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A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic
circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set
of stochastic differential equations, in which the resonator field variables represent random samplings of the
Wigner quasiprobability distributions. Although the semiclassical approach involves making a large-
photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement
between the semiclassical and full-quantum simulation results in the parameter regime of interest. The
semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and
hundreds of components in total and functions as a four-bit ripple counter. The error rate as a function of
on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not
increase as signals propagate through the circuit, an important property for scalability.

DOI: 10.1103/PhysRevApplied.1.054005

I. INTRODUCTION

While all-optical logic has historically been difficult to
implement [1], recent progress in micro- and nanoscale
optical devices has renewed interest in this subject, as it can
allow pushing energy consumption to regimes that have not
been attainable in bulk optical systems. In room-
temperature experiments, carrier-based optical switching
has been demonstrated at 100-fJ pulse energies in silicon
devices [2] and at sub-fJ pulse energies in devices made
from III-V materials [3], where bistable optical memories
have also been implemented [4]. Switching based on far-
off-resonant (Kerr) nonlinearities typically requires higher
powers but has been demonstrated at < 1 pJ in ring
resonators made from amorphous silicon [5]. In low-
temperature experiments, fJ-scale optical logic has been
achieved in exciton-polariton systems [6], and switching
near the single-photon level has been achieved in quantum
dots coupled to photonic-crystal resonators [7,8]. Low-
temperature atomic ensembles can also be used quite
effectively for low-photon-number switching [9,10].
Thus, low-temperature switching experiments are already
well into regimes where quantum effects are important for
the switching dynamics [11], and room-temperature devi-
ces may soon reach such regimes, as well.
Therefore, simulation tools that can predict quantum

effects in the 10–1000 photon regime are needed. Such
effects include random errors due to quantum jumps,
and new types of behavior that might occur when
many components interact through coherent signals.

Full-quantum simulation methods, such as the SLH
model (the letters referring to scattering, collapse, and
Hamiltonian operators) [12] and its implementation within
the Quantum Hardware Description Language (QHDL) [13]
may be used to study circuits containing one to three
idealized components, but the exponential scaling of the
state space with respect to the number of resonators
requires some kind of approximation to be made before
larger circuits can be studied [13–16].
Here, we describe semiclassical simulations following a

method that can be applied to large-scale networks of Kerr-
nonlinear resonators connected through linear optics. The
stochastic differential equations we use are similar to
equations used previously [17], with the dynamic field
variables representing a random sampling of the Wigner
quasiprobability distribution. We combine this model with
a circuit solver that automatically converts a netlist, which
describes an optical circuit topology, into a set of matrices
representing the stochastic differential equations (see
Sec. II E for a more detailed discussion of the netlist).
This allows us to construct large circuits based on multiple
layers of subcircuits, such as the four-bit ripple counter
described below. The computation time scales polyno-
mially with the number of components, and in many
circuits, the scaling is approximately linear. Even though
our model uses just one complex variable to describe each
resonator, for the parameter regime of interest, we can
reproduce the spontaneous switching events in one- or two-
element circuits predicted by a full-quantum simulation.
When the noise terms are removed, our model is the same
as the coupled mode theory [18] (with energy scaled in
photon units), and, thus, the same tool can be used to*charles.santori@hp.com
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perform classical simulations. Our results indicate that a
pure Kerr nonlinearity combined with auxiliary coherent
inputs can be used to create arbitrary logic, with tolerance
to moderate linear loss, and adequate signal restoration for
cascading. Such circuits can function with negligible errors
at intracavity energies down to a few tens of attojoules.

II. SIMULATION METHOD

Suppose we have an optical circuit consisting of a set of
nonlinear resonators connected by linear optical compo-
nents, including waveguides, beam splitters, and phase
shifters, and driven by coherent external inputs. When
simulating such a circuit, we are interested in characterizing
both its internal state as well as the resulting output fields.
In modeling the internal state, we only keep track of long-
lived resonator modes within the photonic structure and
assume that the fields propagating in the interconnecting
waveguides can always be described in terms of these
resonator modes and the input fields at the same instant in
time. This approximation made to simplify the computa-
tional treatment can be used for circuits with short con-
nections between components so that the circuit dynamics
occur on time scales much longer than the time it takes light
to propagate across the structure. It does not allow the
simulation of circuits where the propagation delays are
comparable to the resonator lifetimes (typically picosec-
onds) or where long delay lines have been intentionally
introduced (in our treatment, a delay line is just a phase
shift). In the future, the ability to simulate these types of
circuits can be implemented to first approximation (neglect-
ing dispersion) by introducing delays in the differential
equations.
Since we are interested in operating at fairly low light

intensities, quantum shot noise can play an important role
in the dynamics. Therefore, our model is of a stochastic
nature: The resonator fields as well as the inputs and
outputs are taken to be stochastic processes. In Sec. II A,
we show how the stochastic differential equation (SDE)
describing a resonator coupled to a single waveguide can be
derived from a Fokker-Planck equation for the Wigner
quasiprobability distribution. In Sec. II B, we extend this to
multiple inputs and outputs and present the SDE that is the
basis for our semiclassical model. In Sec. II C, we give the
input-output relations for some static components, and in
Sec. II D, we show an algebraic approach for converting a
circuit containing many components into a set of SDE
coupling matrices. Finally, in Sec. II E, we discuss the
software and numerical implementation of our model
and compare its results with those from full-quantum
simulations.

A. Single-mode resonator coupled to one waveguide

We start with the simplest open-system Kerr-nonlinear
resonator model featuring a single mode and a single

dissipative coupling to an external field in the vacuum.
This system is described by a Hamiltonian H and a single
collapse operator L given by

H ¼ Δa†aþ χa†2a2; ð1Þ

L ¼ ffiffiffi
κ

p
eiψa; ð2Þ

where a† and a are photon creation and annihilation
operators for the resonator, L is the Lindblad-collapse
operator [19] associated with photon leakage out of the
resonator at a rate κ, ψ is the coupling phase, Δ is the
resonator detuning from a reference frequency, and χ is
the nonlinearity. The corresponding Lindblad master
equation is given by

_ρ ¼ −i½H; ρ� þ LρL† − 1

2
ðL†Lρþ ρL†LÞ ð3Þ

consisting of the usual coherent part −i½H; ρ� and the
dissipative part D½L�ρ≔LρL† − 1

2
½L†Lρþ ρL†L�.

