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Achieving maximum electron beam brightness in photoinjectors requires detailed control of the 3D
bunch shape and precise tuning of the beam focusing. Even in state-of-the-art designs, slice emittance
growth due to nonlinear space charge forces and partial nonlaminarity often remains non-negligible. In this
work, we introduce a new means to linearize the transverse slice phase space: a sacrificial portion of the
bunch’s own charge distribution, formed into a wavebroken shock front by highly nonlinear space charge
forces within the gun, whose downstream purpose is to dynamically linearize the desired bunch core. We
show that linearization of an appropriately prepared bunch can be achieved via strongly nonlaminar
focusing of the sacrificial shock front, while the inner core focuses laminarly. This leads to a natural spatial
separation of the two distributions: a dense core surrounded by a diffuse halo of sacrificial charge that can
be collimated. Multiobjective genetic algorithm optimizations of the ultracompact x-ray free electron laser
injector employ this concept, and we interpret it with an analytic model that agrees well with the
simulations. In simulation, we demonstrate a final bunch charge of 100 pC, peak current ∼30 A, and a
sacrificial charge of 150 pC (250 pC total emitted from cathode) with normalized emittance growth of
< 20 nm rad due to space charge. This implies a maximum achievable brightness approximately an order
of magnitude greater than existing free electron laser injector designs.
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I. INTRODUCTION

High brightness photoinjectors are the electron sources
of choice for a wide variety of accelerator applications,
ranging from x-ray free electron lasers to MeV-scale
electron diffraction and microscopy. Higher brightness
performance has the potential to unlock probes with greater
spatiotemporal resolution, to enable new modes of oper-
ation, or dramatically shrink the cost in size of accelerator
components. Critical to the brightness performance in these
photoinjectors is the process of emittance compensation
[1,2], in which the phase space angles of each longitudinal
slice are asymptotically equalized through a judicious

choice of focusing and acceleration. Typical implementa-
tions of this technique can result in a recovery of brightness
by an order of magnitude or more [2,3].
Provided perfect compensation of the linear space charge

forces, emittance growth is then dominated by nonlinear
forces that distort the slice phase space. With the exception
of uniformly filled ellipsoids and infinitely long uniform
cylindrical distributions, all other spatial bunch distribu-
tions generate nonlinear forces and are susceptible to slice
emittance growth. Ideal distributions with linear space
charge forces with zero thermal momentum spread will
undergo self-similar evolution in each plane; the space
charge forces remain exactly linear in propagation through
ideal lenses. In practice, however, the intrinsic momentum
distribution from photocathodes is often a 3D Gaussian of
finite width in the forward direction [4,5]. This momentum
spread causes the evolution of distributions with initially
linear space charge to no longer be self-similar, and thus
nonlinear space charge emittance growth is in this sense
strictly unavoidable. Its magnitude is then dependent on
both the slice phase advance in the photoinjector and the
size of the intrinsic momentum spread.
For typical transverse distributions with density maxima

on axis, the slice emittance is not in general a monotonically
increasing function of time. Several studies [3,6,7] have
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demonstrated that in general the slice emittance oscillates in
both uniform focusing channels and split photoinjectors.
This oscillation can be understood intuitively: particles at the
slice edge are in general initially less defocused than the
particles in the core.And so, relative to the initial distribution,
a density enhancement is eventually generated at the beam’s
edge. This enhancement induces stronger space charge
defocusing, which eventually creates a distribution similar
to the initial conditions with an underdense and under-
defocused region at the edge. The process then repeats.
For infinitely long beams with weak nonlinearity, this

oscillation remains in phase with the slice transverse beam
size. Thus, an important rule emerges: weakly nonlinear
beams have slice emittance minima at beam size minima,
which is exactly the condition for linear space charge
emittance compensation. Thus, the process of linear emit-
tance compensation naturally compensates for nonlinear-
ities in the beam as well. However, in practice, there are
several complications to achieving the perfect linear emit-
tance compensation, such as overfocusing of edge particles
and slice size mismatch [7]. Furthermore, the slice emittance
oscillation is not purely periodic: sufficiently nonlinear
forces can cause dephasing between the slice emittance
and the projected emittance and the initial distribution does
not perfectly reform. In practice, this dephasing can occur in
half of a plasma period. Nonlinearities strong enough to
exhibit this dephasing phenomenon can arise, for example,
from 3D effects in bunches with comparable transverse and
longitudinal dimensions in the rest frame or sufficiently
large transverse density gradients. In photoinjectors, these
nonlinearities can additionally lead to wavebreaking,
wherein the transverse slice phase space becomes double
valued. This wavebreaking has been well studied [3,7,8]
and forms a density shock at the edge of the beam [9].
While the brightness of such a wavebroken beam can be
substantially improved by eliminating the wavebroken
portion with an aperture [9], the nonlinear forces experi-
enced by the core during the wavebreaking process may
remain uncompensated.
The upper limit of beam brightness is set by the

