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In current accelerators, numerous parameters and monitored values are to be adjusted and evaluated,
respectively. In addition, fine adjustments are required to achieve the target performance. Therefore, the
conventional accelerator-operation method, in which experts manually adjust the parameters, is reaching its
limits. We are currently investigating the use of machine learning for accelerator tuning as an alternative to
expert-based tuning. In recent years, machine-learning algorithms have progressed significantly in terms of
speed, sensitivity, and application range. In addition, various libraries are available from different vendors
and are relatively easy to use. Herein, we report the results of electron-beam tuning experiments using
Bayesian optimization, a tree-structured Parzen estimator, and a covariance matrix-adaptation evolution
strategy. Beam-tuning experiments are performed at the KEK e−=eþ injector Linac to maximize the
electron-beam charge and reduce the energy-dispersion function. In each case, the performance achieved is
comparable to that of a skilled expert.
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I. INTRODUCTION

To improve or maintain the high performance of modern
accelerators, dozens or even hundreds of parameters must
be optimized to accommodate the volatile conditions.
Values monitored to determine the success or failure of
the optimization include those of the beam orbit, beam
charge, energy-dispersion function, emittance, and charge
loss in each accelerator sector. Hundreds of values are
monitored. Determining the operating parameters, such as
the magnetic field, based solely on the beam dynamics is
typically challenging. For example, the KEK e−=eþ
injector Linac (referred to as the KEK Linac) has no
monitors to diagnose the beam energy in each sector, and
the energy gains of individual rf cavities are accurately
determined only occasionally. In addition, changes in the
environmental temperature affect the rf system and set
energy drifts. Therefore, the actual operation requires
beam-parameter optimization while the beam conditions
are monitored. Hitherto, operation experts have optimized
the beam parameters based on their knowledge and
experience. Complex and sensitive accelerator operations,

such live optimizations based on expert inputs, may be time
consuming to reproduce, even if the results satisfy the
required criteria. In particular, in the case of Linac accel-
erating a beam in a single pass, a self-feedback mechanism
does not exist, unlike the ring where the beam orbits. Thus
the beam condition cannot be reproduced easily even if the
same operating parameters are set.
Accelerator tuning using machine learning has recently

garnered attention as an alternative to expert-dependent
optimization (e.g., see Refs. [1,2]). Machine learning has
progressed significantly in terms of speed, sensitivity, and
application range since the 2010s. Various libraries are
available from different vendors and are relatively easy to
use. When applying machine learning to accelerator tuning,
we must consider that the accelerator conditions at the time
of tuning are not always similar to those at past days. For
example, environmental changes, such as temperature drift
occurring even day and night, often affect the beam orbit
or intensity. We also consider that multiple optimization
steps are required to improve the prediction accuracy.
Nevertheless, in accelerator tuning, where the cost of a
single step cannot be disregarded, one should refrain from
performing numerous steps. Owing to these demands, the
objective of this study is to realize accelerator tuning using
black-box parameter-optimization algorithms.
In this paper, we evaluated Bayesian optimization [3] for

actual beam tuning to determine whether the target per-
formance was achieved, the number of steps required
for the specified parameters, and whether multiple goals
(e.g., beam charge vs dispersion function) were achieved
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simultaneously. Bayesian optimization is a parameter-
optimization algorithm based on the Gaussian process [4]
and Bayesian decision theory [5]. In addition to Bayesian
optimization, we evaluated other parameter-optimization
algorithms, i.e., the tree-structured Parzen estimator (TPE)
[6,7] and the covariancematrix-adaptation evolution strategy
(CMA-ES) [8], by comparing their characteristics and tuning
results.We performed a beam-tuning experiment at the KEK
Linac in June 2023 using a parameter-optimization library
name OPTUNA [9]. OPTUNA internally implements not only
the BoTorch [10] (Bayesian optimization), TPE, and CMA-
ES algorithms but also other single- and multiobjective
optimization algorithms. The results of beam tuning using
various optimization algorithms provide essential guidelines
for future machine-learning applications associated with
particle accelerators.
The remainder of this paper is organized as follows:

Sec. II describes the flow of a single-objective optimization
using Bayesian optimization, the TPE, and the CMA-ES.
Section III reports the experimental results of the single-
objective optimization performed at the KEK Linac.
Section IV describes the flow ofmultiobjective optimization.
SectionVdetails an actual beamexperiment performed at the
KEK Linac. Finally, Sec. VI concludes this paper.

II. SINGLE-OBJECTIVE OPTIMIZATION

For simplicity, we define parameter optimization as the
process of identifying optimal parameter values (e.g.,
applied currents of steering magnetic coils) to minimize
the objective function (e.g., dispersion function). If the
parameters are to be optimized by maximizing the objective
function (e.g., the beam charge), then the discussion in
this section can be applied by reversing the sign of the
evaluated value.

