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We present a new approach that demonstrates the deflection and guiding of relativistic electron beams
over curved paths by means of the magnetic field generated in a plasma-discharge capillary. The active
bending plasma (ABP) represents a promising solution that has been recently demonstrated with a proof of
principle experiment. An ABP device consists of a curved capillary where large discharges (of the order of
kA) are propagated in a plasma channel. Unlike conventional bending magnets, in which the field is
constant over the bending plane, in the ABP, the azimuthal magnetic field generated by the discharge grows
with the distance from the capillary axis. This features makes the device less affected by the beam
chromatic dispersion so that it can be used to efficiently guide particle beams with non-negligible energy
spreads. The study we present in the following aims to provide a theoretical basis of the main ABP features
by presenting an analytical description of a single-particle motion and rms beam dynamics. The retrieved
relationships are verified by means of numerical simulations and provide the theoretical matrix formalism
needed to completely characterize such a new transport device.

DOI: 10.1103/PhysRevAccelBeams.27.091301

I. INTRODUCTION

The idea to use curved plasma capillaries is not new in the
literature and has been employed to successfully guide laser
pulses over nonstraight paths [1–3]. So far, however, their use
was never exploited to guide and bend charged particle
beams. Indeed,while the straight version (active plasma lens,
APL) has been discussed in several articles [4–6], the curved
one was introduced few years ago [7] and its demonstration
was provided only very recently with a proof of principle
experiment [8]. Its theoretical formalism, however, was not
yet provided and represents the goal of the present work,
providing equations for the proper transport conditions.
The idea behind the ABP is rather simple: (i) an inert gas

is injected into a cylindrical-section capillary whose axis
describes an arc of a circle; (ii) two electrodes placed at the
capillary tips ionize the gas through a discharge at several
kV; and (iii) the current density generates an azimuthal
magnetic field centered on the capillary axis and with a
magnitude that increases with distance. By injecting the
beam at the correct position relative to the axis, it is possible
to satisfy the beam rigidity equation and curve its trajectory.
The effect of the radially increasing field in both the

bending and transverse planes is to achieve intense focus-
ing in both directions. The high magnetic field gradients
allow to bend ultrarelativistic beams over short distances:
as an example, from the results shown in Sec. II, it can be
observed that a 2 mm radius capillary with ≈5 kA
discharge-current is able to bend a 1 GeV electron beam
with an equivalent 2 m bending radius. In general, the
device can reach high peak fields, comparable to the most
high-performing conventional magnets and provide high
focusing field gradients along the two transverse planes.
This paper aims to provide the theoretical background

describing the ABPworking principle. In Sec. II, the transfer
matrix of the device is obtained and discussed similar to
the cyclotron case. Here, several considerations regarding
dispersion also show the main differences with respect to a
CBM from the beam dynamics point of view. The matching
conditions are retrieved by solving the envelope equation in
cylindrical coordinates. We also introduce the effects on the
dynamics arising from nonlinear effects. A parametric scan
on the beam emittance, spot, and duration is also performed
and discussed. Finally, in Sec. III, we show a comparison
between the analytical expressions and the numerical sim-
ulations of the ABP.

II. ABP SINGLE PARTICLE
AND BEAM DYNAMICS

The focusing field produced by the active plasma lens
strongly depends on the discharge dynamics along the
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capillary. To describe the main effects of the capillary
discharge process, we followed a one-dimensional analyti-
cal model that gives expressions for equilibrium plasma
temperature and density as a function of radial position [9].
The balance between Ohmic heating and cooling due to the
electron heat conduction results in an electric conductivity
expression that gives a cosinelike current density profile.
Ampere law then provides a nonlinear azimuthal magnetic
field, with a steeper trend near capillary axis. In Fig. 1, a
plot of the nonlinear field and the Biot-Savart field
equivalent to the total current can be observed. In the
following section, the equations will be developed using
the linear Biot-Savart field for simplicity. The obtained
results are scalable to reproduce the slope of the real field,
which shows linear behavior near the axis.

A. Equilibrium radius and lower limit current

Joining case-suited Biot-Savart law B ¼ B0ðρ − ρcÞ ¼
μ0Iðρ − ρcÞ=2πr2c and the beam rigidity equation
Bρ ¼ p=q, an equation for the equilibrium radius is found

B0ρ2 − B0ρcρ −
γmc
q

¼ 0; ð1Þ

whose solution is

ρ0 ¼
ρc
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πmcr2cγ

μ0qρ2cI

s !
≈ ρc þ Ĩ0

r2c
ρc

γ

I
; ð2Þ

where ρ denotes the radial coordinate, ρc is the radius of
curvature of the capillary axis, μ0 the magnetic permeability
of vacuum, I the current in the capillary, rc denotes the
inner radius of the capillary’s circular cross section [see
Figs. 2(a) and 2(b)], B0 stands for dB=dρ, p ≈ γmc denotes

the mean beam particles’ momentum magnitude, and q
denotes the particle’s charge, Ĩ0 ¼ I0=2 ¼ 2πmc=μ0q rep-
resents half of the charged particle’s characteristic current,
γ ¼ ð1 − β2Þ−1=2 (β ¼ v=c being the normalized average
beam velocity) represents the average Lorentz factor of the
beam,m is the particle’s mass, and c the speed of light. The
approximation in Eq. (2) is valid when rc=ρc ≪ 1. To
ensure a real solution inEq. (2), signðqÞ ¼ signðIÞ is needed:
thismeans that an electron beam (q ¼ −e)will require I < 0,
i.e., the plasma electrons must flow in the same direction as
the beam electrons. As expected, the equilibrium radius
defined in Eq. (2) is proportional to the energy of the beam
and inversely proportional to the current. From Eq. (2), the
minimal current needed to achieve bending is readily
computed as a function of beam energy and device geometry.
The condition is found imposing that the equilibrium radius
lays within the capillary boundaries, ρ0 < ρc þ rc:

