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Numerical optimizations on couplers of the traveling-wave (TW) accelerating structures usually require
lots of calculation resources. This paper proposes a new technique for matching couplers to an accelerating
structure in a more efficient and accurate way. It combines improved Kroll method with improved Kyhl
method, thereby simplifying simulation process while achieving a high accuracy. This paper also presents
the detailed design on couplers for a C-band constant-gradient (CG) accelerating structure based on this
new technique. Such a new technique can be widely used for any TW accelerating structures working at
different frequencies of S-band, C-band, and X-band including CG, constant-impedance (CI), and other
structures with either electric couplers or magnetic couplers.
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I. INTRODUCTION

There has been a major effort to develop radiofrequency
(rf) technology that is capable of producing high accel-
erating gradients over the past few decades. This technol-
ogy includes S-band, C-band, and X-band traveling-wave
(TW) accelerating structures. S-band and C-band acceler-
ating structures usually generate gradients of 20–30 MV/m
[1–4] and 30–50 MV/m [5–9], respectively, while X-band
structures have obtained a gradient of 120 MV/m with a
pulse length of 200 ns [10–13]. For the realization of these
TW structures, it is of particular importance to carefully
design the couplers so that rf power is smoothly transmitted
into and out of the structure with negligible reflections. It
usually requires lots of simulation time for design of input
and output couplers.
A TW structure consists of a finite number of regular

accelerating cells and two couplers. Couplers can be
defined as “electric” or “magnetic” coupling, depending
on which type of field is coupled [14–15]. Each coupler has
a matching cell which is used for the matching between
regular cells and couplers. Different matching techniques
have been proposed and studied on the couplers over
the past few decades. One of the most representative

techniques is the equivalent circuit analysis. In 1963,
Kyhl and Westbrook proposed an equivalent circuit model
to measure the matching of couplers for a TW structure
working at 2π=3mode [16]. In this method, a metallic tuner
is moved to the center of the accelerating cells so that they
are short-circuited. Then the phases of global reflection
coefficient at frequencies for the π=2 mode and the 2π=3
mode are utilized to guide the adjusting direction of
matching of couplers to a TW structure. Since then, this
method is called the Kyhl method. In 1993, Kyhl method
has been further studied and extended to the matching of
the couplers to TW structures at any operating mode by
Chanudet [17]. It allows the input and output couplers to be
designed separately while the accelerating cells do not have
to be exactly tuned. In 2007, Alesini et al. [18] simplified
the equivalent circuit model to minimize the amplitudes of
global reflection coefficient from the input waveguide for
the matching of couplers to a TW structure. Zheng et al.
[19] derived the detailed quantitative equations for Kyhl
method instead of only giving the adjusting direction in the
process of matching couplers by using the coupling
coefficient β → 1 and frequency deviation Δf → 0 as
the design target for the matching couplers to a TW
structure. Afterward, this method has been widely used
in present coupler designs for TW structures. For example,
Zhang et al. at IHEP designed a 3π=4-mode C-band
structure based on Kyhl method [20]. Kyhl method works
to some extent for a constant-impedance (CI) structure as
the regular cell keeps constant for the whole structure.
However, an arbitrary reference of the coupler’s shorting
position and approximation errors lead to some uncertainty.
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The variations of regular cells might also result in a poor
optimization accuracy especially for a non-CI structure (see
Appendix B). In this case, the matching dimensions are not
that accurate using Kyhl method. So other methods have to
be considered to improve the accuracy on the matching of
couplers.
In 1990s, another approach was proposed for coupler

design by researchers at SLAC. Ng et al. described a
numerical simulation procedure for coupler design with
focusing on the scattering parameters of the whole TW
structure [21–22]. But the procedure for the tapered or
asymmetric structures was very complicated on account of
its multiobjective optimization process. Then Kroll et al.
proposed a new method that utilizes local reflection coef-
ficient for matching instead of simulating the global reflec-
tion coefficient [23]. It should also be noted that this method
is called the Kroll method in the following. In this situation,
the input and output couplers can be independently designed
for the matching process. This greatly simplifies the whole
optimization procedure while achieving the accuracy. Kroll
method has also been widely used in the design of TW
structures worldwide. For example, Fang et al. at SINAP
employed it to design the couplers of their C-band structures
[24]. Grudiev et al. at CERN utilized this method to design
their X-band TW structures for CLIC [25–28]. Although
Kroll method has greatly simplified matching process, we
still spend lots of time on sweeping multiple geometrical
parameters for finding optimum dimensions.
In order to resolve these issues, we propose a new

technique combining Kyhl method and Kroll method for
efficient coupler design in this paper. This new technique
greatly reduces the optimization time as well as achieving a
high accuracy. The couplers for a C-band TW structure are
designed by such a new technique. In Sec. II, both
improved Kroll and Kyhl methods for designing couplers
are analyzed in detail. In Sec. III, a new technique is
proposed and studied with an example of C-band structure.
Section IV gives summary and outlook.

