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Nonuniform transmission lines (NTLs) are widely used in pulsed power accelerators because they
provide an efficient way to achieve impedance matching and pulse shaping. Since designing and
constructing these accelerators typically demands substantial effort, finding the optimal impedance profile
to maximize the power transmission efficiencies of the NTLs is important. In this paper, a convenient
numerical method to determine the optimal impedance profile is proposed. First, the output of the NTL
with arbitrary parameters is theoretically analyzed under arbitrary input conditions. It was found that only
four factors affect the power transmission efficiency: the ratio of output impedance to input impedance, the
ratio of input pulse width to the NTL’s one-way transit time, the normalized impedance profile, and the
normalized input pulse. Based on these findings, a method designed to minimize the reflected component
within the working frequency range is proposed. Using this method, an impedance profile demonstrating
superior power transmission efficiency compared to the traditional exponential profile is identified. This
work can provide a rapid and effective method to determine the impedance profile of the NTL, undoubtedly
benefiting the design process of pulsed power accelerators.
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I. INTRODUCTION

Nonuniform transmission lines (NTLs) are an efficient
way to achieve impedance matching and pulse shaping, and
are therefore, widely used in pulsed power accelerators,
such as high-gradient particle accelerators [1] and Z-pinch
accelerators [2–6]. For example, in the recently published
designs of petawatt-class Z-pinch accelerators [2–4], the
monolithic water-insulated radial transmission line used to
combine and transmit the outputs of several hundred
generators is a type of NTL.
Among various impedance profiles, the exponential

nonuniform transmission line (ENTL) is frequently
selected for its superior transmission efficiency
[2–4,7–10]. Zhang et al. adopted the circuit simulation
and demonstrated that the ENTL has a higher power
efficiency than the Gaussian NTL [7]. Similarly,
Hu et al. proposed that the ENTL has higher power
efficiencies than the Gaussian and linear NTLs [8].
However, Welch et al. investigated some specific cases

and found that the optimal impedance profile gradually
deviates from an exponential form as the pulse width to
one-way transit time ratio increases from zero [9].
Most of the previous researches on the optimal imped-

ance profile employed circuit simulations to evaluate the
power transmission efficiency of various impedance pro-
files, given predefined NTL parameters, that is, input
impedance, output impedance, and one-way transit time.
Although a numerical approach to determine the optimal
impedance profile for specific input pulse shape and width
has been introduced [9], this method fundamentally relies
on an exhaustive search. The precision of this approach
depends on the number of discrete elements used and the
initial impedance profile selection. Achieving an accurate
optimal impedance profile necessitates a substantial num-
ber of discrete elements, which can significantly increase
computational efforts. Given the extensive design and
construction efforts required for future petawatt-class
pulsed-power accelerators, enhancing our understanding
of NTLs and developing effective strategies to find the
optimal impedance profile is crucial.
In this paper, the transmission characteristics of NTLs

are analyzed and a rapid and effective method to determine
the optimal impedance profile is proposed. In Sec. II, the
output of NTLs under varying input conditions and
arbitrary parameters is theoretically analyzed. The method
to find the optimal impedance profile is put forward and
verified in Sec. III. The conclusion is presented in Sec. IV.
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II. TRANSMISSION CHARACTERISTICS OF NTL

Figure 1 illustrates a schematic of a variable impedance
profile ZðxÞ of the NTL and an arbitrary input voltage pulse
UinðtÞ. The input impedance is Zin at x ¼ 0, and the output
impedance is Zout at x ¼ L. The pulse width of the input
pulse is T. To investigate the transmission characteristics of
the NTL, it is assumed that both the input and output are
connected to a matched constant-impedance transmis-
sion line.
To streamline the analysis, both the impedance profile

and the input pulse are normalized as per Eqs. (1) and (2).
The corresponding schematic representations are depicted
in Fig. 2:

Z̄ðx̄Þ ¼ Zðx̄LÞ − Zin

Zout − Zin
; ð1Þ

Ūinðt̄Þ ¼ Uinðt̄TÞ: ð2Þ

The transmission characteristics of the NTL are analyzed
in the frequency domain. For frequency analysis, the input
voltage is a continuous sine wave, which can be represented
as Aejωt in phasor, where A denotes the amplitude and ω
denotes the angular frequency. For the NTL, the one-way
transit time is T line and the root mean square of Zout=Zin is
denoted as ρ0. Due to impedance variation in the NTL, the
input voltage will undergo both transmission and reflection
when transmitting, as previously described in Refs. [11–13].
The components that have undergone an odd number of
reflectionswill arrive at the inlet of theNTL, consisting of the
reflected voltage. The components that have undergone an