FIG. 1. ABP magnetic field: field amplitude as a function of
distance from the axis of the capillary: comparison between a
realistic discharge field [10] (blue) and the current-equivalent
Biot-Savart type field (orange). Note that the discharge field tends
to a linear behavior near capillary axis.

FIG. 2. ABP reference system: (a) capillary render and coor-
dinates: ρc, bending radius; rc, capillary section radius; s,
curvilinear coordinate along the capillary axis; and θ, bending
angle. In orange, a sketch of the ABP bent capillary with a detail
on transverse section. (b) Beam particle coordinates represented
on capillary transverse section: Cartesian reference system ðx; yÞ
with origin centered on the beam mean equilibrium radius ρ0,
associated with the magnetic field B0 satisfying the beam rigidity
equation. In orange, capillary circular inner boundary.
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I > Ĩ0γ
rc
ρc

¼ Ilim: ð3Þ

Some numerical values of Eq. (3) are shown in Fig. 3.
Note that this expression defines the condition for complete
charge transport for a pointlike beam, provided that the
beam is injected at ρ ¼ ρ0. If this last condition is not met,
collective oscillations could lead to partial or total charge
loss. In general, to transport the beam following non-
equilibrium injection, a higher currents will be required.

B. Equations of motion

In [6], the equations of motion for the curved capillary
were identified, assuming that the focusing force is the
same of APL. This may be a good approximation for large
radii of curvature, but going toward compact devices
centripetal force must be taken into account. Referring
to Fig. 2(b), the equations of transverse motion will be
derived under paraxial approximation with respect to ðx̂; ŷÞ
axes, which are centered on the bending plane and on
equilibrium radius ρ0. The current is assumed to enter the
ðx̂; ŷÞ plane. The bending will occur with the center of
curvature located at the zero of the horizontal axis ρ̂ and the
rotation axis parallel to the ŷ axis. Field component x̂ (ŷ)
will be a linear function of the y (x) coordinate and
independent from the x (y) coordinate. They may be
written as follows:

BxðyÞ ¼ −
∂B
∂x

y ¼ B0n
y
ρ0

ByðxÞ ¼ B0 þ
∂B
∂x

x ¼ B0

�
1 − n

x
ρ0

�
; ð4Þ

with B0 ≃ γmc=ρ0q being the field that satisfies the beam
rigidity equation and n being the field index that reads

n ¼ −
ρ0
B0

∂B
∂x

¼ −
Iρ20
Ĩ0γr2c

: ð5Þ

The difference between the fields in Eq. (4) compared to
those of a classical cyclotron is the sign of the x̂ component
[11] and leads to the following motion laws:

x00 þ 1 − n
ρ20

x ¼ 1

ρ0

Δγ
γ

y00 −
n
ρ20

y ¼ 0; ð6Þ

where the prime symbol is now the differentiation with
respect to the coordinate s [see Fig. 2(a)]. A negative field
index is always met, ensuring stability in both x and
y motion. Betatron wavenumbers in both planes are then
obtained as follows:

kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

Ĩ0γr2c
þ 1

ρ20

s
;

ky ¼
ffiffiffiffiffiffiffiffiffiffiffi
I

Ĩ0γr2c

s
: ð7Þ

Note that, as the radius of ρc goes to infinity, kx → ky ≡ kb,
and the obtained expression corresponds to the betatron
wave number for an APL as shown in [4,6]. Compared to a
CBM wavenumber kx ¼ 1=ρ0, Eq. (7) shows a much
shorter betatron wavelength for the ABP, highlighting
the intense focusing nature of this device.

C. Chromatic dispersion

The evolution of a chromatic beam in the ABP shows
noticeable differences with respect to a CBM. Given the
general expression of dispersion in terms of thewave number
kb in linear approximation [12]DðsÞ ¼ ð1 − cos kbsÞ=ρ0k2b,
ABP and CBM dispersions may be written as follows:

DABP ¼
1

ρ0k2x
ð1 − cos kbsÞ;

DCBM ¼ ρ0ð1 − cos s=ρ0Þ: ð8Þ

As an example, for ρ0 ¼ Oð1Þ m, rc ¼ Oð1Þ mm,
I ¼ Oð1Þ kA, and γ ¼ Oð102Þ, the maximum dispersion
amplitude is two orders of magnitude smaller than that of a
CBM with the same radius of curvature ρ0. Such a case is
presented in Fig. 4, where the two dispersion function
(ABP and CBM) are plotted against longitudinal coordi-
nate (s). Moreover, the dispersion vanishes at multiples
of the betatron wavelength, which is λx ¼ Oð10−1Þ m.
Including dispersion, the linearized betatron motion
becomes

