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The most general response of a small dipolar particle to electromagnetic fields is determined not by its
electric and magnetic polarizabilities only but also by magnetoelectric coupling coefficients. We are
interested in creating particles with engineered magnetoelectric coupling of nonreciprocal nature, including
artificial “moving particles.” Recently, it has been shown theoretically that using small nonreciprocal
bianisotropic particles, one can realize perfect electromagnetic isolators, nonreciprocal twist polarizers,
one-way transparent sheets, and other devices. This paper is a necessary step towards these applications.
For two electrically small nonreciprocal scatterers, an analytical electromagnetic model of polarizabilities is
developed. Both particles are bianisotropic: the so-called Tellegen omega particle and moving chiral
particle. Analytical results are compared to the full-wave numerical simulations. Both models satisfy to
main physical restrictions and leave no doubts in the possibility to realize these particles experimentally.
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I. INTRODUCTION

In terms of electromagnetic properties of materials, the
most general linear material is the bianisotropic medium in
which the relations between the four field vectors E,H, D,
and B are defined by four general dyadic coefficients, as in�
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�
¼

h ϵ˭ α˭
β˭ μ˭

i
·

�
E
H

�
(1)

(see, e.g., Ref. [1]). Obviously, only a limited range of
material parameters is accessible in natural materials, and
researchers have made significant efforts in synthesizing
artificial composite materials with novel electromagnetic
properties not found in any natural substance. This is
achieved by engineering electrically small particles which
respond to electromagnetic excitations as electric and
magnetic dipoles in the desired way. The most general
bianisotropic material can be conceptually realized as a
mixture of many small inclusions modeled by the most
general bianisotropic relations between the induced
moments and exciting fields:�
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Here, p andm are the induced electric and magnetic dipole
moments, respectively, and α˭ij are the polarizability
dyadics. In the modern literature, this concept is called
the metamaterial concept, and small engineered inclusions
in these composites are called meta-atoms. In the past,
significant results have been achieved in realizing artificial
media with strong chirality (reciprocal magnetoelectric
coupling measured by the trace of α˭em ¼ −α˭Tme) and in
engineering permittivity and permeability (values of α˭ee

and α˭mm) creating artificial magnetics and double-negative
media. Reviews of recent developments in artificial chiral
materials can be found in Refs. [2,3].
In this paper, we focus on the problem of the realization

and optimization of the magnetoelectric coefficients which
determine nonreciprocal mechanisms of magnetoelectric
coupling. The main motivations of this research are recent
discoveries of extreme properties of nonreciprocal bianiso-
tropic particles [4,5], such as extreme asymmetry in
scattering response (invisible from one of the directions,
optimal absorption from the opposite direction, etc). It is
understood that planar arrays of small nonreciprocal
bianisotropic particles with special values of the coupling
coefficients can be used as transparent absorbing bounda-
ries [6] (which were introduced earlier for the termination
of computational domains in finite-element methods [7]).
Furthermore, such arrays can be applied for novel imple-
mentations of perfect electromagnetic isolators [8], twist
polarizers [9], thin-sheet phase shifters, and other devices
[10,11]. An artificial moving medium with properly chosen
values of the material parameters can transform electro-
magnetic fields in a very general manner [12]. However, at
this time, all these applications are only theoretical pre-
dictions. Scatterers with the desired parameter values do
not exist in nature, and there are no known realizations of
nonreciprocal bianisotropic meta-atoms. In this paper, we
develop an analytical model of two nonreciprocal meta-
atoms, which realize nonreciprocal field coupling of both
fundamental classes: Tellegen and “moving-particle” cou-
pling [1]. The results show that desired novel effects can be
achieved in particles made of conventional materials and
have reasonable dimensions.
The nonreciprocity of media in applied dc magnetic

fields or media with spontaneous magnetization is
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commonplace in classical electrodynamics. This nonreci-
procity obviously implies anisotropy of the medium and is
related to the off-diagonal components of the permittivity
(magneto-optical media, magnetized plasmas) or per-
meability (gyrotropic media, e.g., ferrites) dyadics. On
the other hand, nonreciprocal effects in bianisotropic media
due to the nonreciprocal nature of magnetoelectric inter-
actions in the medium (see, e.g., Ref. [1]) are very rare and
very weak. For example, the Tellegen coupling has been
observed in some antiferromagnetic crystals at low frequen-
cies [13]. It is clear that the metamaterial concept is the only
possible route towards realization of nonreciprocal particles
offering the theoretically expected extreme performance.
In 1948, Tellegen suggested an idea of an electromagnetic