II. COUPLER MATCHING TECHNIQUES BY
IMPROVED KROLL AND KYHL METHODS

A TW structure working at a mode of φ, consists of an
input coupler, four regular cells and an output coupler, as
shown in Fig. 1. Each coupler includes a waveguide and a
matching cell. The matching cells have different coupling
apertures and cell diameters. The rf power is transmitted
into and out of the structure through input and output
couplers, respectively. The matching cells are utilized to
achieve matching between the regular cells and couplers so
that rf power is transmitted into and out of regular cells with
negligible reflections. The optimizations focus on the
coupling apertures aci, aco and matching cell diameters
bci, bco, aiming to minimize the global reflection coefficient
jS11j at the input port and to maximize global transmission
coefficient jS21j from the input port to the output port. It

should be noted that the global reflection coefficient jS11j is
defined as looking into the input coupler from its wave-
guide port in this paper.

A. Improved Kroll method

In this section, Kroll method is described in detail for the
optimizations on the matching cells with coupling apertures
and matching cell diameters. It allows the input and output
matching cells to be designed independently. The local
reflection can be calculated from the simulated electric
fields on the beam axis. The longitudinal electric fields at
the center of three consecutive cells adjacent to the
matching cell, denoted as E1, E2, and E3 in Fig. 1, are
represented by the following equations:

E1 ¼ E0ðejφ þ jRjejðθ−φÞÞ; ð1Þ

E2 ¼ E0ð1þ jRjejθÞ; ð2Þ

E3 ¼ E0ðe−jφ þ jRjejðθþφÞÞ; ð3Þ

where E0 ¼ jE0jejα0 , R ¼ jRjejθ, jE0j is the amplitude of
forward fields, α0 is the initial phase of forward fields, jRj is
the amplitude of local reflection (20 log jRj is called as the
local reflection coefficient in the whole paper), θ is the
phase of local reflection, and φ is the phase advance
between regular cells. jE0j and jRj are the constants when
the structure is assumed to be lossless. Based on the above
equations and assumptions, the following definitions are
used to obtain R and φ for coupler design:

Δ ¼ E3 − E1

2E2

; ð4Þ

Σ ¼ E3 þ E1

2E2

; ð5Þ

φ ¼ cos−1Σ; ð6Þ

FIG. 1. The sketch of a TW structure consisting of an input
coupler, four regular cells, and an output coupler.
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R ¼ sinφ − jΔ
sinφþ jΔ

: ð7Þ

In contrast to previous methods using the scattering
parameters (S11 and S21) for the whole structure, Kroll
method focuses on the optimizations of the output coupling
aperture aco and cell diameter bco to achieve jRj → 0. When
jRj approaches zero, Δ converges to −j sinφ and Σ
converges to cosφ through Eqs. (4)–(7). One purpose of
achieving jRj → 0 is to obtain good field flatness and little
disturbance on the cell-to-cell phase advance. When the
output matching cell is not well designed, the local
reflection results in a worse field flatness, as illustrated
in Fig. 2. The other purpose of achieving jRj → 0 is to
avoid spurious matching that can be easily caused by the
cancellation of reflected waves from the input coupler and
output coupler. In the case of spurious matching, backward
waves still persist in the structure although there is no
reflection at the input port. Therefore, it is necessary to
achieve jRj → 0 in order to eliminate any reflections from
the output coupler. Afterward, the optimizations on the
input coupling aperture aci and matching cell diameter bci
are performed to achieve the global reflection coefficient
jS11j → 0 at the input port.
The above optimization process is based on the assump-

tions that jE0j and jRj are constant. However, these
assumptions are often not satisfied for most of TW
structures, such as a CI structure. This might dilute the
accuracy of Kroll method. It is found that the optimization
accuracy is mainly affected by the case of when jE0j is not
constant while the case of when jRj is not constant does not
have any impact on its accuracy. This has been discussed in
detail in Appendix A.
In order to improve Kroll method for any TW structures

including constant-gradient (CG) and non-CG structures,
we propose a new criterion R0 that focuses on the phases θ1,
θ2, and θ3 of the axial longitudinal electric fields E1, E2,

and E3 at the center of three consecutive cells, as shown in
Fig. 1. For a TW structure, in which jE0j is not constant in
Eqs. (1)–(3), E1, E2, and E3 are rewritten as