brightness of the electron emission [10], and as this value
increases with enhanced electric field at the cathode or by
improvements in photoemission momentum spread, new
strategies may be required for more precise emittance
compensation in future photoinjectors. In this paper, we
introduce a new technique to undo slice emittance degra-
dation, where we dynamically utilize a wavebroken shock
by focusing it through the core of the bunch before
subsequently discarding it with an aperture. Typically,
the trajectories of the particles in a beam do not cross, a
regime known as laminar motion, even when the beam is
focused, as the space charge repulsion of inner particles
prevent outer particles from reaching the central region of
the beam. Instead, we operate in a regime where some
particles have sufficient inward momentum to overcome

the repulsive force of interior particles and cross through
the beam central axis, in a process known as a nonlaminar
focus. This scenario can be thought of as a manifestation of
wavebreaking in phase space; the broken piece of the phase
space wave is nonlaminarly focused, passing through the
core on its way to the central axis. Meanwhile, the core
focuses laminarly, and the net effect is linearization of the
bunch core. The nonlaminarity of the focus of the broken
component arises from two factors. By definition, the
broken component possesses a lower outward radial
momentum than the rest of the beam after removal of
linear correlations and thus will focus more strongly.
Enhancing this effect, the spherical aberration of the
solenoid lenses used in this beamline provides the outer
particles with a stronger focusing kick than the inner
particles [11]. Together, these effects cause the outer
particles to possess enough inward radial momentum to
cross the axis.
We demonstrate this linearization process in simulations

of the next-generation ultracompact x-ray free electron
laser (UCXFEL) being developed at the University of
California, Los Angeles [12]. This beamline utilizes
recently developed rf accelerating cavities with gradients
of up to 140 MeV=m [13], including 125 MeV=m accel-
erating gradient C-band cryogenic linacs [14] and
240 MV=m peak fields in the photoinjector [15], allowing
the length of the beamline to be reduced by more than a
factor of 10, making these compact XFELs much more
available at the university scale. In the gun, the high fields
allow for the generation of beams with brightnesses
potentially 50 times better than the original Linac
Coherent Light Source (LCLS) design, since the maximum
four-dimensional brightness scales with the first or the
three-halves power of accelerating field for the pancake and
cigar regimes respectively [10,16]. It is important to note
that this linearization process was first discovered in
simulation by the genetic optimization of the UCXFEL
injector, and it was understood analytically after the fact.
Beyond the cathode electric field, the maximum bright-

ness is also limited by a photocathode quantity known as
the mean transverse energy (MTE), which encapsulates the
transverse velocity spread of the electrons as they are
emitted from the photocathode. The intrinsic 2D emittance
of the photocathode can be put in terms of the MTE as

ϵn;x ¼ σx

ffiffiffiffiffiffiffiffiffiffiffi
MTE
mc2

r
; ð1Þ

where σx is the spot size of the photoemitting laser, andmc2

is the rest energy of the electron.
Typically, FELs, such as LCLS, have used photo-

cathodes with MTEs on the order of 500 meV [17,18].
Recent developments in photocathode growth and produc-
tion have enabled the production of photocathodes with
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MTEs as low as 5 meV [19], corresponding to an initial
brightness increase of a factor of 100.
Our study begins with a discussion of the performance

enhancements achievable when combining the high-gra-
dient accelerating cavities of the UCXFEL beamline and a
low MTE photocathode. The associated high initial charge
density renders this an ideal environment for studying the
dynamics of cold, highly space charge dominated beams.
Previously [20–22], a lattice with two solenoids and a
buncher has been shown to perform well in space charge
dominated beamlines. We will examine the performance of
such a lattice, comparing its performance with and without
a final clipping aperture, and explain the physics behind the
qualitatively different dynamics that arise in the presence of
the aperture. A simplified lattice with a single solenoid will
also be included for reference, and the two lattices are
shown in Fig. 1. We will refer to the lattice with the single
solenoid as “baseline” and the lattice with two solenoids
and a buncher as “complex.”

II. EMITTANCE PRESERVATION

We use a multiobjective genetic algorithm (MOGA)
[23,24], coupled to a particle-in-cell code, General Particle
Tracer (GPT) [25], to find optimal settings for these three
representative high gradient XFEL beamlines and deter-
mine the best achievable emittance. In turn, we can use the
optimal emittances to determine the degree to which the
initial emittance has been recovered.
The final beam energy in all three beamlines is 150 MeV.