A. Bayesian optimization

Bayesian optimization is an iterative strategy for the
global optimization of black-box functions. It builds a
surrogate model of the black-box objective function using a
stochastic process known as the Gaussian process [4].
The optimization follows an acquisition function to guide
the parameter space exploration. Acquisition functions can
be interpreted in the framework of Bayesian decision
theory [5]. A detailed description of the Gaussian processes
is provided in Ref. [4]. In this study, we used the BoTorch
algorithm [10] via OPTUNA [9] for Bayesian optimization.
In Bayesian optimization, the objective function fðxÞ for

each putative input location x is assumed to adhere to a
Gaussian process GPð0; kÞ with a mean function of 0 and a
covariance function k. The covariance function is similarly
known as the kernel function, and the Matern kernel
function is used in this study—the Matern kernel function
is chosen as the default kernel function in BoTorch
internally implemented in OPTUNA:

kνðx; x0Þ ¼
21−ν

ΓðνÞ ð
ffiffiffiffiffi
2ν

p
dÞνKνð

ffiffiffiffiffi
2ν

p
dÞ

d ¼ ðx − x0ÞTΘ2ðx − x0Þ: ð1Þ

Here, Kν is the modified Bessel function of the second
kind. The parameter ν determines the smoothness of the
function, and we use ν ¼ 5=2 in this study. The lengthscale
parameter Θ scales the kernel function and is estimated
from data. The automatic relevance determination tech-
nique is employed in this study to set the lengthscale
parameter Θ very long for some irrelevant dimensions,
resulting in a covariance function effectively removing
such dimensions [3,4].
In a Gaussian process, the observed value can be written

as y ¼ fðxÞ þ ε. A noise ε is assumed adhere to
ε ∼N ð0; σ2Þ, where a constant variance σ2 is independent
of the location x and is inferred in the algorithm. Under
these assumptions, we obtain the following probability
model between location x and observed value y:

pðyjx;HtÞ ¼ N ðμtðx;HtÞ; σtðx;HtÞ2Þ: ð2Þ

Ht ¼ fðxi; yiÞgt−1i¼1 is the history of pairs of location x and
observed value y up to the t − 1th step. For the specific
forms of μt and σt, refer to Ref. [4].
The acquisition function in Bayesian optimization is

defined as a real-valued function αðx;HtÞ in the space of
objective function X . In each step, the location x that
maximizes the acquisition function α is selected, which is
then input to the objective function fðxÞ to obtain the
observed value y. The expected improvement (EI) is
applied in the acquisition function used in this study:

xt ∈ arg max
x0 ∈X

αðx0;HtÞ

αEIðx;HtÞ ¼
Z

maxðy�t − y; 0Þpðyjx;HtÞdy: ð3Þ

Specifically, the EI represents the expected value for the
conditional probability distribution pðyjx;HtÞ and the
extent by which the observed value y improves from
the currently obtained minimum y value (denoted y�t )
based on a location x selected; and y�t is a constant
determined based on the history Ht.

B. TPE

Unlike Bayesian optimization with Gaussian processes,
which directly models pðyjx;HtÞ, as shown in Eq. (2),
the TPE [6] models pðxjy;HtÞ and pðyÞ and uses them to
calculate the EI. The conditional probability distribution
can be modeled using two densities, as follows:

pðxjy;HtÞ ¼
�
lðxÞ ðy < y�t Þ
gðxÞ ðy ≥ y�t Þ

: ð4Þ
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The distribution exhibited by x when the observed value y
is lower than y�t is denoted as lðxÞ, and the distribution
when y is larger than y�t as gðxÞ. The two distributions
in Eq. (4) are obtained using kernel density estimators [7].
y�t shall be provided to satisfy the probability γ ¼ pðy <
y�t jHtÞ for the predefined threshold γ (0 < γ < 1).
Using Eq. (4), we can obtain the EI from the TPE:

αEIðx;HtÞ ¼
Z

∞

−∞
maxðy�t − y; 0Þpðyjx;HtÞdy

¼
Z

y�t

−∞
ðy�t − yÞpðxjy;HtÞpðyjHtÞ

pðxjHtÞ
dy

¼ lðxÞ
pðxjHtÞ

Z
y�t

−∞
ðy�t − yÞpðyjHtÞdy; ð5Þ

where the normalization in the denominator is written as

pðxjHtÞ ¼
Z

pðxjy;HtÞpðyjHtÞ

¼ γlðxÞ þ ð1 − γÞgðxÞ: ð6Þ

The final integral in Eq. (5) is independent of x. Thus the
specific form of pðyjHtÞ need not be considered when
maximizing αEIðx;HtÞ. Finally, we approximate Eq. (5) as

αEIðx;HtÞ ¼
lðxÞ

pðxjHtÞ
Z

y�t

−∞
ðy�t − yÞpðyjHtÞdy

∝
lðxÞ

γlðxÞ þ ð1 − γÞgðxÞ

¼
�
γ þ gðxÞ

lðxÞ ð1 − γÞ
�

−1
: ð7Þ

Eq. (7) indicates that the x value maximizing αEIðx;HtÞ is
the location that minimizes the density ratio gðxÞ=lðxÞ.
As detailed in Ref. [7], smaller γ value leads to more
exploration and less exploitation, and we use γ ¼ 0.1 in
this study.