The well-knownWigner transform of an oscillator state ρ
is given by [20]

Wfρgðα; α�Þ≔ 1

π2

Z
d2βe−iβα�−iβ�αTrðeiβa†þiβ�aρÞ; ð4Þ

and from this we define the system’s Wigner function as
Wðα;α�; tÞ≔WfρðtÞg. To find out how the Wigner func-
tion evolves in time, we differentiate and substitute in the
master equation

∂tWðα; α�; tÞ ¼ W
�
d
dt

ρ

�
¼ Wf−i½H; ρ�g þWfD½L�ρg:

The Wigner distribution is useful because of the corre-
spondence between the quantum expectation values for the
mode operator moments and its moments, e.g.,

hai ¼ hαiW; ð5Þ

ha†i ¼ hα�iW; ð6Þ

hni ¼ ha†ai ¼ hα�αiW − 1

2
; ð7Þ

VarðnÞ ¼ hðn − hniÞ2i ¼ Varðα�αÞW − 1

4
; ð8Þ

Var

�
aþ a†

2

�
¼ Var

�
αþ α�

2

�
W
: ð9Þ

This means that instead of performing a full-quantum
simulation to evaluate operator expectation values, we
can, instead, sample directly from the Wigner distribution.

CHARLES SANTORI et al. PHYS. REV. APPLIED 1, 054005 (2014)

054005-2



A few calculations [17] show that

Wfaρg ¼
�
αþ ∂α�

2

�
Wfρg;

Wfρag ¼
�
α − ∂α�

2

�
Wfρg;

Wfa†ρg ¼
�
α� − ∂α

2

�
Wfρg;

Wfρa†g ¼
�
α� þ ∂α

2

�
Wfρg;

and these relations can be iterated to yield

Wf½a†a; ρ�g ¼ ð∂α�α
� − ∂ααÞWfρg;

Wf½a†2a2; ρ�g ¼ 2½∂α� ðα�α − 1Þα� − ∂αðα�α − 1Þα

þ 1

4
∂2
α∂α�α − 1

4
∂2
α�∂αα

��Wfρg;

WfD½a�ρg ¼ 1

2
½∂α�α

� þ ∂ααþ ∂α�∂α�Wfρg;

such that we ultimately find

∂tW ¼ −iΔð∂α�α
� − ∂ααÞW

− 2iχð∂α� ðα�α − 1Þα� − ∂αðα�α − 1ÞαÞW

− 2iχ

�
1

4
∂2
α∂α�α − 1

4
∂2
α�∂αα

�
�
W

þ κ

2
ð∂ααþ ∂α�α

� þ ∂α�∂αÞW: ð10Þ

As discussed in Ref. [17], in order to arrive at proper
Fokker-Planck equations, we must drop the third-order
derivatives, i.e., the third row in Eq. (10). This is justified in
the case of large photon numbers in the resonators, since,
assuming ∂α ∼ 1, the first-derivative terms containing χ are
a factor of approximately jαj2 larger. The remaining first-
and second-derivative terms can be considered as repre-
senting drift and diffusion, respectively, in a stochastic
process. We can rewrite the first- and second-derivative
terms of Eq. (10) as

∂tW ≈ −X
p

∂αpðApWÞ þ 1

2

X
p;p0

∂αp∂αp0 ½ðBBTÞp;p0W�;

ð11Þ

where αp with p ¼ fr; ig denotes the real or imaginary part
of α, and

Ar ¼ − κ

2
αr þ ½Δþ 2χðα2r þ α2i − 1Þ�αi; ð12Þ

Ai ¼ −
κ

2
αi − ½Δþ 2χðα2r þ α2i − 1Þ�αr; ð13Þ

Bp;p0 ¼ δp;p0

ffiffiffi
κ

p
2

: ð14Þ

The stochastic equation corresponding to Eq. (11) (see
Appendix B of Ref. [17]) is

dαp ¼ Apdtþ
X
p0

Bp;p0dWp0 ; ð15Þ

where the noise increments dWr and dWi are taken as
independent, zero-mean, Gaussian noise processes with
hdWpðt1ÞdWp0 ðt2Þi ¼ δp;p0δt1;t2dt. Combining the above
expressions, the Langevin equation for α ¼ αr þ iαi is

_αðtÞ ¼ −
�
κ

2
þ iΔþ 2iχ½α�ðtÞαðtÞ − 1�

�
αðtÞ

−
ffiffiffi
κ

p
e−iψβinðtÞ; ð16Þ

where βinðtÞ is a complex Wiener process βinðtÞ ¼
ηð1ÞðtÞ þ iηð2ÞðtÞ, with hηðmÞðtÞηðnÞðt0Þi ¼ 1

4
δmnδðt − t0Þ.

Note that we insert a phase factor of −e−iψ , which has
no effect on the stochastic process. However, with this
phase factor, driving the resonator with an arbitrary
coherent field (rather than using a vacuum state, as we
have done so far) displaces βinðtÞ → β̄inðtÞ þ ηðtÞ, where
β̄inðtÞ is a complex-valued deterministic function of time
equal to the input-field amplitude. We interpret βinðtÞ as
representing the input field in the waveguide, which
includes the quantum noise of a coherent state.
To obtain the output field in the waveguide, we can use

the input-output formalism [21,22], which describes how
input and output fields are related to each other and to a
scattering system. For a single waveguide coupled to a
system via a Heisenberg-picture coupling operator LðtÞ, the
input-output relation is given as boutðtÞ ¼ binðtÞ þ LðtÞ,
where binðtÞ and boutðtÞ are quantum operators representing
the input and output fields in the waveguide. For our
system, this leads to

βoutðtÞ ¼
ffiffiffi
κ

p
eiψαðtÞ þ βinðtÞ: ð17Þ

Alternatively, Eqs. (16) and (17) can be derived starting
from the Hamiltonian of a nonlinear resonator coupled to a
continuum of waveguide modes. In this picture, there are
no collapse operators. One first derives a set of Fokker-
Planck equations for both the resonator and waveguide
modes. It is again necessary to drop the third-derivative
terms associated with the Kerr nonlinearity. However, there
are no second-derivative terms [17]. The input and output
fields binðtÞ and boutðtÞ are then defined as Fourier sums of
the waveguide modes before and after interaction with the
resonator. Since the external modes are treated from the
beginning as quantum objects, the noise in βinðtÞ enters
directly through the quantum states of the external inputs.
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In this derivation, the inputs need not be coherent states,
though highly nonclassical states with negative Wigner
functions are still not allowed.