gyrator, a general nonreciprocal four pole [14]. In electro-
magnetics, the gyrator element corresponds to a nonrecip-
rocal particle with nonzero trace of α˭em ¼ α˭Tme, and to
composite media (Tellegen’s medium) performed as a
random mixture of such particles. Sihvola conceptualized
a microscopic particlewith permanent electric andmagnetic
dipole moments parallel to one another and linked by a
nonelectromagnetic force [15]. The coupling of electric and
magnetic polarizations in such composite is of nonreciprocal
nature.However, practical possibilities to create theTellegen
particle and medium remain problematic. In 1996,
Kamenetskii [16] suggestedmagnetostatic ferrite resonators
shaped as tabletswith partialmetallization (shaped as a strip)
on one side of the tablet as a conceptual nonreciprocal
bianisotropic particle. Ferrite disks of small sizes compared
to the wavelength operate as very compact resonators of
magnetostaticwaves becauseof dramatic shorteningof these
waves compared to the electromagneticwave in free space at
the same frequency. In thatwork,Kamenetskii predicted that
a chain of such tablets should operate as a nonreciprocal
bianisotropicwaveguide [16].He has shown that it should be
possible to obtain a controllable coupling coefficient of
nonreciprocal tablets simply by tuning the bias magnetic
field. In 1998, Dmitriev [17] generalized the results by
Kamenetskii to a hypothetic medium which represented an
anisotropic variant of the Tellegen medium and showed
topologies which corresponded to the other fundamental
class of nonreciprocal bianisotropic coupling: the “moving”
particle. In 1998, Tretyakov [18] introduced two designs of
anisotropic nonreciprocal scatterers which presumably pos-
sessed more significant resonant nonreciprocity of their
polarizabilities than the tablets of Kamenetskii.
In 2003, the group of Tretyakov experimentally con-

firmed the existence of nonreciprocal magnetoelectric
coupling [19] in one of the configurations introduced in
Ref. [18], but in that work, the particle polarizability value
was not determined, and there was no model to predict and
optimize the particle response. In the present paper, we
make an important step towards realization of nonrecipro-
cal bianisotropic meta-atoms with desired values of the
polarizabilities, developing an analytical model which

allows us to predict the polarizability values of particles
with given topology and dimensions.

II. THEORY

The geometry of the considered artificial nonreciprocal
bianisotropic particles [18,20] is shown in Figs. 1(a)
(Tellegen omega) and 1(b) (moving chiral). The operation
principle of both of them is that a local (external with
respect to the particle) high-frequency electric field excites
currents in the metal wires, and the magnetic field created
by the electric current of these wires induces a magnetic
moment in the ferrite sphere. This way, a nonreciprocal
magnetoelectric coupling is realized. Likewise, a local
high-frequency magnetic field applied to the ferrite sample
causes its high-frequency magnetization, which, in turn,
induces an electric current and electric dipole moment in
the metal wires.
The general relation between the local fields and induced

dipole moments is given by Eq. (2). The Tellegen omega
and moving chiral particles, as the suggested nonreciprocal
bianisotropic particles, are uniaxial. Therefore, we can
write the polarizability dyadics of these two particles in
the form

FIG. 1. Geometry of the (a) Tellegen omega particle and
(b) moving chiral particle. The applied bias magnetic field
(Ha) is directed along the z0 axis.
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α˭ee ¼ αcoee ̿It þ αcree ̿Jt; α˭mm ¼ αcomm ̿It þ αcrmm ̿Jt;

α˭em ¼ αcoem ̿It þ αcrem ̿Jt; α˭me ¼ αcome ̿It þ αcrme ̿Jt. (3)

Here, ̿It ¼ ̿I − z0z0 is the transverse unit dyadic, ̿I is the 3D
unit dyadic, and ̿Jt ¼ z0 × ̿It is the vector-product operator.

A. Tellegen omega particle

The geometry of the particle is shown in Fig. 1(a). Two
metal wires (or strips) and a ferrite inclusion constitute the
particle.
The Tellegen omega particle is one of those two particles

which have been introduced as artificial nonreciprocal
bianisotropic particles. It is clear from the particle name
that it simultaneously exhibits two electromagnetic cou-
pling effects: nonreciprocal Tellegen and reciprocal omega
coupling.

1. Electric and magnetoelectric polarizabilities

We assume that the Tellegen omega particle is excited by
a uniform x0-directed electric field. This external field
induces an electric current in the metal wire which is in the
direction of the electric field. Assuming that the wire length
is much smaller than the wavelength (l ≪ λ), the current
distribution in the wire is approximated as [21]

Ix ¼ I0x
cosðkxÞ − cosðklÞ

1 − cosðklÞ ≈ I0x

�
1 − x2

l2

�
; (4)

where

I0x ¼
2 tan

�kl
2

�
kZin

E ≈
l
Zin

E: (5)

E is the peak value of the incident electric field, k is the
free-space wave number, and Zin represents the input
impedance of a linear electric dipole antenna. For such
an antenna, the input admittance can be expressed as [22]

Y in ¼ 2πj
kl
ηΨ

�
1þ k2l2

F
3
− jk3l3

1

3ðΩ − 3Þ
�
;

F ¼ 1þ 1.08
Ω − 3

; Ω ¼ 2 log
2l
r0
;

Ψ ¼ 2 log
l
r0

− 2; (6)

in which η is the free-space wave impedance, l is half of the
length of the metal wire, and r0 represents the wire radius.
The induced electric current generates a magnetic field.
By applying the Biot-Savart law in the magnetostatic
approximation [23–25], the magnetic field close to the
wire can be written as

H ¼
Z þl

−l
Ixdl × r0

r03
¼ I0xðl2 − x2Þ

4πRl2

�
lþ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ðlþ xÞ2
p

þ l − xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðl − xÞ2

p �
ð− sinϕ y0 þ cosϕ z0Þ: (7)

As shown in Fig. 2, r0 is the distance vector from a
differential element to the observation point A. R and ϕ are
the cylindrical coordinates in the y0z0 plane. The y0
component of the magnetic field generated by the induced
current in the wire excites the ferrite sphere. As it is seen
from Eq. (7), this component is not uniform over the ferrite
sphere volume. Hence, it is necessary to take its volume
average to find the equivalent uniform external magnetic
field exciting the ferrite sphere because the fundamental
mode of magnetization oscillations is characterized by
the uniform magnetization over the sphere volume. By
assuming that the ferrite sphere is small, the averaged y0
component of the magnetic field can be achieved as

