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Surface plasmon polaritons (SPPs) are electromagnetic excitations coupled to electron-charge density
waves at metal-dielectric interfaces. They have recently been found to enable a range of nanophotonic
devices for controlling systems at the quantum level, including single-photon sources, transistors, and
ultracompact quantum circuitry. An important quantum feature of SPPs yet to be fully explored is their
bosonic nature. In this work, we report direct evidence of the bosonic nature of SPPs in a scattering-based
beam splitter. A parametric down-conversion source is used to produce two indistinguishable photons, each
of which is converted into a SPP on a metal-stripe waveguide and then made to interact through a
semitransparent Bragg mirror. In this plasmonic analog of the Hong-Ou-Mandel experiment, we measure a
coincidence dip with a visibility of 72%, a key signature that SPPs are bosons and that quantum
interference is clearly involved. Our work opens up possibilities for the study of fundamental quantum
effects in plasmonic systems and their related applications.
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Nanophotonic systems based on plasmonic components
are currently attracting considerable attention due to the
ways in which the electromagnetic field can be localized
and controlled [1,2]. In the classical regime, a wide range of
applications are being pursued, including nanoimaging [3],
biosensing [4], and solar cells [5]. Recently, researchers
have started to investigate plasmonics in the quantum
regime [6]. Devices have been proposed for a variety of
applications in quantum information science [6–9]. Despite
the remarkable progress made so far, there are many
fundamental aspects of quantum plasmonic systems that
remain unexplored. One key property is the bosonic nature
of single surface plasmon polaritons (SPPs). The quasi-
particle nature of SPPs, consisting of a photon coupled to a
density wave of electrons, makes them an unusual type of
excitation. While it is generally accepted that in theory
SPPs are bosons, as of yet, the quantum statistical behavior
of SPPs has not been clearly demonstrated experimentally.
The bosonic nature of photons was explicitly verified in
the seminal experiment of Hong, Ou, and Mandel [10].
Recent work using plasmonic waveguides has hinted that
SPPs are bosons by observing the preservation of properties
of the photons used to excite them [11–14] and the

Hong-Ou-Mandel (HOM) effect, both indirectly by using
a photonic beam splitter [15] and directly by using a
plasmonic beam splitter [16]. However, the question as to
whether quantum interference is involved remains open due
to the low HOM contrast observed, which can be obtained
via classical interference of light [17–21]. In order to verify
the bosonic nature of single excitations in the quantum
regime, it is vital to observe quantum interference [17–19].
In this work, we report the observation of quantum

interference in the HOM effect for SPPs. We use sponta-
neous parametric down-conversion (SPDC) to produce two
indistinguishable photons [22,23], each of which is con-
verted into a SPP on separate metal-stripe waveguides
[24–26]. This approach alleviates difficulties related to
indistinguishability when using quantum emitters as single-
SPP sources [27–29]. The generated SPPs interact on a
beam splitter via a scattering process [30–32], and we find
that they exhibit the distinct bunching effect expected for
bosons, with the results clearly showing that quantum
interference is involved.
Experimental setup.—The setup used to conduct our

investigation is shown in Fig. 1(a). Here, photon pairs are
generated at a wavelength of 808 nm by using a 100-mW
continuous wave laser (λ ¼ 404 nm) focused onto a beta
barium borate (BBO) crystal cut for type-I SPDC [22].
Phase-matching conditions lead to the photons from a given
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pair being emitted into antipodal points of a cone with an
opening angle of 6° [23]. Figure 1(a) shows that the
antipodal points chosen are in plane. Polarizing beam
splitters (PBSs) in the paths of the down-converted beams
remove any parasitic light with the incorrect polarization.
IFs with a central wavelength of 800 nm and a 22-nm
bandwidth are placed in both paths to spectrally select out
the down-converted photons. The photons are injected into
SMFs. After collimation of the output from the fibers, the
polarization is adjusted by using HWPs to maximize the
excitation of SPPs on the sample. The polarization depend-
ence of the SPP excitation efficiency is the same as in
Ref. [26]. In order to control how well the SPPs generated
from the photons interfere with each other, we introduce a
degree of distinguishability. Their spatial and spectral
characteristics are closely matched by the SMFs and IFs,
so a time delay is introduced in one path by using a
motorized delay line of distance d. This distance provides a
variable delay of Δt ¼ d=c between the single-photon
wave packets, so that the arrival time of the SPPs at the
plasmonic beam splitter can be controlled and a degree of
distinguishability introduced. The photons are focused onto
separate gratings (spot size 2 μm) at the inputs of an
X-shaped plasmonic beam splitter, shown in Fig. 1(c), by a
microscope objective (100×, NA 0.8) and converted into
SPPs due to phase-matching conditions [26,33]. The SPPs
propagate along the waveguides, passing through the
central body of the beam splitter where they interfere via
a scattering process. After scattering, they reach the output
gratings and are converted back into light. Figure 2(c)
shows the SPP intensity from the two output gratings.
MMFs collect this outcoupled light, directing it to silicon
avalanche photodiode (APD) detectors B1 and B2, which
monitor the arrival of the photons. Detection events are
time tagged (PicoQuant Hydraharp 400), coincidences are