E1 ¼ jE1jejθ1 ¼ E01ðejφ þ jR0jejðθ−φÞÞ; ð8Þ

E2 ¼ jE2jejθ2 ¼ E02ð1þ jR0jejθÞ; ð9Þ

E3 ¼ jE3jejθ3 ¼ E03ðe−jφ þ jR0jejðθþφÞÞ; ð10Þ

where E01 ¼ jE01jejα0 , E02 ¼ jE02jejα0 , E03 ¼ jE03jejα0 ,
jE01j, jE02j, and jE03j are the amplitudes of forward fields,
α0 is the initial phase of forward fields, R0 is defined as the
local reflection, R0 ¼ jR0jejθ, jR0j is the amplitude of local
reflection, θ is the phase of local reflection, and φ is the
phase advance between regular cells. It should be noted
here that jR0j is assumed to be constant, which does not
have any effect on the accuracy of Kroll method.
The phases of E1, E2, and E3 can be expressed as

arg E1 ¼ argðE01ejφÞ þ argð1þ jR0jejðθ−2φÞÞ; ð11Þ

arg E2 ¼ arg E02 þ argð1þ jR0jejθÞ; ð12Þ

arg E3 ¼ argðE03e−jφÞ þ argð1þ jR0jejðθþ2φÞÞ: ð13Þ

Here the symbol “arg” is used to denote the phase of a
complex number. An approximation equation based on the
first-order Taylor expansion is utilized as follows:

argð1þ AejαÞ ≈ Asinα; ð14Þ

where A is a real value much smaller than 1, and α is an
arbitrary angle. By using Eq. (14), we obtain the phases as
follows:

θ1 ≈ α0 þ φþ jR0jsinðθ − 2φÞ; ð15Þ

θ2 ≈ α0 þ jR0jsinθ; ð16Þ

θ3 ≈ α0 − φþ jR0jsinðθ þ 2φÞ; ð17Þ

where φ is the phase advance between regular cells, and it
can be calculated by the real part of Σ. Combining
Eqs. (15)–(17), we obtain:

θ3 − θ2 ¼ −φþ jR0jðsinðθ þ 2φÞ − sinθÞ; ð18Þ

θ2 − θ1 ¼ −φþ jR0j½sinθ − sinðθ − 2φÞ�: ð19Þ

Then the phase θ and amplitude jR0j of the local reflection
can be obtained:

θ ¼ arctan

�
2θ2 − θ1 − θ3
θ3 þ 2φ − θ1

cotφ

�
; ð20Þ

FIG. 2. The worse electric field flatness caused by a local
reflection coefficient 20 log jRj ¼ −4 dB.
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jR0j ¼
���� θ3 − θ1 þ 2φ

2cosθ sin 2φ

����: ð21Þ

Therefore, the optimization target is to achieve jR0j → 0,
which is a new criterion as a substitution of jRj → 0.
A new criterion jR0j → 0 [Eq. (21)] and an original

criterion jRj → 0 [Eq. (7)] are utilized for the optimizations
on a CI structure, which is an example of non-CG struc-
tures. It can be found that jR0j and jRj are different to each
other for the same dimensions. As shown in Fig. 3(a), when
jR0j → 0, the optimum values of aco and bco corresponding
to point 2 are quite different with those of jRj → 0
corresponding to point 1. The simulated electric fields
from point 1 and point 2, respectively, are compared with
the theoretical calculated fields for a CI structure, as shown
in Fig. 3(b). It can be clearly seen that the electric fields
from point 2 corresponding to jR0j → 0 has an agreement
with the theoretical fields much better than those from point
1 corresponding to jRj → 0. This means that the new
criterion jR0j → 0 achieves an accuracy much better than
that of the original criterion jRj → 0 for CI structures. It can
be expected that this new criterion jR0j → 0 also works for
other TW structures, in which the accelerating fields are not
constant and gradually rise, such as an unloaded CLIC

structure [25–28]. Both criterions are also applied for
optimizations on a CG structure. It is found that both
criterions generate the same dimensions for matching
couplers, as shown in Fig. 4. This means that both cri-
terions work for optimizations on CG structures at a same
accuracy. Based on these studies, the new criterion jR0j → 0
improves and enables Kroll method for optimizations on
couplers to any TW structures including CG, CI, and other
structures.
The optimizations on aco and bco usually take a large

amount of time in order to achieve a local reflection
coefficient 20 log jR0j ≤ −45 dB, which usually meets
the requirement of realistic tuning. Parameter sweeping
has to be performed using different aco and bco, as shown in
Fig. 4. It can be also found in Fig. 4 that the optimum aco
and bco exhibit a narrow passband, which is typically in the
order of 50 μm. Such a narrow passband may result in a
time-consuming iterative process starting from random
dimensions of aco and bco. It is of particular importance
to find a good starting point for aco and bco using this
improved Kroll method.