B. Single-mode resonators with multiple
inputs and outputs

With the above work, the generalization to multiple
inputs and outputs is straightforward. We, thus, assume a
Hamiltonian and vector of collapse operators

H ¼ Δa†aþ χa†2a2; ð18Þ

L ¼

0
BBBBBB@

ffiffiffiffiffi
κ1

p
eiψ1affiffiffiffiffi

κ2
p

eiψ2a

..

.

ffiffiffiffiffi
κn

p
eiψna

1
CCCCCCA
; ð19Þ

where we have allowed for different phases associated with
each input port. Inserting these into the Lindblad master
equation

_ρ ¼ −i½H; ρ� þ
Xn
k¼1

D½Lk�ρ ð20Þ

leads to the following SDE:

_αðtÞ¼−
�
κ

2
þ iΔþ2iχðα�α−1Þ

�
α−

X
j

ffiffiffiffi
κj

p
e−iψ jβin;jðtÞ;

ð21Þ

βout;jðtÞ ¼ ffiffiffiffi
κj

p
eiψ jαðtÞ þ βin;jðtÞ; ð22Þ

where κ ¼ P
jκk. Equations (21) and (22) are the starting

points for our semiclassical simulations. The multiple
inputs and outputs can represent either waveguides or
free-space modes, as needed to describe scattering loss,
for example. If the input field βin;jðtÞ originates from
outside the circuit, we set βin;jðtÞ ¼ β̄in;jðtÞ þ ηjðtÞ, as
discussed above, where β̄in;jðtÞ is a deterministic coherent

amplitude and ηjðtÞ ¼ ηð1Þj ðtÞ þ iηð2Þj is a complex
Gaussian noise process with zero mean hηjðtÞi ¼ 0 and

second-order moments hηðmÞ
j ðtÞηðnÞj ðt0Þi ¼ 1

4
δjkδmnδðt − t0Þ.

Alternatively, the input of one resonator may be supplied by
the output of another resonator. The resulting coupled
equations of motion are a system of Langevin equations,
i.e., stochastic differential equations, but since the coef-
ficients to the noise terms are state independent, they
assume the same form in both the Ito and Stratonovich
convention.

It is important to note that although the internal-mode
variables have nonlinear equations of motion, the coupling
to the external inputs and noises is fully linear. This makes
it straightforward to derive rules for how to combine such
systems into a circuit.

C. Static components

Besides resonators, three static components are needed: a
beam splitter, a phase shifter, and a coherent displacement.
These components do not have internal states; their input-
output relations are fully described by a scattering matrix.
For the beam splitter, which is parametrized by an angle θ:

�
βout;1ðtÞ
βout;2ðtÞ

�
¼

�
cos θ − sin θ

sin θ cos θ

��
βin;1ðtÞ
βin;2ðtÞ

�
: ð23Þ

A phase shifter is parametrized by a phase ϕ:

βout ¼ eiϕβin. ð24Þ

A coherent displacement is parametrized by a displacement
field β0, which adds to the current field. This is equivalent
to bouncing light off a highly reflective beam splitter with a
very strong field entering through the dark port:

βout ¼ βin þ β0: ð25Þ

D. Circuits of components

Stochastic equations for circuits of many components
can be obtained in a straightforward, algorithmic manner.
First, the input-output equations for each component KðiÞ
are written down in the following general form:

_αðiÞðtÞ ¼ ½AðiÞαðiÞðtÞ þ aðiÞ þ AðiÞ
NLðαðiÞ; tÞ� þBðiÞβðiÞin ðtÞ;

βðiÞoutðtÞ ¼ ½CðiÞαðiÞðtÞ þ cðiÞ� þDðiÞβðiÞin ðtÞ; ð26Þ

where i is the component index, αðiÞðtÞ is a vector of field
amplitudes for all resonators belonging to KðiÞ, βðiÞin ðtÞ and
βðiÞoutðtÞ are vectors of inputs and outputs to KðiÞ, A, B, C,
and D are constant matrices, and a and c are constant

vectors. The vector AðiÞ
NL describes the resonator nonlinear-

ities. For static components, D and c are defined only, and
the rest of the matrices and vectors are ignored because the
component has no internal state.
A circuit consists of many such components

ðKð1Þ;…;KðnÞÞ connected together, meaning that
βðiÞin;mðtÞ ¼ βðjÞout;nðtÞ for particular values of i, j, m, and n.
A simple concatenation, in which the components connect
only to external fields, obeys equations of motion of the
same form (26), with the following matrices:
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α ¼

2
64
αð1Þ

..

.

αðnÞ

3
75; ANLðz; tÞ ¼

2
64
Að1Þ
NLðαð1Þ; tÞ

..

.

AðnÞ
NLðαðnÞ; tÞ

3
75;

A ¼

2
64
Að1Þ 0 0

0 . .
.

0

0 0 AðnÞ

3
75; a ¼

2
64
að1Þ

..

.

aðnÞ

3
75; B ¼

2
64
Bð1Þ 0 0

0 . .
.

0

0 0 BðnÞ

3
75;

C ¼

2
64
Cð1Þ 0 0

0 . .
.

0

0 0 CðnÞ

3
75; c ¼

2
64
cð1Þ

..

.

cðnÞ

3
75; D ¼

2
64
Dð1Þ 0 0

0 . .
.