Hy average ¼
1

V

Z
V
Hydv ¼ 2a2

3V
I0x: (8)

For a ferrite sphere with the saturation magnetization
along the z0 axis, the components of the magnetic moment
are related to the external rf magnetic field as [26]

mx ¼ V

�
α

α2 þ β2
χxx þ

β

α2 þ β2
χxy

�
Hxe

þ V

�
α

α2 þ β2
χxy − β

α2 þ β2
χxx

�
Hye;

my ¼ V

� −α
α2 þ β2

χxy þ
β

α2 þ β2
χxx

�
Hxe

þ V

�
α

α2 þ β2
χxx þ

β

α2 þ β2
χxy

�
Hye: (9)

Here,

FIG. 2. The wire along the x0 axis is excited by the incident
electric field.
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α ¼ 1þ 1

3
χxx; β ¼ 1

3
χxy; (10)

and Hxe, Hye are the x0 and y0 components of the external
magnetic field. Susceptibility elements are given by
Refs. [26,27] for a lossy ferrite material. The averaged
y0 component of the magnetic field produced by the wire
along the x0 axis excites two nonzero components of the
magnetic moment. These components are orthogonal to the
bias field. The excited magnetic moment induces electric
current in the wires. The y0 and x0 components of the
magnetic moment cause the electric current induction on
the x0- and y0-directed wires, respectively. The electric
currents at the center of the wires, due to the magnetic
moment, can be written as

I0x ¼
1

Zin

Z þl

−l
Ex

�
1 − ∣x∣

l

�
dx ¼ þ ξ

Zin
my;

I0y ¼
1

Zin

Z þl

−l
Ey

�
1 − ∣y∣

l

�
dy ¼ − ξ

Zin
mx; (11)

where ξ is an unknown coefficient. After determining all
the polarizabilities, the Onsager-Casimir principle [28–30]
allows us to determine this unknown coefficient. Ex and Ey
represent the tangential to the wires electric field compo-
nents generated by the magnetic moment. The excited wire
along the y0 axis produces an x0-directed magnetic field.
Similar to the adjacent wire, the volume average of this
component of the magnetic field over the ferrite sphere
volume can be expressed as

Hx average ¼ − 2a2

3V
I0y: (12)

Defining

Cxx ¼ Cyy¼Δ
2a2

3

�
α

α2 þ β2
χxx þ

β

α2 þ β2
χxy

�
;

Cxy ¼ −Cyx¼Δ
2a2

3

�
α

α2 þ β2
χxy − β

α2 þ β2
χxx

�
; (13)

and considering Eqs. (8), (9), and (12), the magnetic
moment components in terms of the electric currents at
the center of the wires can be written as

mx ¼ CxyI0x − CxxI0y; my ¼ CyyI0x − CyxI0y: (14)

As a result, it can be stated that there is a cyclic action,
meaning that the electric currents excite the ferrite inclu-
sion, and at the same time, the magnetic moment excites the
wires. This process can be modeled by a block diagram,
which can illustrate the relations between the currents and
the magnetic moment components. Figure 3 shows the
corresponding coupling block diagram. Also, the cycle can
be modeled by the following equations:

I0x ¼ α1Eþ α2my; my ¼ α3I0x þ α4I0y;

I0y ¼ α5mx; mx ¼ α6I0y þ α7I0x; (15)

where

α1 ≈
l
Zin

; α2 ¼ −α5 ¼ ξ

Zin
; α3 ¼ Cyy;

α4 ¼ −Cyx; α6 ¼ −Cxx; α7 ¼ Cxy: (16)

Knowing that the electric dipole moments and the electric
currents at the center of the electrically small short-circuit
wires are related to each other as [21]

px ≈
4l
j3ω

I0x; py ≈
4l
j3ω

I0y; (17)

and solving Eq. (15), the electric and magnetoelectric
polarizabilities can be written as

αcoee ¼
4lα1ð1 − α5α6Þ

j3ωð1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7Þ
;

αcree ¼
4lα1α5α7

j3ωð1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7Þ
;

αcome ¼
α1α7

1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7
;

αcrme ¼
α1α3ð1 − α5α6Þ þ α1α4α5α7

1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7
: (18)

It is important to know that the incident electric field can
be considered as a uniform external field for the ferrite

FIG. 3. Block diagram of the coupling between the ferrite
inclusion and the metal wires in the Tellegen omega particle in the
presence of an incident electric field in the x0 direction.
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sphere as a homogeneous dielectric sphere which has the
relative permittivity εr. Therefore, an electric dipole
moment is induced parallel to the incident field. The
absolute value of the moment is given (in the quasistatic
approximation) by (e.g., Ref. [31])

p ¼ 4πa3ε0
εr − 1

εr þ 2
E; (19)

where ε0 is the permittivity of free space. Hence, there is an
extra electric polarizability which should be added to the
cocomponent of the electric polarizability in Eq. (18).