B. Improved Kyhl method

In contrast to Kroll method, the phases of the global
reflection coefficient at different frequencies are utilized to
achieve matching by Kyhl method. Kyhl method allows to
match the couplers separately from the cell chain in the
design process. For a CI structure, Kyhl method works to
some extent as the regular cell keeps constant for the whole
cell chain. For a non-CI structure, the variations of regular
cells might result in a poor optimization accuracy for Kyhl
method. This has been described in detail in Appendix B.
Here we take the output coupler as an example to

describe Kyhl method. It also works for the design of
input coupler. The regular cell adjacent to the output
matching cell is simulated to obtain the frequencies for
π=2 mode and φ mode, denoted as f1 and f2, respectively.
First, a metallic plunger is moved to the center of the
matching cell so that it is short-circuited. The phases of

FIG. 3. (a) The relationship of local reflection coefficients
20 log jRj and 20 log jR0j with aco and bco for a CI structure.
(b) The normalized longitudinal electric fields for optimum
structures corresponding to point 1 and point 2 [see (a)],
respectively. τ is the attenuation factor for the regular cell.

FIG. 4. The relationship of local reflection coefficients
20 log jRj and 20 log jR0j with aco and bco for a CG structure.
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global reflection coefficient at f1 and f2 are denoted as φm1

and φm2, respectively. It should be noted that f1 and f2 can
be any frequencies within the passband. Subsequently, the
metallic plunger is moved to the center of the adjacent
regular cell. The phases of global reflection coefficient at f1
and f2 are denoted as φn1 and φn2, respectively. The phase
advances between the regular cell and the matching cell are
denoted as φ1 and φ2:

φ1 ¼ φn1 − φm1; ð22Þ

φ2 ¼ φn2 − φm2: ð23Þ

Then φ1 and φ2 are used to calculate the coupling
coefficient β and the frequency deviation Δf of the
matching cell by the following equations:

β ¼ tan φ1

2
tan φ2

2
ðf1 þ f2Þ

tanφðtan φ1

2
f2 − tan φ2

2
f1Þ

; ð24Þ

fco ¼
f1 þ f2

2
; ð25Þ

Δf ¼
ffiffiffiffiffiffiffiffiffiffi
f1f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan φ2

2
f2 − tan φ1

2
f1

tan φ2

2
f1 − tan φ1

2
f2

s
− fco: ð26Þ

These equations are derived with some mathematical
approximations. However, it allows the output coupler to be
optimized for matching by targeting β → 1 and Δf → 0.
Throughout the optimization process, it is observed that

β is significantly affected by aco, while Δf is simulta-
neously influenced by both bco and aco. In this situation, a
common strategy is to adjust aco to achieve β → 1, and then
bco is fine-tuned for Δf → 0. Compared to the iterations
required by Kroll method, Kyhl method runs much faster
with a common starting point. However, it is still very time-
consuming and takes dozens of iterations to achieve
convergence by Kyhl method. Therefore, we propose a
new strategy to greatly reduce the number of iterations so
that it saves lots of simulation time.
This new strategy is based on a linear analysis model

[29–30]. This model requires a linearity between β, Δf and
ac, bc for fast convergence. Based on the model, it can be
expressed as follows:

P ¼ ½dβ dðΔfÞ�T; ð27Þ

Q ¼ ½Δac Δbc�T; ð28Þ

W ¼
"

∂β
∂ac

∂β
∂bc

∂ðΔfÞ
∂ac

∂ðΔfÞ
∂bc

#
; ð29Þ

P ¼ WQ; ð30Þ

where P represents the variations of β and Δf. The Jacobi
matrix W can be obtained using finite difference between
these two sets of variables.
In a linear model, traditional gradient descent algorithms

have some limitations in terms of low efficiency and
divergence [31–32]. With the aim of achieving convergence
in as few iterations as possible, a line search algorithm is
utilized to optimize the linear model [33–34]. In this case,
the initial values can be arbitrarily chosen. The updated
equation is as follows:

xk ¼ ½ack bck�T; ð31Þ
yk ¼ ½βk Δfk�T; ð32Þ
y0 ¼ ½1 0�T; ð33Þ

xkþ1 − xk ¼ ηW−1ðy0 − ykÞ; ð34Þ
where ack, bck, βk, Δfk represent the coupling aperture,
matching cell diameter, coupling coefficient, and frequency

FIG. 5. (a) Δf and (b) β as a function of ac and bc. Each 3D-
plot is inserted with a linear fitting plane and r2 denotes the fitting
accuracy between a simulated plane and a fitting plane. When r2

is close to 1, the simulated plane has a good linearity on ac and bc.
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deviation in the kth iteration. The descent direction is
chosen as ηW−1, the step length is chosen as y0 − yk, and
the learning rate η is set to 1. By this equation, the linear
model achieves convergence in just a few iterations with a
good linearity of W. It should be noted that W can be only
initialized once in the simulations.
Figure 5 shows three-dimensional (3D) plots for the

dependences of Δf and β on ac and bc. It can be clearly
seen in Fig. 5(a) thatΔf has a good linearity on ac and bc. It
can be also found that β has a linearity on bc while β does
not have a linearity on ac within a broad range through
simulations, as shown in Fig. 5(b). This may result in
divergence in a linear model with a line search algorithm.
In order to improve the efficiency for our optimization