FIG. 3. Minimum required current Ilim as computed from
Eq. (3) as a function of beam energy, for several rc=ρc ratio
values.
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xðsÞ ¼ xβðsÞ þ xDðsÞ

¼
�
x0 −

Δγ
γρ0k2x

�
cos kxsþ

x00
kx

sin kxsþ
Δγ

γρ0k2x
: ð9Þ

The last term in the RHS of Eq. (9) is the energy-dependent
offset with respect to average equilibrium radius ρ0, as
identified in Eq. (2). Performing the ratio between DABP
and DCBM in Eq. (8), it is observed that they tend to be the
same for small propagation lengths, kxs ≪ 1:

DABP

DCBM
¼ 1

ρ20k
2
x

1 − cos kxs
1 − cos s

ρ0

≈ sin c2
kxs
2

: ð10Þ

The dispersion values start to differ significantly beyond
s≳ λx=4 (where DABP=DCBM < 0.8). By approximately
inverting Eq. (10), it is possible to obtain the minimum
length of the device Lc as a function of the desired value of
DABP=DCBM:

Lc ≥
2

kx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
DABP

DCBM

s !vuut : ð11Þ

ABP capillary lengths greater than this limit will give the
desired dispersive properties.

D. Longitudinal dynamics

As presented in Appendix A, a single particle longi-
tudinal deviation from the reference trajectory (Δγ ¼ 0,
ρ ¼ ρ0) is obtained as a function of particle energy and
injection conditions. The equation, reported below for
convenience, takes the following form:

Δs ≃ Δs0 − s
a20k

2

4
þ s

�
x0
2ρ0

þ 1

γ2
−
Ĩ0r2cγ
Iρ20

�
Δγ
γ
; ð12Þ

with s ¼ βγct and a0 as the betatron oscillation amplitude,
defined in Eq. (A2). Transition energy is then identified by
imposing Δs − Δs0 ¼ 0:

�
x0
2ρ0

þ 1

γ2
−
Ĩ0r2cγ
Iρ20

�
Δγ
γ

¼ a20k
2

4
: ð13Þ

Equation (13) identifies a hyperbolic surface in the phase
space ða0;Δγ=γÞ, which splits regions ahead or behind the
reference trajectory [see Fig. 5(a)]. Points with Δγ=γ below
(above) Eq. (13) after (before) the vertical asymptote, will
always have Δs < 0, while the others will have Δs > 0:
referring to Fig. 5(b), note that the presence of finite
emittance (nonzero trajectory angle x0) determines a spread
of transition hyperbolae (orange in the figure), which
partially violates the transition and result in a global beam
slowdown. Setting x0 ¼ 0 in the LHS of Eq. (13), transition
Lorentz factor γT is found:

γT ≃

ffiffiffiffiffiffiffiffi
Iρ20
Ĩ0r2c

3

s
≃

ffiffiffiffiffiffiffiffi
Iρ2c
Ĩ0r2c

3

s
; ð14Þ

where the second approximation arises from retaining only
terms of the same order of magnitude as γ3. Since the
transition Lorentz factor depends on the current, which is
lower limited by Eq. (3), a lower limit to the transition
Lorentz factor is implied:

γT;lim ≃
ffiffiffiffiffiffiffi
ρcγ

rc
3

r
: ð15Þ

Note that this limit depends on the energy of the beam.
In particular, Eq. (15) indicates that for beams with
γ >

ffiffiffiffiffiffiffiffiffiffiffi
ρc=rc

p
, we will have γT;lim < γ, meaning it will be

possible to place the beam above or below the transition,
whereas for beams with γ <

ffiffiffiffiffiffiffiffiffiffiffi
ρc=rc

p
, we will have

γT;lim > γ. In this case, the beam will be bounded below
the transition [see Fig. 5(b)]. This could become relevant
for ultrashort beam applications (see Sec. II E 1).

FIG. 4. ABP and CBM dispersion functions comparison, as
computed from Eq. (8), for ρ0 ¼ 1 and kx ¼ 10. The dispersion
amplitude difference is on the order of Oð102Þ, while the period
difference isOð101Þ. In the detail window below can be observed
the same exact trend of the two dispersions for bending lengths
s≲ λx=4: indeed, the ratio between ABP and CBM dispersion is
given by a sinc function in Eq. (10) that tends to 1 for s → 0.
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E. rms beam parameters

1. Transverse

The transverse envelope equation in cylindrical coordi-
nates derivation is reported in Appendix B. For conven-
ience, the final equation is shown below:

∂
2σx

hρi2∂θ2 −
hρ0i
hρi

∂σx
hρi∂θ þ k2xσx ¼

ϵ2rms

σ3x
; ð16Þ

where <> stands for an average over beam particles. The
matched beam size is readily found to be

σx;M ¼
ffiffiffiffiffiffiffiffi
ϵrms

kx

r
: ð17Þ

It is worth noting that this value is valid both for beam
injection at equilibrium and for small deviations from it,

until linear approximation for trajectories holds. Note that
Eq. (16) shows an adiabatic damping term despite energy
conservation, dependent on radial position instead of beam
Lorentz factor. This behavior roots to the rotating reference
frame that introduces apparent Coriolis force.

