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Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator
control and tasks such as experimental design and model calibration in simulations. The effectiveness of
optimization algorithms in discovering ideal solutions for complex challenges with limited resources often
determines the problem complexity these methods can address. The accelerator physics community has
recognized the advantages of Bayesian optimization algorithms, which leverage statistical surrogate
models of objective functions to effectively address complex optimization challenges, especially in the
presence of noise during accelerator operation and in resource-intensive physics simulations. In this review
article, we offer a conceptual overview of applying Bayesian optimization techniques toward solving
optimization problems in accelerator physics. We begin by providing a straightforward explanation of the
essential components that make up Bayesian optimization techniques. We then give an overview of current
and previous work applying and modifying these techniques to solve accelerator physics challenges.
Finally, we explore practical implementation strategies for Bayesian optimization algorithms to maximize
their performance, enabling users to effectively address complex optimization challenges in real-time beam
control and accelerator design.
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I. INTRODUCTION

Future accelerator-based experiments serving the high-
energy physics, nuclear physics, and photon science
communities will require a considerable increase in the
capabilities of accelerator facilities to achieve the research

aspirations of the next decade [1,2]. Higher energy and
higher brightness particle beams with more stringent
requirements on reproducibility will unavoidably require
complex accelerator operation stemming from an increase
in nonlinear phenomena, stringent beam parameter
requirements, machine protection limits, and the varied
needs of different user communities. Additionally, accel-
erator scientists designing future state-of-the-art acceler-
ator facilities will need to explore and configure
combinations of increasingly nonlinear and specialized
accelerator elements to reach accelerator design goals, all
while respecting practical constraints and minimizing
construction costs.
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Central to both of these challenges is the need to optimize a
set of free parameters to attain a predefined objective.
Examples of this include varying accelerator control param-
eters during operations to maximize performance (online
tuning/optimization), identifying optimal parameters during
the accelerator design process (offline simulated optimiza-
tion), and matching simulated beam dynamics to experi-
mental measurements (model calibration). Advancements in
optimization algorithms enable us to tacklemore challenging
optimization problems (ones with more free parameters or
more complex behaviors), which in turn, improves the
performance and capabilities of accelerators.
Numerical optimization algorithms have long been used to

address these challenges, but often suffer from slow con-
vergence to optimal parameter sets, are unstable in noisy
environments, and can get trapped in local limiting the
complexity of optimization tasks that can be addressed in
practice. Recently, a particular class of algorithms known as
Bayesian optimization (BO) [3,4] has gained popularity
inside the accelerator field as an efficient approach for
solving both online and off-line optimization problems.
These algorithms’ inherent flexibility, low initialization
effort, fast convergence, and robustness to noisy environ-
ments make them particularly useful for accelerator physics
applications. Multiple groups inside the accelerator physics
community have investigated the advantages and disadvan-
tages of these algorithms for solving various accelerator
physics problems. Furthermore, accelerator physics-
specific modifications of basic BO components have been
developed to leverage beam physics information, tailor
optimization to practical operating challenges, and take
advantage of high-performance computational clusters.
With these developments, the study of BO techniques in
the context of accelerator physics has matured to the point
that these techniques are usable in regular accelerator
operations and as a general high-performance optimization
tool in simulation.
This review article aims to facilitate the wider use of BO

techniques in accelerator physics by providing an easily
accessible guide and reference for this class of optimization
algorithms. We begin with a discussion of the optimization
challenges faced by the accelerator physics community in
regard to both online control of accelerator facilities and
off-line optimization of simulations for accelerator design,
which motivates the use of BO algorithms. We then discuss
basic and advanced approaches to the principal components
of BO algorithms: the Gaussian-process surrogate model
most commonly used in BO; the definition of BO acquis-
ition functions; and how the acquisition function is maxi-
mized to choose the next set of measurements. Throughout,
we highlight how to incorporate beam physics information
into BO algorithms in order to improve optimization
performance. Finally, we conclude with a discussion that
places BO in the context of other optimization algorithms,
describes best practices for applying BO algorithms to

solving optimization challenges, and future directions for
research in this area.

II. BACKGROUND AND MOTIVATION

Optimization algorithms aim to solve the general problem

x� ¼ arg maxfðxÞ ð1Þ

s:t: ciðxÞ ≤ 0 ∀ i∈ ½1;…; m�: ð2Þ

In the above formulation, Eq. (1) represents the objective
function, wherein we seek a parameter set x� that optimizes
the function fðxÞ subject to the m constraints specified in
Eq. (2). These constraintsmay be bounds on the parameter set
x, or observables, such as safety and performance require-
ments. The formulation can be trivially transformed into a
minimization problem by negating the objective function.
The difficulty of finding a solution to a generic opti-

mization problem is influenced by the number of optimi-
zation parameters and the complexity of the objective and
constraining functions. Increasing the number of optimi-
zation parameters exponentially increases the size of
parameter space, often referred to as the curse of dimen-
sionality. As a result, optimization algorithms that perform
well when optimizing a small number of parameters (such
as the fitting of three beam matrix elements to quadrupole
scan data) can fail to find a solution in a reasonable amount
of time when applied to higher dimensional problems (such
as tuning the parameters of an entire accelerator beamline).
The complexity of the objective function also plays a role

in the performance of optimization algorithms. Objective
functions that are not convex have a number of local
extrema, only one of which is the global optimum. In this
case local optimization algorithms converge to local
extremum near their initial starting conditions, while global
optimization algorithms are designed to search the entire
parameter space for a global extremum. For complex
objective functions, finding the global optimum is often
much more challenging [5].

A. Optimization challenges in accelerator physics

In addition to these general optimization challenges,
online optimization of accelerators and off-line optimiza-
tion of physics simulations add further, unique complica-
tions that need to be considered when selecting an ideal
optimization algorithm.

1. Online accelerator control

Particle accelerators are challenging systems to optimize
and control in practice, and potential optimization algo-
rithms need to address these challenges. An illustration of
some of these challenges is shown in Fig. 1. Typically, there
are many possible settings that can be adjusted across
multiple sub-systems to achieve the optimal beam
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parameters. Measurements of beam qualities that serve as
objective functions during optimization are often destruc-
tive and can be time-consuming, leading to losses in beam
time available for experiments.
Accelerator measurements are also often subject to alea-

toric (random noise) or epistemic (systematic) uncertainties.
Random noise in accelerators makes it difficult for iterative
algorithms to maintain stability throughout the optimization
process. This noise can also change in amplitude as a
function of accelerator parameters or changing environmen-
tal factors. The amplitude of noise can also be considered an
optimization objective or constraint, given that it is often
optimal to find solutions that lead to a relatively stable
objective function value. Additionally, the limited resolution
of accelerator diagnostics introduces systematic uncertain-
ties in the objective function value. Finally, intermittent
jumps (e.g., a spike in rf power, dip in beam charge,
momentary fault from the machine protection system) in
parameters need to be recognized and accounted for in
automated optimization routines.
Particle accelerators are not stationary systems; they

have time-dependent behavior on multiple timescales ran-
ging from submilliseconds to hours. These behaviors
include both expected time-dependent processes (such as
slow loss of beam in a storage ring) or the combined effect
of slow, unintended changes in the system (also known as
“drift”) that changes the relationship between settings and
observed beam output. Drifts can come from many sources,
such as changes inmaterials (e.g., loss of quantum efficiency
in a photocathode) and the impact of daily and seasonal
changes in temperature and humidity. Additionally, not all
sources of drift are well characterized or measured.
Optimizing accelerator control parameters is often framed

as amulti-objective problem, where the goal of optimization
is to find a set of potential solutions that balance trade-offs
between competing objectives. For example, many photo-
injectors aim to simultaneously minimize both transverse
beam emittances and bunch length of beams for high-
brightness applications [6]. However, due to space charge
effects, reducing the bunch length often increases the trans-
verse beam emittance.Multiobjective optimization identifies
a set of parameter configurations that provide ideal trade-offs
between objectives, known as the Pareto front (PF). Once the
PF has been identified, a single point on this PF can be
selected based on objective preferences as a fixed operating
point, or the entire front can be utilized to provide multiple
operating modes for different applications.
Accelerators often operate in tightly constrained param-

eter spaces to limit beam losses that contribute to accelerator
downtime, radiation generation, and hardware degradation.
This is especially important for high-power beams, as even
the lower-density edges of the beam distribution (or “halo”)
can damage equipment if the trajectory is not carefully
controlled. These limits are often unknown prior to perform-
ing optimization, so algorithmsneed to learnvalid and invalid

regions of parameter space that satisfy the constraints on-the-
fly during optimization. On the other hand, there are cases
where operational constraints are not as strict, such as beam
losses in lower power facilities or nonsafety related beam
quality constraints (maximum beam emittance or energy
spread). In these cases, occasional violations of the constraints
can be tolerated if they lead to increased convergence speed to
optimal values. Algorithm design for online accelerator
operations needs to balance conservative adjustments of
accelerator parameters to avoid constraint violations with
the need to explore the input space to find optimal solutions.
The type of operating conditions for a particular accel-

erator also impacts how challenging it is to arrive at an
optimal configuration. Some particle accelerators deliver
highly customized beams to their users, which requires a new
combination of accelerator settings for each request. Large
changes in machine setup introduce additional challenges,
such as the need to deal with path-dependent processes like
magnetic hysteresis and mechanical backlash. Additionally,
rapid changes to accelerator parameters can lead to insta-
bilities in themachine due to interacting feedback algorithms
in multiple accelerator subsystems. The degree to which
these processes need to be considered depends in part on
whether the accelerator must undergo somewhat global
optimization frequently, as opposed to keeping a single
configuration stable for long periods of time.

2. Simulation-based optimization of accelerator systems

Optimization algorithms are also used in simulation to
design new accelerator components and facilities, as well as
calibrate physics models to experimental measurements.
Simulated optimization shares some of the same challenges
as online optimization, including satisfying constraints,
limited evaluations, and balancing the trade-offs between
multiple competing objectives.
Detailed physics simulations are often used in the design

of new particle accelerators and new experimental setups. To
include the full detail of nonlinear beam dynamics or
collective effects, computationally intensive, high-fidelity
particle-in-cell simulations are used to accurately make
predictions of real-world beam dynamics. However, running
these simulations consumes a significant amount of compu-
tational resources and run time. Thus, using algorithms that
reduce the need for high-fidelity simulations is essential to
keep computational costs at a minimum.
To speed up optimization, multiple simulations can be

performed in parallel on high-performance computing clus-
ters. Additionally, low-cost, approximate simulations can be
used to perform optimization, albeit with less predictive
accuracy. In an ideal scenario, multiple, inexpensive evalu-
ations of an approximate model would be used to identify
promising regions of parameter space before evaluating
expensive, high-fidelity simulations using those parameters.
Accelerator scientists have typically implemented this
strategymanually by preselecting a suitable balance between
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simulation precision and computational cost. However,
recent advances in optimization algorithms enable an auto-
mated approach to this process, where simulations of differ-
ent fidelity can be combined into a single optimization to
reduce the overall run time and computational cost, as shown
in Fig. 2.

B. Optimization algorithm selection

A variety of different algorithms has been developed to
find solutions to the optimization problem described in
Eq. (1). One class of algorithms, known as Iterative opti-
mization algorithms, is a popular choice. Given an initial
point in parameter space, these algorithms generate a point or
set of points that are evaluated using the objective and
constraining functions. Results from the evaluations are then
passed back to the algorithm to generate the next point(s) to
be evaluated. The final solution is determined once the
algorithm reaches a termination condition, for example, a
fixed number of iterations or a satisfactory objective func-
tion value.
Selecting the right algorithm for a given optimization

task is critical to success, as it directly influences the quality
of the final solution and resources needed to execute the
applied routine (e.g., required beam time and computa-
tional resources). To compare different optimization algo-
rithms, we define the following terms: The costs of
evaluating the objective/constraining functions, for exam-
ple, beam time at an accelerator, computational assets at a

computing cluster, personnel time resources, or financial
expenditure, is referred to as the evaluation cost. We refer to
the number of objective/constraint evaluations needed by a
given algorithm to reach a predefined objective target of a
particular optimization problem as the algorithms’ sample
efficiency or convergence speed. Additionally, different
optimization algorithms can perform a variety of computa-
tions to generate the next point(s) to be evaluated. The
computational costs of performing these calculations are
referred to here as the decision-making cost. Finally, in
certain cases, algorithmsmay utilize or require upfront effort
before they can be used to solve optimization problems, such
as historical data gathering or pretraining of decision-making
agents, referred to here as initialization costs.
Choosing the correct algorithm for solving an optimiza-

tion problem requires balancing the trade-offs between the
different costs associated with performing optimization. For
example, if the evaluation cost of the problem is high, it is
advantageous to use algorithms that are more sample
efficient, even if they require high decision-making costs
relative to other algorithms (provided that the decision-
making cost is low relative to the evaluation cost). On the
other hand, if evaluation costs are low relative to the decision-
making costs of a given algorithm, costs associated with
decision making will be dominant over other costs. In this
instance, it makes sense to use algorithms that have low
decision-making costs, even if they have poorer sample
efficiency resulting in more evaluations of the objective.

FIG. 1. Overview of challenges in using optimization algorithms for online accelerator control. Accelerator control algorithms make
decisions about setting a wide variety of accelerator parameters in order to control beam parameters at target locations. Optimal decision
making takes into account limited online accelerator measurements, as well as various sources of prior knowledge about the accelerator,
including previous measurements, physics simulations, and physics principals. Optimization must also consider complicated aspects of
realistic accelerator operation including external conditions, feedback systems, safety constraints, and repeatability errors.
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However, when optimizing problems that contain safety
related constraints that protect equipment or personnel,
higher decision-making costs may be necessary to obey
constraints during optimization. Finally, incurring higher
initialization costs, such as conducting prior measurements

or performing precomputations, can be used by the opti-
mization algorithm to increase sample efficiency. This can be
especially advantageous if the same optimization problem
(with minor perturbations to the objective function) needs to
be solved repeatedly, such as is the case of using the same
algorithm in day-to-day operations, because initialization
costs are incurred only once. Effectively balancing these
costs is key to selecting the best algorithm for a given
optimization task.

C. Bayesian optimization

Bayesian optimization (BO) is an iterative, model-based
optimization algorithm that is particularly well suited
for sample-efficient optimization of noisy, expensive-to-
evaluate objectives. Current examples of problems where
BO is effective include tuning accelerator parameters, such as
magnet power supplies (which can take several seconds to
adjust), optimizing objectives that are time consuming to
measure (such as transverse beam emittance), or in simulated
contexts where physics simulations require significant com-
putational resources (computing time and processing power)
to make predictions. On the other hand, BO algorithms are
generally not well suited for fast-feedback applications (at or
below the 1 Hz level) such as low-level rf control, although
BO algorithms can be suitable for optimizing the hyper-
parameters of fast-feedback controllers [7].
Similar to other optimization algorithms, BO algorithms

require at least one initial point to start making decisions
about future points to observe. Initial points are often
selected using randomly sampled points in a local region of
parameter space or preselected points known to be near the
objective extremum. Alternatively, it is also possible to
include data directly from historical datasets or previous
optimization runs. Using a large set of historical data to
initialize BO is often referred to as a warm start while
initializing BO with a small number of input points is
referred to as running BO from scratch.

FIG. 2. Overview of optimization challenges in accelerator
physics simulations. Ideal algorithms aim to minimize the
computational cost of performing optimization by orchestrating
parallel simulation evaluations at multiple fidelities ranging from
analytical models to high-fidelity (computationally expensive)
simulations. Correlations between simulation predictions at
different fidelities can be leveraged to reduce the number of
high-fidelity simulation evaluations needed to find an ideal
solution at the highest-fidelity level.