In the baseline lattice and the complex lattice without the
aperture, we will transport 100 pC of charge from the
beginning to the end, while in the complex lattice with
the aperture, we will start with 250 pC and end with the
same 100 pC, clipping down with the final aperture. The

cathode MTE is set to 5 meV for all simulations, as this is
the lowest that has been experimentally achieved [19], as
well as being near the fundamental limit imposed by
disorder induced heating [26].
We set the MOGA to optimize both transverse emittance

and bunch length, constraining solutions to reach the
desired 150 MeV beam energy at the end of the beamline
while losing no particles in transport. The optimizer was
allowed to vary the solenoid currents, gun phase, as well as
the buncher phase and amplitude. All quantities were
constrained to be within physically attainable limits. The
initial transverse distribution of the beam was taken to be of
a truncated 2D Gaussian form, and the initial temporal
distribution was chosen as a truncated 1D Gaussian. The
optimizer was allowed to independently vary the widths
and truncation locations of these two distributions. Element
positions, linac amplitude, and linac phase were fixed. In
general, optimizing multiple objectives will generate curves
known as a Pareto fronts which shows the trade-off between
pairs of objectives. By comparing the Pareto fronts for the
baseline lattice and the complex lattice without the aperture,
we can see how much of an improvement the extra solenoid
and the buncher provides. Subsequently, the effect of the
aperture can be identified by looking at the front for the
complex lattice with the aperture.
The fronts are shown in Fig. 2. We see immediately that

the complex layout improves the emittances by roughly a
factor of 2, with the aperture providing yet another factor
of 2. The degree to which the cathode contributes to the
final emittance can be quantified by defining an effective
MTE as the MTE required, given the laser spot size, to

FIG. 1. Schematic of the model XFEL photoinjector with the
field profiles of each element. (a) The baseline lattice. (b) The
complex lattice, which can be augmented with an aperture.
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FIG. 2. Pareto fronts for the three lattice configurations: base-
line, complex without the aperture, and complex with the aperture
(augmented), colored by their effective MTE (defined in the text).
The addition of the second solenoid and buncher improves
emittance by roughly a factor of 1.4 on average, and the addition
of the aperture improves it by more than another factor of 2. The
effective MTE of the baseline lattice is approximately 300 meV,
showing a substantial emittance growth during transport. The
complex lattice without the aperture achieves an effective MTE
on the order of 70 meV on average, while adding the aperture
achieves an effective MTE of about 10 meV on average.
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generate the observed final emittance assuming perfect
emittance preservation [27]. Thus, the effective MTE is a
heuristic to determine the degree to which emittance is
preserved during transport and to determine the MTE scale
at which the intrinsic emittance becomes dominant. An
ideal beamline would have an effective MTE equal to the
real MTE of the cathode. Dilution in transport is captured
by an increase in the effective MTE.
The addition of the aperture introduces a small compli-

cation to the effective MTE calculation. Directly calculat-
ing the effective MTE using the emittance of the core
100 pC, but the laser spot size used to emit the full 250 pC
would result in an artificial reduction of the effective MTE.
Instead, we use the laser spot size which would be required
to emit 100 pC with the same charge density as the full
250 pC beam, which can be approximated by scaling the
naive effective MTE up by a factor of 2.5, the ratio of the
emitted charge to the final charge. The effective MTEs of
all three fronts is represented by the marker colors in Fig. 2.
The baseline lattice has effective MTEs on the order of
300 meV showing that the MTE is not a significant
contributor to the emittance and that the emittance has
been substantially degraded during transport. Such a lattice
would see little benefit from upgrading from a 100 meV
cathode to a 5 meV cathode. The complex lattice without
the aperture does better, with an effective MTE of 70 meV.
This lattice would be cathode emittance limited with a
100 meV cathode, but it would not be able to utilize a
single-digit MTE cathode to its maximum potential.
However, the complex lattice with the aperture has an
effective MTE of around 10 meV, indicating excellent
emittance preservation. We see that to take full advantage
of this beamline, a cathode with single-digit meV MTE is
necessary.
To isolate the effects of the aperture from the rest of the

lattice, wewill now focus on the two beamlines utilizing the
complex lattice. We select the lowest emittance example in
the complex lattice without aperture front and compare it
with the example in the complex lattice with aperture front
that has the closest final bunch length, approximately
1.5 ps. Examining the beam size and emittance evolution
of these representative examples reveals a stark qualitative
contrast in their respective dynamics, shown in Fig. 3. The
complex lattice without the aperture performs precision
traditional emittance compensation. Due to residual
uncompensated nonlinear space charge effects, the slice
emittance never reattains the emittance achieved immedi-
ately after the first solenoid. On the other hand, the complex
lattice with the aperture allows the slice emittance to rise by
nearly an order of magnitude immediately at the first
solenoid. The slice emittance then decreases until it is
frozen by the linacs. Furthermore, while the beamsize in the
complex lattice without aperture reaches its minimum close
to the entrance of the first linac, the beamsize in the
complex lattice with the aperture reaches a minimum in the

middle of the first linac, with the beamsize of the survivors
reaching a minimum in the middle of the second linac.
Thus, not only is the beam evolution in the two beam-
lines different, but it also appears that in the beamline with
the aperture, there are effectively two separate particle
populations.
The two populations can be visually identified in Fig. 4,

which shows the beam profile and x phase space immedi-
ately before the final aperture. A dense core in both real
space and phase space has developed, surrounded by a
diffuse halo of electrons. The aperture discards this diffuse
halo, reducing the emittance from 150 to 20 nm rad while
only losing 60% of the bunch charge.