process, an algebraic transformation [35] is required to
improve the linearity between β and ac. This transformation
aims to mitigate the impact of nonlinearities and increase the
overall linearity of the model. Based on the simulations in
Fig. 5, an algebraic transformation is applied to β:

gðβÞ ¼ lnð1þ hÞ
lnð1þ h

βÞ
: ð35Þ

The function g is continuously differentiable within the
range of β. In our case, h is chosen to be 50, which is
enough to generate a good linearity. It can be seen in Fig. 6

that gðβÞ has a good linearity on ac and bc. It ultimately
expedites the overall optimization process by Kyhl method.
Table I shows the fitting accuracy of Δf, β, and gðβÞ for
TW structures with electric and magnetic couplers. It can
be found that gðβÞ has a linearity much better than that of β
on ac and bc for both couplers. This verifies the validity of
the transformation.
The optimization flowchart is shown in Fig. 7. We have

written a python script to drive HFSS solver [36] for the
optimizations on the dimensions of couplers in an auto-
mated fashion. As for the typical geometries, the script can
converge in just a few iterations, regardless of the parameter
initialization.

III. NEW MATCHING TECHNIQUE

In this section, a new technique combining improved
Kyhl method and Kroll method is proposed and studied on
couplers for TW accelerating structures. Based on the
analysis and improvements on these two methods, in order
to verify such a new technique, a C-band CG accelerating

FIG. 6. gðβÞ as a function of ac and bc, it is inserted with a
linear fitting plane and r2 denotes the fitting accuracy between a
simulated plane and a fitting plane.

TABLE I. Fitting accuracy of Δf, β, and gðβÞ for different
couplers.

Fitting accuracy r2

TW structures Δf β gðβÞ
Electric coupler 0.972 0.840 0.974
Magnetic coupler 0.993 0.896 0.994

FIG. 7. The optimization program flowchart with the line
search algorithm.

FIG. 8. The cell geometry with elliptical fillets and curved tops.
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structure working at 3π=4 mode is utilized as an example.
The cell geometry consists of elliptical fillets and curved
tops, as illustrated in Fig. 8. Through optimizations, the rf
parameters for the whole structure are listed in Table II. The
electric couplers are adopted to transmit rf power into and
out of the structure.
The new technique combines improved Kyhl method

and improved Kroll method for the optimizations on the
couplers (focus on the matching cells). In order to avoid
spurious matching, the output coupler is optimized first
using this new technique. A short C-band structure con-
sisting of an input coupler, four regular cells, and an output
coupler is modeled for the simulations, as shown in Fig. 9.
It should be noted here that the regular cells are the four last
cells adjacent to the output matching cell while the input
coupler is only for this short structure rather than for the
whole structure. In the first step, improved Kyhl method is
utilized to optimize the coupling aperture aco and cell
diameter bco. By moving a metallic plunger into the
center of sixth and fifth cells, respectively, the coupling
coefficient βout and frequency deviation Δfout can be
obtained using Eqs. (8)–(12). A linear model as described

in Sec. II is employed for the optimizations on the coupling
aperture aco and cell diameter bco. It only takes a few
iterations to converge even for arbitrary initial values
of βout ¼ 0.777 and Δfout ¼ 151.04 MHz, as shown in
Table II. After achieving convergence by improved Kyhl
method, the longitudinal electric fields on the beam axis are
depicted as red curve in Fig. 10. Using Eqs. (15)–(21),
these electric fields exhibit a local reflection coefficient
20 log jR0j ¼ −36 dB. Such a reflection may cause a phase
disturbance for each cell, thus affecting the matching of
input coupler. To address this issue, further optimization is
required by improved Kroll method. Given that improved
Kyhl method has already brought the variations of aco and
bco into the passband, very close to the desired matching
dimensions, only a few iterations are required to converge
for the final matching. So in the next step, the improved
Kroll method is employed to achieve a perfect matching
using the starting points from improved Kyhl method. After
optimizations by improved Kroll method, the longitudinal
electric field on the beam axis is depicted as blue curve in
Fig. 10. In this case, we obtain a local reflection coefficient
20 log jR0j ¼ −56 dB, which improves a lot as compared
with that of improved Kyhl method. Due to the asymmetry
of the structure (variations of regular cells) and approxi-
mation in Kyhl method, the output coupler is actually
undercoupled, as indicated in Table III. These simulations
take about 2–3 h to get very accurate dimensions for the
output coupler using the new technique even on a common
private computer. This is much faster than that of only using
Kroll method which may take about several days to sweep
parameters for this structure.
After optimizations on the output coupler for the whole

structure, we use the same technique to design the input
coupler (focus on the input matching cell). Another short

TABLE II. Parameters of the whole C-band structure.