FIG. 3. Illustration of the Bayesian optimization process to find the maximum of a simple function. A Gaussian process (GP) model
makes predictions of the function value (solid blue line) along with associated uncertainties (blue shading) based on previously collected
data. An acquisition function then uses the GP model to predict the “value” of making potential future measurements, balancing both
exploration and exploitation. The next observation is chosen by maximizing the acquisition function in parameter space. This process is
repeated iteratively until optimization goals have been reached.
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In general, BO consists of three steps, as illustrated in
Fig. 3, and is summarized in Algorithm 1. The first is the
construction of a statistical surrogate model of the objective
and constraining functions based on measured data, often
using Gaussian process (GP) modeling [8]. The second step
is the definition of an acquisition function based on the GP
model, which defines the relative “value” of potential future
measurements in input space in order to achieve optimi-
zation goals. The final step solves for the point (or set of
points) that maximizes the acquisition function and is thus
predicted to provide the most value toward optimization
goals. Points that are selected in the last step are then passed
to the objective and constraint function(s) to be evaluated;
the results of which are then passed back to the algorithm to
be incorporated into the model dataset. This process repeats
until an optimization criterion is met.
An additional benefit of BO is that the model created and

trained during the optimization process can also be used
outside of the context of optimization. For example, the
model can provide information about objective function
sensitivities to accelerator parameters, be integrated as a fast-
executing surrogate into othermodels of the accelerator, or be
used to identify unknownparameters of the beamline, such as
elementmisalignments or hysteresis effects.As a result of the
BO sampling process, these models are often most accurate
in regions of parameter space that are of the highest interest,
namely regions of parameter space that are near optimal
parameter sets.

D. Demonstrations of BO in accelerator physics

Bayesian optimization has already been used to solve a
wide variety of optimization problems in accelerator
physics. These demonstrations include (i) single-objective,
online, and off-line optimization of accelerator parameters,
e.g., of magnetic optics, rf parameters, in conventional
linear [9–15] and circular [16,17] accelerators, as well as
novel accelerator concepts [18–23], (ii) online optimization
that leverages prior physics knowledge or simulations
[10,24,25] (Secs. III C 1 and III C 2), (iii) time-dependent
optimization to maintain optimal tuning configurations in
problems subject to drift [11,26,27] (Sec. III C 4), (iv) on-
line optimization subject to repeatability errors (hysteresis
and motor backlash) [28] (Sec. III C 6), (v) autonomous
characterization of objective functions [29] (Sec. IV B 1),
(vi) optimization with unknown constraints [30–32]

(Sec. IV B 2), (vii) multiobjective optimization to discover
ideal trade-offs between competing objectives in experi-
ments [22,33] and simulations [34–36] (Sec. IV B 3),
(viii) Bayesian algorithmic execution, e.g., optimization
of beam emittance using virtual quadrupole scans [37]
(Sec. IV B 4), and (ix) multifidelity optimization, e.g.,
of beam dynamics and plasma wakefields in simulations
[35,38] (Sec. IV B 6).
In the following sections, we describe BO techniques in

detail; first, by introducing common approaches and
methods for each step. We then describe advanced mod-
ifications of basic techniques that have been shown to be
advantageous toward solving accelerator physics problems.

III. GAUSSIAN PROCESS MODELING

Bayesian optimization uses a computational surrogate
model of the objective function in order to inform the
selection of new measurement points in input space. In
practice, the surrogate model should use data collected
during optimization to make predictions of the objective
function value as well as provide an estimate of corre-
sponding uncertainties with those predictions. While any
surrogate model with these properties could potentially
be used in this context, models known as “Gaussian
Processes” (GPs) [8] are often used.

A. Bayesian inference

Before starting a discussion of models used in BO, it
makes sense to first develop a conceptual understanding of
Bayesian statistics. A Bayesian interpretation of probability
expresses a degree of belief in an event, or a probability
distribution, based on prior knowledge of that event. This is
different than a frequentest view of probability that reflects
the measured outcomes of many trials. Bayesian statistics
uses Bayes’ rule to predict the conditional likelihood of an
event A occurring given an event B happened as

pðAjBÞ ¼ pðBjAÞpðAÞ
pðBÞ ; ð3Þ

where pðBjAÞ is known as the likelihood function, pðAÞ is
the prior probability distribution, pðBÞ is the marginal
likelihood or the evidence, and pðAjBÞ is the posterior
probability.
To make the interpretation of Bayes’ rule more concrete,

we examine fitting a linear model fðxÞ¼w0xþw1 to experi-
mental measurements corrupted by noise y ¼ fðxÞ þ ϵ as is
shown in Fig. 4. The goal of this analysis is to determine the
likelihood of the two model parameters fw0; w1g given a
collection of experimentalmeasurementsD ¼ fx; yg. Using
Bayes’ rule, the posterior probability distribution of these
parameters is given by

pðw0; w1jDÞ ¼ pðDjw0; w1Þpðw0; w1Þ
pðDÞ : ð4Þ

ALGORITHM 1. Bayesian optimization.

Require: Objective function f, observation dataset DN , GP prior
M ¼ GP½μðxÞ; kðx;x0Þ�, acquisition function αðxÞ.

1: for t ¼ 1; 2;… do
2: Decide a new sample point xnew ¼ arg maxxαðxÞ.
3: Query the objective ynew ¼ fðxnewÞ þ ϵ.
4: Update DN and the GP model.
5: end for
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where the likelihood pðDjw0; w1Þ captures how well the
linear model with the given parameter values fw0; w1g
represents the measured data, and pðw0; w1Þ represents
the prior probability distribution of the weights. In this case,
the prior distribution of theweights is amultivariateGaussian
distribution centered at the origin. This prior distribution is
equivalent to adding a regularization term to least-squares
curve fitting, which aims to prevent overfitting by penalizing
large parameter values.
After a single observation, the posterior probability

distribution of the weights is shown in Fig. 4(a). Based
on the single measured data point, Bayes’ rule predicts a
positive correlation between the y intercept (w0) and the
slope (w1). This is evident in function samples drawn from
the posterior distribution shown in Fig. 4(b). These samples
can be collected into a distribution that predicts the mean
value of the function and associated uncertainty as is shown
in Fig. 4(c).
As additional measurements are introduced into the

model, Figs. 4(d)–4(i), the likelihood and posterior prob-
ability distributions become sharper as a smaller range of
parameters leads to accurate models of the experimental
data. How rapidly the posterior probability distribution

shrinks according to new evidence depends on the relative
“strengths” of the prior and likelihood distributions. A
strong prior probability distribution on the weights (one
that is highly peaked in a small local region) will result in a
similar posterior distribution unless significant experimen-
tal evidence that is contrary to the prior is incorporated into
Bayes’ rule via the likelihood. On the other hand, if the
prior distribution is relatively weak (i.e., nearly uniform
across parameter space), then it has relatively little impact
on the posterior distribution.
The process of determining the posterior probability

distribution of model parameters based on observed data
and Bayes’ rule is referred to as Bayesian inference. In most
cases, determining the exact posterior probability distribu-
tion for the entire parameter space requires performing
integrals that are computationally intractable to compute,
specifically when evaluating the evidence term in Bayes’
rule pðDÞ. Rather than directly assessing the posterior
probability distribution, a variety of alternative analytical
techniques are used to perform inference. First is maximum
likelihood estimation (MLE), which estimates pointlike
values of the model parameters θ by solving for the point θ�
that maximizes the likelihood term (which ignores any

FIG. 4. Illustration of Bayesian regression using a linear model fðxÞ ¼ w1xþ w0. (a,d,g) Posterior probability density of the linear
weights fw1; w0g conditioned on N observations of the function y ¼ fðxÞ þ ϵ. (b,e,h) Model predictions using random samples of
fw1; w0g drawn from the posterior probability distribution. (c,f,i) Predictive mean (solid line) and 90% uncertainty intervals (shading) of
the posterior model. Red cross and black dashes denote true parameters and values of the function fðxÞ, respectively. Reproduced with
permission from [39].
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priors on the parameters)

θ�MLE ¼ arg max
θ

pðDjθÞ: ð5Þ

If the likelihood takes the form of a normal distribution,
this is equivalent to performing mean squared error curve
fitting.
The second analysis method is maximum a posteriori

(MAP), which also determines pointlike values of the
parameters θ, this time by maximizing a quantity that is
the mode of the posterior distribution

θ�MAP ¼ arg max
θ

pðDjθÞpðθÞ; ð6Þ

which incorporates the prior without having to compute the
full posterior probability distribution. Finally, while it is
possible to determine the full posterior probability distri-
bution of θ [40], it is often analytically intractable or
computationally expensive to evaluate and is usually not
required in the context of BO.

B. Gaussian process modeling basics

Gaussian process models [8] are nonparametric models
that use Bayes’ rule to model unknown functions by
leveraging correlations between function values at different
locations in parameter space. As opposed to Bayesian
regression, which uses Bayes’ rule to identify probability
distributions of model parameters, GP models use Bayes’
rule to predict probability distributions of function values
at arbitrary locations in parameter space using measured
data. An additional way to view this distinction is that
parametric models simply rely on the value of model to
make predictions, while nonparametric models, such
as GPs, explicitly rely on training datasets to make
predictions.

We start by assuming that the output y of a function f at
input parameter x is given by

y ¼ fðxÞ þ ϵ; ð7Þ

where random corrupting noise is drawn from (∼) a normal
distribution (N ), ϵ ∼N ð0; σ2ϵÞ with a variance σ2ϵ . The
Gaussian process is defined as

fðxÞ ∼ GP½mðxÞ; kðx;x0Þ�; ð8Þ

where mðxÞ ¼ E½fðxÞ� is referred to as the prior mean
function, and kðx;x0Þ ¼ E½ffðxÞ −mðxÞgffðx0Þ −
mðx0Þg� is commonly called the covariance function or
kernel. The probability distribution of the observable y is
given by our assumed likelihood, which in this case is a
normal distribution pðyjfðxÞ; σεÞ ¼ N ðfðxÞ; σ2εÞ. To sim-
plify calculations, the prior mean function is often specified
to be mðxÞ ¼ 0, although a fixed nonzero prior mean can
also be learned from the data.
Given a set of n collected data samples D ¼ fX; yg, we

can make predictions for the probability distribution of the
function value evaluated at n� test points using Bayesian
inference. The resulting posterior distributionpðy�jX�;DÞ ¼
N ðμ�;σ2�Þ with the mean and variance given by [41]

μ� ¼ KðX�; XÞ½KðX;XÞ þ σ2ϵI�−1y; ð9Þ

σ�2 ¼ KðX�; X�Þ − KðX�; XÞ½KðX;XÞ þ σ2ϵI�−1KðX�; XÞT;
ð10Þ

where KðX;XÞ is an n × n covariance matrix between each
dataset element locations, KðX�; XÞ is an n� × n covariance
matrix between test points and dataset element locations,
KðX�; X�Þ is ann� × n� covariancematrix between test point
locations, and I is the identity matrix.

FIG. 5. Illustration of GP model predictions. (a) Prior model prediction of the function mean (solid blue line) and confidence interval
(blue shading) at a set of test points in parameter space. The probability of the output value y at any given test point x� is a normal
distribution. (b) The posterior GP model also predicts normal probability distributions at each test point, conditioned on the dataset D.
(c) Individual function samples can also be drawn from the posterior GP model and can be used for Monte Carlo computations of
function quantities.
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An example of GP predictions is shown in Fig. 5,
assuming that the noise parameter σϵ ¼ 0. Figure 5(a)
shows the prior mean and confidence bounds (equal to 2σ
above and below the mean) of the observable y for a set of
100 test points in the domain x� ∈ ½0; 1�. At an arbitrary
point in parameter space, the GP prior distribution pðyjx�Þ
is a normal distribution with a mean of zero and a unit
variance. By adding a dataset D to the GP, the model
predictions are updated to form the posterior distribution as
shown in Fig. 5(b). Posterior predictions at a single test
point also take the form of normal distributions with means
and variances conditioned on the dataset according to
Eqs. (9) and (10). We can also draw individual function
samples at points in parameter space from the posterior
distribution, as shown in Fig. 5(c). These function samples
are generated by drawing multiple random values from the
normal distribution at every point in input space.
Conceptually, GP models use Bayes’ rule to derive a

posterior probability distribution of the function value fðxÞ
conditioned on the observed dataset and covariances in
function values between observed data and test points.
These covariances are defined by the kernel function
kðx;x0Þ and a likelihood function (which describes proba-
bilities due to measurement noise). A physical analog of GP
modeling is a vibrating stringwith a collection of fixed nodes
along the string length. The possible locations of the string at
any point along its length are constrained bywhere the nodes
are located on the x-y plane (observed data) and the elasticity
of the string (kernel function). For a given string, we can be
quite confident where the string is in space close to fixed
nodes. However, far away fromany nodes, the string position
possibilities can vary widely. Increases in the elasticity of the
string creates additional uncertainty in both of these cases
owing to its ability to stretch, which corresponds to weaker
covariances between function values.

1. Kernel function definition

By defining the covariances of function values between
different locations in parameter space, the kernel function
dictates the overall functional behavior of the predictive
model. The selection of a particular kernel function is
usually based on prior knowledge of the real function’s
behavior in parameter space and is critical to creating
accurate models with limited amounts of data. Kernel
functions often contain hyperparameters, which alter the
high-level functional behavior of the GP posterior and can
be specified prior to modeling or inferred from training
data. Kernels are generally divided into two categories:
stationary and nonstationary.
Stationary kernels are invariant under translations in

input space kðx;x0Þ ¼ kSðjjx − x0jjÞ, which means it only
depends on the relative positions of its two inputs x and x’,
and not on their absolute positions. This feature makes
stationary kernels a popular choice for modeling arbitrary
functions when limited prior information is present.

One of the most basic stationary kernels is the Radial
Basis Function kernel (RBF). The RBF kernel is defined as:

kRBFðx;x0Þ ¼ exp

�
−
jjx − x0jj2

2l2

�
; ð11Þ

where l is the length scale hyperparameter of the kernel.
While the RBF kernel’s simplicity makes it easy to use and
adapt to specific purposes (see Sec. III C 1), it results in
predictions that are infinitely differentiable, which are
generally too smooth for describing realistic functions.
A more generalized version of the RBF kernel is the

Matérn kernel. The Matérn kernel is defined as

kMAðx;x0Þ ¼ 21−ν

ΓðνÞ
� ffiffiffiffiffi

2ν
p d

l

�
ν

Kν

� ffiffiffiffiffi
2ν

p d
l

�
. ð12Þ

Here, d ¼ jjx − x0jj represents the Euclidean distance
between inputs, Γ is the gamma function, and Kν is the
modified Bessel function of the second kind. The length
scale of the kernel is denoted by l, and ν controls the
smoothness of the resulting function. As ν → ∞, the
Matérn kernel converges to the RBF kernel.
Commonly used values for ν are ν ¼ 1.5 for once

differentiable functions and ν ¼ 2.5 for twice differentiable
functions. Limiting the differentiability enables GP models
with Matérn kernels to accurately predict realistic physical
processes. As a result, the Matérn kernel with ν ¼ 2.5 is
often employed as a starting point for modeling physical
functions in the absence of prior information.
For modeling functions that are expected to be periodic,

a periodic kernel can be used to increase model accuracy
for small datasets. A periodic kernel, also called a Exp-
Sine-Squared kernel, is defined as

kPERðx;x0Þ ¼ exp

�
−
2sin2ðjjx − x0jj=pÞ

l2

�
; ð13Þ

where l is the length scale of the kernel and p is the
periodicity of the kernel.
Hyperparameters of these kernels control high-level

model behavior by modifying the covariance between
function values at different points in parameter space. For
example, Fig. 6 shows how the length scale hyperparameter
of a stationary kernel affects GP predictions. Models that
contain kernel functions with short length scales vary rapidly
to precisely match the training data, which leads to over-
fitting. As the length scale increases, the smoothness of the
model prediction increases, capturing more of the general
trend of the training data without overfitting. However,
increasing the length scale beyond this point leads to
diminished model accuracy. Selecting hyperparameter val-
ues depends on improving the accuracy of the GP model
while reducing the complexity of the model, thus preventing
overfitting of the data (see the next section for a detailed
discussion).
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One straightforward modification of stationary kernels
often used in practice is replacing the scalar length scale
hyperparameter (which would be isotropic) with a vector of
independent length scales corresponding to each optimi-
zation parameter, creating an anisotropic kernel. In this
case, the RBF kernel, for example, can be specified by

kðx;x0Þ ¼ exp

�
−
1

2
ðx − x0ÞTMðx − x0Þ

�
ð14Þ

with M ¼ diagðlÞ−2 where l is a vector of positive real
values. This technique is often referred to as automatic
relevance determination [42] and can be used to identify
the sensitivity of the objective function to each optimization
parameter. A long length scale implies weak dependence of
the objective function on a particular parameter while a
small length scale implies strong dependence.
The flexibility of this approach can be expanded even

further by specifying a full positive semidefinite matrix
M ¼ ΛTΛþ diagðlÞ−2, where Λ is an upper triangular

matrix, often referred to as factor analysis distance due
to the analogy with factor analysis methods used to find
low-rank decomposition of the data along arbitrary axes in
parameter space. This parameterization is used less often in
practice due to the large datasets necessary to learn the
covariances on the fly during optimization. It can, however,
be useful in cases where the decomposition can be
determined prior to conducting optimization and the
low-rank behavior is not aligned with individual parameter
axes, for example, in cases where quadrupole parameters
are tuned (see Sec. III C 1).
Automatic relevance determination and factor analysis

distance do increase the numerical complexity of cal-
culating the GP kernel when compared to isotropic kernels
with a single length scale. This in turn, adds additional
decision-making costs to the BO algorithm. However,
provided that enough information is present to learn or
specify a priori the underlying low dimensional structure of
the function, automatic relevance determination and factor
analysis distance can significantly improve the accuracy of
GP models in high dimensional parameter spaces with
fewer data points, leading to higher sample efficiency.
Nonstationary kernels depend explicitly on the locations

of the two inputs x and x0. Using basic nonstationary
kernels can provide more accurate predictions with fewer
data points, at the cost of reduced model flexibility. A
commonly used nonstationary kernel is the polynomial
kernel [43]. A polynomial kernel of degree p is defined as

kPOLðx;x0Þ ¼ ðxTx0 þ cÞp; ð15Þ
where c ≥ 0 is a constant offset parameter. Using a
polynomial kernel in a GP model is equivalent to perform-
ing Bayesian regression of data using the same-order
polynomial. Functional samples drawn from the GP model
are then also polynomial functions of the same order as the
kernel.