evaluated within a tc ¼ 2 ns time window, and reported
error bars correspond to standard deviations.
Beam splitter characterization.—The plasmonic beam

splitter consists of two 2-μm-wide, 70-nm-thick gold stripe
waveguides that cross at a right angle at their midpoint, as
shown in Fig. 2(a). These waveguides support a single low-
loss leaky SPP mode [25] and a number of short-range
bound modes [24]. The beam splitter structure is defined on
a glass substrate by electron beam lithography (EBL). A
second EBL step is used to overlay 90-nm-thick input
and output gratings and central scattering elements, as
described in Ref. [34]. The grating periodicity g ¼ 620 nm
is chosen to couple effectively to the low-loss SPP mode.
The SPP propagation length (the length at which the
intensity decreases to 1=e of its original value) is
l ¼ 12.4 � 0.3 μm. This value has been measured on gold
stripe waveguides of increasing length, as described in
Ref. [26] and shown in Fig. 2(b). The distance between
incoupling and outcoupling gratings is L ¼ 12.5 μm.
In the beam splitter, the splitting operation is obtained

via a scattering process, in direct contrast to previous
studies using coupled waveguides [16]. The scattering
element is a semitransparent Bragg reflector, consisting
of three ridges spaced by a distance p ¼ 500 nm, depos-
ited on the central part of the beam splitter, as shown in
Fig. 2(a). Bragg reflectors such as the one we use have been
studied extensively in the literature, mostly as effective
mirrors in the one-dimensional case of normal incidence,
both on an infinite interface and on plasmonic waveguides
[31]. Some reflectors have also been studied in the two-
dimensional case with different structures, such as a grating
made of nanoparticles [30,35], or with ridges on an infinite
interface [32]. We have chosen this Bragg reflector
approach over coupled waveguides due to its compactness
and the potential for multiple elements to be integrated: The

FIG. 1. Experimental setup. (a) Photon pair generation. Photon pairs are generated via spontaneous parametric down-conversion by
using a pump laser focused onto a BBO crystal and filtered by using interference filters (IFs). Each photon is coupled into a single-mode
fiber (SMF). (b) Microscopy. The photons from the SMFs are collimated and half-wave plates (HWPs) are used to optimize SPP
excitation. A time delay is introduced on one path. (c) Plasmonic beam splitter. The photons are focused onto separate spots on the input
gratings by using a microscope objective. The beams at the output gratings are collected and coupled into multimode fibers (MMFs).
(d) Detection and analysis. The outputs of the MMFs are sent to avalanche photodiodes B1 and B2, where coincident detection events are
measured.
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zone over which the SPPs interact represents less than two
wavelengths.
To obtain the wavelength dependence of the transmission

and reflection T and R, respectively, of the Bragg element,
we use light from a supercontinuum filtered to the
appropriate wavelength and focused on one of the input
gratings, e.g., the top-left grating, as shown in Fig. 2(c). For
each wavelength, the intensity is integrated over the
complete area of each output grating [top-right and
bottom-right gratings in Fig. 2(c)]. The value of T is the
ratio between the intensity at the output grating directly
opposite the input grating and the total intensity at both
output gratings. While this method does not account for
loss due to radiative scattering at the Bragg reflector or
during SPP propagation, it gives the relative transmission T
of the beam splitter. From the above, the relative reflection
coefficient is then R ¼ 1 − T. In order to maximize
quantum interference in the HOM effect, the beam splitter
must have R ¼ T ¼ 1=2 [10]. We check the splitting ratio
for a range of wavelengths for optimal splitting. As shown
in Fig. 2(d), a Bragg reflector with ridges having a period of
500 nm gives T ¼ 0.49� 0.05 for incident SPPs at