Parameters Value Unit

Operating frequency f 5712 MHz
Operating mode 3π=4 rad
Number of cells 44þ 2
Cell length d 19.682 mm
Disk thickness 2ae 2.5 mm
Iris 2a 12.5 − 10.466 mm
Cell diameter 2b 43.837 − 43.374 mm
Shunt impedance Rs 89.6 − 98.5 MΩ=m
Quality factor Q 12022 − 11959
Group velocity vg=c 1.585% − 0.848% c
Filling time tf 253 ns
Attenuation factor τ 0.3781

FIG. 9. The modeling of a short C-band structure consisting of
an input coupler, four regular cells, and an output coupler.

FIG. 10. The normalized electric fields simulated by improved
Kroll and Kyhl methods. The red curve denotes fields by
improved Kyhl method while the blue curve denotes fields by
improved Kroll method.
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C-band structure consisting of an input coupler, four regular
cells, and an output coupler ismodeled for the simulations. In
this case, the regular cells are the four first cells adjacent to the
input matching cell while the output coupler is only for this
short structure rather than for the whole structure. Through
sweeping different coupling aperture aci and matching cell
diameter bci, the global reflection coefficient jS11j can be
minimized at the input port. Thus the optimum dimensions
can be obtained for the inputmatching cell. It should be noted
that the couplers can be either electric or magnetic couplers.
In conclusion, this new technique greatly simplifies the
design process and achieves a high accuracy for matching
couplers to this C-band structure.

IV. SUMMARY

In this paper, a new criterion jR0j → 0 is proposed to
improve and enable Kroll method to work for any TW
structures, including CG, CI, and other structures. We have
also improved Kyhl method using a linear model, which
greatly reduces calculation time. This improved Kyhl
method can be used to combine with improved Kroll
method to form a new design technique on couplers for
TW accelerating structures. Such a new technique greatly
simplifies optimization process and achieves high accuracy.
The couplers of a C-band accelerating structure have been
designed by this new technique. It takes only several hours
to complete the whole structure design. As compared with
the existing matching methods which usually take about
several weeks, our new technique is more efficient.
This new technique can be widely used for any TW

accelerating structures working at different frequencies of
S-band, C-band, and X-band including CG, CI, and other
structures with either electric couplers or magnetic cou-
plers. It is also foreseen that a new tuning strategy can be
also formed based on this new technique. This will be
reported in separate publications.
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APPENDIX A

For TW accelerating structures, the accelerating gradient
E for a regular cell can be expressed as follows:

Pout ¼ Pine
− ωd

Qvg ; ðA1Þ

E2 ¼ ωRsPin

Qvg
; ðA2Þ

where Pin, Pout, ω, d, Q, vg, and Rs represent the input
power, output power, angular frequency, cell length,
unloaded quality factor, group velocity, and shunt imped-
ance for a regular cell, respectively. Figure 11 shows the
rf wave propagating through three consecutive regu-
lar cells.
(i) When these these consecutive regular cells form a CG

structure, we can obtain the following equations using
Eqs. (A1)–(A2):

ωPRs

Qvg1
¼ ωPRse

− ωd
Qvg1

Qvg2
; ðA3Þ

ωPRs

Qvg2
¼ ωPRse

− ωd
Qvg2

Qvg3
; ðA4Þ

TABLE III. Optimization process of the output coupler.

Iteration aco (mm) bco (mm) β Δf (MHz) jR0j (dB) Methods

1 16.600 43.0000 0.777 151.04 � � � Initialization Improved Kyhl method
2 16.766 43.0000 0.835 155.07 � � � Initialize the first column of W
3 16.766 44.0544 0.647 −13.09 � � � Initialize the second column of W
4 17.810 44.1314 0.974 −3.31 � � � Optimization
5 17.870 44.1198 1.000 −0.22 � � � Optimization
6 17.870 44.1184 1.000 0.01 −36 Converge
7 17.770 44.1032 0.964 0.16 −56 Refinement Improved Kroll method

FIG. 11. The sketch of an rf wave propagating through three
consecutive regular cells.

HUANG, WEI, CAO, SUN, FENG, and ALESINI PHYS. REV. ACCEL. BEAMS 27, 082001 (2024)

082001-8



where P is the input power for the first cell, which is
denoted as 1, vgi is the group velocity for the ith cell
(i ¼ 1; 2; 3), Q and Rs are assumed to be constant for each
cell. For a CG structure, Eqs. (1)–(3) from an original Kroll
method can be modified as