2. Determining model hyperparameters

The hyperparameters of the GP kernel can be learned
from training data gathered during optimization or speci-
fied a priori using prior knowledge of the objective
function. A common strategy for learning the hyperpara-
meters from experimental data is maximizing the marginal
log-likelihood (MLL) of the GP model with respect to the
hyperparameter values. While in most cases calculating the
marginal likelihood requires performing analytically intrac-
table integrals, the marginal likelihood of GP models with
Gaussian likelihoods can be calculated analytically and is
given by

log pðyjX; θÞ ¼ −
1

2
yTK−1

y y −
1

2
log jKyj −

n
2
log 2π; ð16Þ

where θ is the set of GP model hyperparameters con-
tained in Ky ¼ KðX;XÞ þ σ2ϵI, and n is the number of

FIG. 6. Visualization of how the length scale hyperparameter l
effects GP modeling. Three GP models are trained on the same
dataset using a Matérn kernel with fixed length scales of (a) 0.1,
(b) 1, and (c) 10. Remaining hyperparameters are trained by
maximizing the marginal log-likelihood.
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training samples. The MLL has three terms, each having an
interpretable role. The first term, which is the only term that
contains training data, is the data fit term which is
maximized when model predictions accurately predict
experimental data. The second term describes model
complexity and is maximized given the simplest model,
i.e., models whose kernel matrices have determinants close
to zero. The final term is a normalization constant based on
the number of training points in the dataset. Maximizing
the MLL naturally regularizes the fitting of the GP,
resulting in model hyperparameters that create the simplest
model that accurately reproduces the training data. For
relatively small datasets (<300 data samples), maximizing
the MLL takes a few seconds on most modern CPUs,
making it feasible to perform this process during each
iteration of BO (see Sec. VI F for details).
Alternatively, fixed individual hyperparameter values

can be specified before modeling occurs, based on prior
knowledge of the function, either from previous sets of data
or physics knowledge. While fixing hyperparameter values
circumvents the need for retraining the model at each
optimization step during BO, this limits the ability of BO to
adapt to novel functional behavior that is not well char-
acterized by the fixed hyperparameter values.
As maximizing the MLL is itself an optimization

problem, this process suffers from the same complexities
and challenges associated with solving general optimiza-
tion problems in practice. A wide variety of numerical
optimization algorithms can be used for this purpose, given
that the number of hyperparameters that are included inside
the GP model is generally small (<5–10). Current state-of-
the-art software packages developed for GP modeling (see
Sec. VI E) employ two strategies to maximize speed and
robustness when optimizing the MLL.
The first strategy is to use so-called differentiable

calculations [44], which allow cheap computation of the
MLL gradient with respect to the hyperparameters. This
enables the use of gradient-based optimization algorithms
that scale well toward performing optimization given a
large number of hyperparameters. As gradient descent
optimization algorithms often converge to local extrema,
optimization can be repeated in parallel, starting with
randomly chosen initial points in hyperparameter space
to improve the chances of finding a global extremum.
The second strategy used to improve MLL maximization

robustness is training data normalization and standardiza-
tion. As is common in other machine learning disciplines, it
is recommended that training datasets are transformed such
that they are near unity value when passed to the model,
thus preserving unit scale gradients with respect to hyper-
parameters. For GP modeling, it is common to normalize
input data into the unit domain [0, 1] and standardize the
outcome data such that it has a mean of 0 and a standard
deviation of 1 (to match the default zero prior mean and
unit standard deviation in most GP modeling frameworks).

These two strategies make maximizing the MLL fairly
robust in practice, such that monitoring and customizing
the fitting of model hyperparameters in BO is only
necessary in specialized cases and model debugging.

3. Observation noise and heteroskedasticity

In most cases when performing online optimization of
accelerator parameters, measurements of the objective
function are corrupted by noise and/or systematic uncer-
tainties. Through the use of Bayesian inference, GP models
explicitly support a notion of measurement uncertainty
when making predictions. Depending on the application,
GP models can be tailored to account for measurement
uncertainty in a variety of ways based on measurements or
prior physics information.
The most straightforward method for representing meas-

urement uncertainty uses a noise hyperparameter σϵ that is
incorporated into Eqs. (9) and (10) by assuming a fixed
Gaussian model of the uncertainty for all measurements.
This homoskedastic uncertainty assumption adds σ2ϵ terms
to the diagonal elements of the kernel matrix, in what is
sometimes referred to as Tikhonov regularization or ridge
regression [45]. In cases where no noise is present, as in
deterministic simulations, this parameter can be set to
zero, resulting in GP models that make predictions which
exactly match the training data, as shown in Fig. 7(a). In the
case of experimental measurements containing noise, the
noise hyperparameter can be determined during optimization
alongside other model hyperparameters by maximizing the
MLL. This process serves to regularize the GP model,
mitigating high-frequency behavior and treating it as uncer-
tainty at measurement locations, as exemplified in Fig. 7(b).
In some situations, measurement uncertainty is not

constant throughout parameter space. This may be the
result of varying systemic uncertainties in the measurement
or varying levels of stochastic noise in different portions of
parameter space. In this case, model uncertainty can be
different for each measurement or heteroskedatic in nature.
If the observation uncertainty can be estimated, e.g., by
taking repeat measurements to estimate stochastic noise,
and/or by specifying systematic measurement uncertainty,
this information can be included for each point individually
in a heteroskedastic model. In this case, different values of
σ2ϵ;i can be added to the diagonal elements of the covariance
matrix for each data point yi. This allows for individual
measurement uncertainty to be accounted for explicitly in
the GP model, as illustrated in Fig. 7(c). An alternative
approach is to use a second GP (or any other deterministic
model) to describe the variance as a function of input
parameters.

4. Computational costs

If the likelihood of the GP model is a normal distribution,
then calculating the posterior distribution is analytical via
matrix computations. However, for more complex models,
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the posterior cannot be obtained analytically and may
require the use of a sampling algorithm such as Markov
Chain Monte Carlo (MCMC) [46] to estimate the posterior,
which is known to be more computationally intensive.
Calculation of the GP posterior can become a significant

bottleneck given a large dataset of training points. The
computational cost of evaluating GP model predictions is
primarily due to the matrix inversion operations in Eqs. (9)
and (10) which has a computational cost of Oðn3Þ where n
is the number of training points (note that it is independent
of the dimensionality of x). As a result, the decision-
making cost of BO algorithms can increase substantially as
the number of optimization iterations increases due to the
need to train and evaluate GP models (benchmarking of
these computational costs on modern hardware architec-
tures can be found in Sec. VI F). Thus, when using BO, it is
advantageous to find strategies that reduce the number of

training data points needed to make an accurate model of
the objective function that informs optimization. This is
where advanced modeling techniques come into play.

C. Advanced Gaussian process modeling techniques

One of the primary goals of advanced modeling tech-
niques is to encode prior information into the GP model
such that it makes more accurate predictions with smaller
sets of data. This prior information can come from a
number of different sources, including (but not limited
to) physics knowledge, historical datasets, and/or prior
optimization runs. Improving the predictive accuracy of GP
models prior to starting optimization improves the quality
of decisions made by BO, reducing the average number of
iterations needed to reach convergence. Furthermore,
reducing the number of data points needed for accurate
modeling reduces the computational cost of evaluating the
GP model, enabling faster decision making. Here, we
describe advanced techniques that can be used to improve
model accuracy with smaller datasets.

1. Kernel customization

a. Combining kernels. For more expressive behavior,
multiple kernels can be combined into a single kernel
through addition, multiplication, and tensor products. This
combines the high-level functional behavior of expected
phenomena into a single model. For example, when
modeling beam size squared as a function of beamline
parameters, the second-order dependence of beam size on
quadrupole strength can be captured by a polynomial
kernel, while a more general Matérn kernel can be used
for other beamline parameters whose effect on beam size is
less well known. However, this can come at a cost as more
complex kernel functions can require more data to effec-
tively learn the kernel hyperparameters, reducing sample
efficiency if starting BO from scratch.
b. Hyperparameter priors. Kernel functions can also be

customized by specifying prior distributions for kernel
hyperparameters. Incorporating priors into the hyperpara-
meter training process biases MLL hyperparameter training
toward certain values according to the prior distribution.
This provides a convenient middle ground between fixing
hyperparameter values during optimization and training
from scratch. For example, we can be relatively confident
that linear beamline elements (such as quadrupole magnets)
have a minimal effect on beam emittance. In this case, we
can specify prior probabilities on the GP model length
scales with respect to linear element parameters that encode
this independence information into the GP model of the
emittance, similar to what is done in the Sparse Axis
Aligned Subspaces (SAAS) kernel [47]. Incorporating this
assumption into the kernel rapidly speeds up convergence
in objective functions that are strongly dependent on only a
small subset of parameters by reducing the effective
dimensionality of the problem. However, if nonlinearities

FIG. 7. Examples of GP modeling with varying treatment of
measurement noise. (a) Shows a GP model containing zero noise,
forcing the GP prediction to fit experimental data exactly.
(b) Shows a GP model trained on the same data with a fixed
(homoskedastic) noise parameter. (c) Illustrates a GP model
incorporating heteroskedastic noise, where the data variance for
each point is explicitly specified.
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exist in these magnetic elements that do affect the beam
emittance, the notion of independence in the GP model can
be updated provided experimental evidence, instead of
being ignored completely.
c. Kernel estimation from Hessian. Another way of

encoding prior information of an objective function into
the kernel can be specifying fixed kernel function hyper-
parameters that express expected functional correlations
in a local region around the expected optimal point. For
example, objective functions that depend on quadrupole
strengths often contain a cross-correlation structure, similar
to what is shown in Fig. 8(a), between adjacent quadrupoles
due to the focusing-defocusing nature of first-order beam

dynamics. These cross-correlations are difficult to learn on
the fly without making a large number of measurements,
as shown in Fig. 8(b). Adding information about cross-
correlated structure in the objective function can sig-
nificantly increase the accuracy of the GP model in
high-dimensional spaces without having to make a large
number of measurements. An efficient method for doing
this is to compute the Hessian matrix of the objective
function near the predicted optimal point in parameter
space x� [48]. This can then be used as the factor analysis
distance metric described in Eq. (14), where M ¼ Hfðx�Þ.
As shown in Fig. 8(c), incorporating the Hessian matrix
into the RBF kernel improves the accuracy of the GP model
with fewer training data points. Identifying this low-
dimensional structure in the objective leads to faster
convergence speeds during optimization, especially in
high-dimensional optimization problems [10].
d. Deep kernel learning. Neural networks (NN) can also

be used as drop-in replacements for kernel functions in
what is often referred to as deep kernel learning [49].
Neural networks can be incredibly powerful when model-
ing complex features in accelerator physics measurements
such as images and signals. However, they require large or
information-rich training datasets to accurately predict
functional covariances between points in parameter space.
As a result, learning kernel functions specified by NN on
the fly during optimization is impractical for cases where
measurements are expensive. Furthermore, for most opti-
mization cases in accelerator physics, the objective func-
tions are relatively smooth, thus much simpler kernel
functions can reasonably predict accurate covariances
without the cost of training an NN representation. As a
result, there has been limited work in accelerator physics
toward investigating the use of NN models in kernel
functions for the purpose of conducting optimization. On
the other hand, NN models have been investigated for use
in other aspects of GP modeling, see Sec. III C 2 for details.

2. Nonconstant prior means

An alternative approach for incorporating prior informa-
tion into the GP model is to specify an explicit, nonzero
prior mean function. In this case, instead of embedding
prior information about the high-level functional character-
istics of the objective function, we provide an explicit guess
as to what the objective function value is at every point in
the parameter space. This is especially useful if we have
detailed knowledge of the objective function from beam
dynamics calculations, historical datasets, and/or previous
optimization runs.
Incorporating a nonzero prior mean function mðxÞ

into a GP model reincorporates an extra term ignored in
Eq. (9), producing posterior mean function values at the test
points X�

μ� ¼ mðX�Þ þ KðX�; XÞK−1
y ½y −mðXÞ� ð17Þ

FIG. 8. Illustration of the improvement in prediction accuracy
that can be gained by including expected correlations, such as
those that arise from adjacent quadrupoles, into the GP kernel
design. Here, a 2D function has input correlations that are similar
to what one might observe between adjacent quadrupoles (a). For
a fixed set of training data points (shown in orange), a GP model
using an uncorrelated kernel (b) produces less accurate posterior
predictions of the true function than a model with an accurate
correlated kernel (c). In the context of BO, learning a more
accurate model with fewer data training points translates to faster
convergence in optimization.
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with Ky ¼ KðX;XÞ þ σ2ϵI. For test points that are far
away from previous measurements in parameter space
(KðX�; XÞ → 0), the posterior mean function values f� are
equal to the prior mean values at the test pointsmðX�Þ. This
effect is illustrated in Fig. 9, where the mean of the posterior
distribution reverts back to the prior mean as the distance
between test points and training data increases. Thus, if the
prior mean function accurately predicts the objective func-
tion, theGPmodel canmake similarly accurate predictions of
the objective without any data. Conversely, if portions of the
prior mean makes incorrect predictions, the posterior pre-
dictions of the GP model will reflect updated values from
training data. In this way, the GP can be interpreted to model
the difference to the prior mean functionmðxÞ instead of the
full objective.
A custom mean function can be parameterized in a

number of different ways, with the only requirement being
that it maps parameter values to function values. For
example, prior mean functions can be analytic functions,
surrogate models, or even full particle dynamics simula-
tions. However, for the best performance in the context of
BO, prior mean functions should be differentiable (i.e.,
support backward automatic differentiation) and relatively
inexpensive to evaluate. These attributes allow the acquis-
ition function to be quickly optimized to find the next
measurement point (see Sec. V for details).
For the purposes of online optimization in accelerators,

neural network (NN) surrogate models [24,25,50,51] or fast

differentiable beam dynamics simulations [52] have been
identified as promising prior mean functions. Neural net-
works of sufficient complexity are known as universal
function approximators [53] and typically execute much
faster than conventional physics simulations [54].
Furthermore, NN models are generally differentiable due
to training requirements, making them ideal for represent-
ing prior mean functions. Most importantly, unlike GP
models that scale poorly with dataset size, NN surrogate
model execution time is independent of the size of the
dataset used to train the surrogate. This allows large
amounts of historical measurement and simulation data
to be incorporated into the GP model without hurting
online performance. Alternatively, fast-executing beam
dynamics simulations that are differentiable can be used
to model the prior mean functions.
Incorporating prior mean functions inside GP models has

a substantial impact on BO convergence speed. If the prior
mean exactly matches the true objective function, con-
vergence can happen immediately depending on the ratio of
the objective function’s ideal value with respect to the prior
model uncertainty and which acquisition function is chosen
to perform BO. Off-line studies using simulated objectives
similar to those of the LCLS injector demonstrate that prior
mean functions that have positive correlations with the true
objective function also improve the convergence speed of
BO to optimal values [50].
This benefit was also observed experimentally at the

ATLAS accelerator [24] at Argonne National Laboratory.
In this example, BO was used to tune the strengths of five
quadrupole magnets to maximize the beam transmission
through a beamline. They repeated the optimization multi-
ple times starting with the same initial point using a
constant prior mean function and three different NN
surrogate models based on previous experimental data
such that the models have varying correlations with the
true objective function. Figure 10 shows that using a prior
mean that has a high correlation with the ground truth
resulted in better BO performance than standard GP models
with constant priors. However, if the prior model is poorly
correlated with the true objective function, then BO
performance can suffer. Although measures can be taken
to mitigate these effects [24], the quality of the prior mean
is critical to improving the performance of BO when using
a nonzero prior mean. Additional work at the LCLS
photoinjector has demonstrated similar benefits to using
NN surrogate models as priors in GP modeling up to nine
free optimization parameters [24].