2. Longitudinal

Performing standard deviation of Eq. (12) under the
assumption of an initially Gaussian beam with matched
transverse rms size and injected at equilibrium, the longi-
tudinal rms evolution comes as follows:

σ2s ¼ σ2s;0 þ s2
�
ϵrms

4ρ0

ffiffiffiffiffi
γ

γ3T

r
þ γ2

�
1

γ3
−

1

γ3T

�
2
�
σ2Δγ=γ

þ s2
ϵ2rms

4ρ20

γ3T
γ

�
1þ k4xρ40

γ2

γ6T

�
: ð18Þ

It was also assumed the bunch to be in a focus at injection,
i.e., ϵ2 ¼ σ2xσ

2
x0 . The presented expression shows that rms

elongation is given by a first emittance and energy spread
dependent term, and a second one that depends on
emittance only. It was found that in many real-case
scenarios, these two terms are comparable. The net effect
is that the minimal beam elongation is not always found on
transition. As shown in Fig. 6, for growing energy, the
optimal condition for beam length conservation is found
above transition, with a neat behavior-change point depen-
dent on emittance and relative energy spread.
The evolution of the beam centroid with respect to the

reference trajectory needs to be derived for retrieving
Eq. (18). It turns out to be

FIG. 6. Beam rms elongation plotted versus beam Lorentz
factor γ and transition Lorentz factor γT from Eq. (18). Transition
line γ ¼ γT is shown in solid red. Minimal elongation is shown in
solid white. The orange region shows out-of-use configurations,
where I < Ilim [see Eq. (3)]. The presented case features σΔγ=γ ¼
0.01 and ϵn ¼ 1 mmmrad. After some threshold energy given by
emittance and energy spread, the optimal condition is found
above transition. This knowledge may be relevant in ultrashort
beam applications.

FIG. 5. ABP transition: (a) 1–6 transition space for a whole
beam above transition, where regions corresponding to faster
(slower) states relative to the reference trajectory are highlighted
in green (blue). The presence of finite emittance broadens the
transition hyperbola (orange), resulting in an excess of states at
Δs < 0 (slower beam centroid); (b) γT limit, with possible γT
values as a function of beam energy (abscissa), where it can be
observed that for γ <

ffiffiffiffiffiffiffiffiffiffiffi
ρc=rc

p
(dashed black line), the beam will

be constrained below the transition.
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μs ¼ μs;0 − s
ϵrms

2ρ0

ffiffiffiffiffi
γ3T
γ

s �
1þ k2xρ20

γ

γ3T

�
ð19Þ

and predicts a global slowdown of the linear beam with the
emittance.

3. Beam size saturation

Beam energy spread brings equilibrium radius spread. It
also leads to a spread in betatron wave vectors, causing a
slower or faster phasemixing among the oscillations of beam
particles. This phase mixing can have significant effects in
cases of off-equilibrium injection and high discharge cur-
rents, leading to a considerable increase in transverse size and
beam emittance. In Appendix C, the saturation values of the
transverse rms size and saturation length as functions of
beam and capillary parameters have been derived using a
phase-mixing-based statistical approach. For convenience,
the final equations for a matched beam are reported below:

σ2sat ¼
Δx2inj
2

þ ϵrms

kx
þ 3

2

σ2Δγ=γ
ρ20k

4
x
; ð20Þ

Lsat ≃
2πγkxĨ0ρ20r

2
c

ðIρ20 − 2γĨ0r2cÞ
1

3σΔγ=γ
; ð21Þ

whereΔxinj is the injection offset with respect to equilibrium
and σΔγ=γ is the relative energy spread.

F. Transfer matrix

Combining the results obtained in Secs. II C and II D for
a single particle dynamics, in particular Eqs. (9) and (12),
linear and nonlinear transfer matrix of the ABP may be
obtained, allowing for fast parallel computation of particle
trajectories. The nontrivial terms of the linear matrix Rij
are the following:

R11 ¼ cos kxs;

R12 ¼
1

kx
sin kxs;

R16 ¼
1

ρ0k2x
ð1 − cos kxsÞ;

R21 ¼ −kx sin kxs;

R22 ¼ cos kxs;

R26 ¼
1

ρ0kx
sin kxs;

R33 ¼ cos kys;

R34 ¼
1

ky
sin kys;

R43 ¼ −ky sin kys;

R44 ¼ cos kys;

R55 ¼ 1;

R56 ¼ s

�
1

γ2 − 1
−
Ĩ0r2cγ
Iρ20

�
;

R66 ¼ 1: ð22Þ

Similarly, the nontrivial terms of the nonlinear tensor Tijk

are the following:

T511 ¼ −s
k2x
4
;

T522 ¼ −
s
4
;

T533 ¼ −s
k2y
4
;

T544 ¼ −
s
4
;