C. CMA-ES

The CMA-ES [8] is an evolutionary computational
algorithm for continuous optimization problems. In each
iteration (generation, denoted as g), new candidate solu-
tions (individuals, denoted as x) are generated following
the multivariate normal distribution determined by the
parental individuals. The set of individuals is known as
the population, and the population size in each generation
is denoted by λ. The algorithm comprises the following
steps: (i) Generate λ candidate solutions (individuals) based
on the multivariate normal distribution N ðm; σ2CÞ and
calculate the objective function for each individual.
(ii) Among the λ individuals generated, extract μðμ < λÞ
individuals with the highest-ranking objective functions
and update the mean vector m by multiplying the μ

individuals by their weights. (iii) Update the variance
parameters (i.e., σ and C) of the multivariate normal
distribution based on the isotropic and anisotropic evolu-
tion paths. (iv) Repeat steps 1–3.
Step 1: The kth individual xðgþ1Þ

k in generation gþ 1 can
be determined based on the multivariate normal distribution

xðgþ1Þ
k ∼N ðmðgÞ; ðσðgÞÞ2CðgÞÞ. The mean vector mðgÞ, step
size σðgÞ, and covariance matrix CðgÞ are parameters con-
structed from the generation g. The objective function for

xðgþ1Þ
k is denoted as fðxðgþ1Þ

k Þ.
Step 2: Define xðgÞi∶λ as the λ individuals in generation g

sorted in the ascending order of the corresponding objective
functions. The mean vector mðgÞ is written as

mðgÞ ¼
Xμ
i¼1

wix
ðgÞ
i∶λ; ð8Þ

where wi is the weight of each individual and satisfies
the relation:

Xμ
i¼1

wi ¼ 1 ðw1 ≥ w2 ≥ � � � ≥ wμ ≥ 0Þ: ð9Þ

The specific expression for wi is provided in Appendix A of
Ref. [8]. In this study, μ ¼ λ=2 is used.
Step 3: The step size σðgÞ used to search for the (gþ 1)th

generation is obtained by updating the previous step
size σðg−1Þ:

σðgÞ ¼ σðg−1Þ exp
�
cσ
dσ

� kpðgÞ
σ k

EkN ð0; IÞk
�
− 1

�
: ð10Þ

For the specific forms of cσ, dσ, p
ðgÞ
σ , and EkN ð0; IÞk, see

Appendix A in Ref. [8]. Next, we construct a covariance
matrix C that characterizes the population distribution in
each generation. The CðgÞ used for generation gþ 1 is
obtained by updating Cðg−1Þ. Because the input space for
new individuals can be changed adaptively through σðgÞ

only, near-optimal solutions are obtained even withoutCðgÞ.
However, an isotropic search without CðgÞ is inefficient
because the sphere space increases exponentially in pro-
portion to the number of input dimensions. Thus the
isotropic search becomes inefficient, particularly when
the sensitivity to the objective function differs significantly
among the input parameters. The covariance matrix is
updated such that the input space expands in the direction
in which the sensitivity of the objective function increases.
A detailed discussion regarding updates to the covariance
matrix is provided in Sec. 3 of Ref. [8].
The covariance matrix Cð0Þ is initialized with an

identity matrix I. The user should set the normal
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distribution center mð0Þ and step size σð0Þ based on the
problem to be addressed.

III. APPLICATION TO BEAM-CHARGE
MAXIMIZATION

A. Experimental setup at KEK Linac

This section describes the properties and layout of the
pulsed steering magnets and beam position monitors
(BPMs) used in the beam-tuning experiments at the
KEK Linac.
Figure 1 shows a schematic illustration of the Linac.

First, an electron beam is generated using electron guns,
i.e., a thermionic dc gun and a photocathode rf gun [11].
The electron beam used to generate positrons in the beam-
tuning experiments, which is known as the KBP beam, is
generated by a thermionic dc gun suitable for generating
high-charge beams. After passing through the bunchers
[11], the electron beam enters the straight A–B sectors,
followed by the arc sector known as the R sector. After
turning around in the R sector, the 1.5 GeV electron beam
entering the C sector is further accelerated to 3.3 GeV and
strikes a positron-generating target composed of tungsten in
sector 1 [12]. Positrons generated via multiple scattering in
the tungsten target and the subsequent electron-positron
pair generation are focused forward by the flux concen-
trator [13]. The positron beam is accelerated to 1.1 GeVand
injected into the damping ring [14] from sector 2. During
the 40 ms storage in the damping ring, the emittance is
reduced via radiation damping. In the switchyard down-
stream of sector 5, the positron beam is injected into the
beam transport line, thus resulting in a positron ring of the
SuperKEKB electron-positron collider [11] (denoted as
LER in Fig. 1).
The beam-tuning experiment for a single-objective

optimization aims to optimize the current applied to the
coils of the pulsed steering magnet [15] and consequently
maximize the electron-beam charge arriving at the tungsten
target. Such charge-maximization tunings are typically
performed manually by operation experts. The current
experiment was conducted to determine whether an
optimization program can replace expert-based tunings.

Six pulsed steering magnets were used in the beam-tuning
experiments. Two of the pulsed steering magnets were
PX(Y)_A4_4 (X is horizontal, Y is vertical) at the A sector
end, and four were PX(Y)_R0_01 and PX(Y)_R0_02 near
the entrance of the R sector, thus totaling six steering
magnets. PX(Y)_A4_4, PX(Y)_R0_01, and PX(Y)_R0_02
are six pulsed steering magnets installed from the A sector
end to the R sector end. A total of 14 BPMs [16,17] for
the beam-charge measurements, each with a resolution of
approximately 1%, were selected from downstream of the R
sector to immediately before the tungsten target.
We set the applied current and acquired the measured

charge using the EPICS protocol [18]. Because the elec-
tron-beam repetition rate during the beam experiment was
1 Hz, a wait time of 1 s was allowed after changing the
applied current until the change in the applied current was
reflected in the beam-orbit modification. The measured
charges were averaged for all BPMs every second, and the
operation was repeated two more times and averaged
(which required 3 s) to obtain a better charge-measurement
resolution.