(a) (b)

(c) (d)

FIG. 3. Transverse beam size (a), (c) and emittance (b),
(d) evolution of representative individual simulations from the
complex lattice without (a), (b) and with (c), (d) the aperture. The
complex lattice without the aperture achieves precise traditional
emittance compensation, characterized by the beamsize and slice
emittance minima coinciding in longitudinal position. In contrast,
with the aperture, the slice emittance increases drastically
immediately upon exiting the gun before rapidly falling as the
beam enters the linacs. The beam size evolution of the two lattices
is also noticeably different. The lattice schematic from Fig. 1(b) is
reproduced here for the reader’s convenience.
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To understand the process by which this dense core
develops, we look at selected snapshots of the beam’s phase
space, plotted in r − pr coordinates, for both beamlines,
shown in Fig. 5. In all plots, red particles represent particles
that are clipped by the aperture, which we call dead
particles and blue particles represent particles that pass
through the aperture, which we call survivors. Since the
aperture is at the end of the beamline, the coloration reflects
knowledge of the eventual trajectories of these particles. As
the linear r − pr correlation is usually large and washes out
the details, we plot the phase spaces with this correlation
subtracted, with the original correlated phase space being
shown in gray for reference. Since the dynamics of the
survivors in the central slice and the survivors in the rest of
the beam are nearly identical, as can be seen in Fig. 3(c), we
look only at the phase space evolution of the central slice.
Figure 5 shows the phase space immediately after the

gun, where there is already a significant difference between
the two lattices. In general, the curvature of the space
charge force varies with the beam’s aspect ratio [28].
Without the aperture, the photoemission process is tuned
to balance the varying curvature and generate a phase space
without large nonlinearity (and a small wave-broken tail).
With the aperture, the space charge force is permitted to
generate a large negative concavity in phase space, which
eventually results in the shock front forming at the edge of
the beam.
The beam then travels through the buncher and the two

solenoids, with the phase space at the exit of the second
solenoid shown in Fig. 5(b). Of particular note here is the
much larger radial velocity spread of the outermost
particles in the lattice with the aperture, as well as the
larger focusing force applied to the beam as a whole. This
results in the wave crashing shown in Fig. 5(c), where the

(a)

(b)

FIG. 4. Beam profile and x phase space immediately before the
aperture. (a) Beam profile with linacs. (b) x phase space with
linacs. The beam core has become very dense and is surrounded
by a diffuse halo. Insets: zoomed in picture of the core.

(a) (b) (c) (d)

FIG. 5. Evolution of the r − pr phase space of the central longitudinal slice of the beam in the complex lattice. Top row of each
subfigure: with the aperture. Bottom row of each subfigure: without the aperture. The dead particle (red) and survivor (blue) phase
spaces are displayed with the linear r − pr correlation removed. The original, correlated phase space is shown in light gray. Note that the
phase spaces of the two lattices are plotted with the same horizontal axis scale but different vertical scales. (a) Immediately after the exit
of the gun. (b) Immediately after the second solenoid. (c) During transport through the linacs. (d) Immediately before the final screen.
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fastest falling particles in the shock front have been
nonlaminarly focused through the core of the beam.
Contrast this to the lattice without the aperture below,
where the nonlinear tail has merely been folded under the
rest of the beam and no nonlaminarity has occurred.
Finally, Fig. 5(d) shows the phase space immediately

before the final screen, where the aperture is placed for the
lattice that utilizes it. We see again that the lattice with the
aperture produces a beam with a very dense spatial core
surrounded by a diffuse halo. Meanwhile, the lattice
without the aperture has generated a roughly flat phase
space, but residual curvature is still visible, as well as the
folded nonlinear tail.
Our goal for the remainder of this paper will be to

understand the forces at play during the wave crashing,
which linearize the phase space of the core and generate the
high core density. To aid in understanding the process by
which this dense core develops, we simplify the simulation
by removing the two linacs and the buncher and moving the
other elements closer to the gun, reoptimizing the lattice
and initial electron beam parameters. Figure 6 shows the
phase space evolution at approximately equivalent points
on the beamline as shown in Fig. 5. The basic dynamics are
identical, with a large curvature developing inside the gun,
a shock front forming at the edge of the beam which is
subsequently nonlaminarly focused through the core, and a
dense core appearing at the end of the beamline. The
following model is based on this linac-less simulation.