0

0 0 DðnÞ

3
75: ð27Þ

Connections between components are modeled by split-
ting the in and out fields into “internal” (βI) fields and
“external” (βE) fields, as follows:

βin ¼ Pin

�
βEin
βIin

�
; βout ¼ Pout

�
βEout
βIout

�
; ð28Þ

where Pin and Pout are permutation matrices. This is
illustrated with the toy circuit in Fig. 1. In this circuit,
there are four components, four external fields (solid red
lines), and three internal fields (dotted lines). These
permutations allow B, C, and D to be written in block
form that separates their internal behavior from their
external behavior:

BPin ¼
�
BE BI

�
;

PT
outC ¼

�
CE

CI

�
;

PT
outc ¼

�
cE

cI

�
;

PT
outDPin ¼

�
DEE DEI

DIE DII

�
: ð29Þ

The internal fields are arranged so that βIout;k connects to
βIin;k. Making these connections is equivalent to imposing
βIin ¼ βIout. One can then solve for the internal fields and
eliminate them. The equations of motion for the circuit
become

_α ¼ ½Aþ BIð1 −DIIÞ−1CI�α
þ ½aþ BIð1 −DIIÞ−1cI� þ ANLðαÞ
þ ½BE þBIð1 −DIIÞ−1DIE�βEin; ð30Þ

βEout ¼ ½CE þ DEIð1 −DIIÞ−1CI�α
þ ½cE þDEIð1 −DIIÞ−1cI�
þ ½DEE þ DEIð1 −DIIÞ−1DIE�βEin. ð31Þ

The nonlinear part of the stochastic equations ANLðαÞ does
not change. In other words, the only effect of intercon-
nections is to renormalize the linear part of the input-output
equations, as follows:

A → ½AþBIð1 −DIIÞ−1CI�;
a → ½aþ BIð1 −DIIÞ−1cI�;
B → ½BE þBIð1 −DIIÞ−1DIE�;
C → ½CE þDEIð1 −DIIÞ−1CI�;
c → ½cE þ DEIð1 −DIIÞ−1cI�;
D → ½DEE þ DEIð1 −DIIÞ−1DIE�: ð32Þ

An alternative approach to generating the A, B, C, D
coupling matrices is to propagate backwards from a given
component, accumulating amplitudes from other compo-
nents, splitting into additional paths when needed, and
terminating at external inputs. This method works well for
circuits without loops but may converge slowly if low-loss
loops (effectively, cavities without internal state) are
present. The algebraic approach presented above is advan-
tageous for such loop-containing circuits, such as those in

FIG. 1. Example circuit showing external (βEout; βEin) and internal
(βIout; βIin) input-output fields.
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Ref. [23]. Finally, it should be noted that instead of
applying these circuit-reduction rules, one can also work
in a fully quantum picture and describe the whole network
using SLH models [12]. In this case, the final overall
network model leads to a master equation that leads to the
same SDEs as above, although, at greater computational
cost, because the SLH formalism is more general and
requires working explicitly with matrices whose elements
are themselves noncommutative operators.
For circuits with fixed-component parameters, the cou-

pling matrices need to be computed only once at the
beginning of the simulation. The computational difficulty
of integrating the SDEs scales, at worst, quadratically with
the number of resonators. However, for many circuits, the
coupling matrices are sparse, and the scaling is expected to
be nearly linear.

E. Implementation and validity

In the remainder of this paper, we present the simulation
results obtained using a model based on Eqs. (21) and (22)
with ψ i ¼ −π=2 (this determines the rotation angle of the
Wigner distribution plots). The program implemented in
MATLAB allows a circuit to be defined as a netlist, which is a
list of components, their parameters, and connections. In
the initial implementation, the allowed components are
resonators (arbitrary number of input and output ports),
two-port beam splitters, phase shifters, nonoperation (iden-
tity) components, external inputs, outputs, and custom-
named compound components. The compound compo-
nents are similarly defined by netlists. Unless a component
is an external input, a netlist entry must also specify the
source of each of the component’s inputs. Functions were
written to flatten the netlist (by expanding compound
components and connecting their inputs and outputs to
the external circuit), compute circuit statistics, and check
for bad connections. We initially used a back-propagation
method to convert the netlist to a set of matricesA, B, C, D
defining the stochastic differential equations. More
recently, the algebraic approach described above has been
implemented, and the two methods have been shown to
produce consistent results. Integration of the stochastic
equations is performed using a Euler-Maruyama time step
modified to use exponential terms for the internal resonator
dynamics:

αj½nþ 1� ¼ αj½n�eð−iΔj−κj=2−2iχjjαj½n�j2Þδt

þ
�X

k

Ajkαk½n� þ
X
k

Bjkβin;k½n�
�
δt; ð33Þ

where βin;k½n� includes a deterministic time-varying drive
field plus independent Gaussian random variables for each
time step with amplitude σ ¼ 1=ð2 ffiffiffiffi

δt
p Þ for both the real

and imaginary components obtained from normrnd. The
time step δt is set small enough that the spontaneous jump

rates in single-resonator calculations appear to be indepen-
dent of δt. Typically, δt ¼ 0.025=maxðfΔj; κjgÞ, which
equals 5 × 10−4 for the counter circuit discussed below.
To check the validity of our semiclassical equations, we

compare results with those obtained from a full-quantum
simulation using the Quantum Optics Toolbox (QOT) [24].
One type of comparison is to examine the spontaneous
jump rates for a single, bistable Kerr resonator with a
constant drive field. As we discuss in more detail in
Sec. III A below, when the drive frequency is sufficiently
far detuned from the resonator, for a certain range of drive
powers, the resonator can be in either of two states. In the
lower-energy state, little light enters because of the large
detuning. In the high-energy state, enough light has entered
that the Kerr nonlinearity keeps the effective resonator
frequency close to that of the input. Classically, these two
states are both stable, but in the quantum regime, sponta-
neous jumps occur between them.
Figure 2 shows example results for a two-port resonator