B. Experimental results

This section presents the results of the beam-tuning
experiments conducted at the Linac in June 2023.
Figure 2 shows the results obtained using Bayesian

optimization based on the BoTorch algorithm. Panel (a)
shows the peak hold values of the electron-beam charge,
which varied from the 1st to the 100th step. The five solid
lines (each referred to as a run) represent the cases in which
the optimization parameters and applied currents of the
coils are set randomly within the configuration parameter
domain during initialization. We define the configuration
parameter domain by the range between the minimum and
maximum applied current values for each pulsed steering
magnet. We choose the minimum and maximum applied
current values so that unusual beam orbit does not cause
severe beam loss. Hereafter, these runs are referred to as
cold starting. In cold starting runs, initialization was
performed 10 times for the first to tenth steps, which
was necessary to obtain an estimation of the probability

FIG. 1. Layout of pulsed steering magnets and beam position monitors at KEK Linac.
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density distribution over the configuration domain. The
initialization was immediately interleaved after the opti-
mization program was started. One run for every 100 steps
required approximately 20 min, which constituted pri-
marily the wait time required to average the charge
information from the BPMs. In two of the five runs, a
charge of approximately 4 nC was obtained in the first step
immediately after initialization. In all five runs, a maximum
electron-beam charge exceeding 9.3 nC was reached in
approximately 35 steps (which required 7 min), which was
comparable to the pre-experiment manual-adjustment
results by the experts.
The five dashed lines (which cannot be distinguished

easily because they almost overlap) represent the case in
which a combination of applied currents known in advance
to provide a high beam charge is enqueued as the initial
configuration. Hereafter, we refer to these runs as warm
starting [19]. The enqueued applied current combinations
were copied from the 10 combinations with the highest-
ranking beam charges extracted from one of the cold
starting runs (solid lines). Consequently, the dashed lines
indicate a high peak charge immediately after initialization.
The warm-starting method should benefit actual accelerator
tuning provided that a certain degree of reproducibility can
be guaranteed.
Panel (b) shows the integrated charge over steps, which

is expressed as

QintðtÞ ¼
Xt

i¼2

jqðiÞ − qði − 1Þj; ð11Þ

where qðiÞ denotes the beam charge obtained in the ith
step. Similar to panel (b), panels (c) and (d) show the

integrated applied current for PX_A4_4 and PY_A4_4,
respectively, which is expressed as

IintðtÞ ¼
Xt

i¼2

jIðiÞ − Iði − 1Þj: ð12Þ

Here, IðiÞ indicates the current applied in the ith step. The
integrated charge and applied current determine the step at
which the beam charge becomes steeper or milder. The five
solid lines in panels (b)–(d) correspond to the cold-starting
runs, where three ascended considerably from approxi-
mately the 30th to the 40th step. Comparing the three solid
lines in panel (a), we discovered that the optimization
shifted from exploitation to exploration around the step
when the beam charge reached its maximum. Similarly, the
solid magenta line in panel (a), which reached the maxi-
mum beam charge the slowest, indicated a significant shift
to exploration at approximately the 55th step, as shown in
panels (b)–(d). In the five dashed lines for warm starting in
panel (b), the increase in the integrated charge remained
gradual after the 20th step, which is consistent with the fact
that the BoTorch algorithm continued to exploit the near-
optimum applied current, as shown in panels (c) and (d).
Figure 3 shows the results of the TPE algorithm. We

performed a beam-tuning experiment using BoTorch on
June 2, 2023, 11 am–3 pm, and an experiment using the
TPE on the same day, 3–6 pm; the change in the Linac
conditions between the two was negligible.
The five runs indicated by the solid line in panel (a)

reached 9 nC around the 40th step and the maximum charge
around the 60th step. The maximum charge was slightly
lower than 9.2 nC, which was in fact 0.1 nC lower than the
result achieved by BoTorch [see Fig. 2(a)]. The dashed

FIG. 2. Results obtained using Bayesian optimization based
on BoTorch algorithm. Panel (a) indicates peak hold values of
electron-beam charge. Panel (b) indicates integrated charge over
steps. Panels (c) and (d) indicate integrated applied current for
PX_A4_4 and PY_A4_4, respectively.