2. Magnetic and electromagnetic polarizabilities

To derive the magnetic and electromagnetic polarizabil-
ities, we assume that there is a high-frequency incident
magnetic field in the plane of the particle, for example, in
the x0 direction. This field with the peak valueH can excite
the magnetic moment of the ferrite sphere. The excited
magnetic moment induces an electric current on the metal
wires. Similar to the previous process considered above, a
coupling cycle is formed because the induced electric
currents excite the magnetic moment of the ferrite sphere.
The following equations properly explain the cycle as

I0x ¼ α2my; my ¼ α3I0x þ α4I0y þ α9H;

I0y ¼ α5mx; mx ¼ α6I0y þ α7I0x þ α8H; (20)

where

α8 ¼ 2πaCxx; α9 ¼ 2πaCyx: (21)

Solving Eq. (20) and using Eq. (17) give the magnetic and
electromagnetic polarizabilities as

αcomm¼
α8−α2α3α8þα2α7α9

1−α2α3−α5α6þα2α3α5α6−α2α4α5α7
;

αcrmm¼
α9

1−α2α3−α5α6þα2α3α5α6−α2α4α5α7
;

αcoem¼
4lα2α9

j3ωð1−α2α3−α5α6þα2α3α5α6−α2α4α5α7Þ
;

αcrem¼
4lðα5α8ð1−α2α3Þþα2α5α7α9Þ

j3ωð1−α2α3−α5α6þα2α3α5α6−α2α4α5α7Þ
: (22)

The corresponding coupling block diagram is shown
in Fig. 4.
Now, by applying the Onsager-Casimir principle [30]

α˭meðH0Þ ¼ −α˭Temð−H0Þ; (23)

it is possible to obtain the unknown coefficient ξ. H0 is the
internal bias magnetic field, and the superscript T indicates
the transpose operation. Using Eq. (23) and considering
Eqs. (18) and (22), after simple algebra, the coefficient ξ
can be calculated as

ξ ¼ −j3ωμ0
8πa

: (24)

B. Moving chiral particle

The other particle which has been introduced as the
nonreciprocal bianisotropic particle is called the moving
chiral. The geometry of the particle is illustrated in
Fig. 1(b). Similar to the Tellegen omega particle, the
moving chiral particle also consists of two metal wires
which are placed on a ferrite inclusion which provides the
necessary nonreciprocal response.

1. Electric and magnetoelectric polarizabilities

An incident electric field in the x0 direction can excite
both metal wires because the shorter part of the wire A and
the longer part of the wire B are parallel to the x0 axis.
Assuming l0 ≪ λ, the small parts of wire A and wire B have
approximately uniform current distributions (Ix and Iy,
respectively). The long parts of the wires are supposed to be
still much smaller than the wavelength. Hence, the wires
have approximately the following current distributions:

IA ¼
(
Ix

�
1 − y2

l2

�
for jyj > 0

Ix for jxj < l0;

IB ¼
(
Iy

�
1 − x2

l2

�
for jxj > 0

Iy for jyj < l0;
(25)

in which

Iy ≈
l
Zin

E; Ix ¼
2l0

Zin
E: (26)

The constant currents Ix and Iy become secondary sources
which produce a magnetic field for exciting the ferrite

FIG. 4. Block diagram of the coupling between the ferrite
inclusion and the metal wires in the Tellegen omega particle in the
presence of an incident magnetic field in the x0 direction.
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sphere. The y0 component of the magnetic field generated
by Ix and the x0 component of the magnetic field generated
by Iy have the most principal role in ferrite sphere
excitation. Similar to the theory of the Tellegen omega
particle, because of the existing nonuniform external
magnetic field within the ferrite sphere, the average of
the field over the volume of the sphere should be calculated.
Using the Biot-Savart law for the short part of wire A
(where the current distribution is approximately uniform)
and taking the average of the field over the volume of the
ferrite sphere gives

Hy average ¼
1

V

Z
V
Hydv

¼ Ix
4πV

Z
2π

π

Z
π

0

Z −2a sin θ sinϕ
0

fðr; θ;ϕÞdrdθdϕ

¼ F
V
Ix;

fðr; θ;ϕÞ ¼
�

l0 þ r cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l02 þ 2rl0 cos θ

p

þ l0 − r cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l02 − 2rl0 cos θ

p
�
ð−r sinϕÞ: (27)

The calculation of the above integral is not straightforward.
The value F can be found numerically by, for instance,
applying MATLAB simulator software. Similarly, the aver-
aged x0 component of the external magnetic field due to the
constant current Iy can be expressed as

Hx average ¼ −F
V
Iy; (28)

in which the sign “−” implies that the produced magnetic
field is opposite the x0 direction. By applying Eqs. (27) and
(28) and defining the following coefficients

Cxx ¼ Cyy¼ΔF
�

α

α2 þ β2
χxx þ

β

α2 þ β2
χxy

�
;

Cxy ¼ −Cyx¼ΔF
�

α

α2 þ β2
χxy − β

α2 þ β2
χxx

�
; (29)

Eq. (9) reduces to

mx ¼ CxyIx − CxxIy; my ¼ CyyIx − CyxIy; (30)

which actually gives the magnetic moment in terms of the
constant currents on the short parts of the wires A and B. It
is important to appreciate that the excited magnetic moment
induces an electric current in the metal wires, because the
y0 component of the magnetic moment produces an
external x0-directed electric field which is tangential to
the short part of wire A, and, therefore, it can excite it. The
same is true for wire B due to the x0 component of the
magnetic moment. The electric currents in the small parts

of the the wires, due to the magnetic moment, can be
written as

Ix ¼
ξ

Zin
my; Iy ¼ − ξ

Zin
mx; (31)

where ξ is an unknown coefficient. Similar to what we did
above for the Tellegen omega particle, this coefficient is
found from the Onsager-Casimir principle.
Because the constant currents on the short parts of wires