with κ1 ¼ κ2 ¼ κ=2 driven through one input. Figures 2(a)
and 2(b) show an example with a very strong nonlinearity
so that bistability occurs at very low photon numbers.
Figure 2(a) shows the time-averaged behavior calculated
using the steady-state density matrix solution from the
QOT (black), by time averaging the solution from our
semiclassical model (blue) or using the classical formula in
Eq. (34) (green). Figure 2(b) shows the jump rates
estimated by counting upward and downward transitions
using our semiclassical model and using QOT’s
Monte Carlo integration. The simulation length is tmax ¼
1000 time units in the QOT calculation and tmax ¼ 10 000
in the semiclassical calculation. In this low-photon-number
example, we see fairly good agreement in the downward
jump rates rdown, but the upward jump rates rup are quite
different. This leads also to a large difference in the time-
averaged photon numbers. This disagreement is not sur-
prising given that, in its lower state, the resonator contains
approximately two photons, and, thus, the approximation
made in dropping the third-derivative terms from the
Fokker-Planck equations (see Sec. II A) is not expected
to be valid. In a somewhat higher-photon-number case
[Figs. 2(c) and 2(d)], the downward and upward rates both
show good, though imperfect, agreement. The semiclass-
ical results appear to be shifted horizontally from the QOT
results by δβin ∼ 0.3. For a third comparison in which the
“on” state has approximately 95 photons (using Δ ¼ 1.1κ,
χ ¼ −0.3), the jump-rate curves are again horizontally
shifted by δβin ∼ 0.35 [25]. The time-averaged Wigner
functions computed from the full-quantum and semiclass-
ical simulations [Figs. 2(e) and 2(f)] look quite similar,
provided that βin is set to give the same ratio of upper- and
lower-state populations in each case.
We also compare spontaneous jump rates in the two-

resonator latch circuit presented below (Sec. III D) for the
QOT and semiclassical methods. For the QOT simulation,
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we use the Hamiltonian and collapse operators given in the
Supplemental Material of Ref. [26]. The results included in
Fig. 10 show good agreement between the full-quantum
and semiclassical methods.
Although our implementation of the semiclassical model

is not optimized for speed, even for a single resonator, we
see a large speed improvement compared with a full-
quantum Monte Carlo simulation. This is because the
semiclassical model describes the resonator with a single
complex number, while the full-quantum simulation
requires a number of Fock-state amplitudes that increase
with increasing expected photon number. For example, for
the parameters used in Fig. 2(d), simulating to tmax ¼ 1000
requires approximately 11s using a laptop computer with
an Intel Core i7 processor. The corresponding QOT
simulation time varies from 120 to 540 s over the range
of input-field amplitudes shown in the plot. For the two-
resonator latch circuit, simulating to tmax ¼ 1000 requires
approximately 50 s using the semiclassical model vs
14 000 s using the QOT. For the 88-resonator counter
circuit that we describe below, simulating to tmax ¼ 160
using the semiclassical model requires approximately 180 s
of computation time.

III. EXAMPLES

In this section, we apply the simulation method
described above to a set of optical circuits that could be
of interest for switching and logic. In Sec. III A, we
investigate whether circuits composed only of beam split-
ters, phase shifters, and resonators with an ideal Kerr
nonlinearity can provide the gain and digital signal resto-
ration needed for cascading. In Secs. III B–III E, we
introduce a set of building blocks that can be used for

general-purpose combinatorial and sequential logic, and as
an example application, in Sec. III F, we simulate a four-bit
ripple counter containing 88 resonators.

A. Inverting and noninverting amplifiers

Consider the amplifier circuit shown in Fig. 3(a). This is
similar to the circuit in Ref. [26] but is simpler since it uses
the signal from only one resonator output. The input field
βin first interferes with a constant field βc on a beam splitter,
which has amplitude transmission coefficient cos θ and
reflection coefficient sin θ (the minus sign in the lower-left

FIG. 3. (a) A simple amplifier circuit based on a nonlinear Kerr
resonator. (b) Blue curve: Resonator photon number vs resonator
input field in the classical approximation using the parameters
from Table I. Dotted line: Designed low and high input fields.
Red circle: Inflection point.
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corner of the beam splitter indicates which output has a
minus sign for the reflected component). The output exiting
to the right is βκ1 ¼ βin cos θ þ βc sin θ. This field then
enters the first input of a two-port ring resonator. In this
example, we have not yet included intrinsic losses, so the
total loss is the sum of the two coupling losses,
κ ¼ κ1 þ κ2. The second resonator output passes through
a phase shifter with phase ϕ that is chosen so that the output
has a phase of approximately zero in the high state. This
last component captures the necessity of controlling the
phases between components. In an experimental realiza-
tion, the phase shifter can correspond simply to a carefully
chosen propagation length, or it can represent a tunable
component. Whether or not active phase control is required
depends on factors such as how reproducibly devices can
be fabricated and the amplitude of temperature fluctuations
expected during circuit operation.
This circuit can function as either a noninverting

amplifier or an inverting amplifier depending on the sign
of the auxiliary field βc. Example parameters for both cases
are given in Table I. Suppose, first, that we work in
noninverting mode and that the design input amplitudes
to stage 0 are βin ¼ f0; 10g. Since the beam splitter is
highly transmissive, it serves mainly to displace the field
with little loss in amplitude so that the field incident onto
the resonator is βκ1 ¼ f30.04; 39.53g. The resonator then
serves as a nonlinear filter, as represented by the blue curve
in Fig. 3(b), which is the steady-state solution to Eqs. (21)
and (22) without the noise terms:

κ1jβin;1j2 ≈ n½ðκ=2Þ2 þ ðΔþ 2χnÞ2�; ð34Þ

where βin;1 is the external field incident on one of the
resonator inputs, n ≈ jαj2 is the resonator photon number,

and we have taken the limit n ≫ 1. From this equation, one

can show that classical bistability occurs for Δ >
ffiffi
3

p
2
κ, if

χ < 0. The red circle marks an inflection point in the rhs of
the above equation, ninflection ¼ − Δ