FIG. 3. Results obtained using TPE algorithm. Panel (a) in-
dicates peak hold values of electron-beam charge. Panel
(b) indicates integrated charge over steps. Panels (c) and (d) in-
dicate integrated applied current for PX_A4_4 and PY_A4_4,
respectively.
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lines in panel (a) show the cases of “warm starting.”
Ten combinations of the applied currents were obtained
from the cold-starting BoTorch results shown in Fig. 2(a).
As expected from the superior combinations, the
maximum charge of the warm-starting runs in Fig. 3(a)
exceeded 9.3 nC.
Panel (b) shows that the integrated charge obtained by

the cold-starting TPE was generally higher than that of
BoTorch, as shown in Fig. 2(b), regardless of whether cold
or warm starting was used. Based on panels (b)–(d), the
TPE algorithm might focus more on exploration than
exploitation and thus reach its maximum charge slower
than BoTorch. In panel (b), we observed that up to the 50th
step, the integrated charge for the warm-starting runs was
slightly smaller than that for cold-starting runs; however,
after the 50th step, the difference between the two became
less prominent. This transition may be because, as shown
in panels (c) and (d), the warm-starting TPE algorithm
searches a broader range of configuration parameter
domains than the cold-starting TPE after initialization. In
panels (c) and (d), we observed that the integrated applied
current of warm starting exceeded that of cold starting
around the 30–40th steps.
Figure 4 shows the experimental results obtained using

the CMA-ES. The measurements were performed on June
12, i.e., 10 days after the BoTorch measurements, as shown
in Fig. 2, and the TPE measurements shown in Fig. 3.
During those 10 days, the situation downstream of the
electron-beam direction changed, and the beam charge
arriving at the most upstream pulsed steering magnet,
PX(Y)_A4_4, decreased. Therefore, the maximum charge
obtained via the CMA-ES was lower, i.e., below 9 nC.
In panel (a), the solid lines for the cold-starting case shows

the maximum charge increasing the most slowly among
the three algorithms considered. The dashed lines show the
warm-starting case, where the 10 combinations of the
applied currents were obtained from the cold-starting
CMA-ES measurements (i.e., one of the solid lines). As
shown in panels (b)–(d), the integrated charge and applied
current were consistently lower for warm starting than
for cold starting. This tendency indicates that, as with
BoTorch, in the case of warm starting, the optimized
applied current is enqueued as the initial value combination
and the surrounding domain of that combination is
exploited.
The three algorithms, shown in Figs. 2–4, were termi-

nated after 100 steps. However, for BoTorch and the TPE,
only one run each was tested, and the optimization was
extended to 300 steps. Based on the results, BoTorch
continued to be optimized, thus emphasizing exploitation
near the maximum charge. However, the TPE shifted from
exploitation to exploration after the 150th step. Systematic
measurements based on a significantly higher number of
runs shall be attempted in future studies.
Figure 5 shows the empirical distribution function

(EDF), which is defined as

EDFðqthrÞ ¼
number of steps of q < qthr

100

¼ 1

100

X100
i¼1

1q<qthr : ð13Þ

Panel (a) shows the results of the BoTorch algorithm
averaged over five runs for the cold-starting (solid line)
and warm-starting (dashed line) cases. Each line shows a
steep increase in the EDF beginning at approximately
8.5 nC, thus indicating that many steps yielded a beam
charge exceeding 8.5 nC. For cold starting, approximately

FIG. 4. Results obtained using CMA-ES algorithm. Panel
(a) indicates peak hold values of electron-beam charge.
Panel (b) indicates integrated charge over steps. Panels (c) and
(d) show integrated applied currents for PX_A4_4 and PY_A4_4,
respectively.

FIG. 5. Empirical distribution functions (EDF) averaged over
five runs. Panels (a)–(c) show results of BoTorch, TPE, and
CMA-ES, respectively.

MITSUKA, KATO, IIDA, NATSUI, and SATOH PHYS. REV. ACCEL. BEAMS 27, 084601 (2024)

084601-6



60% of the steps were distributed above 8.5 nC, whereas
for warm starting, approximately 80% of the steps were
distributed above 8.5 nC. The results shown in panel (a) are
consistent with the superior performance of BoTorch
shown in Fig. 2.
Panel (b) shows the results of the TPE measured on the

same day as that of BoTorch. For a specified beam charge,
the warm-starting TPE (dashed line) consistently showed a
lower EDF than the cold-starting TPE (solid line), thus
indicating that the warm-starting steps were distributed at a
slightly higher beam charge. However, the shapes of the
EDFs were almost identical, and the differences were
insignificant compared with those of BoTorch and the
CMA-ES. Slight differences between the two curves
suggest that the warm-starting TPE affects the maximum
charge through initialization but negligibly affects the trade-
off between exploration and exploitation. This trend is
consistent with the integrated charge and applied current
distributions shown in Figs. 3(b)–3(d). As noted in Sec. II B,
the trade-off between exploration and exploitation depends
on the parameter γ. Therefore, the difference between warm-
starting and cold-starting TPEs can be significant if we
choose γ other than 0.1 used for this study.
Panel (c) shows the measurement results obtained using

the CMA-ES, where the EDF integrated from 0 to 8 nC for
cold starting was the largest among the three algorithms
considered. Similar to the results shown in Fig. 4(a), the
CMA-ES algorithm for cold starting performed an explora-
tion-oriented optimization in this experiment. However, for
warm starting, more than 70% of the steps occurred at 8 nC
or higher, thus indicating that the optimization focused on
exploitation. The trends in panel (c) are similarly shown in
Figs. 4(b)–4(d) for warm starting (dashed line).
Figure 6 shows the importance of each parameter,

namely, the effectiveness of the applied currents in increas-
ing the beam charge. The importance of the parameters can
be quantified using a method proposed in Ref. [20], which
is based on a random forest prediction model [21] and
functional analysis of variance (fANOVA). First, a random-
forest model was established to predict the average algo-
rithm performance over the configuration domain.
Subsequently, the fANOVA decomposes the variance of
the overall algorithm performance into additive compo-
nents, with each corresponding to a subset of the algorithm
parameters. Finally, the fraction of variance associated with
each subset of parameters relative to the overall perfor-
mance variance quantifies the importance of the corre-
sponding subset.
Panel (a) shows the results of the BoTorch measure-