III. WAVE-CRASHING LINEARIZATION

This section focuses on understanding the physics that
causes these highly nonlinear dynamics to improve, rather
than dilute, the emittance of the core. We begin with a
simplified analytic model of the space charge forces

imparted by the shock front on the beam as it collapses
inward. In the beam’s rest frame, it is on the order of
20 times longer than it is wide after exiting the second
solenoid, so we treat it as an infinitely long cylinder of
charge, surrounded by an infinitely long, infinitely thin,
cylindrical shell of charge. Due to the infinite length of the
beam, there is no net longitudinal space charge force on any
particle. At t ¼ 0, the shell has radius a0, defined to be the
radius of the outermost particle in the beam. We will
assume the particles that form the shell have velocities
uniformly distributed from vs to vf, all directed radially
inward. We will perform all calculations in the rest frame of
the beam.
The beam is being focused, which we will model as the

beam receiving a linear velocity kick v ¼ −Kr at t ¼ 0,
directed radially inward. From Fig. 5(b), we see that all
particles in the shell are focusing faster than the particles in
the beam, so we have vs > Kr for all r.
We see from the phase space pictures that the lineari-

zation is already completed by the time, the fastest particles
in the shell reach a focus, and after this point, which we call
tf, we will assume that the force from the shell is negligible
due to the large decrease in the shell’s charge density. We
want to find the impulse provided by the shell to a particle
with charge q at a start position r0

!, i.e., the force from the
shell integrated from t ¼ 0 to t ¼ tf. As a simplification,
we will assume that the velocities of all particles are
constant, i.e., the space charge force only provides small
perturbations to their trajectory. Thus, the shell will
undergo a nonlaminar focus as it collapses past the center
and starts expanding outward.
The impulse can be written

Δp⃗ ¼
Z

a0=vf

0

qE⃗ðtÞdt; ð2Þ

where E⃗ðtÞ is the field at r⃗ðtÞ.
To calculate E⃗, consider the subset of shell particles with

average velocity v⃗ and velocity spread dv⃗. Since we assume
the velocities are uniformly distributed and all points
radially inward, this subset is itself a cylindrical shell with
a linear charge density given by

λ ¼ λrdv
vf − vs

; ð3Þ

where we will begin writing only the magnitudes of the
velocities and λr is the total linear charge density of the
collapsing shell.
The field from an infinitely long cylinder of surface

charge density σ and radius a at a point r⃗ outside the shell is

E⃗ ¼ aσ
ϵ0r

r̂: ð4Þ

We note that aσ represents the linear charge density of
the shell and is identical to the previously defined λ, which

(a) (b)

(c) (d)

FIG. 6. Evolution of the r − pr phase space in a beamline with
the aperture reoptimized without the linacs. The coloring has the
same meaning as in Fig. 5. The similarities in the phase space
evolution to the beamline with the linacs are evident. (a) Immedi-
ately after the exit of the gun. (b) Immediately after the second
solenoid. (c) Transport to the final screen. (d) Final screen.
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is constant with time, so

E⃗ðtÞ ¼ aσ
ϵ0rðtÞ

r̂ ¼ aσ
ϵ0r0ð1 − KtÞ r̂: ð5Þ

The field inside the cylinder is identically 0, so a subset
with a given velocity will only contribute to the field once it
has collapsed past r⃗.
We will define tpðvÞ to be the time that a particle with

velocity v has a radial position equal to that of the test
charge. Thus, it must satisfy the following equation:

a0 − vtpðvÞ ¼ r0ð1 − KtpðvÞÞ. ð6Þ

We can solve this to obtain

tpðvÞ ¼
a0 − r0
v − Kr0

: ð7Þ

For t < tpðvÞ, the field is identically 0, because the
subset has a radius greater than the radial position of the test
charge. Since the upper limit of the integration is when the
fastest shell particles reach the center of the beam and all
shell particles have a higher velocity than all beam
particles, the subset of shell particles with velocity v has
a radius smaller than that the radial position of the test
charge for times between tpðvÞ and a0=vf, and its field
contribution is nonzero during this time. Thus, the integral
in Eq. (2) becomes, as a function of the subset velocity v,

Δp⃗ðvÞ ¼
Z

tf

tpðvÞ

qλ
ϵ0r0ð1 − KtÞ r̂dt: ð8Þ

We will define the critical velocity vc to be the velocity
for which tpðvcÞ ¼ tf, i.e., a shell particle with velocity vc
attains the same radial position as the test charge at the
same time that the fastest shell particle reaches the center of
the beam. All particles with velocity lower than vc will not
contribute to the field experienced by the test charge. Note
that vc is a function of the test charge starting position r0.
We have

vcðr0Þ ¼ vf − r0

�
vf
a0

− K

�
: ð9Þ

Figure 7 shows a cartoon of particle trajectories to clarify
the physical meaning of the quantities we have defined. All
shell particles begin with radial position a0, while the test
particle begins with radial position r0. tf is the x-intercept
of the trajectory of the fastest shell particle, and tpðvÞ is the
time when the trajectory of the test particle and the shell
particle with velocity v cross. Note that tpðvcÞ is defined to
be identical to tf.
A further helpful visualization is provided in Fig. 8,

which presents four snapshots of the collapsing shell
process in two dimensions. The test charge, the fastest

particle in the shell, and a particle with the critical velocity
are all highlighted to clarify their motion throughout the
process.