A and B excite the ferrite inclusion, and, simultaneously,
the magnetic moment induces an electric current on the
wires, a coupling cycle is created, which is illustrated by the
block diagram in Fig. 5. The coupling cycle can be also
expressed mathematically as the following relations:

Ix ¼ α08Eþ α2my; my ¼ α3Ix þ α4Iy;

Iy ¼ α5mx þ α1E; mx ¼ α6Iy þ α7Ix; (32)

where

α1 ≈
l
Zin

; α2 ¼ −α5 ¼ ξ

Zin
;

α3 ¼ Cyy; α4 ¼ −Cyx;

α6 ¼ −Cxx; α7 ¼ Cxy; α08 ¼
2l0

Zin
: (33)

The electric dipole moments and the constant electric
currents in the short parts of the wires are related to each
other as

px ≈
4l
j3ω

Iy þ
2l0

jω
Ix; py ≈

2l0

jω
Iy − 4l

j3ω
Ix: (34)

Using Eq. (32) and also considering Eq. (34), the electric
and magnetoelectric polarizabilities can be written as

FIG. 5. Block diagram of the coupling between the metal wires
and the ferrite inclusion in the moving chiral particle in the
presence of an incident electric field in the x0 direction.
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αcoee ¼
4l
j3ω

Ay þ
2l0

jω
Ax; αcree ¼

2l0

jω
Ay − 4l

j3ω
Ax;

αcome ¼
α1α6ð1 − α2α3Þ þ α1α2α4α7 þ α7α

0
8

1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7
;

αcrme ¼
α3α

0
8ð1 − α5α6Þ þ α1α4 þ α4α5α7α

0
8

1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7
; (35)

in which the coefficients Ax and Ay read

Ax ¼
α08ð1 − α5α6Þ þ α1α2α4

1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7
;

Ay ¼
α1ð1 − α2α3Þ þ α5α7α

0
8

1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7
: (36)

2. Magnetic and electromagnetic polarizabilities

Most of the formulas given above can be used, and we
need only to rewrite the relations between the constant
currents and the magnetic moment as

Ix ¼ α2my; my ¼ α3Ix þ α4Iy þ α9H;

Iy ¼ α5mx; mx ¼ α6Iy þ α7Ix þ α8H: (37)

Here, H is the peak value of the high-frequency incident
magnetic field. If we assume that this incident magnetic
field has only an x0 component, then

α8 ¼
4πa3

3F
Cxx; α9 ¼

4πa3

3F
Cyx: (38)

By applying Eqs. (34) and (37), the magnetic and
electromagnetic polarizabilities can be expressed as

αcomm¼
α8ð1−α2α3Þþα2α7α9

1−α2α3−α5α6þα2α3α5α6−α2α4α5α7
;

αcrmm¼
α9

1−α2α3−α5α6þα2α3α5α6−α2α4α5α7
;

αcoem¼
4l
j3ω

Byþ
2l0

jω
Bx; αcrem¼

2l0

jω
By− 4l

j3ω
Bx; (39)

where the coefficients Bx and By are given by

Bx ¼ α2α9
1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7

;

By ¼
α5α8ð1 − α2α3Þ þ α2α5α7α9

1 − α2α3 − α5α6 þ α2α3α5α6 − α2α4α5α7
: (40)

As it is seen from Eq. (37), the coupling block diagram
for this case is completely similar to what is shown in Fig. 4
for the Tellegen omega particle. The coefficients α2 and α5,
which show the effect of the magnetic moment on the metal
wires, are determined by the Onsager-Casimir principle.
After some algebraic manipulations, we get

α2 ¼ −α5 ¼ μ0
α1α4 þ α3α

0
8� 4l

j3ω

�
α9 −

�2l0
jω

�
α8

: (41)

III. RESULTS AND DISCUSSION

Here, we consider the polarizablities of three example
particles described in Table I, compare the analytical
predictions with numerical simulations, and discuss the
results.

A. Tellegen omega particle

As an example, we study the properties of the particles
whose constituent material properties and dimensions are
illustrated in Table I, part (a). For having the resonance

TABLE I. Nonreciprocal bianisotropic particles, properties, and dimensions.

(a) Tellegen omega particle
Resonance frequency at 10 GHz

Ferrite material Saturation magnetization εr Ha a 2l

YIG 1780 G 15 3570 Oe 0.5 mm 3.0 mm

(b) Moving chiral particle
Resonance frequency at 2.5 GHz

Ferrite material Saturation magnetization εr Ha a 2l0 l

YIG 1780 G 15 892.5 Oe 0.5 mm 1.2 mm 6.9 mm

(c) Moving chiral particle
Resonance frequency at 2 GHz

Ferrite material Saturation magnetization εr Ha a 2l0 l

YIG 1780 G 15 714 Oe 0.5 mm 3 mm 9 mm
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frequency at 10 GHz, the bias magnetic field should be
3570 Oe. The ferrite material is assumed to be moderately
lossy with the damping factor equal to 0.001. The length of
each wire is 3 mm, which is one-tenth of the wavelength.
Hence, the current distribution considered in Eq. (4) is a
valid model. To confirm the analytical results, we find the
polarizabilities also numerically based on the approach
developed in Ref. [32]. Simulations are done by the
finite element method applying ANSYS HFSS software.
Simulations can be done using the method of moment
also. Figure 6 compares the analytical polarizabilities with
the numerical ones. As it is seen, the resonance frequency is
approximately 10 GHz, and the simulated and analytical
results are fairly well matched.