ments. The black circles and red squares represent the
average of five cold- and warm-starting runs, respectively.
For cold starting, the maximum importance was ∼0.5 for
pulsed steering magnet PX_A4_4. Because the importance
was normalized such that the sum was 1, PX_A4_4 alone
appeared to have contributed to approximately 50% of the

importance. As shown in Fig. 1, PX_A4_4 was the most
upstream of the three horizontal magnets used in the beam-
tuning experiment. Therefore, PX_A4_4 is expected to
exert the most significant effect on the horizontal orbit
modification, thus resulting in a higher importance for the
objective function (i.e., beam charge). Because of a sizable
orbit error in the horizontal direction, the beam established
contact with the beam collimator in the arc R sector, thus
resulting in a significant beam-charge loss. This may
explain the higher importance of the horizontal direction
PX_A4_4 compared with that of the vertical direction
PY_A4_4. For warm starting, the importance of PY_A4_4
increased to 0.4. As shown by the integrated charge in
Fig. 2(b), the integrated applied current in Figs. 2(c)
and 2(d), and the EDF in Fig. 5(a), most of the 100
parameter sets for warm starting did not change signifi-
cantly from the best parameter set that yielded the maxi-
mum charge. That is, the applied current of PY_A4_4,
which was located upstream, was almost optimized
immediately after the initialization. Thus a slight change
in the applied current significantly affected the beam charge
loss and became more important. In two locations in the
R sector, the vertical beta function exceeded 100m. In
addition, an electron beam generated by the thermionic dc
gun indicated a large emittance. Therefore, if the beam orbit
is shifted vertically, then a portion of the bunch with a large
transverse size hits the beam pipe, thus resulting in beam-
charge loss.
Panel (b) presents the TPE results. The results of cold and

warm starting were similar. As shown in Figs. 3(b)–3(d) and
Fig. 5(b), the trade-off between exploitation and exploration
changed only slightly, regardless of whether cold or warm
starting was used in TPE. Thus, we can assume that the
importance of each parameter is similarly distributed for both
the cold- andwarm-starting runs. Because the TPE optimizes

FIG. 6. Importance of each input parameter averaged over five
runs. Panels (a), (b), and (c) show results of BoTorch, TPE, and
CMA-ES, respectively.
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with emphasis on exploration even for warm starting, the
results achieved are comparable to those yielded by BoTorch
for cold starting.
Panel (c) presents the CMA-ES results. The results for

warm starting were comparable to those of BoTorch, which
is as expected owing to the similarity of the EDFs shown
in Figs. 5(a) and 5(c). Meanwhile, the importance of
PX_A4_4 for cold starting exceeded 0.7 for the CMA-
ES, as compared with 0.5 for BoTorch. Although we have
yet to achieve quantitative understanding, we hypothesize
that the anticorrelation between the more critical PX_A4_4
and less critical PX_R0_01 may affect the importance of
PX_A4_4. Based on panels (a) and (b), the importance
of PX_R0_01 is 0.15–0.2, whereas it is less than 0.1 in
panel (c).
Figure 7 shows the importance of the two-parameter

combinations. The results yielded by the warm-starting
BoTorch and warm-starting TPE are shown above and
below the diagonal line, respectively. For simplicity, we set
the values on the diagonal line to zero. In the BoTorch
results, the combination of PX_A4_4 and PY_A4_4
showed the highest importance of ∼0.14. Combining the
results for warm starting (red squares) in Fig. 6(a), we
observed that the order of importance from highest to
lowest was PX_A4_4, PY_A4_4, and the combination of
both. Meanwhile, the importance of the other pulsed
steering magnets and their combinations was less than 0.1.
The TPE results below the diagonal line show that the

importance for the combination of each parameter was 0.05
at themaximum. PY_A4_4was less critical in the TPE, even
for warm starting, as shown in Fig. 6(b). Consequently, the
combination of PX_A4_4 and PY_A4_4 was less critical.
Figures 6 and7 show that the applied currents of PX_A4_4

and PY_A4_4, which were the most upstream pulsed steer-
ing magnets used in the experiment, functioned similarly
as the other steering magnets for the three algorithms.

Therefore, only the applied currents of PX_A4_4 and
PY_A4_4 appeared to be sufficient for the enqueued initial
parameter values considered under warm starting.
In the next beam-tuning experiment, we plan to perform

beam tuning at different sectors of Linac using other magnets
and other types of objective functions to obtain more general
insights into machine learning-assisted beam tuning.