3. Modeling in transformed spaces

In some cases, it is advantageous to transform input or
output data into an intermediate space before training
hyperparameters and making model predictions. This
strategy is useful when modeling objectives according to
known physical principles or constraints. For example, a

FIG. 9. Illustration of nonzero prior mean. In the absence of
local data, the mean of the posterior distributions reverts to
(a) zero or (b) the nonzero prior mean. The variance remains
unchanged.
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number of objectives in accelerator physics are strictly
positive, such as beam size and emittance. In order to
restrict the range of GP predictions to positive values, data
can be transformed into log space before fitting the GP
model, as is shown in Fig. 11.
The Bilog transform [55] can improve modeling accu-

racy near zero by magnifying output values near zero and
damping output values far away from zero. Applying this

transform to data that is used to model constraint functions
helps improve constrained optimization (see Sec. IV B 2),
as constraints are generally defined with respect to zero, see
Eq. (2). The Gaussian copula [56] has also been proposed
as a useful transformation for magnifying objective func-
tion values that are on the edges of the observed range—
namely maximum or minimum values.
Depending on the modeling application, it may or may

not be necessary to untransform GP model predictions in
transformed space back into real space. For the logarithmic
transformation example shown in Fig. 11, it is not neces-
sary to untransform GP predictions back into real space, as
optimizing the logarithm of the objective also optimizes the
real objective value. However, in cases where untransform-
ing model predictions back into real space is required by
the application, these transformations can incur additional
computational costs. Basic output transformations, such as
data standardization or logarithmic transformers, allow for
analytical calculations of the model mean and variance in
untransformed spaces. However, more complex transfor-
mations may not have analytical inverses, precluding the
use of analytical calculations of the model predictions in
real space. As a result, model predictions in real space
require Monte Carlo estimations of the posterior distribu-
tion, which incurs additional computational costs compared
to analytical predictions. In this case, model visualization
and acquisition function optimization may require more
computational resources and time.

4. Time- and context-dependent modeling

In practical applications, the accelerator systems under
consideration are often affected by factors beyond those
represented in the input space, such as incoming beam
parameters or drifts in auxiliary equipment due to external
factors. While these factors cannot be controlled and
changed explicitly by the optimization process, they can
be incorporated into the GP model to improve the model
predictive power and thus the convergence speed of BO.
Using the kernel multiplication approach described in
Sec. III C 1, the standard model can be extended with time
and other contextual dimensions to represent a modified
system

y ¼ fðx;ϕÞ þ ε; ð18Þ

where ϕ represents the contextual parameters. A classic use
of such GP models has been in time-series predictions (i.e.,
stock prices), where ϕ contains the time dimension t. This
method is referred to as adaptive BO (ABO) [57] or
contextual BO [58] and can be used to compensate for
changes in the accelerator as long as they can be correlated
to an observable. Note that to use such extended GP models
in Bayesian optimization, all contextual parameters will
need to be specified explicitly for the next point(s) and then
held fixed during acquisition function optimization.

FIG. 10. Transmission optimization at ATLAS subsection using
different prior mean functions. Solid and dashed lines depict the
medians and the shaded areas depict the corresponding 90% con-
fidence levels across 10 to 20 runs. Reproduced from [24].

FIG. 11. Example of using log transformations in GP modeling
for strictly positive output values. Data in real space (a) are
transformed to log space before fitting a GP model (b). Samples
drawn from the GP model in log space can then be transformed
back into real space to make GP predictions. The resulting
likelihood in real space is then a log-normal distribution which is
strictly positive.
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Incorporating additional dimensions into the GP model
will increase the amount of data required for a good fit and
thus slow down initial BO convergence (but not as much
as a regular input parameter). ABO should only be used if
the impact of contextual variables is significant relative to
the noise in the objectives. Otherwise, it is advisable to
use standard BO that will incorporate small drifts into the
fitted noise parameter. For the most common case of time-
adaptive BO, there are several choices of auxiliary variables
that can be used—only time (which correlates to all drift
sources but potentially has a complicated relationship that
cannot be represented well by GP), time and specific drift
sources, or only specific drift sources. Where possible,
specific sources should be used to simplify the model.
For example, if it is known that only room air and cooling
water temperatures contribute to time-dependent drifts in rf
cavities, it is best to only include temperature values as
contextual variables instead of time. However, using
time permits ABO to be very flexible with little to no
tuning or when drift sources are distributed over too many
dimensions.
Regardless of the choice of contextual variables, to

achieve a good model fit with standard local kernels like
RBF, the perturbations must be slow enough such that the
BO loop can sample the highest-frequency features of the
drift with at least a few points, by analogy to Nyquist’s
theorem. This requirement can be relaxed somewhat if a
custom kernel is used that can account for long-range
structure in the data. Experimentally, many drift signals are
either directly correlated to something or have periodic
structures. To avoid excessive hyperparameter tuning,
special kernels like the spectral mixture kernel [59] can
be used for cases where the exact number and periodicity of
oscillatory signals are not known but require more data to
achieve a good initial fit. A more advanced strategy is to use
the rate of change of GP model parameters, such as length
scales, with time to choose the most appropriate kernel so
as to ensure an acceptable trade-off between worst-case
performance and convergence. In Fig. 12, an example
application to a linac trajectory stabilization problem is
demonstrated. Performance of the more advanced methods
strongly depends on drift magnitude, sampling rate, and
measurement noise levels—it is suggested to perform
similar simulations to evaluate suitability of contextual
methods to specific tasks.
Both time and generic ABO has been demonstrated

experimentally at the APS linac [26] and in the KARA
storage ring [11]. Extensions of ABO to constrained
problems with robustness requirements and dynamic kernel
selection have also recently been tested at APS [27].

5. Multifidelity modeling

In some cases, it may be possible to obtain data about
the behavior of the accelerator from different sources of
information. For instance, we may have access to data from

both experimental measurements and numerical simula-
tions or from numerical simulations using different computa-
tional models and/or different resolutions. Additionally, we
may be able to make experimental measurements that trade
varying levels of detail and accuracy for evaluation speed or
cost. In these cases, it is desirable for theGPmodel to be able
to learn from these different sources of data while keeping
track of their respective origin and evaluating their respective
trustfulness.
In this context, the source of the data is encoded by

assigning a fidelity value s to each data point in the dataset.
Depending on the context, this fidelity parameter may take
discrete values or continuous values. For instance, when
combining experimental and simulation data (discrete
fidelity), one may assign s ¼ 0 to data points coming from
simulations and s ¼ 1 to data points from experimental
measurements. When combining simulations at different
resolutions (continuous fidelity), one may assign s ¼ 0 to
data points from low-resolution simulations, s ¼ 1 to data
points from high-resolution simulations, and an intermedi-
ate value of s to simulations at intermediate resolutions.

FIG. 12. Simulated application of standard and time-aware BO
in a drifting trajectory stabilization problem. Simple BO settles
on the mean value of the oscillations. ABO-ISO (isotropic)
follows the changes but lags them because it only uses isotropic
(local) kernel. ABO-SM (spectral mixture) captures long-range
correlations and eventually correctly predicts necessary future
changes in phase. By default, ABO-SM continues to explore
around maximum value for optimization, producing a small step
jitter. It can be eliminated by using the posterior mean as the
acquisition function at the cost of convergence speed.
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A GP can then be trained on this combined dataset,
taking x and s as input and predicting the associated y. In
the case where s takes continuous values, the fidelity
dimension is simply treated as another input dimension
to the GP [60], with its associated kernel and hyper-
parameters. It is common to choose the kernel for s and
x to be separable (see Sec. III C 1) and to use a stationary
kernel for s [60]:

k½ðs; xÞ; ðs0; x0Þ� ¼ κ̃ðjjs − s0jjÞκðx; x0Þ.
In this case, the lengthscale hyperparameter l for the kernel
κ̃ quantifies the extent to which similar fidelities give
similar results. For instance, a large length scale l would
cause the GP to predict similar output y even for relatively
different values of the fidelity s. As usual, during training,
this hyperparameter is often learned on the fly using
hyperparameter tuning, and thus the GP automatically
learns how much the prediction y varies with the fidelity
s. Or, in other words, the GP learns to which extent the low-
fidelity data can be relied on when trying to predict high-
fidelity data.
In the case where the fidelity s is discrete, one type of

multifidelity GP is the multitask GP [61], where the kernel
is expressed in a similar manner:

k½ðs; xÞ; ðs0; x0Þ� ¼ κ̃s;s0κðx; x0Þ;

where κ̃s;s0 is a positive semidefinite matrix (given that s
and s0 take discrete values). The values of the entries of this
matrix are obtained by hyperparameter tuning, and they,
again, quantify the extent to which low-fidelity and high-
fidelity data are related.
This is illustrated with an example in Fig. 13, where low-

and high-fidelity versions of an objective function can be
evaluated with corresponding evaluation costs. Figure 13(a)
shows a conventional GP model that predicts the output of
the high-fidelity objective trained solely on a small, high-
fidelity dataset. Instead of continuing to evaluate the
expensive high-fidelity objective function, a multifidelity
modeling approach incorporates inexpensive, low-fidelity
data into the model of the high-fidelity objective. If the low-
fidelity data serve as a good approximation of (i.e., is
highly correlated with) the high-fidelity objective function,
adding these data will reduce the uncertainty of the
multifidelity model and increase its accuracy, as shown
in Fig. 13(b). However, if the low-fidelity data are largely
uncorrelated with the high-fidelity data, as in Fig. 13(c), the
model prediction of the high-fidelity objective function is
weakly influenced by the low-fidelity data.
Multifidelity GPs have been used in the context of

simulation-based design optimization for laser-plasma
accelerators [35,38]. In these instances, the fidelity was
either continuous and corresponded to the resolution of the
simulation grid [35] or discrete and corresponded to different
simulation codes making different approximations [38].

In both cases, the ability of multifidelity GP to partially rely
on cheap, low-fidelity simulations (either low-resolution
simulations, or approximated simulation codes) significantly
reduced the cost of performing optimization.These examples
are discussed in more detail in Sec. IV B 6.

6. Embedding complex modeling processes

As fast-executing surrogate models, GPs can be used as a
drop-in replacement for other numerical models when

FIG. 13. Illustration of the prediction of a multifidelity Gaus-
sian process, by comparing (a) a single-fidelity Gaussian process
trained only on high-fidelity data, and (b),(c) a multifidelity
Gaussian process trained on both high-fidelity and low-fidelity
data, in the case where (b) high-fidelity and low-fidelity data are
highly correlated, as well as (c) high-fidelity data and low-fidelity
data are largely uncorrelated. In this particular example, the
multifidelity GP is a multitask GP [61], as implemented in
the library BoTorch. Dashed lines denote ground truth values of the
low- and high-fidelity functions.
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creating multicomponent models of complex systems. This
can add flexibility, a robust treatment of uncertainty, and
data-efficiency to arbitrary models of accelerator physics.
These hybrid models, in turn, can increase the interpret-
ability of GP modeling and in some cases expand the
applicability of GP modeling to new domains.
For example, basic GP modeling is insufficient when

describing systems that exhibit path-dependent physical
processes, most notably, mechanical and magnetic hyste-
resis. Hysteresis is a path-dependent process such that
beam properties depend not only on the current state of the
machine but also on the historical path taken to get to the
current state. This creates repeatability issues when opti-
mizing accelerator parameters in magnetic and mechanical
systems.

Basic GP modeling, see Fig. 14(a), interprets this error as
stochastic noise, reducing the accuracy of model predic-
tions, underestimating measurement uncertainty in some
regions of parameter space, and overestimating uncertainty
in others. However, if a GP model is combined with a
numerical model of hysteresis, the hybrid model can make
predictions with higher accuracy and better calibrated
uncertainty estimates. In Fig. 14(b), a Preisach hysteresis
model [62] is used to map the control parameter (magnet
current) to magnetic field, while the GP model represents
the mapping of magnetic field to beam dynamics [28]. Both
hysteresis model parameters and the GP hyperparameters
are trained simultaneously on the data using MLL. The
resulting hybrid model has a higher predictive accuracy and
provides uncertainty estimates that are well calibrated to
stochastic experimental noise. As a result, the hybrid model
improved optimization convergence, mitigating the detri-
mental effects of hysteresis on optimization when using
basic GP models.
A key factor that enabled the simultaneous training of both

hysteresis model parameters and GP hyperparameters was
that calculations in bothmodelswere differentiable, allowing
the useof gradient descent tomaximize theMLL.Combining
differentiable models of other nonrepeatable processes with
GPmodels can extend the applicability ofBO techniques to a
wider range of optimization problems. Using GP models to
represent smaller units of accelerator processes, as is done in
the case here, increases their accuracy with smaller datasets
and improves their interpretability.

IV. ACQUISITION FUNCTION DEFINITION

The acquisition function αðxÞ guides BO by defining the
potential value of future measurements given a predictive
surrogate model. During BO, input parameters that maxi-
mize the acquisition function will be chosen for evaluation
during the next iteration.
Almost all acquisition functions aim to perform global

optimization by balancing two optimization strategies,
often referred to as “exploration” and “exploitation.”
Exploration places a high value on choosing points in
parameter space that will add information to the GP
surrogate model, often in regions of parameter space where
the model has high uncertainty. Exploitation, on the other
hand, places a high value on points in parameter space that
the surrogate model predicts to be optimal. By balancing
the weighting between these two strategies in the acquis-
ition function (either implicitly or explicitly) during opti-
mization, BO can increase the chances of efficiently finding
global solutions to the optimization problem, instead of
being stuck in local extrema.
As opposed to other standard optimization algorithm

definitions, acquisition functions in BO are often defined
with the assumption that objective functions are to be
maximized. In order to use these acquisition functions
for objective function minimization, transformations are

FIG. 14. Demonstration of combining GP models with a
differentiable physics model of magnetic hysteresis. (a) Measured
beam charge after passing through an aperture in the APS injector
is plotted over three cycles of varying the current in an upstream
quadrupole. Transmitted beam charge measurements are not
repeatable due to hysteresis effects in the upstream quadrupole.
(b) GP modeling with differentiable hysteresis model included
accurately predicts beam charge over multiple hysteresis cycles
with improved (reduced) uncertainty predictions. Reproduced
from [28].
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applied to the model predictions before they get passed to
the acquisition function. This approach is preferable to
modeling negated objective values with the GP, as it makes
model interpretation more challenging.
In this section, we first describe basic acquisition

functions used for general purpose single objective opti-
mization. Then, we describe complex acquisition functions
and modifications used to solve accelerator physics prob-
lems in online control and simulation.