3χ. The parameter values
used in Fig. 3(b) are given in Table I (stage 0).
With these parameters, the nonlinear resonator is near the

onset of bistability and exhibits a thresholdlike response.
The dotted lines in Fig. 3(b) represent the designed
resonator field amplitudes for “low” and “high” inputs.
The field exiting the resonator on the right has amplitude
approximately equal to

ffiffiffiffiffiffiffi
κ2n

p ≈ f17; 37g for low and high
inputs, respectively, and, thus, the input field swing of 10 is
amplified by a factor of 2. A nonideal feature of this simple
circuit is that the low output is nonzero and has a different
phase than that of the high output. The residual low output
may cause complications when cascading components but
can be eliminated by adding an interference path [26], as is
included in the logic components that we introduce starting
in Sec. III B.
Because of its thresholdlike behavior, this amplifier has

some digital signal restoration capability. Here, we perform
simulations with a linearly varying triangle-wave input,
with amplitude between 0 and 10, to examine whether the
signal restoration in the presence of quantum noise is
sufficient for cascading. For multiple stages, since each
stage receives a larger input amplitude, the parameters for
each amplifier stage must be chosen differently (Table I) to
match the switching thresholds with the expected low and
high resonator inputs. The simulated output-field ampli-
tudes of four cascaded inverting amplifiers are shown in
Fig. 4(a). We see that, despite the badly behaved input, the
first stage (blue curve) has a clear switching behavior,
although there is some variation in the output amplitude
within the high and low states. In subsequent stages, the
curves are quite flat in between switching events, and,
furthermore, the short-time-scale noise due to quantum
fluctuations does not appear to increase from one stage to
the next. The corresponding output phases are plotted in
Fig. 4(b). The phase noise can be seen to decrease with
each stage.
When performing these simulations, we notice a mark-

edly different behavior when we cascade inverting or
noninverting amplifiers. This is seen most easily in the
time-averaged complex field distributions of the resonators
for the two cases, which are plotted in Figs. 5 and 6. The
figures use a logarithmic scale in order to cover > 4 orders
of magnitude, allowing the faint connections between the
high and low states to be seen. In either case, in the first
amplifier stage, we see that the high state has a larger phase
variation than the low state, which is a general feature for
Kerr resonators even for constant inputs. In the inverting
case, this noisier high state from the first stage leads to a
low state in the second stage, which largely resets the noise.
In the noninverting case, the high state from the first stage
leads to another high state in the second stage, allowing the

TABLE I. Simulation parameters used for the four-stage non-
inverting and inverting amplifiers.

Amplifier parameters
Stage 0 1 2 3

t ¼ cos θ
ffiffiffiffiffiffi
0.9

p ffiffiffiffiffiffi
0.9

p ffiffiffiffiffiffi
0.9

p ffiffiffiffiffiffi
0.9

p
r ¼ sin θ

ffiffiffiffiffiffi
0.1

p ffiffiffiffiffiffi
0.1

p ffiffiffiffiffiffi
0.1

p ffiffiffiffiffiffi
0.1

p
χ −0.5 −0.5 −0.5 −0.5
κ1 25 50 100 200
κ2 25 50 100 200
Δ 50 100 200 400

Noninverting

Design βin f0; 10g f17; 37g f26; 77g f45; 145g
βc 95 140 285 580
ϕ −3.42 −3.42 −3.42 −3.42

Inverting

Design βin f0; 10g f17; 37g f32; 80g f62; 163g
βc −125 −300 −607 −1215
ϕ −0.2 −0.65 −0.74 −0.74
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phase noise to propagate further, even though it is diluted
by the contribution of the next auxiliary coherent-state
input. As a result, the phase noise in the last stage is larger
for the noninverting amplifiers compared with the inverting
amplifiers. If each amplifier is driven with a constant input,
hβini ¼ 10, after the fourth stage, the phase noise amplitude
of the noninverting amplifier chain is 53% higher than for
the inverting amplifier chain. This is part of the motivation
for using inverting amplifiers in the fanout circuits that we
present below.

B. AND gate

The first logic gate we consider is the AND gate shown in
Fig. 7(a). This is the same circuit that is shown in Fig. 1(a)
of Ref. [26], except that here we include an intrinsic
resonator loss, which is unavoidable in practical photonic
integrated circuits. Even if we have complete control over
the resonator’s output coupling rates, if we optimize for the
lowest possible switching energy, then the intrinsic losses

will be comparable to the coupling losses. Suppose, for
example, that we design a gate to work near the onset of
bistability, with jΔj ¼ κ. The switching photon number will
be close to the inflection point in the bistability curve,
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nswitch ≈ jΔ=ð3χÞj. Using Eq. (34) for the input field βin and
setting the minimum switching energy (in photon units) to
be Uswitch ≈ jβinj2=κ, we find

Uswitch ≈
κ2

jχjκ1
: ð35Þ

Setting κ ¼ 2κ1 þ κ3, where κ3 is the intrinsic loss and
minimizing Uswitch with respect to κ1, we obtain κ3 ¼
2κ1 ¼ κ=2 so that the intrinsic loss is half of the total loss.
However, with such a large relative intrinsic loss, it is
difficult to design circuits in which the output-field ampli-
tudes are as large as the input amplitudes. Thus, we back off
from the optimum and use κ3 ¼ 0.2κ. The circuit param-
eters that we use to simulate the AND gate are given in
Table II.
The AND gate works as follows: The two inputs interfere

on a 50-50 beam splitter. Only if both inputs are high (and
in phase), the beam splitter output is large enough to exceed
the switching threshold of the resonator. We can simply use
the output from resonator mirror 2 as the final output, as we
do in the amplifiers discussed above. However, the per-
formance can be improved by taking the output from
resonator mirror 1, adjusting its phase, and interfering it
with the output from resonator mirror 2 on a second beam
splitter. We adjust the phase ϕ1 and the mixing angle θ2 so
that when only one of the circuit inputs is high, the signals
entering the second beam splitter interfere destructively,

giving a low output close to zero. The final phase shift ϕ2 is
chosen so that the high output has its phase close to zero.
Figure 7(b) shows the simulated operation of the AND

gate. Triangle waves are used to drive both inputs to test the
circuit’s capability for digital signal restoration. The high
output amplitude slightly exceeds the designed input high
amplitudes. A separate simulation, in which the circuit is
driven by a square-wave signal, indicates propagation
delays (for the output to cross a level halfway between
the steady-state low and high levels) ranging from τ ¼
0.023 ¼ 1.2=κ for the fastest f1; 1g → f0; 0g input tran-
sition to τ ¼ 0.091 ¼ 4.6=κ for the slowest f0; 1g → f1; 1g
transition. Because of the direct path from the input to the
output (through ϕ1), the output can also exhibit short spikes
if the inputs transition suddenly from f0; 0g to f1; 0g.