IV. MULTIOBJECTIVE OPTIMIZATION

This section provides an overview of the methodology of
multiobjective optimization, i.e., the case in which multiple
objective functions are optimized simultaneously. Attempts
to apply multiobjective optimization to accelerator control
have already been made, for example, in the Argonne
wakefield accelerator photoinjector [22,23], and in SLAC
MeV-UED, part of the LCLS user facility [24].
The M-dimensional multiple-objective functions are

denoted as fð1Þ; fð1Þ;…; fðMÞ. In the beam-tuning experi-
ment, we set M ¼ 2 to accommodate the two objective
functions (maximization of the beam charge and minimi-
zation of the dispersion function). For simplicity, we
assume that the goal of multiobjective optimization is to
maximize all dimensions.
The simultaneous optimization of multiobjective func-

tions can be redefined as obtaining all the Pareto optimal
solutions. To illustrate the Pareto optimal solution, we
define the dominance relation. For the two objective
functions f ðxÞ and f ðx0Þ, the relation

f ðxÞ≽ f ðx0Þ ⇔ ∀m∈ f1;…;MgfðmÞðxÞ≧ fðmÞðx0Þ ð14Þ

indicates that f ðxÞ dominates f ðx0Þ if fðmÞðxÞ is greater than
or equal to fðmÞðx0Þ for all dimensions. Here, xi represent
the input variables (applied currents of the pulsed steering
magnets) and f i the objective functions (a beam charge and
a dispersion function). The last inequality is presented in
Eq. (14) as we are addressing a maximization problem. For
example, as shown in Fig. 8, fþ dominates f 4. We regard f
as a Pareto-optimal solution when no other point in the
objective function space dominates f . Generally, more than
one Pareto-optimal solution exists for multiple objective
functions.
The Pareto front is the surface created when plotting the

Pareto solution set. Multiobjective optimization aims to
efficiently obtain many Pareto-optimal solutions near the
Pareto front by discounting the superiority or inferiority of
the multiple Pareto-optimal solutions. To obtain the Pareto
front, we introduce a Pareto hypervolume. Let D ¼
fðxi; f iÞgNi¼1 denote the current dataset, where N is the
dataset size. The Pareto front in the dataset D expands with
each data addition.
Once a reference point is determined to evaluate the

expansion, a hyper-rectangle can be defined using the
reference point r and the Pareto solution set P ∈D:

FIG. 7. Importance of each input parameter combination.
Numbers shown above and below diagonal line indicate BoTorch
and TPE results, respectively. Both results are for warm starting.
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∪P
i¼1 ½r; f i�: ð15Þ

The hypervolume indicator in Eq. (15) is theM-dimensional
Lebesgue measure, which is expressed as

IHðP; rÞ ¼ λMð∪P
i¼1 ½r; f i�Þ: ð16Þ

The shaded light-gray area in Fig. 8 shows the hypervolume
indicator with the Pareto solution set P ¼ fðxi; f iÞg3i¼1, and
reference point r. The hypervolume indicator increases
monotonically for each additional data point. The shaded
dark-gray area shows an increase in the hypervolume indicator
owing to new observations Y ¼ ðxþ; fþÞ. Based on this
increase, we can define an acquisition function, i.e., the
expected hypervolume improvement (EHVI), which is the
expected increment in the hypervolume indicator before and
after obtaining a new observation Y

EHVIðY;P; rÞ

¼
Z

½IHðP ∪ Y; rÞ − IHðP; rÞ�pðfþjxþ;DÞdfþ: ð17Þ

The posteriorpðfþjxþ;DÞ, which is the distribution indicated
by the blue surface in Fig. 8, is approximated via a Gaussian
process in theBayesian optimization.Analogous to the single-
objective optimization, as discussed in Sec. II, the location x
that maximizes the acquisition function EHVI is selected and
then input to the objective function to advance the Pareto front.
The methodology described above assumes a multiobjective
Bayesian optimization. A detailed description of this multi-
objective optimization based on theTPEalgorithm is provided
in Refs. [25,26].

V. APPLICATION TO BEAM CHARGE AND
DISPERSION SIMULTANEOUS OPTIMIZATION

A. Experimental setup at KEK Linac

To investigate the feasibility of applying multiobjective
Bayesian optimization to accelerator tuning, we attempted
to simultaneously maximize the electron-beam charge and
minimize the dispersion function.
The unexpected dispersion function in the Linac and

beam-transport line increases the emittance of the injec-
tion beam and further reduces the injection efficiency
to the light source storage rings (PF and PF-AR) and
SuperKEKB [11] downstream of the beam-transport line.
Therefore, the beam must be adjusted such that the sizable
dispersion function in sector R (see Fig. 1) does not leak
downstream.
In this beam-tuning experiment, we used an electron

beam generated by a thermionic dc gun dedicated for
positron generation. Notably, the dispersion function in
sector 1 does not significantly affect positron generation
in the actual operation. We attempted to minimize the
dispersion function in this experiment such that better
electron beams would be received by the PF, PF-AR, and
SuperKEKB. Notably, the electron beam generated by the
rf electron gun was supplied to the PF and PF-ARwhen this
experiment was conducted and was not used in this study.
In this study, the dispersion function was not used as

an objective function. Instead, the following dispersion-
position function was used for simplicity, which multiplies
the square of the dispersion function by the sum of the
squares of the horizontal and vertical positions:

fdisp-pos ¼
X14
i¼1

ðη2x;i þ η2y;iÞ
X14
j¼1

ðd2x;j þ d2y;jÞ: ð18Þ

The dispersion functions and beam positions were mea-
sured using 14 BPMs. The product of the dispersion
function and position was adopted to simultaneously
reduce both the dispersion function and beam-orbit
residual. The dispersion function at each BPM location
was measured using the inevitably occurring beam-energy
jitter. Compared with the case where the dispersion
function is measured by intentionally changing the
energy-adjustment knob, the method using energy jitter
enables measurements to be performed while the beam
is being supplied to the light source storage rings or
SuperKEKB because the adjustment knob is fixed.
However, the energy-jitter method relies on randomly
generated jitter and requires a long measurement time to
obtain sufficient resolution. In this experiment, 100 data
points were required after the pulsed magnet settings were
changed. Because the beam repetition rate was 1 Hz, a
waiting period of 100 s was permitted after the magnet
settings were changed.