B. Moving chiral particle

In this example, we assume that the long parts of the
wires (l) are large compared to l0 but small compared to the
wavelength. Hence, we need to decrease the resonance
frequency used in the example of the Tellegen omega
particle (10 GHz) to be able to increase the value of l, so
that the wavelength will be still larger than the size of the
particle. Therefore, 2.5 GHz can be a reasonable choice
corresponding the wavelength 120 mm. The ferrite material
is the same as above (the same relative permittivity, the
saturation magnetization, and damping factor). For having
the resonance at 2.5 GHz, the applied bias field is 892.5 Oe.
We assume l0 ¼ 0.6 mm and l ¼ 6.9 mm [Table I, part (b)].
The analytical results for the particle are compared with the
simulated ones in Figs. 7 and 8. Figure 7 shows the electric
and the magnetic polarizabilities, and Fig. 8 shows the
electromagnetic and the magnetoelectric polarizabilities.
As it is clear in the figures, there is a very small difference
in the resonance frequency between the analytical and the
simulated results. That can be because of an inaccuracy in
calculating the applied bias field for having the resonance at
2.5 GHz. However, it is thought that the main source of that
shift is in the inaccuracies of determining the reactive
part of the input impedances of the wire elements. The
analytical polarizabilities αcoee , αcree, αcomm, and αcrmm are nicely
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FIG. 6. Comparison of the simulated and analytical polarizabi-
lities of the Tellegen omega particle. Solid lines are the analytical
polarizabilities and dashed lines are the simulated polarizabilities.
Red and blue colors represent the real and imaginary parts of
the polarizability, respectively. (a) Normalized cocomponent of
the electric polarizability; (b) normalized cross component of the
electric polarizability; (c) normalized cocomponents of the
electromagnetic and magnetoelectric polarizabilities; (d) normal-
ized cross components of the electromagnetic and magnetoelec-
tric polarizabilities; (e) normalized cocomponent of the magnetic
polarizability; (f) normalized cross component of the magnetic
polarizability.
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FIG. 7. Comparison of the analytical and simulated (electric
and magnetic) polarizabilities of the moving chiral particle with
l ¼ 6.9 mm and l0 ¼ 0.6 mm. Solid lines are the analytical
polarizabilities and dashed lines are the simulated polarizabilities.
Red and blue colors represent the real and imaginary parts of
the polarizability, respectively. (a) Normalized cocomponent of
the electric polarizability; (b) normalized cross component of the
electric polarizability; (c) normalized cocomponent of the mag-
netic polarizability; (d) normalized cross component of the
magnetic polarizability.

MIRMOOSA et al. PHYS. REV. APPLIED 1, 034005 (2014)

034005-8



matched in value and behavior with the simulated results.
Next, let us discuss the behavior of the electromagnetic
and magnetoelectric polarizabilities, where we observe
differences between the analytical and simulated results.
If we focus only on the analytical results, we find that the

polarizabilities αcoem and αcome or the polarizabilities αcrem and
αcrme are not exactly opposite each other in the whole
frequency range from 2.45 to 2.55 GHz. For a pure moving
chiral particle, we should have αcoem ¼ −αcome (chiral prop-
erty) and αcrem ¼ −αcrme (moving property). In fact, with the
structure of our particle, there are also couplings of the
other two types, Tellegen and omega, in addition to the
moving and chiral ones. The fundamental reason for the
existing Tellegen and omega coupling effects is the central
(short) parts of the wires close to the ferrite inclusion.
Therefore, we observe mixing of all four coupling phe-
nomena and not a pure moving chiral particle. Looking at
the simulated results for the electromagnetic and magneto-
electric polarizabilities, we see that this is more pronounced
in the numerical results. We think that in addition to this
topology effect, the long arms of the wires are very close to
the ferrite inclusion and they can create parasitic effects in
the ferrite sphere excitation (due to strong nonuniformity
of the fields). In theory, we have not taken into account
these parasitic effects, and, therefore, the differences
of the numerical electromagnetic and magnetoelectric

polarizabilities and the theoretical ones are not negligible.
Hence, we should find a way to reduce the impact of the
long arms of the wires, and one possible solution is moving
them farther away from the ferrite sphere by increasing the
length of the central part of the wires. We study an example
case with l0 ¼ 1.5 mm [Table I, part (c)]. As mentioned
before, l is assumed to be much larger than l0. To realize
this, we suppose that l is 6 times larger than l0, which gives
l ¼ 9 mm. Because the size of the particle should be much
smaller than the wavelength, we replace 2.5 GHz with
2 GHz as the resonance frequency. The corresponding
applied bias field is 714 Oe. Figure 9 presents the real
and imaginary parts of the electromagnetic and the mag-
netoelectric polarizabilities obtained analytically and
numerically for this example.
As it is seen, now there is fairly good agreement between

the analytical and simulated results. Still, because of
inevitable inaccuracies, a little difference exists in the
resonance frequencies. The parasitic effects have been
mainly removed, but, naturally, the Tellegen and omega
coupling effects remain significant.