A. Basic acquisition functions

The two most commonly used acquisition functions for
performing optimization are expected improvement (EI)
and upper confidence bound (UCB) [63]. These simple
acquisition functions, illustrated in Fig. 15, are often the
starting point for optimizing general problems and provide
similar convergence speeds.
As its name suggests, EI uses the GP model to cal-

culate an expectation value of the improvement IðxÞ¼
maxffðxÞ−fðx�Þ;0g over the best previously observed
value of the objective function fðx�Þ. For a GP model with
a Gaussian likelihood, the expected improvement can be
calculated analytically:

EIðxÞ ¼ E½IðxÞ�
¼ σðxÞ½zΦðzÞ þ ϕðzÞ�

z ¼ μðxÞ − fðx�Þ
σðxÞ ;

whereΦð·Þ and ϕð·Þ denote the cumulative density function
and probability density function of a normal distribution.
As shown in Fig. 15, EI emphasizes choosing observa-
tions that are predicted to be optimal, have a large variance,
or a combination of both, thus balancing exploration and
exploitation.
UCB explicitly specifies a trade-off between exploita-

tion and exploration by using a linear combination of the
predicted mean and variance from the GP model with a
weighting factor β:

UCBðxÞ≡ μðxÞ þ
ffiffiffi
β

p
σðxÞ: ð19Þ

For general problems with an assumed smoothness, optimal
values of β have been found to achieve the best conver-
gence speeds [64]. Defining UCB with a larger β value
favors exploration, while smaller values of β prioritize
exploitation. If the objective function is expected to be
convex or unimodal, smaller values of β may speed up
convergence by prioritizing exploitation (often referred to
as “greedy optimization”).
EI and UCB often provide similar levels of convergence

speed for most optimization problems. However, EI can
sometimes become difficult to numerically optimize if large
regions of the input space have zero probability of
improving over the best observed point. In this case,

gradient-based optimization of the acquisition function
(see Sec. V) can struggle to escape regions with zero
gradients, often referred to as the “vanishing gradient
problem.” However, it has been suggested that taking the
log of the EI acquisition function before optimizing can
address this issue [65].

B. Advanced acquisition functions

Here, we describe definitions and modifications that
tailor the behavior of BO in order to solve problems in
accelerator physics. In some cases, these acquisition
functions are not analytically tractable and are thus evalu-
ated by using Monte Carlo sampling. Calculations of the
acquisition function in these cases are done by drawing
function samples from the GP model and averaging over
their individual contributions. A detailed discussion of this
formalism can be found in [66].

1. Unknown function characterization

In some cases, instead of finding a solution to an
optimization problem, we aim to characterize an unknown
function to learn its structure and evaluate sensitivities to

FIG. 15. Examples of the EI and UCB acquisition functions for
objective function maximization given the same GP model and
training data. (a) EI acquisition function, where the dashed
horizontal line denotes the best previously observed value
fðx�Þ. (b) UCB acquisition function.
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individual parameters. So-called active learning acquisition
functions can be defined to choose points that optimally
characterize an unknown function instead of finding the
extrema. A simple example of this is known as uncertainty
sampling or “Bayesian exploration” (BE) [29]. In this case,
the acquisition function is defined as

αBEðxÞ ¼ σðxÞ: ð20Þ

When using this acquisition function, BO will sample
locations where the model uncertainty is maximized,
usually at points in parameter space that are farthest from
previous evaluation locations, as shown in Fig. 16(a).
Combining this acquisition function with a GP model that
uses automatic relevance determination (see Sec. III B 1)
makes this technique especially powerful for performing
high-dimensional characterization of previously unknown
functions. In this case, the sampling pattern will change as
the relative sensitivities of the target function with respect

to each optimization parameter are learned, as shown in
Fig. 16(b). Bayesian exploration and similar active-learning
techniques have been used to perform a wide variety of
characterization studies in both accelerator experiments and
simulations [29], as well as in automating experiments in x-
ray and neutron scattering experiments [67,68], and per-
forming material discovery [69].

2. Incorporating unknown constraints

Constraints play a crucial role in guaranteeing safe
accelerator operation without damaging expensive equip-
ment or increasing optimization time due to interlock
violations. If the constraints are known, they can be
incorporated by constraining optimization to a feasible
subdomain of parameter space [70,71]. However, if the
constraint functions ciðxÞ are unknown (as is often the
case in accelerator physics), they need to be actively
learned alongside the objective function fðxÞ during
optimization.
Several approaches have been developed in order to

tackle the task of constrained optimization. These
approaches aim to limit the number of times that constraints
are violated during optimization, with varying degrees of
“safety,” referring to the likelihood that constraints are
violated during optimization (“safer” algorithms are less
likely to violate constraints). A review regarding safe
optimization techniques, inside and outside the context
of BO, is given in [72]. Two approaches of interest that
have been used in accelerators are as follows.
The first approach is to modify the acquisition function

by biasing it against selecting points that violate the set of
constraints. This is done by weighting the acquisition
function by the probability that the constraints are violated,
calculated by integrating over GP models of the con-
straining functions [73]. While this method is straightfor-
ward to implement and interpret, it does come with some
disadvantages. First, this formalism places a restriction on
the unconstrained acquisition function, requiring that
αðxÞ ≥ 0, which is satisfied by most acquisition functions
(with the notable exception of UCB). Second, in tightly
constrained spaces, there are large regions of parameter
space where the constrained acquisition function is nearly
zero, thus resulting in large areas where the derivative of the
acquisition function is also nearly zero, making it difficult
to optimize with gradient descent methods. This issue can
potentially be addressed by taking the log of the acquisition
function prior to optimization as is suggested in [65].
Finally, while biasing the acquisition function in this way
does minimize the probability that constraints are violated,
it is possible that constraints will be violated during
optimization. This technique has been applied to both
online and off-line accelerator optimization problems with
a variety of unconstrained acquisition functions, including
single objective BO, Bayesian exploration [29,74] and
multiobjective BO [34].

FIG. 16. Example of sampling behavior of Bayesian explora-
tion (BE). (a) The BE acquisition function is maximized at
locations in parameter space where the model uncertainty is
highest, usually at locations farthest away from previous mea-
surements. (b) In cases where the function is less sensitive to one
parameter (x2 in this example), the model uncertainty is smaller
along that axis, resulting in less frequent sampling along that
dimension.
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The second approach was originally presented under
the name SafeOpt in [71,75]. Instead of modifying the
acquisition function, predictions from the GP models of
the constraints are used to define an arbitrarily shaped but
compact safe set, within which the constraints are predicted
to be satisfied with a desired confidence level under the
assumption of Lipschitz continuity and knowledge of an
upper bound of the Lipschitz constant [76]. Slightly less
conservative but less intuitive conditions for the safety
guarantees are given in the respective papers [71,75].
The acquisition function is then optimized inside this safe
set, guaranteeing safety at a chosen confidence level.
While in the original work, only a single constraint func-
tion was considered, multiple constraints can also be
incorporated [71].
However, the safety guarantees provided by limiting the

acquisition function optimization in this way come at a
cost, as defining and optimizing over the irregular valid
subdomain of parameter space are difficult, especially in
high-dimensional spaces. Various methods have been
introduced to improve the efficiency of defining the valid
subdomain. The high dimensionality issue was addressed
by LineBO, where the global BO problem is decomposed
into a sequence of one-dimensional subproblems [30],
reducing the memory required to represent the safe set
at any one time. Stage-based procedures, i.e., StageOpt and
MoSaOpt, where the expansion of the safe set (exploration)
and exploitation phases, are staged [32,77]. This allows
adjustment of hyperparameters in exploitation while still
guaranteeing safety. Efficiency can be further improved by
using goal-oriented safe exploration where expansion only
takes place if necessary [78].
Given the safety guarantees, this branch of approaches

originated in safety-critical fields such as robotics, but has
also been successfully applied in the control of accelerators
starting with [30]. Here, SafeOpt was applied for the beam

intensity optimization at SwissFEL for up to 40 optimiza-
tion variables. A lower threshold on pulse energy was
considered for safety and the high dimensionality was
addressed by using LineBO. Defining the valid sub-domain
in a 1D space greatly simplified the problem and provided
useful visual feedback to operators during optimization,
without significantly degrading optimization performance.
Further adaptions to this application are made in [31],

where in addition, application results to the High-Intensity
Proton Accelerator (HIPA) are presented targeting to
minimize the overall beam losses around the machine
using 16 optimization variables and ensuring safety via
224 constraints coming from different interlocks. The
stagewise procedure MoSaOpt was applied in simulation
to the optical synchronization system as well as a labo-
ratory setup at the European XFEL in [32] in order to
minimize the timing jitter by tuning up to ten controller
variables as optimization variables and ensuring an upper
threshold on the timing jitter to maintain the stability of
laser feedback systems.
A comparison of the algorithms used for performing

constrained BO on a simple test problem is shown in
Fig. 17. Figure 17(a) shows that weighting the acquisition
reduces the chances of violating the constraint, although
there are no guarantees that the constraint violations will
not occur. On the other hand, methods that restrict the
optimization of the acquisition function to within a valid
subdomain of the parameter space, such as MoSaOpt
[Fig. 17(b)] and SafeOpt [Fig. 17(c)], do not allow points
that are predicted to violate the constraint to be sampled,
ensuring safety.
It is important to note that both of these approaches to

constrained optimization rely on accurate models of the
constraining functions to effectively reduce the number of
violations during optimization. As a result, most constraint
violations happen during the initial stages of optimization,

FIG. 17. Comparison between different constrained Bayesian optimization algorithms. (a) Weighting the acquisition function by the
probability of satisfying the constraining function [73]. (b) Acquisition function optimization within a safe set using MoSaOpt in
exploitation mode [32] and (c) SafeOpt [75]. (d) The constraint function, where valid regions satisfy cðxÞ > 0.
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where few observations of the constraining functions are
available to create an accurate GP model. In order to
prevent this, it is critical to start with a valid point in
parameter space and conservatively explore the local
region in the first initial steps or include prior information
about the constraining functions into the GP model of the
constraints.
Finally, it is reasonable to expect that concepts from the

two methods currently used for constraining BO in accel-
erator physics can be combined into a single algorithm that
contains the benefits provided by both methods.
Additionally, the characterization of the trade-offs between
safety tolerance and optimization speed should also be
investigated.

3. Multiobjective optimization

In accelerator physics, it is often the goal of optimization
to simultaneously minimize or maximize more than a single
objective, referred to as multiobjective optimization. These
objectives can compete with one another, requiring trade-
offs between objectives to reach an optimal solution. For
example, it is difficult to simultaneously maximize the
dynamic aperture and the local momentum aperture of
electron storage rings [79] or minimize the bunch size and
beam emittance in a photoinjector due to space charge
[6,54]. One strategy to solve this problem is to combine the
objectives into a single objective by weighting the con-
tribution of each objective to a single term, a process known
as scalarization. However, the goal of multiobjective
optimization is to determine the best trade-offs between
multiple objectives, known as the Pareto front (PF). A PF
represents a set of nondominated solutions, where no other
solution can improve one objective without degrading at
least one other objective. These solutions are considered
Pareto-optimal because they form the best compromise
among the multiple conflicting objectives.
One of the most popular methods for solving multi-

objective optimization problems is the use of evolutionary
algorithms [80], which use evolutionary heuristics to
generate a large population of candidate points in parameter
space from the previous generation to search for the PF.
While these algorithms are easy to implement and use,
they are incredibly inefficient, requiring the use of mas-
sively parallelized evaluation of many candidate points to
converge to a solution set. As a result, multiobjective
optimization is computationally expensive in the case of
simulated optimization of beam dynamics and nearly
impossible to use during beamline operations.
Multiobjective Bayesian optimization (MOBO) uses spe-

cialized acquisition functions to quickly identify the PF in
multiobjective optimization problems. These acquisition
functions rely on a metric known as the PF hypervolume
(denoted H), shown in Fig. 18(a). The hypervolume is a
widely used quality indicator in multiobjective optimization
and is particularly useful for problems with more than two

objectives. It measures the size of the dominated space, i.e.,
the portion of the objective space that is dominated by the PF.
A larger hypervolume indicates a more accurate PF, as it
dominates over a larger portion of objective function space

FIG. 18. Summary of multiobjective BO (MOBO) using ex-
pected hypervolume improvement (EHVI). (a) Given Pareto front
P and corresponding hypervolume H, the increase in hyper-
volume HI due to a new measurement y is given by the shaded
green area. (b) Comparison between multiobjective optimization
algorithms for optimizing the AWA injector problem. NSGA-II is
a standard evolutionary algorithm [81], I-NN is surrogate model
assisted NSGA-II [54]. (c) Projected hypervolume after a set
number of MOBO iterations with insets showing hypervolume
improvement due to fill in points (i) and measurement of newly
dominant points (ii). Reproduced from [34].
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and thus a higher degree of Pareto optimality. To calculate the
hypervolume, a reference point is specified in the objective
space, typically set to be a point with the worst values for all
objectives. Then, for each nondominated solution in the PF,
the hypervolume is computed as the volume of the space
dominated by the reference point and the current solution.
The total hypervolume of the entire PF is the sum of these
individual hypervolumes. Convergence of the hypervolume
to a fixed value indicates that the true PF has been identified,
as additional observations do not increase the quality of
the PF.
The expected hypervolume improvement (EHVI) [82]

acquisition function uses the notion of an increase in PF
hypervolume to select points in parameter space. Starting
with a PF containing previous measurements of the
objectives, EHVI predicts the average expected increase
in hypervolume [as shown in Fig. 18(a)] as a function of
optimization parameters using GP models for each objec-
tive. As a result, BO using EHVI will select points that are
more likely to maximally increase the hypervolume of the
PF, whereas genetic algorithms select points only based on
their Pareto optimality. When applied to identifying the PF
of the AWA photoinjector containing seven objectives
(three beam sizes, three beam emittances, and energy
spread), EHVI was able to converge to a maximum
hypervolume several orders of magnitude faster than
evolutionary algorithms, as shown in Fig. 18(b).
EHVI is able to increase the PF hypervolume through

two means, as shown in Fig. 18(c). In some cases EHVI
“fills in” the multidimensional surface of the PF, leading to
hypervolume increase that improves the detail described by
the Pareto set. In other cases, EHVI increases the hyper-
volume by selecting observations that are predicted to
dominate current nondominated points in the PF.
A major advantage of EHVI over genetic algorithms is

that it can be used in serial optimization contexts where
objectives cannot be evaluated in parallel, for example,
determining the PF during online accelerator operations.
However, a downside of the EHVI acquisition function is
the computational expense associated with calculating the
hypervolume improvement. The cost of partitioning the PF
hypervolume into hyper-rectangles scales exponentially
with the number of objective functions. As a result,
computational costs can be a significant roadblock toward
using EHVI in practice when a large number of objectives
are to be optimized. This motivates the use of alternate
acquisition function optimization algorithms in certain
instances when a large number of objectives are present
(see Sec. V for details).
A final consideration when using EHVI is the specifi-

cation of the reference point. The reference point specifies
the worst case value for each objective, thus any objective
observations that are worse than the corresponding refer-
ence point values will not contribute to the PF hyper-
volume. As a result, the PF explored by EHVI will be

limited to within the boundary specified by the reference
point, thus ignoring objective function values beyond the
reference point. However, specifying a reference point that
is too far from the perceived optimal values of the objective
functions will reduce the detail of the PF as different points
will have vanishingly small contributions to the total
hypervolume.
An example of using multiobjective Bayesian optimiza-

tion experimentally was at the SLAC-MeV Ultrafast
Electron Diffraction (UED) facility [33,83]. For MeV-
UED, different scientific experiments often pose different
requirements on multiple electron beam properties, such as
electron pulse length, spot size at sample, and momentum
space resolution (q resolution). However, it is difficult to
simultaneously minimize these beam properties due to
space charge forces. In practice, the evaluation time cost
is high (∼60 s per data point) so that evolutionary algo-
rithms are nearly impossible to use. The MOBO scheme is
much more data efficient and can converge to the PF at least
1 order of magnitude faster than evolutionary algorithms.
As a result, MOBO is the most suitable solution for beam
optimizations at MeV-UED.
During optimization, gun phase and solenoid strengths

were varied to explore the response of electron pulse
length, spot size at sample, and q resolution and obtain PF
giving trade-offs between them. MOBO was able to obtain
PF within 150 measurements (∼3 h). The PF offers an
unprecedented overview of the machine’s performance
limitations and can greatly assist human scientists in rapid
decision making. The achieved performance was compa-
rable with that obtained by experienced human operators
and requires a significantly fewer measurements com-
pared with traditional exploration methods such as a grid
search (GS). During the experiment, the extra computa-
tion time associated with GP fitting and EHVI acquisition
function optimization is small (below 5 s per iteration)
relative to the reduction in beam property evaluation time
associated with faster convergence of HV. Currently, the
major limitation is the time taking electron beam diag-
nostics, by implementing highly efficient single-shot,
nondestructive, and automated electron beam diagnostics,
>103 data points could be obtained within a shorter time.
This enhancement could improve the accuracy of GP and
fully exploit the advantages of the MOBO algorithm.