C. Inverting fanout

The AND gate described above has only a single optical
output. Splitting this in two before sending it to other gates
(such as more AND gates) will fail, since the amplitudes will
be a factor of 1=

ffiffiffi
2

p
smaller and will be near or below the

switching thresholds of the subsequent gates. Here, we
briefly introduce an inverting amplifier circuit that can be
used both as a 2× fanout and as a NOT gate to complement
the AND gate above, allowing for universal combinato-
rial logic.
Figure 8(a) shows the inverting fanout circuit, which is

similar to the AND gate above, with a few differences. One
of the inputs is replaced by a constant coherent drive,
which has a larger amplitude and is 180° out of phase
with respect to the remaining input. The resonator non-
linearity is also decreased in order to increase the switch-
ing threshold. In an integrated photonics implementation,
the per-photon nonlinearity can be changed most easily by
varying the resonator length. The circuit parameters are
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FIG. 7. (a) AND circuit based on a nonlinear Kerr resonator.
(b) Simulated output field (blue) for triangle-wave inputs (red,
green), with Ehigh ¼ 50. The fields are averaged over a time
interval of 0.01.

TABLE II. Parameters for the basic circuits. Here, Ehigh is the
high level for external inputs. The simulations use Ehigh ¼ 50
(resonator photon number approximately 100) or Ehigh ¼ 20
(resonator photon number approximately 20).

AND Fanout Latch

Design βin f0; Ehighg f0; Ehighg f0; Ehighg
βc −2.6Ehigh 1.75e−iϕ1Ehigh

χ −653.4=E2
high −348.48=E2

high −512.5=E2
high

κ1 20 20 20
κ2 20 20 20
κ3 10 10 10
Δ 50 50 50
t1 ¼ cos θ1 0.707 0.707 0.707
t2 ¼ cos θ2 0.89 0.89 0.629
t3 ¼ cos θ3 0.707 0.829
ϕ1 −1.39 −1.45 2.72
ϕ2 2.65 −0.46 0.14
ϕ3 2.34
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given in Table II. As a result of these changes, the output
field in the high state has sufficient amplitude that it can
be divided in two at a final 50-50 beam splitter, yielding
two outputs with amplitudes slightly above the designed
high level. Figure 8(b) shows the simulated behavior of
this circuit for a triangle-wave input, demonstrating the
digital signal restoration capability of this circuit. For a
square-wave input, the propagation delays (for midlevel
crossing) are τ ¼ 0.105 ¼ 5.3=κ for the upward output
transition and τ ¼ 0.058 ¼ 2.9=κ for the downward
transition.
If fanout to many outputs is required, one can design

special circuits similar to the cascaded amplifiers that we
describe in Sec. III A. However, for simplicity of the
present demonstration, we limit the number of primitive
components, cascading the 2× fanout as needed to create
additional copies of a signal.

D. Latch

To add memory to our circuits, we start with the
SR-NAND latch from Ref. [26]. The main change we make
to the version shown in Fig. 9(a) is to incorporate intrinsic
resonator losses, which require adjusting the other param-
eters (see Table II) so that the resonators operate closer to
their switching thresholds. We might expect this to make
the circuit more sensitive to noise.
The behavior of this circuit simulated in Fig. 9(b) can be

understood as follows. Let us name the upper and lower
resonators in the diagram resonators 1 and 2, respectively.

If βreset is high and resonator 1 is off, the coherent input βc
entering from the top of the diagram interferes construc-
tively with βreset so that the input to resonator 2 exceeds its
switching threshold, keeping it in its “on” state. The
feedback phase is chosen such that the κ2 output of
resonator 2, feeding back to the input of resonator 1,
interferes destructively with the other inputs, keeping
resonator 1 in its “off” state, independent of whether βset
is low (the “set” condition) or βset is high (the “hold”
condition). On the other hand, if βset is high and βreset is low
(the “reset” condition), resonator 1 turns on and resonator 2
turns off. If βreset then goes high again (the “hold”
condition), resonator 1 stays on and resonator 2 stays
off. Thus, in the hold condition, the system retains its
previous state. The maximum propagation delay (for
midlevel crossing) is τ ¼ 0.11 ¼ 5.5=κ.
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FIG. 8. (a) Inverting 2× fanout circuit based on a nonlinear Kerr
resonator. (b) Simulated output fields (blue, green) for a triangle-
wave input (red), with Ehigh ¼ 50. The fields are averaged over a
time interval of 0.01.
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FIG. 9. (a) Latch circuit using two nonlinear Kerr resonators
(see Ref. [26]). (b) Simulated final output field (blue), and the
fields exiting from the κ2 ports of resonators 1 and 2 (the
upper and lower resonators in the diagram, respectively, green
and red curves). For times in between the vertical lines, the two
input levels are held constant at f0; 1gEhigh, as indicated,
with Ehigh ¼ 50. The fields are averaged over a time interval
of 0.01.
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For Ehigh ¼ 50, resonator 1 contains approximately 0.5
photons in its undriven (set) state, 17 photons in its lower
hold state, and 150 photons in its driven (reset) and higher
hold states. The corresponding output-field amplitudes are
βκ2;1 ≈

ffiffiffiffiffiffiffi
κ2n

p ≈ f3; 18; 55g. The parameters of the final
beam splitter, which combines the outputs from the two
resonators, and the associated phase ϕ2, are chosen so that
the final output is as close as possible to Ehigh whenever
resonator 2 is in its high state, and as close as possible to
zero, otherwise.
When Ehigh ≤ 25, spontaneous jumps between the two

bistable states of the hold condition occur with sufficient
frequency to allow accurate estimation of the jump rate, as
shown in Fig. 10. When Ehigh ≤ 15, this rate becomes too
large to allow accurate state determination in between jump
events, but we extend the estimate to lower fields by fitting
an exponential decay to the resonator field autocorrelation
function. We should point out that, as Ehigh → 0, the
semiclassical approximation is expected to become less
and less accurate.