IV. CONCLUSION

In this work, we apply the antenna theory concepts (for
electrically small short-circuit wire antennas) and the
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FIG. 8. Comparison of the analytical and simulated (electro-
magnetic and magnetoelectric) polarizabilities of the moving
chiral particle with l ¼ 6.9 mm and l0 ¼ 0.6 mm. Solid lines
are the analytical polarizabilities and dashed lines are the simulated
polarizabilities. Red and blue colors represent the real and imagi-
nary parts of the polarizability, respectively. (a) Normalized coco-
mponent of the electromagnetic polarizability; (b) normalized
cocomponent of themagnetoelectric polarizability; (c) normalized
cross component of the electromagnetic polarizability; (d) nor-
malized cross component of the magnetoelectric polarizability.

1.95 2 2.05
−1

0

1

2 x 10
−15

 Freq [GHz]
1.95 2 2.05

−2

−1

0

1

2 x 10
−15

 Freq [GHz]

1.95 2 2.05
−2

−1

0

1

2 x 10
−15

 Freq [GHz]
1.95 2 2.05

−1

0

1

2 x 10
−15

 Freq [GHz]

FIG. 9. Comparison of the analytical and simulated (electro-
magnetic and magnetoelectric) polarizabilities of the moving
chiral particle with l ¼ 9 mm and l0 ¼ 1.5 mm. Solid lines are
the analytical polarizabilities and dashed lines are the simulated
polarizabilities. Red and blue colors represent the real and imagi-
nary parts of the polarizability, respectively. (a) Normalized coco-
mponent of the electromagnetic polarizability; (b) normalized
cocomponent of themagnetoelectric polarizability; (c) normalized
cross component of the electromagnetic polarizability; (d) nor-
malized cross component of the magnetoelectric polarizability.
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knowledge about electromagnetic properties of ferrite mate-
rials to derive analytically the electric, magnetic, electro-
magnetic, and magnetoelectric polarizabilities of two
artificial nonreciprocal bianisotropic particles named
Tellegen omega and moving chiral. The results provide
analytical means to predict electromagnetic response for
particles of given topology and sizes, opening a way to
design particleswith the desired bianisotropic parameters, as
required for applications. More specifically, in these par-
ticles, the values of all the polarizabilities can be engineered
by properly choosing the topology and sizes of the metal
parts and the parameters of the magnetized ferrite sphere.
We study the excitations of these particles in incident
uniform electric fields in the plane of the particles and find
the electric and magnetoelectric polarizabilities. Studies of
excitations by incident uniform magnetic fields allow us to
derive the magnetic and electromagnetic polarizabilities.
Subsequently, we compare the analytical results with the
simulated ones. For the Tellegen omega particle, which has a
simpler topology, the analytical polarizabilities show very
good agreement with the numerical polarizabilities. For the
moving chiral particle, because of the complex shape of the
metal parts, parasitic effects due to field inhomogeneities are
more significant, and initially the analytical results do not
agreewellwith the simulated results.However,we show that
optimization of the particle dimensions allows us to reduce
the parasitic interactions, and we observe that the analytical
and simulated results are almost identical for the optimized
particle. A comparison of the electromagnetic and magneto-
electric polarizabilities for the particle indicates that the
particle exhibits also some Tellegen and omega coupling
effects.
In the future, we hope to confirm the analytical and

numerical polarizabilities experimentally. By developing
waveguide measurement techniques and placing such
particles inside a waveguide with different orientations,
it is thought that it can be possible to find all the relevant
components of the particle polarizabilities. The other
important research problem is to find a possible means
to control different magnetoelectric coefficients independ-
ently, so that any desired (physically possible) values of the
parameters will be at reach. As we see from the results of
this paper, the example “moving” particle shows also some
degree of Tellegen and omega coupling, which may be
detrimental for some potential applications. We hope that
this paper is a significant step towards the future use of
nonreciprocal bianisotropic particles in microwave devices,
such as nonreciprocal perfect absorbers or nonreciprocal
thin-sheet isolators [8,10–12].

[1] A. N. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A.
Sihvola, Electromagnetics of Bianisotropic Materials:
Theory and Applications (Gordon and Breach Science
Publishers, Amsterdam, 2001).

[2] C. M. Soukoulis and M. Wegener, Past achievements and
future challenges in the development of three-dimensional
photonic metamaterials, Nat. Photonics 5, 523 (2011).

[3] Z. Li, M. Mutlu, and E. Ozbay, Chiral metamaterials: From
optical activity and negative refractive index to asymmetric
transmission, J. Opt. 15, 023001 (2013).

[4] Y. Ra’di and S. A. Tretyakov, Balanced and optimal biani-
sotropic particles: Maximizing power extracted from
electromagnetic fields, New J. Phys. 15, 053008 (2013).

[5] J. Vehmas, Y. Ra’di, A. Karilainen, and S. A. Tretyakov,
Eliminating electromagnetic scattering from small particles,
IEEE Trans. Antennas Propag. 61, 3747 (2013).

[6] S. A. Tretyakov, Physical interpretation of the transparent
absorbing boundary for the truncation of the computational
domain, IEEE Microwave Guided Wave Lett. 8, 321
(1998).

[7] J. Peng and C. A. Balanis, Transparent absorbing boundary
(TAB) for the truncation of the computational domain, IEEE
Microwave Guided Wave Lett. 7, 347 (1997).

[8] Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, Total absorp-
tion of electromagnetic waves in ultimately thin layers,
IEEE Trans. Antennas Propag. 61, 4606 (2013).