(a) (b)

(c) (d)

FIG. 8. Two-dimensional sketch of the collapsing shell, with
the test charge, the fastest particle in the shell, and a shell particle
with the critical velocity for this test charge highlighted. The
subplots represent four snapshots of the process: (a) the initial
state, (b) when the fastest particle in the shell passes the test
charge, (c) when the fastest particle reaches the center and, by
definition, the shell particle with the critical velocity has just
reached the radial location of the test charge, (d) and some time
significantly after the end of the collapsing shell process, showing
the diffuse halo that the shell forms. The axes represent x and y
position with arbitrary units, and numeric labels are included
solely for providing a scale between the subplots.
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FIG. 7. Cartoon of sample particle trajectories and the asso-
ciated quantities defined in our model.

COMPENSATING SLICE EMITTANCE GROWTH IN … PHYS. REV. ACCEL. BEAMS 27, 084401 (2024)

084401-7



We now have two cases: if vc < vs, then all shell
particles will contribute to the impulse on the test charge;
if vc > vs, then some particles have radial position greater
than that of the test charge at all times in the integration and
do not contribute to the impulse. Therefore, to calculate the
total impulse provided to the test charge by the entire shell,
we integrate Eq. (8) setting the maximum of vc and vs as
the lower limit and vf as the upper limit:

Δp⃗ðr0Þ ¼
qλr

r0ϵ0ðvf − vsÞ
Z

vf

maxðvcðr0Þ;vsÞ

Z
tf

tpðvÞ

1

1 − Kt
dtdv:

ð10Þ

These integrals can be carried out analytically, to yield the
following piecewise function (note that the subscript on r
has been dropped):

Δp⃗ðrÞ ¼
8<
:

qλr
Krϵ0ðvf−vsÞLsr̂; r < a0ðvf−vsÞ

vf−Ka0

qλr
Krϵ0ðvf−vsÞLbr̂; r ≥ a0ðvf−vsÞ

vf−Ka0

9=
;; ð11Þ

where we define

Ls ¼ Kr log

�
a0ðvf − KrÞ
vfða0 − rÞ

�

þ Ka0 log

�
1 −

r
a0

�
þ vf log

�
vf

vf − Kr

�
ð12Þ

and

Lb ¼Kr log

�
vf −Kr

vs −Kr

�
þKa0 log

�
vs−Ka0
vf −Ka0

�

þ vs log

�ðvf −Ka0Þðvs−KrÞ
vfðvs −Ka0Þ

�
þvf log

�
vf

vf −Kr

�
:

ð13Þ

Note that Ls corresponds to the case where vcðrÞ > vs,
while Lb corresponds to the case where vcðrÞ ≤ vs.
We can now calculate the impulse provided to the beam

by the collapsing shell in our simulation. We will consider
the timestep shown in Fig. 5(b) to be the start of the
collapse. We define the shell to be the portion of the beam
with double-valued phase space. We can then extract the
remaining parameters of the shell, which are summarized in
Table I. Notice that the velocity spread increases by about a
factor of 10 between the timesteps shown in (b) and (c).
This is due to the slower particles experiencing the space
charge field from a larger enclosed charge and being
slowed more than the faster particles. For now, we will
continue to neglect the space charge force applied to the
shell and instead examine the behavior of the beam for a
range of velocity spreads. It is worth noting that the large

increase in velocity spread indicates that the space charge
force is significant and should not be neglected, but,
remarkably, the correct behavior arises regardless.
The results are shown in Fig. 9 for low velocity spread

(half of the average), average velocity spread, and high
velocity spread (double the average). The “impulse scaling
factor” is an overall hand-tuned correction factor multi-
plying the applied impulse. Since the impulse is linear in
the shell charge density, this scaling factor can be thought
of as representing differences in the optimal shell charge
density for each velocity spread. The shape of the impulse
is generally the same in all cases and the phase space
becomes straightened out. The only change that is needed
for a different velocity spread is an overall scaling factor for
the impulse, shown in the titles of each plot. The final
emittances are 23, 21, and 22 nm rad for the low, average,
and high velocity spreads, respectively, down from 53 nm
rad at the exit of the second solenoid. The emittance from
the simulation is 19 nm rad, very good agreement consid-
ering the many simplifications we have made in the model.
The deviance of the scaling factor from unity is largely due
to ignoring the effects of space charge on the motion of the
shell. As we shall see in the next section, incorporating
these effects into the model numerically yields a scaling
factor of nearly unity.
Since the impulse scaling factor is hand-tuned for each

case individually and varies from 1.2 for a low velocity
spread to 1.6 for a high velocity spread, it is reasonable to
ask if fine-tuning this factor is necessary for the emittance
compensation to be effective. We can see how much of an
effect the scaling factor has by plotting all three of these
plots together with the scaling factor used for the average
velocity spread, namely, 1.3. This plot is shown in Fig. 10,
and we see that all of the final phase spaces have, for the
most part, been made nearly linear, despite the scaling
factor being suboptimal for the low and high velocity
spreads. Indeed the emittances for these two cases have
only increased by 2 nm rad (10%) from their optimal
values.
Based on these results, it is reasonable to assume that the

changing velocity spread will not have a large effect on the
final shape of the phase space. Changing the velocity

TABLE I. Table of input parameters for the analytic model. The
three values for vf represent a low velocity spread, average
velocity spread, and high velocity spread, respectively. The
charge contained in the shell is roughly 5% of the total beam
charge.