E1 ¼ E0ðejφ þ jR1jejðθ−φÞÞ; ðA5Þ
E2 ¼ E0ð1þ jR2jejθÞ; ðA6Þ

E3 ¼ E0ðe−jφ þ jR3jejðθþφÞÞ; ðA7Þ

where jRij is the amplitude of local reflections for the ith
cell (i ¼ 1; 2; 3). The local reflections for the ith cell are
calculated by Eq. (A2):

jR2
i jE2

0 ¼
ωPrefiRs

Qvgi
; ðA8Þ

Pref 1 ¼ Pref 2e
− ωd

Qvg2 ¼ Pref 3e
− ωd

Qvg2
− ωd
Qvg3 : ðA9Þ

Using Eqs. (A3), (A4) and (A8), (A9), we obtain the
following equations:

jR2
1j ¼

vg2e
− ωd

Qvg2

vg1
jR2

2j ¼ e
− ωd

Qvg1
− ωd

Qvg2 jR2
2j; ðA10Þ

jR2
2j ¼

vg3e
− ωd

Qvg3

vg2
jR2

3j ¼ e
− ωd

Qvg2
− ωd

Qvg3 jR2
3j: ðA11Þ

The attenuation factors of these three adjacent cells are
denoted as τi ¼ ωd

2Qvgi
(i ¼ 1; 2; 3). And for a conventional

CG structure, τi is usually on the order of 10−2, much
smaller than one. Therefore, we have the approximations:

e−τi ≈ 1 − τi; ðA12Þ
e−τ1 ≈ e−τ2 ≈ e−τ3 ≈ e−τ; ðA13Þ

jR3j þ jR1j ≈ jR2jð2þ τ1 − τ3Þ ≈ 2jR2j: ðA14Þ

Then Eqs. (4)–(7) are rewritten as follows:

Σ ¼ cosφþ jðe−2τ − e2τÞsinφ
1þ 1

jR2jejθ
; ðA15Þ

Δ ¼ −j sinφ 1 − jR2jejθ
1þ jR2jejθ

þ ðe−2τ − e2τÞ cosφ
1þ 1

jR2jejθ
; ðA16Þ

jR2j ¼
���� sinφ − jΔ
sinφþ jðΔ − ðe−2τ − e2τÞ cosφÞ

����: ðA17Þ

The amplitudes of the local reflections for each cell
have the relationships as indicated in Eqs. (A10) and (A11).

It can be calculated that as the amplitude of local reflection
jR2j for the second cell approaches zero, Δ converges to
−j sinφ and the real part of Σ converges to cosφ through
Eqs. (A15)–(A17). This is the sameas that usingEqs. (4)–(7).
Therefore,when jRj is not constant inEqs. (1)–(3), it does not
have any effect on the optimization results.
(ii) When these three consecutive regular cells form a CI

structure, the amplitudes of forward fields are attenuated by
a factor of e−τ after traveling through a regular cell. In this
case, Eqs. (1)–(3) can be modified as

E1 ¼ E0ðejφ þ jRjejðθ−φÞÞ; ðA18Þ

E2 ¼ E0ðe−τ þ eτjRjejθÞ; ðA19Þ

E3 ¼ E0ðe−2τe−jφ þ e2τjRjejðθþφÞÞ; ðA20Þ

where τ is the attenuation factor for each cell and
R ¼ jRjejθ. Equations (4)–(7) are calculated as

Σ ¼ E3 þ E1

2E2

¼ cosðφÞð1þ e−2τÞ − jðe−2τ − 1Þ sinφ
2e−τ

≈ cosφ − j
ðe−2τ − 1Þ sinφ

2e−τ ; ðA21Þ

Δ ¼ E3 − E1

2E2

¼
�
e−2τ − 1

2e−τ cosφþ j
e−2τ þ 1

2e−τ sinφ

�

×
1 − Re2τ

1þ Re2τ
≈
1 − Re2τ

1þ Re2τ
ð−τ cosφ − j sinφÞ; ðA22Þ

Re2τ ¼ sinφ − jτ cosφ − jΔ
sinφ − jτ cosφþ jΔ

: ðA23Þ

Through R → 0 at Eq. (7), we obtain Δ → −j sinφ, so
the local reflection for the second cell is calculated by
Eq. (A23):

Re2τ ¼ −jτ cosφ
2 sinφ − jτ cosφ

: ðA24Þ

In this situation, there are also local reflections Re−j2φ
and Re4τej2φ generated for the first cell (denoted as 1) and
the third cell (denoted as 3), respectively. These reflections
result in a poor field flatness inside cells, thereby diluting
the accuracy of Kroll method. This means that when jE0j is
not constant for each regular cell, the optimization results
are not accurate using Kroll method. To eliminate these
reflections, a new criterion is proposed in Sec. II A. This
new criterion utilizes the phases of axial electric fields to
achieve a high accuracy regardless of the variations of cell
geometry and power attenuations. This new criterion can be
applied to match any couplers to any TW accelerating
structures including CG, CI, and other structures.
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APPENDIX B

Based on Ref. [17], the equivalent circuit of a CI
structure is depicted in Fig. 12(a). The difference equation
and the dispersion can be expressed as

Ipþ1 − Ip

�
−ω2LC0 þ C0

C
þ 2

�
þ Ip−1 ¼ 0; ðB1Þ

ω2 ¼ 1

LC
þ 2

LC0 ð1 − cosφÞ: ðB2Þ

The characteristic impedance for each regular cell is
Z ¼ 2

ωC0 tanðφ2Þ ∼ ðωπ − ω0Þ. In a non-CI structure, as
shown in Fig. 12(b), the dispersion is modified as follows:

ω2
i ¼

1

LiCi
þ 1

L

�
1

C0
i
þ 1

C0
iþ1

�
ð1 − cosφÞ: ðB3Þ

In a non-CI structure, the characteristic impedance Zi for
the ith cell (i ¼ 1; 2; 3;…) varies linearly and slowly with
cells, which results in reflections for each cell. The differ-
ence between Zi and Ziþ1 is much smaller than Zi:

Zi

Ziþ1

≈
Ziþ1

Ziþ2

≈ 1: ðB4Þ

A transmission line model is utilized for analyzing a
φ-mode structure consisting of n cells, as shown in
Fig. 13. The output coupler is matched well, which
corresponds to R0 ¼ 0. Here we define:

Rf ¼
Zi
Ziþ1

− 1

Zi
Ziþ1

þ 1
≈

Zi
Ziþ1

− 1

2
: ðB5Þ

Based on Eq. (B4), Rf can be approximated as a constant
value, which is much smaller than one. The reflection at the
ith plane Ri can be calculated by the recursive relationship
between Ri and Riþ1:

Riþ1 ¼
Zi
Ziþ1

1þRie2jφ

1−Rie2jφ
− 1

Zi
Ziþ1

1þRie2jφ

1−Rie2jφ
þ 1

¼
ð2Rf þ 1Þ

�
1þ 2Rie2jφ

1−Rie2jφ

�
− 1

ð2Rf þ 1Þ
�
1þ 2Rie2jφ

1−Rie2jφ

�
þ 1

: ðB6Þ

When Ri ≪ 1 and Rf ≪ 1, it can be approximated as

Riþ1 ≈
ð2Rf þ 1Þð1þ 2Rie2jφÞ − 1

ð2Rf þ 1Þð1þ 2Rie2jφÞ þ 1

¼ 2Rf þ 2Rie2jφ þ 4RiRfe2jφ

2Rf þ 2Rie2jφ þ 4RiRfe2jφ þ 2

≈ Rie2jφ þ Rf: ðB7Þ

By further rearranging this recursive relationship, we can
obtain:

Ri

e2jφ�i
− Ri−1
e2jφ�ði−1Þ

¼ Rf

e2jφ�i
: ðB8Þ

(i) In the case of R0 ¼ 0, Ri can be obtained by summing
Eq. (B8) from 1 to i:

Ri ¼
Xi

l¼1

Rfe2jðl−1Þφ ¼ Rf
1 − e2jφ�i

1 − e2jφ
: ðB9Þ

It can be derived from Eq. (B9) that when e2jφ�i ¼ 1,
Ri ¼ 0. So we get 2φ � i ¼ 2pπ, where p ¼ 1; 2; 3;….
When φ ¼ 120° and i ¼ 3m (m ¼ 1; 2; 3;…), R3m ≈ 0.
However, in this situation, R3m−1 ¼ −Rfe2jφ ≠ 0 and
R3m−2 ¼ Rf ≠ 0. The electric fields of the three cells
can be expressed by

E3m−2 ¼ E3m−2;0ð1þ RfÞ; ðB10Þ

E3m−1 ¼ E3m−1;0ð1 − Rfe2jφÞ; ðB11Þ

FIG. 12. The equivalent circuits of CI (a) and non-CI (b)
structures.

FIG. 13. The transmission line model for a CG structure
consisting of n cells with a matched output coupler.
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E3m ¼ E3m;0; ðB12Þ

E3m−2;0 ¼ ejφE3m−1;0 ¼ e2jφE3m;0; ðB13Þ

where Ei;0 is the forward electric field of the ith cell. This
field distribution means that there are reflections remaining
in the adjacent regular cells. These reflections result in a
poor field flatness, thereby diluting the accuracy of Kyhl
method.
In order to eliminate the reflections, the output coupler

has to be unmatched (R0 ≠ 0).
(ii) In the case of R0 ≠ 0, as shown in Fig. 14, we

rearrange Eq. (B7) in a way different from Eq. (B8):

Riþ1 ¼ e2jφRi þ
Rf

1 − e2jφ
ð1 − e2jφÞ; ðB14Þ

Riþ1 − Rf

1 − e2jφ
¼ e2jφ

�
Ri − Rf

1 − e2jφ

�
: ðB15Þ

It can be found from Eq. (B15) that when R0 ¼ Rf

1−e2jφ, Ri

is equal to R0 for any i ≥ 0 (i ¼ 0; 1; 2; 3;…; n). This
means that the reflections Ri have the same amplitudes and
phases for all of regular cells. So the input coupler has to be
carefully designed to cancel the reflections Rn in order to
minimize the global reflection coefficient jS11j at the input
port. This generates a very good field flatness with correct
phase advances between each cell. These analyses can be
applied to all non-CI structures including CG and other
structures.
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