λ0 ¼ 808 nm—the wavelength of the photons used in
our experiment. The value of T remains the same for
every input of the beam splitter.
Theoretical background.—In the HOM experiment, due

to phase-matching conditions of the SPDC process, a single
photon in path i is well approximated by the quantum state
j1ii ¼

R
dωiϕiðωiÞâ†i ðωiÞj0i [10,23], where ϕiðωiÞ is a

normalized spectral amplitude of the photon, j0i is the
vacuum state, and â†i ðωiÞ is a creation operator, which
together with the operator âiðωiÞ satisfies the bosonic
commutation relation ½âiðωiÞ; â†i ðωi

0Þ� ¼ δðωi − ωi
0Þ

[36]. Taking the input state at the beam splitter as
j1iAj1iB and applying the unitary transformations â†AðωÞ ¼
i

ffiffiffiffi
R

p
â†B1

ðωÞ þ ffiffiffiffi
T

p
â†B2

ðωÞ and â†BðωÞ ¼
ffiffiffiffi
T

p
â†B1

ðωÞ þ
i

ffiffiffiffi
R

p
â†B2

ðωÞ leads to the output state

ηinηout½i
ffiffiffiffi
R

p ffiffiffiffi
T

p
j2iB1

j0iB2
þ i

ffiffiffiffi
R

p ffiffiffiffi
T

p
j0iB1

j2iB2

− Rj1iB1
j1iB2

þ Tj1iB1
j1iB2

�; (1)

where ηin (ηout) accounts for loss in the input (output) arms
of the beam splitter [36]. In the ideal case, R ¼ T ¼ 1=2
and the terms with one excitation in each output interfere
destructively. This interference can be seen only in the
quantum regime and leads to the output state

j1iAj1iB →
1
ffiffiffi
2

p ðj2iB1
j0iB2

þ j0iB1
j2iB2

Þ: (2)

Thus, the photons display bosonic behavior by bunching
together. This bunching occurs regardless of the loss at the
input and output stages, which only reduces the rate at
which the process occurs. From Eq. (2), the probability of
detecting a coincidence event where a photon is present at
each output drops to zero when the photons interfere. On
the other hand, when they are unable to interfere, e.g., due
to their arrival time, each output state in Eq. (1) occurs with
equal probability, and the probability of detecting a
coincidence is 1=2 [scaled by ðηinηoutÞ2]. In the time
domain, when R ¼ T ¼ 1=2, Eq. (1) leads to a coincidence
probability PðΔtÞ ¼ ðηinηoutÞ2½1 − sinc2ðΔt · Δω=2Þ�=2.
Here, Δt is the delay between the photons, and top-hat
amplitudes ϕiðωiÞ are used with a FWHM of Δω. Thus, we
have Pð0Þ ¼ 0 and PðΔt ≫ τcÞ ¼ ðηinηoutÞ2=2, where τc ∼
2π=Δω is the photon coherence time and τc ≪ tc, with tc
the coincidence window of the detection events.
Quantum interference.—We first confirm that the

photons generated by our source exhibit the above-
described HOM effect in a conventional beam splitter.
For this confirmation, we measured the output coinciden-
ces, as a function of time delay between the arrival of the
input photons. At zero delay the coincidence rate drops to a
minimum value Nmin as expected. This drop is quantified
by using the visibility VP ¼ ðNmax − NminÞ=Nmax [17,19],