Parameter Value

a0 0.6 mm
K 3.2 × 1010 s−1

λr 380 pC/m
vs 1.99 × 107 m=s
vf ð2.08; 2.24; 2.45Þ × 107 m=s
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spread by a total factor of 4 from the lowest to the highest
results in emittances that are within 10% of each other, and
the change is caused essentially entirely by a scaling factor
on the impulse.
Therefore, the impulse provided by the collapsing shell

is precisely the right shape to undo the curvature caused by
space charge in the gun. It provides a larger kick to the
radial tails than to the radial center as it collapses, and
straightens out the phase space, resulting in an emittance
decrease of more than a factor of 2. Recall from the
discussion in the introduction that the shell is precisely the
wavebroken shock front caused by the strongly nonlinear
space charge forces in the gun. Said another way, the phase
space nonlinearity in the gun develops such that this final
impulse from the collapsing shell compensates it.

IV. THE COLLAPSING SHELL MODEL
INCLUDING SPACE CHARGE

Now we extend our model to include the slowing of the
collapsing shell by the space charge forces of the beam,
where we will model the beam as being uniformly
distributed. This effect is responsible for the order of
magnitude increase in velocity spread during the collapse
that was not accounted for in the analytic model, which we
rectify in this section.

FIG. 9. Analytically calculated impulses and final phase spaces. Phase spaces are displayed with linear r − pr correlations removed.
Top row: impulses calculated from Eq. (11). Bottom row: final phase spaces. (a) Low velocity spread. (b) Average velocity spread.
(c) High velocity spread. The “impulse scaling factor” is an overall factor multiplying the applied impulse, which can be thought of as
representing different optimal shell charge densities in each case.

FIG. 10. Impulses and phase spaces for all the velocity spreads,
using the same scaling factor for all of them. Each color
represents the same data as they do in Fig. 9. The phase spaces
for the three cases with different velocity spreads are all roughly
straight, despite their optimal scaling factors being different.
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Let aðtÞ be the position of a shell particle with initial
velocity v as a function of time. The field from the beam
at a, assuming that a is inside the beam, is given by
Gauss’s Law:

E⃗ðaÞ ¼ r̂
ρa
2ϵ0

; ð14Þ

where ρ is the charge density of the beam. Taking rbðtÞ to
be the outer radius of the beam as a function of time, which
we will determine later, we have

ρðtÞ ¼ λb
πrbðtÞ2

; ð15Þ

so

E⃗ðaÞ ¼ r̂
λba

2πϵ0rbðtÞ2
; ð16Þ

where λb is the longitudinal charge density of the beam.
Thus, we can write the differential equation

äðtÞ ¼ q
m

λbaðtÞ
2πϵ0ðrbðtÞÞ2

; ð17Þ

with initial conditions

að0Þ ¼ a0; ȧðtÞ ¼ v: ð18Þ

We now need to determine rb, which is determined by the
effects of space charge on the beam itself.Wewill assume for
simplicity that the beam stays as a uniform cylinder as it
focuses.We start with the envelope equation in K-V form for
an infinitely long, uniform cylinder with radius rð0Þ ¼ r0:

̈rðtÞ − ε2

rðtÞ3 −
qEðtÞ
m

¼ 0; ð19Þ

where ε is the normalized emittance in units of
length × momentum.
By Gauss’s Law, we can compute EðtÞ as

EðtÞ ¼ ρðtÞrðtÞ
2ϵ0

; ð20Þ

where ρðtÞ is the charge density. We have

ρðtÞ ¼ λ

πr2
; ð21Þ

where λ is the linear charge density, which remains constant
through the process. We can now write the field

EðtÞ ¼ λ

2πϵ0rðtÞ
: ð22Þ

Equation (19) becomes

̈rðtÞ − ε2

rðtÞ3 −
qλ

2πϵ0mrðtÞ ¼ 0: ð23Þ

Since we are modeling the beam as an infinitely long
cylinder, charge that is at a radial position greater than that
of the test charge has no effect. Thus, the envelope equation
here holds true for all charges inside the cylinder as well,
since we can treat all the charge with radial position less
than r as an independent beam. Accounting for space
charge thus requires replacing the RHS of Eq. (6), the
r0ð1 − KtÞ in the denominator of Eq. (8), and the rbðtÞ in
Eq. (17) with the solution of Eq. (23).
This becomes intractable analytically, so we solve these

equations numerically instead, using the average velocity
spread from before. The results are shown in Fig. 11. Even
with the complications introduced from space charge forces
affecting the dynamics of the shell collapse, the overall
shape of the impulse is maintained. With an appropriate
scaling factor, the phase space can be linearized again. With
a scale factor of 1.1, the final emittance is only slightly
worse than the best case emittance from the previous

