance values given in Table I, the relatively small
impact of changes in impedances (real and imaginary
parts) on reflection and transmission coefficients can be
seen from Figs. 17(b), 18(b), 19(b), and 20(b). For both
cluster types, damping properties are critical to the grating
performance. For the two linear clusters considered and tri-
angular cluster 2, it is seen that damping—related to the
imaginary part of impedance—has the highest influence
on t−1.

VI. SUMMARY

We describe a general approach for the inverse design
of gratings for flexural waves in thin plates. Using a one-
dimensional periodic arrangement of clusters of a finite
number of point attachments, one can channel the incident
energy toward a desired direction. The general solution
for the inverse problem requires a cluster of both active
and passive attachments; however, it is possible to find
solutions with only passive point scatterers. The required
mechanical properties of the attached scatterers are defined
by the impedances, which are obtained by our solving
a linear system of equations. We show through specific
examples that some configurations, the linear clusters, pos-
sess very low dissipation, resulting in very high conversion
to the desired refracted mode. It should be noted that the
impedances of the cluster elements are linearly related
to the desired diffraction parameters; the design process
requires only a matrix inversion. The present approach,
although derived for flexural waves and for the specific

example of the negative refractor, can be easily exported
to other waves and devices.
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APPENDIX A: PLATE GREEN’S FUNCTION

The Green’s function, which satisfies

D[�2G(r) − k4G(r)] = δ(r), (A1)

can be readily obtained with use of a double Fourier
transform as

G(r) = 1
D(2π)2

∫

R2

ei(ξx+ηy)dξdη

(ξ 2 + η2)2 − k4 . (A2)

Evaluation of the η integral with use of the Cauchy residue
theorem gives

G(r) = 1
2π

∫

R

dξeiξxf (ξ , y), (A3a)

f (ξ , y) = 1
4Dk2

[
e−(ξ2−k2)1/2|y|

(ξ 2 − k2)1/2 − e−(ξ2+k2)1/2|y|

(ξ 2 + k2)1/2

]

.

(A3b)

Note that (ξ 2 − k2)1/2 = −i
√

k2 − ξ 2 for |ξ | < k. The
explicit form [Eq. (6)] follows with use of known integral
representations for the Hankel function.

The line sum

∑

m∈Z

eikxmaG(r − max̂) =
∑

m∈Z

1
2π

∫

R

dξeima(kx−ξ)eiξxf (ξ , y)

(A4)

can be simplified with use of the Poisson summation
formula

∑

m∈Z

1
2π

∫

R

due±imuF(u) =
∑

n∈Z

F(2πn). (A5)
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Hence,

∑

m∈Z

eikxmaG(r − max̂) = 1
a

∑

n∈Z

ei[kx+(2π/a)n]x

× f
(

kx + 2π

a
n, y

)

, (A6)

with f defined in Eq. (A3b). This gives the identity (19).

APPENDIX B: THE N = 3 RETROREFLECTOR
GRATING, LINEAR CLUSTER

If we assume a configuration of N = 3 scatterers and use
the fact that k±

−1 = −k∓
0 for the negative refractor, Eq. (47)

becomes

Ŝ = iG0

k sin θ0

⎛

⎜
⎝

1 e−ik+
0 ·R2 e−ik+

0 ·R3

1 e−ik−
0 ·R2 e−ik−

0 ·R3

1 eik+
0 ·R2 eik+

0 ·R3

⎞

⎟
⎠ . (B1)

Taking R2 = R+ and R3 = R−, where R± = ±d(cos θd,
sin θd), we have

Ŝ = iG0

k sin θ0

⎛

⎝
1 e−iφ− eiφ−

1 e−iφ+ eiφ+

1 eiφ− e−iφ−

⎞

⎠ , (B2)

where φ± = kd cos(θd ± θ0). Note that

det Ŝ = 4G3
0

(k sin θ0)3 (cos φ− − cos φ+) sin φ−

= −
(

2G0

k sin θ0

)3

sin[kd cos(θd − θ0)]

× sin(kd cos θd cos θ0) sin(kd sin θd sin θ0), (B3)

which clearly vanishes at the “forbidden” values θd = 0,
π/2, and π . However, with reference to Eq. (41),

Ŝ
−1

e1 = k sin θ0

4iG0 sin φ− sin 1
2 (φ+ − φ−)

×

⎛

⎜
⎜
⎝

−2 cos
1
2
(φ+ + φ−)

ei(φ+−φ−)/2

ei(φ−−φ+)/2

⎞

⎟
⎟
⎠ , (B4)

which is well defined for θd = π/2 even though det Ŝ = 0
at that angle.
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