4. Multipoint optimization and virtual objectives

In some optimization tasks, each acquisition requires a
secondary scan in a separate domain to calculate the
objective function. In engineering, this type of measure-
ment process is referred to as a multipoint query (see, e.g.,
[84]). Consider, for example, the task of aligning particle
beams through the magnetic center of quadrupole-focusing
magnets. If the beam is misaligned with respect to the
magnetic center of quadrupoles in the beamline, scanning
the quadrupole strength results in a centroid kick causing

BAYESIAN OPTIMIZATION ALGORITHMS FOR … PHYS. REV. ACCEL. BEAMS 27, 084801 (2024)

084801-23



further misalignments downstream. This can be corrected
through the use of steering magnets that provide an angular
kick to the beam such that it intercepts the center of the
quadrupole, removing the transverse kick due to changes in
the quadrupole strength. However, determining the optimal
steering strength requires either beam position monitors at
the quadrupole location or constant scanning of the quadru-
pole strength while varying the steering parameter to
estimate the beam misalignment. This is relatively simple
for a single quadrupole but becomes increasingly complex
when using multiple steering elements to align through
multiple quadrupoles.
To address this problem using BO techniques, an acqui-

sition function known as Bayesian Algorithm Execution
(BAX) [85] has been developed which uses a so-called
virtual objective to make control decisions. In the quadru-
pole alignment problem, the virtual objective to be mini-
mized is the slope of the beam centroid with respect to the
quadrupole strength, which is proportional to the beam
misalignment. Instead of directly measuring this slope
every time the steering parameter is varied, BAX builds
a model of the beam centroid as a function of both the
quadrupole strength and the steering parameter, as shown in
Fig. 19(a). This model of the beam centroid is then used to
predict the magnitude of centroid deflection as the quadru-
pole strength is varied (slope) as a function of the steering
parameter, shown in Fig. 19(b). The BAX acquisition
function uses these predictions to evaluate which future
measurements will provide the most information about the
steering current that leads to a minimization of the centroid
deflection. This aspect is seen in Fig. 19(c), where the
maximum of the acquisition function is at the edges of the
quadrupole parameter domain (which provides the most
information about the slope) and close to the optimal
steering parameter. In the limit of many measurements,
BAX will continue to make measurements close to the

optimal steering parameter in order to improve model
confidence in that region of parameter space.
This method of using virtual objectives can be extended

to more complex situations. For example, performing
alignment through multiple quadrupoles in both horizontal
and vertical directions can be done by simply adding or
multiplying multiple virtual objectives together into a
single objective. BAX also supports more complex virtual
objectives such as transverse beam emittance [37]. In this
case, the virtual objective involves fitting polynomials to
the beam size squared as a function of quadrupole strength
using predictions from the GP model. At FACET-II, BAX
was able to match the best emittance found by hand tuning,
while at LCLS, the solution found by BAX produced about
25% lower emittance than hand tuning. In simulation
studies, BAX minimizes the emittance using 20 times
fewer beam size measurements than traditional BO. The
dramatic improvement results from both increased sam-
pling efficiency (by selecting single beam-size measure-
ments at each acquisition) and modeling the beam-size
function rather than the noisier emittance values.

5. Proximal biasing

Unlike optimization problems in other fields, online
particle accelerator optimization sometimes requires incre-
mental traversal of parameter space to maintain accelerator
stability. Accelerator facilities often have many intercon-
nected subsystems that are independently controlled
through feedback systems to maintain accelerator param-
eters, such as water temperature, rf phase, and beam
steering. As a result, making rapid changes in accelerator
parameters can negatively affect these feedback loops,
causing instabilities in accelerator operation that can
ultimately shut down the accelerator. One strategy for
mitigating this issue is to place a strict upper bound on

FIG. 19. Visualization of the BAX process for beam steering through quadrupole magnets. (a) Experimental measurements are used to
build a GP model of the horizontal beam centroid position at a downstream screen Cx as a function of the quadrupole strength and
steering parameter. Note that the GP model is built with a first-order polynomial kernel, constraining predictions to planar surfaces.
Dashed lines denote cross sections of the GP model shown in (b). (c) The BAX acquisition function that predicts the information gained
about the ideal steering current by making future measurements.
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the travel distance from the current location in parameter
space. Unfortunately, this in turn limits the exploration of
parameter space needed to successfully find global extrema
in BO. While it is possible (and sometimes necessary in
sensitive systems) to place this hard limit on the maximum
travel distance during each optimization step, it is some-
times more useful to bias the acquisition function toward
making smaller steps in parameter space. This can be done
through a technique known as “proximal biasing” [86].
Proximal biasing modifies a base acquisition function by
adding a multiplicative term

α̃ðxÞ ¼ αðxÞ exp
�
−
ðx − x0Þ2

2l2

�
; ð21Þ

where x0 was the last location in parameter space to be
observed and l is an algorithm parameter that controls how
strongly biased the acquisition function is toward making
small steps in parameter space. This formalism places a
restriction on the base acquisition function, requiring that
αðxÞ ≥ 0, however, is satisfied for most acquisition func-
tions (again, with the notable exception of UCB).
A visualization of how proximal biasing affects BO is

shown in Fig. 20. In this case, the goal is to characterize
the first objective of the TNK test function [81] so the base
acquisition function is Eq. (20). Figure 20(a) demonstrates
that without proximal biasing, the exploration process
makes large steps in parameter space in order to aggressively
explore the objective function within the valid region. On
the other hand, adding proximal biasing to the acquisition
function significantly reduces the average step size, result-
ing in a smoother exploration of the parameter space, as
shown in Fig. 20(b). In addition, proximal biasing does
allow for larger steps in parameter space when necessary, as
evidenced by the step highlighted by the green arrow in
Fig. 20. If instead of proximal biasing, a hard limit on travel
distance was set for this algorithm, it is likely that this
larger travel distance would not have happened, resulting
in a lack of exploration of the southernmost region of the
valid domain.

6. Multifidelity optimization

In the case where data can be queried at different
fidelities (quantified by a parameter s; see Sec. III C 5),
the BO algorithm needs to choose both the input para-
meter x and the fidelity s for each evaluation of the
objective function. In addition to balancing exploration
and exploitation, the algorithm must also balance the
cost of an evaluation at a given fidelity with the corre-
sponding information gain at the target (highest) fidelity.
For instance, in the case where s represents the resolution
of a numerical simulation, there is a trade-off between
low-resolution simulations that provide low-fidelity infor-
mation at a reduced computational cost and high-resolution
simulations that provide high-fidelity information at an

increased computational cost. If low-fidelity objective
function values are strongly correlated with high-fidelity
objective function values, BO can leverage low-fidelity
approximations of the objective function to reduce the cost
of optimization.
One simple way to handle this trade-off is to

use repeated, fixed-size batches of low-fidelity and high-
fidelity evaluations [87]. For example,multifidelityBayesian
optimization was run using a multitask GP model with
repeated batches of 96 low-cost, low-fidelity simulations and
3 high-cost, high-fidelity simulations, in order to optimize
the performance of a laser-plasma accelerator [38]. In this

FIG. 20. Demonstration of proximal biasing effects during
Bayesian exploration (BE) of the constrained TNK test problem.
(a) Normal BE. (b) BE using proximal biasing with l ¼ 0.1. The
green arrow highlights a step where a larger jump in parameter
space was allowed by proximal biasing. Reproduced from [86].
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case, the acquisition function was a modified version of EI
[87], whereby only the highest-fidelity evaluations are con-
sidered when determining the optimal previously observed
point fðx�Þ. In this particular example, single objective
Bayesian optimization was observed to require 7× less
computational resources to find an optimal accelerator
configuration, compared to single-fidelity Bayesian optimi-
zation based only on high-cost, high-fidelity simulations [38].
However, in many cases, instead of using fixed-size

batches of low-fidelity and high-fidelity evaluations, the
fidelity s is dynamically decided by the algorithm for each
evaluation. Typically, one would want the algorithm to
mostly use low-fidelity evaluations early on in the opti-
mization (to get a cheap, coarse picture of the overall
objective landscape) and to progressively use more high-
fidelity evaluations as it narrows down on the optimal
point. It is also desirable that the algorithm rapidly stops
using low-fidelity evaluations if the underlying multifidel-
ity Gaussian process model determines that low-fidelity
evaluations are not representative of high-fidelity data
(see Sec. III C 5). This behavior can be obtained by using
acquisition functions that incorporate both the cost and
the information gain of an evaluation at a given fidelity;
examples of such acquisition functions include multifidel-
ity versions of upper confidence bound [60] and knowledge
gradient [88]. An alternative to these modified acquisition
function is to instead cast the multifidelity optimization as a
multiobjective optimization problem [35,89]. In this sce-
nario, a user-defined function assessing the reliability of a
fidelity, denoted as s, is included as one of potentially
multiple objectives. The expected hypervolume improve-
ment (EHVI) acquisition function, explained in Sec. IV B 3,
is used to solve this multiobjective problem, with an added
penalty for the evaluation cost [89]. This multiobjective,
multifidelity algorithm resulted in lower optimization costs
when used in simulation-based design optimization of laser-
plasma accelerators [35].

V. ACQUISITION FUNCTION OPTIMIZATION

Conducting BO involves addressing a numerical optimi-
zation challenge to determine the point in parameter space
that maximizes the acquisition function. The computational
demands of numerically optimizing the acquisition function
make it the most resource-intensive step in the BO process.
This process necessitates repetitive evaluations and/or sam-
pling from the GP surrogate model posterior, incurring
computational expenses–albeit generally less than those
associated with evaluating the objective function directly.
Adding to the complexity, acquisition functions are often
nonconvex andmay exhibit numerous local extrema [90]. As
a result, the selectionof the numerical optimization algorithm
employed to optimize the acquisition function becomes
pivotal for achieving optimal performance when using BO.
In scenarios where several points, or multiple objectives

and constraints can be measured concurrently, BO can also

be used to propose multiple measurement candidates. This
is accomplished by specifying batched acquisition func-
tions (referred to as “q sampling” [66]) that assign a joint
utility to a set of q design points in parameter space.
Alternatively, BO components can be combined with
heuristics or other types of optimization algorithms (such
as genetic algorithms) to find a large batch of potential
points to measure simultaneously.
In this section, we highlight a variety of approaches to

optimize acquisition functions, which affect the execution
speed, improve performance of BO algorithms, and tailor
BO to specific use cases.

A. Basic algorithms

The simplest approaches to optimizing acquisition func-
tions are brute-force methods, such as random sampling or
sampling on a mesh grid of points. These algorithms are
usually poor choices for maximizing the acquisition func-
tion, due to their performance scaling to even modest
numbers of free parameters. However, in low-dimensional
parameter spaces (1–2 dimensions), the number of acquis-
ition function evaluations necessary tomaximize the acquis-
ition function can be similar to other iterativemethods due to
their complex nature (nonconvexity). Given that the acquis-
ition function can be evaluated in parallel through the use of
batched computations, using random or grid-based sam-
pling strategies can sometimes be faster than iterative
optimization algorithms in this case.
Iterative, black-box optimization algorithms, such as

Nelder-Mead simplex and RCDS can also be used to
maximize the acquisition function. However, in most cases,
maximizing the acquisition function is often best done using
gradient-based optimization algorithms. The most straight-
forward example of this is using first-order gradient descent
algorithms such as Adam [91]. Higher order gradient
algorithms, such as L-BFGS-B [92], which uses an implicit
estimation of the inverse Hessian, are also often commonly
used to further speed up convergence.
In both cases, accurate calculations of the gradients can

significantly reduce the number of iterations needed to
reach convergence. Acquisition function calculations that
are differentiable can be used to quickly calculate accurate
gradients to speed up optimization. This is usually done by
implementing the GP model and acquisition functions in a
machine learning library that supports differentiability,
such as PyTorch [93]. To improve the chances of finding
the global maximum of the acquisition function using
gradient descent methods, parallel optimization from
multiple random starting points is often used to explore
diverse regions of parameter space.

B. Trust region optimization

One disadvantage of BO is that common acquisition
functions tend to overprioritize exploration over exploita-
tion in high-dimensional parameter spaces. This is due to
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the relatively large posterior uncertainties of GP models
that result from the exponential growth of parameter space
volume with dimensionality (models in high-dimensional
space need more data to update prior function distribu-
tions). As a result, BO tends to pick points at the extremes
of the domain in high-dimensional parameter spaces even if
optimal points are found in a local region, see Fig. 20(a) for
an example of this behavior. In addition, GP models used in
BO aim to create a global description of the objective
function, which may not be appropriate for functions that
have varying local characteristics in different regions of
parameter space.
Trust region BO (TuRBO) [94] aims to address both of

these issues by restricting optimization of the acquisition
function to within a so-called trust region around previous
measurements where the model is expected to be the
most accurate. The trust region is a local region centered
at the best previously observed measurement so far during
optimization, with side lengths equal to a base length L
multiplied by the relative length scale of the GP model
along each axis in parameter space. As optimization
progresses, the location and size of the trust region are
continuously updated to be centered at the best measured
point in parameter space and scaled to match length scales
of the GP model. Additionally, the base length of the trust
region is increased or decreased based on the number of
consecutive successes (improvements in the solution) or
failures (no improvement), respectively. As a result, the
trust region shrinks in cases where the model does not
correctly identify the location of optimal solutions or
expands the trust region when the model is making accurate
predictions that result in continuous improvements in the
objective function value. By limiting exploration of the
parameter space within a local region, TuRBO transforms
BO from a global optimization algorithm into a local one,
resulting in substantially faster convergence to local
extremum in high-dimensional parameter spaces than
conventional BO.
A one-dimensional example of TuRBO applied to a test

minimization problem is shown in Fig. 21. Despite large
model uncertainties at the edge of the domain, which would
normally cause BO to sample points on the boundary,
TuRBO chooses observations that are in the local trust
region around the best observed solution. In cases where
the new observations do not improve over the best solution,
the trust region contracts around the optimal point to
increase model accuracy. If new observations do improve
over the previous optimal point, the trust region is recen-
tered at the location of those observations and expanded to
find potential new solutions. Throughout the course of
optimization, TuRBO will develop a locally accurate GP
model near observed optimal solutions, instead of trying to
accurately describe the global function behavior. While in
this example TuRBO shrinks and expands the trust region
after every step, a threshold for successes and failures is

usually set such that multiple failures or successes in a row
are necessary to change the overall trust region size.
TuRBO was used on the ESRF-EBS storage ring [95] for

the optimization of lifetime and compared to the existing
optimization procedure. The 192 sextupoles and 64 octu-
poles available for the optimization of lifetime have been
sorted and selected into 24 tuning parameters. To have fast
and reproducible values for the optimization, the sum of all
signals from the 128 beam loss detectors was used as the
objective of the minimization rather than the lifetime value
itself. Figure 22 shows the resulting lifetime during the
optimization process performed with TuRBO, simplex,
and UCB, all with similar initialization procedures. More
details on the measurement can be found in [96]. TuRBO
optimization was repeated 3 times and led in all cases to
similar lifetime values within the same optimization time

FIG. 21. One-dimensional visualization of trust region BO
(TuRBO) applied to a minimization problem with the UCB
acquisition function. (a)–(d) Sequential evolution of the GP
model and sampling pattern. Orange circles denote objective
function measurements and green circles denote the most recent
sequential measurement at each step.
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and with comparable final sextupole and octupole settings.
Additionally, it was found that TuRBO could quickly
recover the optimal tuning configurations for the magnets
from degraded storage ring conditions.
TuRBO can also be slightly modified to improve the

exploration of tightly constrained problems where a
majority of the input space violates one or more con-
straining functions. In this case, the goal is to reduce the
number of constraint violations during optimization
through the use of a conservative trust region. Instead
of centering the trust region at the best observed solution,
this approach centers the trust region at the barycenter of
valid observation locations. Then the trust region side
lengths are varied depending on the frequency of con-
straint violations observed during optimization or explo-
ration. This prevents sampling at the extremes of the
parameter space, which often results in measurements that
violate the constraints.