FIG. 8. Example of hypervolume indicator IH with Pareto
solution set fðxi; f iÞg3i¼1.
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B. Experimental results

Figure 9 shows the scatter plots of the obtained beam
charge vs the dispersion-position function in Eq. (18) for
each step. Measurements were performed on June 1, 2023,
2–4 am, with 100 steps performed using the BoTorch
algorithm. The green squares indicate the 10 steps per-
formed until the end of initialization, the blue open circles
indicate the 11th to 100th steps, and the red dots are the
Pareto-optimal solution set (five points in total). The
initialization explores the beam charge and dispersion-
position function domain more extensively than the pairs
obtained after the initialization. The beam charges were
generally distributed above 6 nC, and the charge optimi-
zation was efficient. Meanwhile, the dispersion-position
function exhibited a tail exceeding 2 m2mm2, which can be
further improved. Although not used in this study, OPTUNA
implements a constrained optimization function. If either
the dispersion function or beam-orbit position is con-
strained, then the optimization can focus of regions where
the dispersion-position function is small, e.g., smaller
than 1m2mm2.
Figure 10 shows a scatter plot of the beam charge vs

dispersion-position function obtained using the TPE algo-
rithm via 200 steps. The result indicates an exploration-
oriented optimization of both the beam charge and
dispersion-position function, unlike the BoTorch result
presented in Fig. 9. This trend is consistent with TPE’s
focus on exploration instead of exploitation, as discussed in
Sec. III B. The TPE algorithm data were obtained on June
12, 2023, 6–10 pm; therefore, the beam conditions may
have changed since June 1 when we conducted the beam
test using the BoTorch algorithm.
As shown in Figs. 9 and 10, we obtain Pareto-optimal

solutions for both algorithms. Only a few Pareto-optimal
solutions were available for 100 or 200 steps, thus clearly
indicating a low-cost performance in terms of the beam-
time. The Pareto-optimal solution must be obtained

promptly for time-consuming measurements, e.g., more
than 60 s per measurement, as in the current tuning
experiment. In the future, we plan to test the efficiency
of obtaining Pareto-optimal solutions using a constrained
optimization algorithm.

VI. CONCLUSIONS

We conducted beam-tuning experiments at the KEK
Linac using Bayesian optimization (BoTorch), a TPE, and
the CMA-ES to determine the feasibility of using machine
learning, in particular optimization algorithms.
In a single-objective optimization experiment to maxi-

mize the electron-beam charge from sector C to sector 1
of the Linac, the beam orbit was adjusted by optimizing
the applied current of six pulsed steering magnets. The
maximum beam charge obtained in the beam-tuning experi-
ment was comparable to that obtained in expert-based
tunings. Approximately 35 steps (10 of which pertained to
initialization) were required to reach the maximum beam
charge when using the cold-starting BoTorch. On average,
the TPE and CMA-ES achieved a lower beam charge under
cold starting compared with BoTorch, even after 100 steps.
Under warm starting, BoTorch and the CMA-ES showed
excellent optimization performance from the initialization
phase, where the enqueued initial values were utilized;
however, the optimization performance of the TPE under
warm starting did not differ significantly from that of cold
starting. We conclude that the optimization algorithms
proposed in this study can replace manual tuning by
experts for beam-charge maximization using steering
magnets.
Multiobjective optimization was tested to simultane-

ously maximize the beam charge and minimize the
dispersion-position function. The multiobjective optimiza-
tion task was to obtain as many effective Pareto-optimal
solutions as feasible. The dispersion function was measured
using the inevitable beam energy jitter. Two algorithms,

FIG. 9. BoTorch result for multiobjective optimization on
beam charge (vertical axis) and dispersion-position function
(horizontal axis).

FIG. 10. TPE result for multiobjective optimization on beam
charge (vertical axis) and dispersion-position function
(horizontal axis).
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i.e., BoTorch and the TPE, were used, and their results were
compared. As shown in the single-objective optimization
results, the beam charge vs dispersion-position function
distribution was exploitation-oriented for BoTorch and
exploration-oriented for the TPE. Both algorithms yielded
four to five Pareto-optimal solutions over 100–200 steps.
The efficiency of obtaining the optimal solution is essential
for applying multiobjective optimization to accelerator
tuning, where each step is time consuming and hence
expensive. In the next test, we shall introduce a constrained
optimization algorithm to improve the efficiency of
obtaining the optimal solution. In addition, the number
of parameters shall be increased to approximately 20 to
assess the applicability of multivariable optimization to
beam tuning.
The machine-learning-based beam-tuning tool devel-

oped for this experiment will be applied to the beam
tuning of SuperKEKB (e.g., beam injection from the beam-
transport line to the main ring, correction for horizontal and
vertical couplings, and adjustment of the beam collimator
head position) [27,28].
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