T516 ¼
s
2ρ0

: ð23Þ

III. NUMERICAL SIMULATIONS

Validation of the analytical results derived in Sec. II was
performed with a dedicated particle simulation script
implemented for the numerical computation of beam
dynamics inside the ABP. The related python package is
called RADYNO [13]; it computes full relativistic dynamics
without space charge and wakefields and optionally per-
forms Lienard-Wiechert-based radiation spectrum evalu-
ation [14]. The beam particles are described relative to the
curvature axis of the capillary. This natural coordinate
system avoids field interpolation from preconstructed
field maps, resulting in good performance. Field is purely
magnetic Biot-Savart type. This simplified setup requires
constraints on beam aspect ratio and charge [4], which were
satisfied for the presented results. Particle trajectory plots
will be presented in rectified (cylindrical) coordinates
(ρ, y, s) to clearly observe beam dynamics. In Fig. 7,
the injected electron beam has a Gaussian distribution of
positions and momenta, mean Lorentz factor γ ¼ 100. The
ABP capillary has an inner radius rc ¼ 1 mm, bending
radius ρc ¼ 15 cm, and current I ¼ 12 kA. From Eq. (7),
the theoretical betatron wavelength can be calculated as
λx ¼ 5.3 cm. In Fig. 7(a), we observe the difference
between envelope oscillations due to transverse mismatch
(up) and those due to dispersion (down) through rectified
trajectory plots. In both cases, the normalized emittance is
ϵn ¼ 0.1 mmmrad. In the case of Fig. 7(a) (upper), a beam
with σx ¼ 2σM [Eq. (17)] and spread σΔγ=γ ¼ 0 was
initialized: optical envelope oscillations at λ ¼ λb=2 are
observed, as easily obtained by linearizing the envelope
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equation [Eq. (16)]. These oscillations do not alter the
emittance. In the case of Fig. 7(a) (lower), a beam with
σx ¼ σM and spread σΔγ=γ ¼ 1% was initialized: dispersive
envelope oscillations at λ ¼ λb, as indicated by Eq. (8),
corresponding to an emittance oscillation, are observed.
In particular, this latter case shows that despite the lower
dispersion compared to a CBM, the ABP can also provide
significant size variations depending on the extraction
point. In Fig. 8, beam and capillary parameters are the
same used for Fig. 7. In Fig. 8(a), the dispersion of the ABP
is quantified in terms of transverse spot size. The ratio
between the size of an ABP beam and that of a CBM beam

is shown as a function of the device length, for various
values of energy spread. The dashed line represents the
theoretical trend predicted by Eq. (11), which, being a
relationship for a single particle, does not exactly reproduce
all cases. Instead, it depicts the behavior for increasing
energy spread; this happens because, for lower spreads, we
encounter cases where the ABP size variation is smaller
than the initial size, making it impossible to verify Eq. (11).
Figure 8(a) shows that, in most cases, Eq. (11) can be
considered an upper limit of dispersion as a function of
device length. In general, the order of magnitude L0 ¼
2
ffiffiffi
6

p
=kx can be considered the minimum length beyond

which the ABP dispersion is negligible compared to that of
a CBM. Figure 8(b), on the other hand, shows the
longitudinal dispersive rms variation some emittance val-
ues, for an initially matched beam with an aspect ratio ¼ 1.
The elongation is evaluated as a function of energy spread,
at the end of a π=2 bending. The dashed lines represent the
analytical predictions given by Eq. (18). It can be observed

FIG. 8. (a) ABP/CBM transverse spot ratio as a function of
device length, evaluated for several σΔγ=γ . Dashed line shows
expected behavior given by Eq. (11), which works properly for
greater spot oscillations (e.g., 10% case). (b) Beam rms elonga-
tion as a function of energy spread, plotted for matched beams in
a wide emittance range. Aspect ratio is set to unity in all cases.
Dashed lines are given by Eq. (18) and show good agreement
with numerics.

FIG. 7. Transverse and longitudinal beam dynamics. Compari-
son between numerical and analytical solutions for 50 MeV
beams. (a) Numerical rectified trajectories in bending plane,
comparison between optical (upper plot, mismatched beam, no
energy spread) and dispersive (lower plot, matched beam, 1%
energy spread) envelope oscillations. As expected, optical oscil-
lations happen at double frequency compared to dispersive ones.
Red dashed line shows expected equilibrium radius Eq. (2). In the
dispersive case, note the slight misalignment between oscillation
extremes, due to the energy dependence of kx; (b) scatter plot of
deviation from the reference trajectory at the end of the evolution
of an initially pointlike beam in the longitudinal coordinate and
with γ > γT , σΔγ=γ ¼ 0.01, and ϵn ¼ 10 mmmrad. The color bar
shows the amplitude of each particle’s betatron oscillation,
showing a clear correlation with delay respect to reference
trajectory.
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that the elongation is greater for beams with lower
emittance, despite Eq. (18) being directly proportional
to ϵn. This occurs because the unitary aspect ratio implies
σz;0 ¼ σM. Also, σM is proportional to the emittance and
grows more rapidly than Eq. (18), resulting in the observed
behavior. Finally, the other relationships derived in
Sec. II E, regarding the transverse sizer saturation values
and lengths [Eqs. (20) and (21)], were verified. In Fig. 9,
the evolutions of σx for beams with γ ¼ 50, current
I ¼ 7500 A, and σx ¼ 2σM are presented. The choice of
these parameters was to reach saturation more rapidly.
Injections are performed with offsets Δxinj ¼ 0; 0.3 mm
(a), (b). The correct identification of the saturation length
can be observed, corresponding to the knee of the average
evolution. In case (a), it is less evident due to saturation at a
lower value than the maximum, although the correct

identification of saturation remains evident. In both cases,
the theoretical saturation value coincides exactly with the
numerically calculated one. It is clear how the injection
offset does not modify the saturation length while it
increases in the transverse size of its same order of
magnitude. The treatment presented in Sec. II E is entirely
general and proves to be a useful tool for evaluating the
progressive degradation of the beam as a function of energy
spread, emittance, and injection conditions.