In solid-state implementations, our time units will likely
correspond to intervals ranging from picoseconds to nano-
seconds, and, thus, an acceptable error rate for computing
can be estimated as < 10−18. By fitting a quadratic
polynomial to the logarithm of the jump rate and extrapo-
lating to higher input fields, we estimate that Ehigh ≈ 54 is
required to achieve this, corresponding to approximately
177 photons contained within a resonator in its on state
during the set condition (this corresponds to 35 aJ
at λ ¼ 1 μm).

E. Type-D flip-flop

We next combine the primitive components defined
above to make a clocked memory component that functions
the same as the D flip-flop in electronics [27]. The circuit
schematic is shown in Fig. 11(a) (see the previous figures
for gate symbol definitions). This circuit is built around two
set-reset SR NAND latches denoted as “master” and “slave.”
The main input is denoted βD, the clock is βclock, the
intermediate master output is βM, and the final slave output
is βQ. AND gates, with the clock or its compliment as one of
the inputs, are used to control when the latches can change
states. When the clock is high, βD controls the state of the
master latch, while the slave latch is frozen. When the clock
goes low, the master latch is frozen, but its state is
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FIG. 10. Dark blue points: Simulated spontaneous jump rates
for a latch circuit in the hold condition plotted as a function of the
input-field amplitude Ehigh (other circuit parameters are tied to
Ehigh as described in Table II). The error bars assume Poisson
statistics for the number of detected jumps. Cyan points:
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transferred to the slave latch. Numerous inverting fanout
gates are also required, either to divide or invert the various
signals. Since these components account for more than half
of the resonators in the circuit, replacing them with
modified AND gates or improved amplifiers will be one
of the more straightforward ways to optimize this circuit.
The simulated circuit dynamics are shown in Fig. 11(b).

For the first two input pulses (red), the rising edges occur
when the clock (light blue) is already high, and, thus, the
master latch (yellow) switches at the input rising edge. For
the second two input pulses, the rising edges occur before
the clock is high, and, thus, the master latch switches at the
clock rising edge. The slave latch (dark blue) always
transitions at the falling clock edge. Close examination
shows that propagation delays (for midlevel crossing) of up
to τ ¼ 0.51 ¼ 25.5=κ can occur following clock edges.
This is approximately as one would expect from summing
the individual component delays given above. For the slave
transition, the path from the clock to the output passes
through four fanouts (with two upward and two downward
transitions), an AND gate (upward), and a latch (can be
upward). This circuit includes 20 resonators, 54 vacuum
inputs, 16 nonvacuum coherent-state inputs, 54 beam
splitters, and 40 phase shifters. It is our first example of
a circuit too large to simulate using known full-quantum
methods.

F. Four-bit counter

As a simple application of the D flip-flop, here we
demonstrate a four-bit ripple counter. The circuit shown in
Fig. 12 contains four flip-flops, each representing one of
the bits. The output of each flip-flop is inverted and fed
back into its main input, causing its output state to toggle at
each falling clock edge. Additionally, the output of a given
flip-flop serves as the clock signal of the flip-flop repre-
senting the next-higher-order bit. Thus, two inverting
fanout components are required at each stage to generate
the required copies.

When flattened into its primitive components, this circuit
contains 88 resonators, 240 beam splitters, and 176 phase
shifters and requires 233 vacuum inputs and 72 nonvacuum
inputs. The simulated behavior of the output fields is shown
in Fig. 13. For Ehigh ¼ 50, although the bit values start out
with random values, the behavior for t > 0 is exactly as
expected. However, for Ehigh ¼ 20, random error events
occur rather frequently. The estimated error rates for several
values of Ehigh are plotted in Fig. 10. Since the counter
circuit contains eight latches, we expect the error rate to be
at least 8 times larger than the error rate for a single latch.
The good agreement between the counter error rates and the
red curve in Fig. 13 (which is 8 times the fitted latch error
rate) suggests that spontaneous jumps in the latch circuits
under the hold condition are the most important error
source in the counter circuit.
It is also interesting to look at theWigner functions of the

resonators to see if the quantum noise grows as signals
propagate through such a large circuit. The time-averaged
Wigner functions for two selected resonators are shown in
Fig. 14. One of the resonators is in the first flip-flop, and the
other is in the last flip-flop. The small-scale quantum noise
does not appear to grow. This is not surprising, considering
the digital restoration properties demonstrated above for the
basic gates. Of course, large errors associated with quantumFIG. 12. Circuit diagram for a four-bit ripple counter.
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jumps between bistable states of a gate will propagate
through the system, and we expect the overall error rate to
scale linearly with the number of components.

IV. OUTLOOK

We have demonstrated a simulation approach suitable for
studying quantum noise in large-scale, nonlinear photonic
circuits. We used this model to simulate a digital counter
incorporating gates and latches based on previous designs.
The results obtained so far suggest that the errors in the
large-scale circuit are dominated by spontaneous jumps in
the individual latches. From the error rates, we extrapolate
that in the current design, the resonators within the latch
circuit must contain approximately 180 photons in their on
state to achieve acceptable error rates for computing.
The circuits shown above are built from a very limited set

of existing designs chosen mainly to demonstrate the
capabilities of this simulation approach. We are currently
optimizing the circuits to make them more experimentally
realizable. Initial results indicate that the number of
resonators can be greatly reduced by factors as large as
5, in some cases. At the same time, we are working to
make the circuits sufficiently tunable (by adjusting
the amplitudes and phases of external inputs) to accom-
modate random variations in phases, resonant frequencies,
and coupling strengths associated with fabrication
imperfections.

At the same time, we are working to increase the
capabilities of our model. We have recently incorporated
the semiclassical equations used here into the QHDL

software framework [13], which will allow a single tool
to perform both semiclassical and full-quantum simulations
for a given circuit and also allows for graphical construction
of circuits. We are also working to expand the model to
include quantum noise associated with other kinds of
nonlinearities. Carrier-based nonlinearities are of particular
interest for experiments. While the Kerr model is the
simplest, requiring a single degree of freedom per resonator
in our circuits, we find that the general design principles we
apply to constructing the logic gates based on a Kerr
nonlinearity fully translate to any sufficiently strong optical
nonlinearity be it absorptive or dispersive.
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