C. Parallelized optimization

While in most cases BO is used in the context of serial
optimization (one evaluation of the objectives/constraints is
done at a time), it is possible for BO to propose a set of
promising points that can be evaluated in parallel. We
describe three distinct strategies here that are relevant to
generating small (n < 10), medium (10 < n < 100), or
large (n > 100) sets of candidate points to evaluate in
parallel.

1. q sampling

This strategy aims to generate a set of candidate points in
parameter space that jointly optimize given acquisition
functions [97]. Many common acquisition functions (EI,
UCB) can be expressed as the expectation of some real-
valued function outputs at some designed input space [66].
Evaluating the acquisition function in the context of

parallel selection of candidate points requires evaluating
integrals over the posterior distributions. However, this
makes evaluating parallelized versions of acquisition func-
tions analytically intractable.
An alternative is to use Monte Carlo (MC) sampling to

approximate the integrals. An MC approximation of
acquisition function α at input space x using N MC
samples given the data observed so far is

αðxÞ ≈ 1

N

XN
i¼1

aðξiÞ; ð22Þ

where að·Þ is a real-valued function and the samples ξi are
drawn from the posterior predictive distribution pðyjx;DÞ.
To see this in action, we can examine the definition of

parallelized expected improvement (qEI) [90,98,99] which
generates q candidates that jointly optimize the EI acquis-
ition function:

qEIðxÞ ≈ 1

N

XN
i¼1

max
j¼1;…;q

fmaxðξij − f�; 0Þg

ξi ∼ pðfjDÞ; ð23Þ

where f� is the best observed objective value so far.
To maintain the inexpensive computation of gradients for

MC-based acquisition functions using automatic differ-
entiation, a technique known as the “‘reparameterization
trick” [66] is used. Instead of sampling directly from the
posterior of the GP model, samples are drawn from a unit
normal distribution, then scaled and shifted such that the
distribution matches GP predictions. This preserves differ-
entiability by sidelining the stochastic generation of ran-
dom samples.

2. Local penalization techniques

Local penalization is proposed as an alternative method
for performing batched BO [100]. Instead of maximizing
the joint distribution as in the q-sampling approach, it
selects the samples in the batch sequentially and thus scales
better with the input dimensions and batch sizes. The ith
sample is selected by maximizing the product of the
acquisition α and the penalization ϕ ¼ Q

i−1
1 ϕi, where

ϕi ∈ ð0; 1� denotes the local penalization function around a
previously selected point xi in the batch. It effectively
excludes the region around previously chosen points and
goes to 1 elsewhere. The behavior of the penalization is
governed by the Lipschitz constant of the objective
function, which could be inferred from the GP model.
The local penalization method has been used in the

simulation study at the linear accelerator FLUTE for
radiation optimization [101]. It enabled an efficient selec-
tion of parameters to run parallelized simulations in a

FIG. 22. Trust region BO (TuRBO), simplex, and UCB applied
to the minimization of total losses (maximization of lifetime) at
the ESRF-EBS storage ring. Adapted from [96].

RYAN ROUSSEL et al. PHYS. REV. ACCEL. BEAMS 27, 084801 (2024)

084801-28



high-performance computing cluster, resulting in better
performance compared to using the genetic algorithm.

3. Large-scale parallelization

In cases where objective functions can be evaluated in a
massively parallelized fashion (>100 simultaneous evalu-
ations), i.e., in simulation on high-performance computing
clusters, optimizing the acquisition function using the
strategies outlined above may exceed the computational
cost of evaluating the objective itself. As a result, it makes
sense to use alternative methods for acquisition function
optimization. Evolutionary or genetic algorithms are exten-
sively employed toward solving optimization problems
using large-scale parallelization. These algorithms use
simple heuristics to generate candidate points, which is
much cheaper than repeatedly numerically optimizing an
acquisition function. Thus, it is advantageous to generate a
large number of candidate points using a genetic algorithm
and then determine a subset of those candidate points using
a model-based acquisition function to be evaluated in BO.
Combining genetic algorithms with BO takes advantage of
both of their strengths, generating large sample sizes in a
relatively short amount of time while still incorporating
model information and acquisition function definitions into
the selection of candidates for evaluation.
The multiobjective multigeneration Gaussian process

optimizer (MG-GPO) represents one such algorithm that
takes advantage of this combination [36,102]. This algo-
rithm attempts to solve multiobjective optimization prob-
lems by first generating a number of candidate points using
evolutionary heuristics (mutation [103] and crossover [104]
operations). A subset of candidate points are then selected
to be evaluated on the real objective by using a GP
surrogate model (based on previous measurements or
simulation results) to predict which candidate points are
likely to dominate over previous measurements. By lever-
aging information in the learned GP surrogate model, the
candidate points generated by MG-GPO are more likely to
improve the Pareto optimal set when compared to model-
free evolutionary algorithms (such as NSGA-II).
A slight modification can be made to MG-GPO to

improve its performance by choosing a subset of candidates
based on expected hypervolume improvement (as is done in
conventional multiobjective BO) instead of predicted
Pareto optimality. This has the added benefit of selecting
candidates that not only will improve the Pareto front but
also will maximize improvement according to the predicted
increase in hypervolume once observed.
The MG-GPO method has been applied to design

optimization of storage ring lattices [79]. It has also been
applied experimentally to the SPEAR3 storage ring and the
APS accelerator complex to demonstrate its online opti-
mization capability with several important problems,
including storage ring vertical emittance minimization
with skew quadrupoles [102], nonlinear beam dynamics

optimization with sextupoles [102,105], and linac front-end
transmission tuning with steering and optics parameters
[106]. In each case, it was shown that the algorithm can
effectively improve the performance of the machine when
compared to other algorithms.

VI. DISCUSSION

In this section, we discuss several aspects of BO that are
relevant to its use in accelerator physics. We first describe
the relationship between BO algorithms and other algo-
rithms currently used in accelerator physics for optimiza-
tion and control. We then discuss how to interpret and
monitor BO performance during optimization and general
best practices for improving optimization performance.
Additionally, we highlight software packages, both inside
and outside the accelerator physics field, that are used to
implement BO algorithms. We also provide estimations of
run time and computational memory usage for BO algo-
rithms. Finally, we describe future research avenues in BO
methods for accelerator physics.

A. BO in relation to other optimization algorithms

Here, we describe how classical BO relates to various
other types of optimization and control algorithms. We
also highlight the conceptual differences and similarities
between online optimization and continuous control.
Finally, we discuss the impact of different function approx-
imations and ML model choices within those paradigms.
Note that we cannot make definitive, general statements

about algorithm performance. The performance of a par-
ticular algorithm on a given accelerator problem is depen-
dent on numerous factors, including, but not limited to, the
specific algorithmic hyperparameters chosen, as well as the
problem dimensionality, nonlinearity, convexity, multimo-
dality, and noise.

1. Episodic optimization

Typically when describing “optimization,” we mean an
episodic process of adjusting settings to reach an optimal
combination, which then ideally remains fixed for some
period of time. Aside from BO, various other optimization
algorithms have been developed and are actively used in the
accelerator physics domain. Generally, these algorithms
can be split into gradient-based and gradient-free (black
box) algorithms, and, additionally, algorithms that learn
some underlying representation of the system and those
that do not.
Gradient-based algorithms use direct information about

the gradient of the objective function or approximations of
it (for example via finite difference methods) to determine
setting changes during optimization. Gradient approxima-
tions on nondifferentiable systems (whether in simulation
or in an experiment) can be time consuming to obtain,
particularly as the number of variables increases. In some
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instances in accelerators, gradient information has been
approximated from machine jitter, allowing small, mini-
mally invasive setting changes to slowly compensate for
drift or move toward an optimum [107]. Gradient-based
algorithms can easily become stuck in local minima,
although techniques do exist to work around this (e.g.,
providing warm starts from a system model or previously
known global solution, restarting the algorithm several
times at different random starting points).
Gradient-based algorithms, such as stochastic gradient

descent and variants (e.g., Adam, RMSProp [91,108,109]),
can scale well to higher dimensions, particularly in cases
where the evaluation of the objective function is fast and
gradients are directly available. Consequently, they are
used frequently in ML for training neural networks. In that
context, updates to model parameters using small batches
of data help to avoid local minima by adding noise to the
gradient. Gradient-based methods can also be used in
conjunction with differentiable models, e.g., through differ-
entiable physics simulations [28,110–112], codes such as
Bmad-X [113,114] or CHEETAH [52,115], or surrogate
models based on function approximators such as neural
networks [28,116].
Nelder-Mead simplex (NM) [117] is a gradient-free

heuristic method that has been used extensively in accel-
erators for tuning [118–122]. It does not learn a model or use
curve fitting but adjusts a “simplex” in search space at each
iteration. NM requires very little preparation prior to use and
is typically computationally inexpensive. For examples of
studies that have run NM and BO on the same problem, see
[10,12,48,123,124]. Theoretically speaking, NM is best
suited to convex and noise-free objective functions [125],
but it is difficult to assess how this translates to real-world
experience in accelerators, where NM has performed well in
practice even on quite noisy objectives.
Robust conjugate direction search (RCDS) [126] has

been used for numerous accelerator tuning problems,
particularly in rings for nonlinear dynamics optimization.
In RCDS, local curve fitting at each iteration is used to aid
estimation of the curvature of the objective function and the
corresponding optimal direction in which to move settings.
The addition of curve fitting adds robustness in the face of
measurement noises and occasional machine failures. A
successor variant RCDS-S [127] takes safety constraints
and machine drifts into consideration.
A similar approach is taken in the BOBYQA algorithm,

which constructs a second-order local model of function
values near a candidate set of optimal parameters [128]. This
algorithm has been used to perform optimization in simu-
lation [129,130]. These approaches are similar to BO in the
way that they create local models of the objective function to
inform parameter selection for episodic optimization.
From the domain of feedback and control, extremum

seeking (ES) has been applied to many accelerator prob-
lems [131–133]. ES adjusts settings with specific ampli-
tudes and frequencies to approximate the gradient of the

cost function and gradient descent, meaning that it works
well as a local optimizer. Furthermore, ES parameter
selection is much less expensive than BO methods,
allowing it to be used to provide faster feedback than
ABO approaches discussed in Sec. III C 4. However, ES
can become stuck in local minima if not provided a
sufficiently good starting point (e.g., provided by a system
model [134]), and it does require careful adjustment of the
main hyperparameters (the dither amplitude and frequency).
Finally, deep reinforcement learning (RL) has also found

application in the accelerator domain [135–139]. While RL
is traditionally used to train dynamic feedback controllers,
it can also be used to train domain-specific optimization
algorithms. In the case of RL, this may be referred to as
reinforcement learning-trained optimization (RLO) [140].
Deep RL is computationally cheap and sample efficient at
application time but requires significant upfront engineer-
ing effort to train. A case study comparing RL and BO on
an accelerator tuning problem was conducted in [123].

2. Relation to continuous control
and time-dependent control

By “continuous control,” we refer to processes that are
adjusting settings continuously as the accelerator is running
(e.g., orbit feedback, corrections to low-level rf phases, and
amplitudes to maintain the beam energy). A further dis-
tinction can be made between algorithms that take into
account the sequential nature or time evolution of a
problem and those that do not. In some classical control
techniques such as model predictive control (MPC) [141]
and in reinforcement learning (RL) [142], the sequentially
dependent nature of a system is formalized as a Markov
decision process [143], in which an observed system
“state” is sufficient to predict the following system evolu-
tion. MPC and RL include direct consideration of the
dynamic evolution of the system over a future time horizon
when making decisions in the present. To accomplish this,
these algorithms have access to or learn the dynamics of the
system, and/or approximate solutions to the dynamic
optimal control problem.
In contrast, classical BO assumes a stationary (i.e.,

nondrifting) system where the sequence of control actions
is not taken into account in decision making. For example,
when magnets are not affected by hysteresis, the problem of
tuning magnets can be treated as nonsequential. When
hysteresis effects are present, the sequence of magnet
current settings affects the resultant magnetic field; as a
result, the problem becomes sequential and this state
information should be taken into account in decision
making. Additionally, because BO is learning a stationary
model of the objective function, its performance can
degrade when being run on a nonstationary (i.e., drifting)
system; this is why adjustments such as the adaptive BO
approaches described in Sec. III C 4 are needed in order to
run BO continuously as a feedback algorithm.
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3. Relation to feed-forward corrections and warm starts

“Warm starts” or feed-forward corrections from learned
models can be used both in continuous control and
optimization in accelerators. For example, learned models
can be used to provide fast setting changes when different
setups are desired (e.g., see [116,134]), followed by fine-
tuning with optimization algorithms such as BO. Indeed, the
system model that provides the warm start can even be the
GP model obtained from previous BO runs. Continuously
running feed-forward corrections using ML models have
also been used in accelerators; for example, this type of
approach has been used for source size stabilization in light
sources by compensating for optics deviations induced by
different insertion devices [144].

B. Model choices

Bayesian optimization takes advantage of Gaussian
process models, which can learn functions that are suitable
for interpolation from very few samples and provide fairly
robust uncertainty estimates, to perform efficient optimi-
zation of expensive objective functions. However, GP
models do not scale as well as other model types, such
as neural networks, to large datasets often required to solve
high-dimensional optimization problems. As a result, they
are more computationally expensive and typically slower to
execute when solving high-dimensional optimization prob-
lems. For high-dimensional optimization and faster execu-
tion, BO can use other types of ML models so long as an
uncertainty estimate is also available, including, but not
limited to, Bayesian neural networks, quantile regression
with neural networks, or neural network ensembles
[49,108,145,146]. Using different types of surrogate mod-
els inside BO can also facilitate the inclusion of high-
dimensional contextual information (such as initial beam
images), which can improve convergence speed.

C. Interpreting BO performance

Unlike other optimization algorithms commonly used in
accelerator physics, basic BO algorithms are designed to
solve global optimization problems. This can sometimes
lead to behaviors (shown in Fig. 23) that are unfamiliar to
users expecting to see strong convergence to optimal values
during optimization. Local optimization algorithms, such
as Nelder-Mead simplex, often monotonically improve the
objective function value, with small excursions around a
local optimum to explore the objective function, as shown
in Figs. 23(a) and 23(d). As we see in Fig. 23(a), this can
sometimes lead to converging to a local optimum instead of
the global one.
In contrast, BO algorithms often explore the domain

to build a global model of the objective function in para-
meter space before sampling in a local region around the
predicted optimal point. The number of iterations needed
to perform this exploration can depend on the relative

weighting of exploration vs exploitation in the acquisition
function, the dimensionality of the parameter space, and the
characteristics of the objective function. For example, when
the UCB acquisition function is used with roughly even
weighting between exploration and exploitation (β ¼ 2),
BO briefly explores parameter space before exploiting
regions the GP model predicts are likely to be optimal,
as shown in Figs. 23(b) and 23(e). Increasing weighting
toward exploration, Figs. 23(c) and 23(f), increases the

FIG. 23. Comparison of optimization performance between a
local optimization algorithm (Nelder-Mead simplex), BO using
the UCB acquisition function (β ¼ 2), and BO using the UCB
acquisition strongly weighted toward exploration (β ¼ 100). All
algorithms are initialized with a single observation at x ¼ 0.75
and aim to minimize the objective function. (a)–(c) Observations
of the objective function in parameter space for each algorithm.
The dashed line denotes the true objective function. (d)–(f) Ob-
jective function values as a function of algorithm iteration. Note
that simplex terminates after reaching a convergence criteria.
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number of iterations used to explore the objective function
before it samples in the globally optimal region of
parameter space. If the amplitude of the objective function
far exceeds the predicted uncertainty by the GP model,
exploration of the parameter space can cease relatively
quickly compared to when optimizing more smoothly
varying functions. Conversely, if the optimum of the
objective function is comparable to the predicted uncer-
tainty, strong convergence to the optimal value will occur
once all other areas of parameter space have been explored.
Increasing the dimensionality of input space further
increases the number of iterations used to explore the
objective function to build a global GP model.
As a result of the trade-off between exploration and

exploitation, new users of BO algorithms who are used to
seeing nearly monotonic improvements in the objective
value might infer that BO optimization is performing
poorly. However, it is important to keep in mind that this
is a direct result of continuously searching for global
extremum and does not signify an issue with the optimi-
zation algorithm. If the objective function is expected to be
strongly convex, i.e., having a single global extremum,
users can modify BO to strongly bias it toward exploitation
through a variety of methods, including, for example,
reducing the β parameter in UCB or utilizing trust region
approaches such as TuRBO (see Sec. V B). In this case,
strong convergence to a fixed location in parameter space is
expected, at the cost of potentially converging to a local
extremum.