[9] T. Niemi, A. O. Karilainen, and S. A. Tretyakov, Synthesis
of polarization transformers, IEEE Trans. Antennas Propag.
61, 3102 (2013).

[10] Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, One-way
transparent sheets, Phys. Rev. B 89, 075109 (2014).

[11] Y. Ra’di, V. S. Asadchy, and S. A. Tretyakov, arXiv:
1401.1677.

[12] S. A. Tretyakov, I. S. Nefedov, and P. Alitalo, Generalized
field-transforming metamaterials, New J. Phys. 10, 115028
(2008).

[13] D. N. Astrov, Magnetoelectric effect in chromium oxide,
Sov. Phys. JETP 13, 729 (1961).

[14] B. D. H. Tellegen, The gyrator, a new electric network
element, Philips Res. Rep. 3, 81 (1948).

[15] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J.
Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic
Media (Artech House, Norwood, MA, 1994).

[16] E. O. Kamenetskii, On the technology of making chiral and
bianisotropic waveguides for microwave propagation,
Microw. Opt. Technol. Lett. 11, 103 (1996).

[17] V. Dmitriev, Constitutive tensor nomenclature of Kamenet-
skii’s media, Microwave Opt. Technol. Lett. 18, 280
(1998).

[18] S. A. Tretyakov, Nonreciprocal composite with the material
relations of the transparent absorbing boundary, Microw.
Opt. Technol. Lett. 19, 365 (1998).

[19] S. A. Tretyakov, S. I. Maslovski, I. S. Nefedov, A. J.
Viitanen, P. A. Belov, and A. Sanmartin, Artificial Tellegen
particle, Electromagnetics 23, 665 (2003).

[20] S. A. Tretyakov, A. H. Sihvola, A. A. Sochava, and C. R.
Simovski, Magnetoelectric interactions in bianisotropic
media, J. Electromagn. Waves Appl. 12, 481 (1998).

[21] S. A. Tretyakov, S. Maslovski, and P. A. Belov, An
analytical model of metamaterials based on loaded wire
dipoles, IEEE Trans. Antennas Propag. 51, 2652 (2003).

[22] R. W. P. King and C.W. Harrison, Antennas and Waves: A
Modern Approach (MIT Press, Cambridge, MA, 1969).

[23] J. D. Jackson, Classical Electrodynamics (John Wiley &
Sons, New York, 1999).

MIRMOOSA et al. PHYS. REV. APPLIED 1, 034005 (2014)

034005-10

http://dx.doi.org/10.1038/nphoton.2011.154
http://dx.doi.org/10.1088/2040-8978/15/2/023001
http://dx.doi.org/10.1088/1367-2630/15/5/053008
http://dx.doi.org/10.1109/TAP.2013.2256299
http://dx.doi.org/10.1109/75.735408
http://dx.doi.org/10.1109/75.735408
http://dx.doi.org/10.1109/75.631197
http://dx.doi.org/10.1109/75.631197
http://dx.doi.org/10.1109/TAP.2013.2271892
http://dx.doi.org/10.1109/TAP.2013.2252136
http://dx.doi.org/10.1109/TAP.2013.2252136
http://dx.doi.org/10.1103/PhysRevB.89.075109
http://arXiv.org/abs/1401.1677
http://arXiv.org/abs/1401.1677
http://dx.doi.org/10.1088/1367-2630/10/11/115028
http://dx.doi.org/10.1088/1367-2630/10/11/115028
http://dx.doi.org/10.1002/(SICI)1098-2760(19960205)11:2%3C103::AID-MOP17%3E3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1098-2760(199807)18:4%3C280::AID-MOP11%3E3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1098-2760(199807)18:4%3C280::AID-MOP11%3E3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1098-2760(19981205)19:5%3C365::AID-MOP16%3E3.0.CO;2-%23
http://dx.doi.org/10.1002/(SICI)1098-2760(19981205)19:5%3C365::AID-MOP16%3E3.0.CO;2-%23
http://dx.doi.org/10.1080/02726340390244789
http://dx.doi.org/10.1163/156939398X00917
http://dx.doi.org/10.1109/TAP.2003.817557


[24] W. K. H. Panofsky and M. Phillips, Classical Electricity
and Magnetism (Addison-Wesley, Reading, MA,
1955).

[25] D. K. Cheng, Field and Wave Electromagnetics (Addison-
Wesley, Reading, MA, 1989).

[26] D. M. Pozar, Microwave Engineering (John Wiley & Sons,
New York, 2005).

[27] R. E. Collin, Foundations for Microwave Engineering
(John Wiley & Sons, New York, 2001).

[28] L. Onsager, Reciprocal relations in irreversible processes,
Phys. Rev. 37, 405 (1931).

[29] H. B. G. Casimir, On Onsager’s principle of microscopic
reversibility, Rev. Mod. Phys. 17, 343 (1945).

[30] S. V. Zagriadski and S. A. Tretyakov, Proceedings of the 31st
European Microwave Conference, London, UK, 2001
(Microwave Engineering Europe, CMP Europe Ltd., London,
2001), pp. 1–4.

[31] A. Sihvola, Electromagnetic Mixing Formulas and
Applications (The Institution of Electrical Engineers,
London, 1999).

[32] V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, and S. A. Tretyakov,
arXiv:1401.4930.

POLARIZABILITIES OF NONRECIPROCAL … PHYS. REV. APPLIED 1, 034005 (2014)

034005-11

http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/RevModPhys.17.343
http://arXiv.org/abs/1401.4930