IV. CONCLUSIONS

The theoretical work presented provides quantitative
insights for the proper preparation of experiments based
on ABP devices. The derivation assumes an azimuthal
magnetic field of the Biot-Savart type for simplicity. The
results are presented in a simple analytical formalism and
show excellent agreement with numerical simulations. To
include the effects of more realistic magnetic fields [10], it is
possible to include a corrective factor to the slope of the linear
field as a first approximation. This correction actually
modifies the characteristic current Ĩ0 (lower for higher field
slopes). Although this still excludes the nonlinearities
introduced by current density distribution effects, for
matched injection sufficiently close to the capillary axis,
the linear approximation will still be accurate. To avoid
nonlinear effects, it is advisable in any case to inject the beam
as close as possible to the equilibrium indicated by Eq. (2).
One of themost interesting features of the ABP regards its

dispersion that can bemade orders ofmagnitude smaller than
the one of a CBM with the same curvature radius. On the
other hand, it has been shown that the dispersion term
actually tends exactly to the one of a CBM for device lengths
approaching zero. The dispersion is also inversely propor-
tional to the discharge current, which favors the use of large
currents up to the pinching limit [15,16]. However, in
Eq. (21), it has been shown that the saturation length of
the beam transverse size is also inversely proportional to the
current. In case of uncertainty about the injection position,
higher currents tend to worsen beam quality more rapidly.
The dispersive properties of the ABP in case of injection

out of equilibrium can also be exploited to provide trans-
verse chirp to a beam with substantial energy spread,
without having a significant effect on its spot size. The
behavior of the beam out of equilibrium is also interesting
for the design of ABP chicanes, where the reversal of the
bending direction (and therefore the equilibrium position)
necessarily leads to collective betatron oscillations of
the beam.
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FIG. 9. Transverse rms size saturationwith increasing offset with
respect to the equilibrium radius Δxinj ¼ 0; 0.3 mm (a), (b). The
beam is injected with a double rms size compared to matching, to
better observe saturation in case (a). The full blue lines depict the
numerical evolution of beam size, while dashed lines represent
analytical predictions. The dashed red line indicates the saturation
length calculated using Eq. (21), and the dashed black line
represents the saturation value from Eq. (C7).
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APPENDIX A: BEAM ELONGATION

Considering a particle in betatron motion around its
equilibrium radius, its trajectory can be approximated as

rðsÞ ≈ a0 cosðksþ ϕ0Þ; ðA1Þ

with r being the radial distance from equilibrium and ϕ0 a
phase that we will set to zero without loss of generality; the
approximation arises from considering kx ≈ ky ≡ k, and

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x0 −

Δγ
γρ0k2

�
2

þ x020
k2

þ y20 þ
y020
k2

s
ðA2Þ

is the maximum amplitude of oscillation. Here,
x0; y0; x00; y

0
0 denote the positions and trajectory slopes of

the particle at the time of injection. In paraxial approxi-
mation, the axial component of velocity will be

βsðsÞ ¼ β0 cos½−a0k sinðkbsÞ�: ðA3Þ

The average longitudinal velocity is found by integrating
over half a betatron oscillation as follows:

βs ¼
kb
π

Z
π=kb

0

βsðsÞds ¼ β0J0ðkba0Þ ≈ β0

�
1 −

k2ba
2
0

4

�
;

ðA4Þ

where J0 stands for the Bessel function of the first kind
and where

β0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ðγ þ ΔγÞ2
s

ðA5Þ

is normalized velocity modulus. The length of trajectory
travelled by a particle with Lorentz factor γ þ Δγ in the
time interval Δt, averaged over a betatron oscillation, can
be expressed as follows:

sΔγ ¼ βsct≡
�
ρ0 þ

Δγ
γρ0k2x

�
θΔγðtÞ; ðA6Þ

where θΔγðtÞ corresponds to the bending angle. The
longitudinal position of the particle as a function of time
will then be defined as follows:

seq;Δγ ¼ ρ0θΔγðtÞ ¼
β0ð1 − k2a2

0

4
Þ

1þ Δγ
γρ2

0
k2

ct: ðA7Þ

Expanding Eq. (A7) for Δγ=γ ≪ 1, we obtain the following
expression for the longitudinal position:

sΔγ ¼
βsct

1þ Δγ Ĩ0r2c
Iρ2

0

≈
Δγ→0

βγct

�
1 −

a20k
2

4

�

þ βγct

�
2Ĩ0r2cγx0 þ Iρ0x20 þ Iρ0y20

4Ĩ0r2cγρ0

�
Δγ
γ

þ βγct

�
1

γ2
−
Ĩ0r2cγ
Iρ20

��
1 −

a20k
2

4

�
Δγ
γ
: ðA8Þ

The zeroth-order term turns out to be nonlinear with the
injection amplitude. By retaining only lengths of the same
order, it is possible to further approximate Eq. (A8) and
express the longitudinal deviation from the reference
trajectory as follows:

Δs ≃ Δs0 − s
a20k

2

4
þ s
�
x0
2ρ0

þ 1

γ2
−
Ĩ0r2cγ
Iρ20

�
Δγ
γ
; ðA9Þ

with s ¼ βγct.