D. Practical strategies for best performance

Here we discuss some best practices to improve the
performance of BO methods in the field.
a. Normalizing training data. As is standard in most

machine learning algorithms, it is critical that input data
passed to the GP model is transformed prior to training in
order to maintain the stability of hyperparameter optimi-
zation. It is standard practice to normalize the parameter
space to the unit domain [0, 1] and to standardize objective
function values such that they have a mean of zero and a
unit standard deviation. Transforming training data in
this way conditions the derivatives of the marginal log-
likelihood with respect to hyperparameters to be of unit
magnitudes, increasing the stability of gradient descent
optimization of the hyperparameters.
Data that have been normalized and standardized are

also more consistent with prior distributions inherent in
GP models. The prior of a GP model is often stated as a
distribution of functions with a zero mean and unit standard
deviation. Having data that agree with this initial prior
assumption also improves the robustness of maximizing
the marginal log-likelihood as well as ensuring that
covariance matrices are well conditioned. Additionally, it
is often advantageous to place reasonable priors on hyper-
parameters such as the kernel length scale and likelihood

noise to regularize hyperparameter training. Applying these
priors to arbitrary modeling problems requires that incom-
ing data are normalized and standardized.
b. Defining smoothly varying objectives and con-

straints. The accuracy of GP predictions relies on learned
correlations between function values at different points in
parameter space. As a result, BO works best when objective
and constraining functions are relatively smooth or have
some type of additional structure, such that these correla-
tions exist. An example of where this becomes relevant in
accelerator physics is maintaining a beam distribution
inside a region of interest (ROI) on a diagnostic screen.
One way to define this constraining function is to return a
value of 1 if the beam is fully within the ROI and a zero
otherwise. However, this is not ideal, as it is difficult for the
GP model to predict where the boundary between valid and
invalid measurements is given a limited set of data values
(as function values in space are poorly correlated), as
demonstrated in Fig. 24(a). On the other hand, if the
constraining function measures how close the beam is to

FIG. 24. Comparison between GP modeling of hard and soft
constraining functions. (a) GP modeling of a heaviside con-
straining function does not accurately predict constraint values
due to a single sharp feature that cannot be learned without dense
sampling on either side of the constraint boundary. (b) Smooth
constraining functions with a single characteristic length scale are
more accurately modeled with GP modeling. Inset: Visualization
of bounding box constraint function fðxÞ ¼ maxifjjC − SiðxÞjjg
used to keep beam distributions inside an ROI, where r is the
radius of a circular ROI, C is the center coordinates of the ROI,
and Si are corner coordinates of a bounding box around the beam.
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violating the constraint, as shown in Fig. 24(b) and
discussed in [74], the GP model can accurately predict
extrapolated constraining function values with fewer mea-
surements, which reduces the number of constraint viola-
tions during optimization.
c. Interpolated measurements. In some instances

during accelerator operations, it is faster to make multiple
measurements of the beam distribution than making control
decisions using BO algorithms. Additionally, modifying
the accelerator control parameters is more time consuming
than making measurements, especially if large changes in
parameter values take a longer amount of time. This is often
the case when tuning magnet parameters, as power supplies
take a nonzero amount of time to change the applied current,
or inmechanical actuators, where steppermotors take time to
traverse the operational range. Bayesian optimization can
reduce the costs ofmaking large changes in input spacewhen
performing optimization (see Sec. IV B 5), however, this
requires reoptimizing the acquisition function at every step,
which can become costly.
An alternative approach to minimizing measurement

costs on the total optimization cost is to precompute a
set of evaluation candidates along the path of tuning
parameters. Instead of immediately jumping to the next
point proposed by BO during optimization, we can gen-
erate a set of future evaluation points that interpolate
between the current set point and the future set point, as
shown in Fig. 25. This allows multiple measurements to be
taken quickly throughout the input space without the need
to wait long periods of time for accelerator parameters to
change or to reoptimize the acquisition function for each
measurement. As a result, the GP model contains additional
training data after each optimization step, enabling BO to
make better decisions with fewer optimization iterations.
This does, however, increase the computation time asso-
ciated with training the GP model and optimizing the
acquisition function, requiring careful consideration of the
trade-offs associated with using this technique.
d. Leveraging batch computations. To address modern

challenges in high-performance computing, significant
efforts in the machine learning community have been
directed towards developing advanced hardware and
software solutions for rapid matrix calculations. For
example, graphics processing units (GPUs) are specifi-
cally designed to perform expensive matrix computations
extremely quickly using massive hardware paralleliza-
tions. Bayesian optimization algorithms are well suited to
take full advantage of these developments as most
computations involved in making GP predictions involve
matrix manipulations. Extending the evaluation of GP
models or acquisition functions in parallel using batched
computations (which adds new dimensions to matrices
used in evaluations) plays a critical role in leveraging
modern computing hardware and software to improve
performance.

A core application of batched computation is acquisition
function optimization. Optimizing acquisition functions is
often a challenging problem, as they usually are not convex
and can contain many local extrema. Multirestart optimi-
zation can be used in this case to improve the search for a
global maximum by restarting optimization at a number
of different initial starting points. Batched computation
allows this process to happen in parallel, significantly
reducing the computation time needed to maximize the
acquisition function while leveraging the advantages pro-
vided by fast matrix computational techniques. As a result,
high-performance software libraries that implement BO
take advantage of this technique (see Sec. VI E).

FIG. 25. Comparison between GP modeling of the two-dimen-
sional sphere function fðx1; x2Þ ¼ x21 þ x22 with and without
interpolated measurements. (a) Shows the posterior mean of
the GP model with four measurements taken sequentially.
(b) Shows the same four measurements taken sequentially but
with interpolated points in between each measurement. Incorpo-
rating interpolated points in the dataset leads to higher modeling
accuracy, leading to accurate identification of the sphere function
minimum at the origin.
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E. Implementations of BO

There are several open-source software packages that
implement GP modeling and BO, mostly using the Python
programming language for as a programming interface and
C/C++ for computations. It is strongly recommended that
practitioners of BO do not “reinvent the wheel”when trying
to implement BO algorithms to solve their specific opti-
mization problems. Current implementations of BO (as
described below) have capabilities that cover a wide range
of accelerator physics problems and applications. If further
modifications are needed to tackle a specific problem, it is
strongly recommended that these modifications are built
from existing software packages with the intent to con-
tribute back to the existing package for others in the
community to use. This will accelerate the state-of-the-
art for all parties and prevent a fractured landscape of
competing implementations that hinder algorithmic devel-
opment and application to optimization problems.
a. Scikit-learn. The Scikit-learn general machine learn-

ing package [147] provides a simple implementation of
basic GP modeling and BO while also providing good
documentation, making it a good resource for gaining
experience using basic BO algorithms.
b. BoTorch, GPyTorch, and Ax. This set of open-source

packages is developed and maintained by Cornell Uni-
versity, Columbia University, University of Pennsylvania,
New York University, and Meta [148] and provide imple-
mentations of state-of-the-art GP modeling and BO. They
are built upon the PyTorch [93] machine learning language
that implements automatic differentiation and GPU com-
puting, both of which significantly improve the speed and
performance of BO. BoTorch relies on a lower level package,
GPyTorch [149], to implement GP models, allowing signifi-
cant customization of all aspects of GP modeling, including
custom kernels, priors, and likelihoods. BoTorch also takes
advantage of batched Monte Carlo sampling to maximize
performance when computing and optimizing acquisition
functions. With the recent improvement in PyTorch like the
JIT compiler, BoTorch stack is very competitive in perfor-
mance benchmarks and is highly amenable to GPU accel-
eration. BoTorch is complemented by Ax, which provides an
accessible user interface to BoTorch.
c. Xopt The Xopt Python package [150,151] is a high-

level optimization package that connects advanced opti-
mization algorithms to arbitrary optimization tasks (in both
simulations and experiments), with a focus on solving
problems in accelerator physics. The object-oriented struc-
ture of Xopt allows for significant flexibility in defining
and executing optimization processes, including specifica-
tion of optimization runs through simple text files (YAML,
JSON), asynchronous evaluation of objective functions,
model introspection during optimization, and human-in-
the-loop optimization. Xopt implements and adapts existing
implementations of several algorithms for easy off-the-shelf
use in accelerators, including most of the BO algorithms and

techniques discussed in this review. These algorithms can be
easily tailored toward solving specific optimizationproblems
through the use of subclassing. Xopt has been developed
by the SLAC machine learning (ML) group specifically to
address optimization problems in accelerator science,
with the ability for extension and customization for other
scientific fields. It has been used to performonline accelerator
control at a number of facilities including LCLS, LCLS-II,
FACET-II (SLAC), AWA, ATLAS (Argonne), FLASH,
FLASHForward, European XFEL, Petra-III (DESY),
RHIC, NSLS-II (BNL), ESRF, and LBNL. It has also been
used to perform optimization in simulation at Cornell
University, University of Chicago, and on high-performance
computing (HPC) clusters such as NERSC.
d. Badger. The Badger package [119,152], also devel-

oped by the SLAC ML group as a successor to DESY’s
Ocelot Optimizer [120], provides an easy-to-use graphical
user interface for accelerator control rooms to interface with
algorithms implemented by Xopt. It provides an extendable
interface for communicating with a variety of accelerator
control systems and can be customized with extensions to
provide online analysis of optimization performance and
algorithm introspection.
e. Optimas. The Optimas package [38], focuses on

optimization workflows using numerical simulations at
varying computational scales, from laptops to high-
performance computing platforms. Optimas relies on the
library libEnsemble [153] to orchestrate multiple simula-
tions running concurrently as part of the optimization, and
to allocate appropriate multi-CPU and multi-GPU resour-
ces to each of these simulations (as well as GPU resources,
if needed, for the Bayesian optimizer). Optimas provides
multiple algorithms for parallel parameter exploration and
optimization such as single- and multiobjective Bayesian
optimization, including multifidelity and multitask
options. It is also highly interoperable with the Ax library.
Optimas has been used on large-scale clusters such as
Perlmutter (NERSC) and JUWELS (JSC) and is developed
by a collaboration between DESY, Lawrence Berkeley
National Laboratory, and Argonne National Laboratory.
f. APSopt. The APSopt package [154] is being devel-

oped by the APS accelerator physics and operations group
to integrate internally and externally developed BO, RL,
and classical methods into a robustly tested tool for both
API-based use by physics experts and GUI-only use by
operators. It aims to provide a coherent optimization
environment through a number of advanced features for
data management, distributed client-server operation, auto-
matic initialization with machine-tuned algorithms, param-
eter hints, and human-in-the-loop interactive model review
and refinement. It has been experimentally tested in the
APS injector, APS storage ring, NSLS-II storage ring,
Fermilab IOTA/FAST complex and is being used exten-
sively for the APS-Upgrade commissioning.
g. GeOFF. The generic optimization framework

(GeOFF) [155] is being developed by the data science
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teams at CERN and GSI. It allows to easily integrate RL,
BO, and numerical optimization in the control room or for
off-line optimization on, e.g., simulation. The optimization
problem definition can handle arbitrarily complex controls
or simulation processes as long as a Python interface
is available. GeOFF also comes with a plug-and-play
graphical user interface to test and run the optimization
or continuous control problems. It is routinely used at
CERN for the entire accelerator complex and for various
problems at GSI.

F. Computational requirements and scaling

Because of the complexity involved in efficiently imple-
menting the low-level mathematical routines, the above
BO packages rely on linear algebra or machine learning
frameworks, predominantly PyTorch. While the theoretical
complexity and storage scaling of BO methods is well
understood and has been discussed previously, in practice,
the performance of the PyTorch/GPyTorch/BoTorch libraries can
deviate significantly from theoretical behavior.
Due to the high costs of the specialized GPU hardware, it

is critical to understand what tasks are computationally
feasible in practice on CPUs and GPUs. In Fig. 26, we
provide benchmark results for a “midrange” 2023 ML
hardware setup consisting of 16 cores (32 threads) from
AMD EPYC 7742 CPU and a single A100–40 GB GPU.
We do not consider multi-GPU configurations, but they are
supported by PyTorch—this yields only a slight increase in
the feasible problem sizes.

We benchmark three typical components of the BO
process—GP model fitting, GP model evaluation, and
acquisition function optimization (which involves model
evaluation and auto-grad operations as part of the optimizer
loop). The overall scaling is consistent with expectations,
with model fitting and evaluation showingOðn3Þ growth as
a function of number of collected points n. However, the
progression is not smooth, with repeatable deviations at
particular sizes due to different bottlenecks and code paths
that are encountered depending on internal PyTorch con-
figuration. Note also that there is a constant time floor
of 100–1000 ms per BO loop due to initialization, data
copies, and Python overhead—in practice, this limits BO
applications to make sub-1 Hz decisions (although data
acquisition can take place at a higher rate) Using more
complex modeling architectures (such as incorporating
nonconstant prior means) can further reduce the speed
at which decisions are made by the BO algorithm.
Implementing BO on specialized computing hardware such
as application-specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs) or HPCs could speed
up BO in these cases.
The ultimate limit on the number of model points is

determined by available memory and is encountered at
∼25 k points on a 40 GB GPU (at which point the CPU is
too slow even if there is sufficient RAM). Approximate GP
methods can extend this limit but are not particularly
popular in BO applications. Our practical recommendation
is to limit problem sizes to 10k points with a GPU and 3k
with a CPU-only machine and apply BO only in cases
when objective evaluation time is sufficiently long to
amortize computational costs for your particular choice
of model, acquisition function, and hyperparameters (see
Sec. II B). This ensures that BO use is worthwhile in terms
of overall wall-clock convergence speed.

G. Future directions for BO research
in accelerator science

While BO algorithms have been shown to be able to
solve a wide variety of accelerator physics problems in an
efficient manner, there are still ample opportunities for
future improvements toward using BO in accelerator
science.
First and foremost is continuing research in the integra-

tion of physics information into GP models. As has been
highlighted in several sections of this review, improving
the accuracy of GP modeling improves decision making
during optimization, leading to faster convergence to
optimal solutions and reductions in the number of con-
straint violations. Incorporating information into GP mod-
els before performing optimization is especially critical in
making good decisions during the first few iterations.
Furthermore, if uncertainties exist in the sources of infor-
mation used, these uncertainties should be incorporated
into the GP model as well.

FIG. 26. Performance scaling with dataset size for BoTorch/
GPyTorch (0.9.4=1.11) libraries on a single-objective optimization
run. Synthetic five-variable quadratic objective was used with
Monte Carlo version of UCB acquisition function and 100 Adam
optimizer iterations. GPU memory usage is only applicable to
GPU runs.
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In both online accelerator operations and simulated
optimization, improving the orchestration of objective
function evaluation, GP model generation, and acquisition
function maximization is another source of major potential
improvements. The development of a centralized control
framework that dispatches these tasks contained in BO on
parallel resources could lead to major reductions in the
overall cost of performing optimization. A potential exam-
ple of this would be an online accelerator control program
that would send current and/or future potential machine
states to be evaluated on high-performance computing
clusters outside the control room. Results collected from
these physics simulations could be used to inform online
control in real time, similar to what is done in [156].

VII. CONCLUSION

In conclusion, BO algorithms are an effective, extend-
able way of solving a wide variety of optimization
challenges in accelerator physics. BO algorithms are
particularly well suited for addressing optimization chal-
lenges that involve objectives and constraints that require
significant beam time, personnel, or computational resour-
ces to evaluate. These algorithms use statistical surrogate
models based on gathered data to inform optimization,
reducing the number of objective function evaluations
versus other black-box optimization schemes. As a result,
the BO framework provides a straightforward and robust
way to incorporate prior knowledge (either from past
measurements or physics information) or approximate
measurements/computation into the modeling process to
further improve optimization convergence speed. By modi-
fying standard acquisition functions, BO algorithms can be
customized to solve a wide variety of single, multiobjec-
tive, and characterization problems in accelerator physics.
Used correctly, BO algorithms can reduce the overall cost
of performing optimization when compared to conven-
tional black box optimization algorithms, allowing accel-
erator scientists to address more complex optimization
challenges provided that they effectively balance the costs
of evaluating objectives and constraints with the costs of
algorithmic decision making.
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