FIG. 2. Plasmonic beam splitter. (a) Optical image of the beam
splitter. The in and out gratings consist of 11 ridges, each being
repeated at an increment of g ¼ 620 nm from the waveguide end.
The distance between gratings is L ¼ 12.5 μm. The Bragg
reflector is made out of three ridges with a center-to-center
distance of p ¼ 500 nm. (b) Intensity outcoupled from a single
waveguide as a function of length when excited by a laser at
808 nm by using the method in Ref. [26]. (c) Optical image of the
splitter when the SPPs are excited by a laser at 808 nm focused on
the top-left grating. Light is outcoupled at the top right and
bottom right with almost identical intensity. The integration time
is adjusted to give a reasonable contrast for the output, leading to
a saturation at the input caused by the scattered field. (d) Trans-
mission T and reflection R as a function of wavelength.
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where Nmax is the maximum value of coincidences far from
the dip center. We find VP ¼ 0.67� 0.05. This value is
limited by a number of factors, including the bandwidth of
the IFs used in our experiment, the resolution of the time
delay, the spatial mismatch between the modes of the
photons at the beam splitter, and the deviation of the beam
splitter from the ideal case (R ¼ T ¼ 0.5). Despite these
factors, with a visibility larger than 0.5 we can confirm that
the drop is due to quantum interference [17–19].
We then probe the plasmonic beam splitter, as depicted

in Fig. 1. When the coupling of single photons into the
SPP waveguides is optimized, the count rate due to SPPs
scattered by the output grating and detected by APD B1;2 is
NB1;2

∼ 5.5 × 106 counts per hour (counts/h), as shown in
the inset in Fig. 3. The time-resolved correlation data show
an average number of coincidences of 54.8� 1.4 counts=h
far from zero time delay and 30.2� 2.4 counts=h at zero
delay. A proportion of these counts are due to accidental
coincidences from uncorrelated photon pairs which couple
into the beam splitter but do not correspond to true
correlated pairs from the source; thus, we subtract them
from the overall counts. We measure the contribution of
coincidences due to the accidentals by introducing an
electronic time delay between the events at both detectors

larger than the coincidence window, thus capturing the
coincidence counts from uncorrelated pairs. The accidental
coincidence count far from zero delay is 15.4� 2.2, so that
the average coincidence rate is then 39.4� 0.9 counts=h,
as shown in Fig. 3. On the other hand, at zero delay we
have an accidental rate of 19.5� 2.2 giving a coincidence
rate of 10.7� 5.1 counts=h at zero delay, which leads
to a visibility for the plasmonic HOM dip of
VSPP ¼ 0.72� 0.13. The observed dip confirms that single
SPPs bunch together as bosons, and as the visibility is
larger than 0.5 this result confirms that quantum interfer-
ence is involved in the bunching process [17–19]. The
plasmonic visibility is again limited by a number of
factors, including the bandwidth of the IFs and the
time-delay resolution. The use of a narrower bandwidth
is possible, giving photons with improved spectral defi-
nition for interference; however, this definition comes at
the expense of longer data collection times, where the data
become sensitive to the coupling stability of the setup. The
resolution of the time delay is limited by the accuracy of
the translation stage, with shorter step sizes allowing for
improved accuracy near the dip minimum. One reason for
the improved visibility compared to the photonic case may
be due to the integrated waveguide providing better spatial
overlap of the modes at the beam splitter [37].
Furthermore, any loss due to radiative scattering at the
beam splitter (measured as < 10%) occurs instantaneously
and can be included within ηout, which does not play a role
in reducing the visibility [20]. Finally, note that, when the
coincidence rate drops as the single SPPs interfere, the
count rate at each APD remains unchanged, as shown in
Fig. 3. This effect is due to the small portion of pairs of
single excitations (compared to the total) that survive the
process of propagation, splitting and outcoupling: In most
cases, at least one excitation from a pair will be lost.
Therefore, the count rate at each APD allows the efficiency
of the system to be monitored to ensure that the dip is not
caused by loss fluctuations.
Summary.—In this work, we experimentally investigate

a key quantum feature of SPPs, that is, their bosonic nature.
We use single photons generated via parametric down-
conversion to excite single SPPs on a metallic stripe beam
splitter. The SPPs interact via a scattering process, and we
directly observe the HOM effect. Here, the SPPs show a
distinct bunching behavior as expected for bosons, with the
results clearly showing that quantum interference is
involved. Our investigation confirms the bosonic nature
of single SPPs in the quantum regime, and, by doing so, it
opens up exciting opportunities for controlling quantum
states of light in ultracompact nanophotonic plasmonic
circuitry.
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FIG. 3. Plasmonic Hong-Ou-Mandel dip. Black squares:
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PðΔtÞ corrected for accidentals [38]. From the theory fit, we
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