APPENDIX B: CURVED ENVELOPE EQUATION

We will define the root-mean-square (rms) radial size
and the angular coordinate with respect to the tangent of an
instantaneous circular trajectory

σρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðρ − hρiÞ2i

q
; ðB1Þ

ρ0 ¼ ∂ρ

hρi∂θ ; ðB2Þ

where hρi represents the average radial position of the beam
with respect to the axis of curvature of the capillary. The
derivative of Eq. (B1) with respect to the average circular
trajectory will be

∂σρ
hρi∂θ ¼ 1

σρ

�
ðρ − hρiÞ ∂ρ

hρi∂θ
�

¼ σρ;ρ0

σρ
; ðB3Þ

where σρ;ρ0 denotes the covariance between ρ and ρ0. The
second derivative is then obtained as

∂

hρi∂θ
�
∂σρ
hρi∂θ

�
¼ σ2ρσ

2
ρ0 −σ2ρ;ρ0

σ3ρ
þ
hðρ− hρiÞ ∂

2ρ
hρi2∂θ2i

σρ
−
hρ0i
hρi

σρ;ρ0

σρ

∂

hρi∂θ
�
∂σρ
hρi∂θ

�
¼−

hρ0i
hρi

∂σρ
hρi∂θþ

∂
2σρ

hρi2∂θ2 : ðB4Þ

In the first expression in Eq. (B4), the expression in
Eq. (B3) has been differentiated, while in the second
expression, the argument within square brackets on the
LHS has been differentiated. By equating the two expres-
sions in Eq. (B4), substituting the expression for σρ;ρ0=σρ
from Eq. (B3), and writing the rms emittance as follows:
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ϵ2rms ¼ σ2ρσ
2
ρ0 − σ2ρ;ρ0 ; ðB5Þ

the first and most general form of the envelope equation is
obtained as follows:

∂
2σρ

hρi2∂θ2 −
hðρ − hρiÞ ∂

2ρ
hρi2∂θ2i

σρ
¼ ϵ2rms

σ3ρ
: ðB6Þ

The paraxial approximation will now be introduced, which
is used for the approximate calculation of the acceleration
expression. This will allow us to develop the second term
on the left-hand side of Eq. (B6). Following the steps
indicated in [17], the second derivative of the radial
position can be written as follows:

ρ00 ¼ −
p0

p
þ Fr

βcp
: ðB7Þ

In the equation above, p denotes the relativistic momentum
of the particle and Fr represents the radial force acting on it.
The first term on the right-hand side (RHS) is zero due to
the purely magnetic field, which does not cause energy
variations (p0 ¼ 0). Additionally, the following condition
must hold:

ρ00 ¼ ∂

hρi∂θ
�

∂ρ

hρi∂θ
�
¼ −

hρ0i
hρi

∂ρ

hρi∂θ þ
∂
2ρ

hρi2∂θ2 : ðB8Þ

By equating Eqs. (B7) and (B8), we obtain

∂
2ρ

hρi2∂θ2 ¼
hρ0i
hρi

∂ρ

hρi∂θ þ
Fr

βcp
: ðB9Þ

We can now proceed with the calculation of the force Fr
acting on the individual particle. It will be given by a
component due to the magnetic field generated by the
capillary and a centrifugal component given by the cylin-
drical reference system. For an electron, it will read:

Fr¼−FBþFc ¼−ecβ
μ0I
2πr2c

ðρ−ρcÞþ
meγβ

2c2

ρ
: ðB10Þ

With Eqs. (B8) and (B10), along with Eq. (B3) for
replacing σρ;ρ0 , the second term on the right-hand side of
Eq. (B6) can be rewritten as follows:

hðρ − hρiÞ ∂
2ρ

hρi2∂θ2i
σρ

¼ hρ0i
hρi

∂σρ
hρi∂θ −

�
μ0e

2πmecβr2c

I
γ
þ 1

hρi2
�
σρ:

ðB11Þ

By substituting Eq. (B11) into Eq. (B6), we obtain the final
expression of the envelope equation for the ABP:

∂
2σρ

hρi2∂θ2 −
hρ0i
hρi

∂σρ
hρi∂θ þ

�
μ0e

2πmecβr2c

I
γ
þ 1

hρi2
�
σρ ¼

ϵ2rms

σ3ρ
:

ðB12Þ

Setting the derivatives with respect to the angular coor-
dinate θ and the average centroid velocity hρ0i to zero (thus
assuming hρi ¼ ρ0), we obtain the matching condition for
injection at equilibrium:

σρ;M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2rms
μ0e

2πmecβr2c
I
γ þ 1

ρ2
0

4

vuut : ðB13Þ

This expression for the matched rms size also holds for
injection outside of equilibrium, as long as the approxi-
mation of sinusoidal betatron trajectories remains valid.