FIG. 11. Impulse and final phase space of a collapsing shell
with space charge forces taken into account in the dynamics of
the shell. We see that, even here, the overall shape is maintained,
and appropriate scaling can straighten out the phase space. The
final emittance (23.1 nm rad) is only slightly higher than the best
case from before (21.4 nm rad).
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examples (23.1 vs 21.4 nm rad). The difference is most
likely due to several factors including 3D effects, the initial
transverse extent of the shell, and forces applied by the shell
after tf.
We can perform a simple back-of-the-envelope calcu-

lation to determine the correction from the beam’s finite
longitudinal extent. The on-axis electric field from a
uniform disk of charge with surface charge density σ is
given by

Ez ¼
σ

2ϵ0

�
1 −

z

ðz2 þ a20Þ
1
2

�
: ð24Þ

We slice the beam longitudinally into disks, each with
charge density σ ¼ λbdξ

πa2
0

, where ξ is the longitudinal coor-

dinate in the beam’s rest frame, with ξ ¼ 0 defined as the
longitudinal center of the beam. The total electric field
at a point ξ ¼ z for a uniform cylinder of length L is then
given by

EzðzÞ ¼
λb

2πa20ϵ0

�Z
z

−L
2

�
1 −

z − ξ

ððz − ξÞ2 þ a20Þ
1
2

�
dξ

−
Z L

2

z

�
1 −

ξ − z

½ðξ − zÞ2 þ a20�
1
2

�
dξ

�
: ð25Þ

The contribution to the radial field from the longitudinal
field is given by Gauss’s Law. Due to superposition, we can
calculate the free space effect of the longitudinal field
derivative, which can then be added on to the previously
calculated radial field as a correction. We have

∂Ez

∂z
¼ λb

2πa20ϵ0

�
2þ z − L

2

ððz − L
2
Þ2 þ a20Þ

1
2

−
zþ L

2

ððzþ L
2
Þ2 þ a20Þ

1
2

�
:

ð26Þ

At z ¼ 0, this becomes

∂Ez

∂z
¼ λb

2πa20ϵ0

�
2 −

L

ððL
2
Þ2 þ a20Þ

1
2

�
: ð27Þ

Since this expression has no r dependence, near the
center of the beam, we can approximate the field as being
linear in r. Comparing this correction coefficient to the
expression in Eq. (16), we see that the correction is the
magnitude of the factor

2 −
L

ððL
2
Þ2 þ a20Þ

1
2

: ð28Þ

With our beam parameters, this represents a percent-level
correction to the space charge field.
Therefore, we see that a simple model of an infinitely

long cylindrical shell collapsing into an infinitely long

cylindrical beam produces the correct shape to fix the phase
space curvature, even after accounting for complications,
such as velocity spread and space charge dynamics.

V. SUMMARY

In summary, we have demonstrated that in simulation a
novel approach to nonlinear slice emittance compensation,
utilizing the wavebreaking characteristic of nonlinear space
charge forces in dense beams to undo the emittance
degradation caused by those very same nonlinear forces
on the core of the beam. The wavebroken shock front at the
edge of the beam is nonlaminarly focused, crashing through
the core of the beam and linearizing it in the process. We
have found that in simulated photoinjectors utilizing cut-
ting-edge low MTE photocathodes, the employment of this
wave-crashing linearization can reduce the emittance by
more than a factor of 2.
Furthermore, we have constructed a simple analytic

model of the wave-crashing process which agrees well
with simulation, showing that the curvature of the linear-
izing force arises from the large velocity spread inherent to
the wavebroken shock front. The extreme nonlinearity at
the edge of the beam, instead of being an undesired artifact,
becomes critical to the linearization of the core.
The charge forming this nonlinearity can subsequently

be discarded by an aperture. While the presence of a
physical aperture can exhibit wakefield effects that are
beyond the scope of this paper and are the subject of future
study, we note that in some applications a physical aperture
may not be required. In certain applications of high
brightness beams, such as FELs or inverse Compton
scattering, the sacrifical charge may not contribute mean-
ingfully to the radiation production and might be ignored
without the necessity of physically discarding it.
As higher brightnesses become necessary to push the

performance of the next generation of FELs and colliders,
the commensurate charge densities at the cathode demand
novel techniques of mitigating space charge-induced emit-
tance degradation. We have demonstrated one such tech-
nique, providing a potential path to taking full advantage of
the next generation of rf guns and photocathode.
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