APPENDIX C: TRANSVERSE BEAM SIZE
SATURATION

A statistical phase-mixing-based approach will be fol-
lowed. Let us consider the sinusoidal trajectory of a single
particle along the bending plane as xðsÞ ¼ a cosðksÞ þ b,
where b represents the deviation from ρ0 due to the
particle’s energy. Assuming a number N of betatron
oscillations, with N being an integer, N ≥ 1, the cumulative
probability of finding the particle as a function of the
distance from ρ0 is found as follows:

PðxÞ ¼

8>><
>>:

0 if x < b − a
1
π arccos

	
x−b
a



if b − a < x < bþ a;

1 if x > bþ a

ðC1Þ

whose probability distribution function, along with mean
and variance, is obtained through differentiation:

pðxÞ ¼ dP
dx

¼ −
1

πa
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðx−ba Þ2
q ;

μ ¼ b;

σ2 ¼ a2

2
: ðC2Þ

Coefficients a, b depend on energy and initial position:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δxinj þ x̃0 −

Δγ
γρ0k2x

�
2

þ
�
x00
kx

�
2

s

b ¼ Δγ
γρ0k2x

; ðC3Þ

with Δxinj representing the injection offset of the beam
centroid with respect to ρ0 and x̃0 such that
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x0 ¼ Δxinj þ x̃0. Assuming independent particles, the total
variance may be expressed as the sum of squares:

σ2tot ¼
X
i

σ2i þ σ2eq; ðC4Þ

where the summation over index i is to be considered over
all particles in the beam with σ as in Eq. (C2), and where

σ2eq ¼
σ2Δγ=γ
ρ20k

4
x

ðC5Þ

represents the equilibrium radii spread associated with the
percentage energy spread of particles σΔγ=γ . The summation
in Eq. (C4) is better represented by an integral over the
position, angle, and energy probability density function
(multivariate Gaussian) of the beam particles, with the
following result:

X
i

σ2i ¼
1

2

�
Δx2inj þ σ2x0 þ

σ2x0
0

k2x
þ σ2Δγ=γ

ρ20k
4
x

�
: ðC6Þ

Combining the contribution provided by Eq. (C5), the
saturation rms size results in

σ2tot ¼
Δx2inj
2

þ σ2x0
2

þ
σ2x0

0

2k2x
þ 3

2

σ2Δγ=γ
ρ20k

4
x
: ðC7Þ

In the case of matched injection, replacing σx0 and σx0
0

through Eq. (17) and the relation ϵ2rms ¼ σ2x0σ
2
x0
0
, Eq. (C7)

takes the following form:

σ2tot ¼
Δx2inj
2

þ ϵrms

kx
þ 3

2

σ2Δγ=γ
ρ20k

4
x
: ðC8Þ

For Δxinj ¼ σΔγ=γ ¼ 0, Eq. (20) reduces to σ2tot ¼ σ2x;M,
confirming the correctness of the treatment in the limit
corresponding to the envelope equation [Eq. (16)].
Beam transverse rms size saturation depends on the

progressive mixing of betatron phases due to the difference
in mean path length and wave vector of the beam particles.
The length where the phase mixing is complete will be
identified. We are interested in the single particle bending
angle associated with integer multiples of complete oscil-
lations, as a function of the deviation from the mean energy:

θm;Δγ ¼ m
2π

kΔγρΔγ
; ðC9Þ

with

kΔγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I

Ĩ0ðγ þ ΔγÞr2c
þ 1

ρ20

s
;

ρΔγ ¼ ρ0 þ
Δγ

γρ0k2x
: ðC10Þ

Evaluating Eq. (C9) for m ¼ 1 and Δγ → 0 to the first
order, we obtain

θ1;Δγ ≃
2π

kxρ0
þ πkxĨ0ρ0r2c

Iρ20 − 2γĨ0r2c
ðIρ20 þ γĨ0r2cÞ2

Δγ: ðC11Þ

The slope of θ1;Δγ depends on the sign of the numerator in
the second term on the right-hand side of Eq. (C11).
Remembering the constraint I > Ilim and thus substituting
the expression given by Eq. (3), the slope of θ1;Δγ is positive
when Ĩ0γrcðρ0 − 2rcÞ > 0. Considering that, in general, the
bending radius is (much) larger than the diameter of
the capillary, it is possible to assume that for small
Δγ=γ, the angle covered by a single betatron oscillation
is monotonically increasing with the particle energy.
Approximating the energy extremes to correspond to
�3σΔγ , phase mixing will be completed when the follow-
ing condition is met:

θmþ1;−3σΔγ ¼ θm;3σΔγ : ðC12Þ

By satisfying Eq. (C12), beam energy extremes will be
exactly phased by 2π; given the monotonicity of the
bending angle as a function of energy, particles betatron
phases at intermediate energy will be approximately uni-
formly distributed in the interval ½0; 2π�. Beyond this point,
the beam will assume a finite and stable rms size. By
substituting Eqs. (C9) and (C10) into Eq. (C12), the index
m� that meets the full mixing is found

m� ≃
�

3Iρ20
Iρ20 þ γĨ0r2c

− 2

�−1 1

3σΔγ=γ
; ðC13Þ

where the approximation arises from the expansion for
small energy spreads. As a first check of the validity of
Eq. (C13), note that for a percentage energy spread
σΔγ=γ → 0, m� → ∞: indeed, for zero spread, there are
no differences in betatron period, i.e., no phase mixing. The
saturation length will then be obtained from Eqs. (C9),
(C10), and (C13) as follows:

Lsat ¼ m� 2π

k3σΔγ=γ ρ3σΔγ=γ
ρ0

≃
2πγkxĨ0ρ20r

2
c

ðIρ20 − 2γĨ0r2cÞ
1

3σΔγ=γ
: ðC14Þ
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