even number of reflections will arrive at the outlet of the
NTL, consisting of the output voltage. Given that the
optimization aims to increase the output voltage, the com-
ponents that make up the output voltage are discussed in this
section. The frequency response of the components contrib-
uting to the output voltage is presented in Appendix A. All
the components are the functions of ρ0, Z̄ðx̄Þ and T line.
For an arbitrary input voltage pulse UinðtÞ, its Fourier

spectrum is

FinðωÞ ¼
Z

T

0

UinðtÞe−jωtdt ¼ T
Z

1

0

Ūinðt̄Þe−jωt̄Tdt̄: ð3Þ

As observed, FinðωÞ is a function of Ūinðt̄Þ and T.
Considering that the spectrum of the output pulse is derived
from the multiplication of the input pulse’s spectrum and
the frequency response, the output pulse is determined by
ρ0, Z̄ðx̄Þ, T line, Ūinðt̄Þ, and T.
Further analysis reveals that the effects ofT andT line on the

normalized output pulse are interconnected. Specifically,
maintaining a constant T=T line, the output pulse normalized
in time is constant. An illustration of this concept is provided
by considering the output component that has been reflected
twice, where its frequency response is

Fout;N¼2ðωÞ ¼ Hout2ðωÞFinðωÞ: ð4Þ

It is straightforward to demonstrate that when both T and
T line are scaled up by a factor of n, there exists a relation-
ship where

Fout;N¼2ðω; nT; nT lineÞ ¼ nFout;N¼2ðnω; T; T lineÞ: ð5Þ

The time domain waveform of this component can be
calculated from the Fourier inverse transform, and there
exists

Uout;N¼2ðt; nT; nT lineÞ ¼ Uout;N¼2ðt=n; T; T lineÞ: ð6Þ

It can be seen that when both T and T line are scaled by a
factor of n, the shape of this output component remains the
same, while its width increases proportionally by n. This
conclusion similarly applies to other components, confirm-
ing that the normalized output pulse remains constant when
the T=T line ratio is preserved. Therefore, the normalized
output pulse is the function of only four parameters and
they are ρ0, Z̄ðx̄Þ, Ūinðt̄Þ, and T=T line.
Following precedents set in Refs. [7–9], the optimization

criterion for the impedance profile is chosen to be the
power transmission efficiency. Since the efficiency is only
related to the ratio between the normalized input and output
pulses, four factors affect the power transmission efficiency
and they are ρ0, Z̄ðx̄Þ, T=T line, and Ūinðt̄Þ. Taking an ENTL
and a half-sine input wave as an example, the power
transmission efficiency as a function of ρ0 and T=T line is

FIG. 1. Schematic of the impedance profile of the NTL (a) and
the input pulse (b).

FIG. 2. Schematic of the normalized impedance profile of the
NTL (a) and the normalized input pulse (b).
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shown in Fig. 3. In the long-pulse limit, that is,
T=T line → ∞, the power transmission efficiency converges
toward the low-frequency result.

III. METHOD TO OPTIMIZE
IMPEDANCE PROFILE

Section II analyzes the factors influencing power trans-
mission efficiency. Given that the input impedance and
output impedance are determined by the pulse source and
load, respectively, the value of ρ0 is typically predetermined
at the design stage. Consequently, this paper aims to
optimize the normalized impedance profile Z̄ðx̄Þ under
various conditions of ρ0, T=T line, and Ūinðt̄Þ.
Although deriving a general analytical expression for the

optimal impedance profile may be unfeasible, a convenient
numerical method is proposed in this paper. This method
primarily aims to minimize the reflected component within
the working frequency range of the NTL. As the NTL
functions as a linear passive two-port network, reducing
the reflected component inherently boosts the output com-
ponent and, subsequently, enhances power transmission

efficiency. Previous studies have shown that the component
reflected once predominantly constitutes the reflected pulse
in pulsed power applications [11–14]; thus the analysis will
focus solely on this component.
This section is divided into two parts: the first details the

numerical method, and the second presents a case study to
demonstrate its efficacy.

A. Method introduction

For the component reflected once, its frequency
response is

Γ1ðωÞ ¼
Z

L

0

dðlnðZðxÞÞÞ
2dx

e−jωT line2x=L: ð7Þ

For simplicity, dðlnðZðxÞÞÞ=ð2dxÞ is denoted as NðxÞ,
and the relationship between ZðxÞ and NðxÞ is

ZðxÞ ¼ e
R

2NðxÞ: ð8Þ
The objective function of this method is to minimize the

integral of the reflected component over the working
frequency range. Since the spectrum of the input pulse
varies across different frequencies, this spectrum is incor-
porated as a weighting factor in the optimization process.
Consequently, the objective function is defined as the
weighted integral of the squared magnitude of the reflected
component, effectively prioritizing frequencies where the
input pulse has higher spectral content. The objective
function is shown in Eq. (9). ω1 and ω2 are the minimum
and maximum frequencies of the working frequency range
of the NTL, respectively, andWðωÞ is the magnitude of the
input pulse spectrum.
The function NðxÞ, which is directly influenced by the

impedance profile ZðxÞ, is the target of our optimization
strategy. To facilitate the optimization, NðxÞ is expressed as
a polynomial function using Taylor expansion, where the
polynomial is defined up to a maximum order of k, as
shown in Eq. (10). By solving for NðxÞ, we effectively seek
to minimize the objective function, optimizing the imped-
ance profile for enhanced transmission efficiency:

Pref1 ¼
Z

ω2

ω1

jΓ1ðωÞj2WðωÞdω

¼
Z

L

0

Z
L

0

NðxÞNðx0Þ

×
Z

ω2

ω1

WðωÞ cosð2ωT lineðx0 − xÞ=LÞdωdxdx0; ð9Þ

NðxÞ ¼
Xk
i¼0

aixi: ð10Þ

By solving for the coefficients ai, the expression for
NðxÞ is derived, and then ZðxÞ can be determined. It is
crucial that k, the maximum order of expansion, is

FIG. 3. Power transmission efficiency (a) and normalized
power transmission efficiency (b) as a function of ρ0 and
T=T line for an ENTL and a half-sine input wave.
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sufficiently large to encompass a comprehensive range of
impedance profiles. By substituting Eq. (10) into Eq. (9),
we have

Pref1 ¼
Xk
i¼0

Xk
j¼0

aiajfði; jÞ; ð11Þ

where

fði; jÞ ¼
Z

L

0

Z
L

0

Z
ω2

ω1

xix0jWðωÞ cosð2ωT lineðx0 − xÞ=LÞ

× dωdxdx0: ð12Þ

Those coefficients ai (i ¼ 0; 1; 2; ...; k) are not indepen-
dent of each other, and only the coefficients ai
(i ¼ 1; 2; ...; k) need to be solved. Taking this limitation
into consideration, the expression of Pref1 is presented in
Appendix B. To minimize Pref1, Pref1 performs partial
differentiation on each unknown quantity ai and sets the
result to zero, as shown in Appendix B. Finally, a matrix
equation can be obtained

2
6666664

Að1; 1Þ Að1; 2Þ � � � Að1; kÞ

Að2; 1Þ Að2; 2Þ ..
.

..

. . .
. ..

.

Aðk; 1Þ � � � � � � Aðk; kÞ

3
7777775

2
666664

a1
a2

..

.

ak

3
777775
¼

2
666664

Bð1Þ
Bð2Þ
..
.

BðkÞ

3
777775
;

ð13Þ

where

8<
:

Aði; nÞ ¼ 2Liþnfð0;0Þ
ðiþ1Þðnþ1Þ−

2Li

iþ1
fð0; nÞ− 2Ln

nþ1
fð0; iÞ þ 2fði; nÞ

BðnÞ ¼ 1
L ln

Zout
Zin

�
Ln

nþ1
fð0;0Þ− fð0; nÞ

� :

ð14Þ

By solving this matrix equation, those coefficients ai can
be calculated, and hence ZðxÞ is obtained using the below
equation:

ZðxÞ ¼ Zin exp

�
ln
Zout

Zin
þ
Xk
n¼1

2an
nþ 1

ðxnþ1−Lnþ1Þ
�
: ð15Þ

In summary, the method for optimizing the impedance
profile is structured into four sequential steps: (i) perform the
Fourier transform on the input pulse and calculate the
amplitude of its spectrum, that is, WðωÞ; (ii) set an initial
value for k and utilize Eqs. (12) and (14) to derive Eq. (13).
Solving Eq. (13) allows for the determination of the
coefficients ai: (iii) substitute those coefficients into
Eq. (15) to calculate the impedance profileZðxÞ; (iv) increase
the value of k and repeat steps 2 and 3. If changes in ZðxÞ are

negligible, consider ZðxÞ as the optimal impedance profile.
If there is a non-negligible change in ZðxÞ, increase k and
continue the iterative process. A detailed visualization of this
procedure is provided in Fig. 4.

B. Method verification

In this part, a case study is used to verify the effective-
ness of the proposed method.
For the pulsed power application, the input pulse is

usually similar to a half-sine wave with the following
expression:

VinðtÞ ¼

8>><
>>:

0 t ≤ 0

V0 sinðω0tÞ 0 ≤ t ≤ π
ω0

0 t ≥ π
ω0

; ð16Þ

where V0 is the peak of the input pulse, and ω0 determines
the pulse width T according to T ¼ π=ω0.
According to the Fourier transform, the spectrum of this

input pulse is

FðωÞ ¼
Z

T

0

sinðπt=TÞe−jωtdt ¼ 2Tπe−jTω=2 cosðTω=2Þ
−T2ω2 þ π2

:

ð17Þ

Step 1: Calculate the amplitude of input 

pulse's frequency spectrum W(w)

Step 2: Set an initial value of k and obtain the 

coefficients ai using equations (12), (13) and (14)

Step 3: Substitute coefficients ai  into equation 

(15) to compute the impedance profile Z(x)k

k=k+1

Repeat Steps 1-3 for a new impedance 

profile Z(x)k+1

max(|Z(x)k+1-Z(x)k|/Z(x)k )< ε 

False
Z(x)=Z(x)k

True

Step 1: Calculate the amplitude of input 

pulse's frequency spectrum W(w)

Step 2: Set an initial value of k and obtain the 

coefficients ai using equations (12), (13) and (14)

Step 3: Substitute coefficients ai  into equation 

(15) to compute the impedance profile Z(x)k

k=k+1

Repeat Steps 1-3 for a new impedance 

profile Z(x)k+1

max(|Z(x)k+1-Z(x)k|/Z(x)k )< ε 

Z(x)=Z(x)k

Step 1: Calculate the amplitude of input 

pulse's frequency spectrum W(w)

Step 2: Set an initial value of k and obtain the 

coefficients ai using equations (12), (13) and (14)

Step 3: Substitute coefficients ai  into equation 

(15) to compute the impedance profile Z(x)k

k=k+1

Repeat Steps 1-3 for a new impedance 

profile Z(x)k+1

max(|Z(x)k+1-Z(x)k|/Z(x)k )< ε 

Z(x)=Z(x)k

FIG. 4. Flowchart of the process to obtain the optimal imped-
ance profile.
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The weight function WðωÞ is the magnitude of FðωÞ,
and it is

WðωÞ ¼
���� 2Tπ cosðTω=2Þ−T2ω2 þ π2

����: ð18Þ

As shown in Fig. 5, when the angular frequency increases,
the value of the weight function changes in a wavy pattern,
and the peak of the wave gradually decreases to zero.
Considering this characteristic, when computing Eq. (12),
the lower limit of the integral ω1 is 0, and the upper limit of
the integral ω2 is chosen as 26ω0 in this paper.
As demonstrated in the last section, the parameters

influencing power transmission efficiency include ρ0,
Z̄ðx̄Þ, T=T line and Ūinðt̄Þ. Given that Ūinðt̄Þ is predefined
as Eq. (16), the factors affecting the impedance profile are
reduced to ρ0 and T=T line. To verify the proposed method,
the NTL design detailed in Ref. [2] is considered. Its
parameters are Zout=Zin ¼ 16.05 and L ¼ 2063 cm, which
corresponds to ρ0 ¼ 4.006 and T line ¼ 615 ns for a water-
filled line. Since ρ0 is fixed, the power transmission
efficiency is only determined by T=T line. Calculations were
performed to obtain the optimal impedance profile for
various T=T line. Results are presented in Fig. 6. For
comparison, the power transmission efficiency of the
exponential impedance profile is also displayed.
As we can see, the power transmission efficiency

approaches 100% in the short-pulse limit (as T=T line → 0)
and approaches the low-frequency result (asT=T line → ∞) in
the long-pulse limit, regardless of the impedance profile. In
addition, the optimal impedance profile deviates from an
exponential form for input pulses with T=T line > 0.5, which
is the same as the results in Ref. [9]. However, unlike in
Ref. [9], where the power transmission efficiency difference
between optimal and exponential profiles forT=T line ranging
from 0.5 to 1 is less than 1%, the result in this paper presents
a larger efficiency gain. Specifically, at T=Tline ¼ 1, the
efficiency difference is found to be 3.83%. Figures 7

and 8 illustrate the optimal and exponential impedance
profiles, along with the waveforms of the input and output
pulses for both profiles at T=Tline ¼ 1, showcasing the
improvements achieved in this paper.
To demonstrate the power transfer efficiency predicted

by the proposed method, a circuit simulation was con-
ducted using CST DS, a commercial circuit simulation
software. The optimal NTL is divided into 301 equal-length
segments. Each segment is replaced by a uniform trans-
mission line whose impedance is taken as the average of the
impedances of the segments. In order to avoid interference
from reflected waves, a 200 m uniform transmission line
whose impedance is the input impedance of the NTL is
added between the half-sine voltage source and the NTL.
After removing the transmission time of the 200 m uniform
transmission line, the output voltage obtained from the CST

simulation and the code in our manuscript is compared in
Fig. 9. As we can see, they are almost the same.
The improvement in efficiency can be explained

through frequency domain analysis. Figure 10 illustrates a

FIG. 5. Schematic of the weight function WðωÞ. FIG. 6. Power transmission efficiency as a function of T=T line
for the exponential and optimal impedance profiles.

FIG. 7. Optimal and exponential impedance profiles at
T=T line ¼ 1.
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comparison of the component reflected once for both the
optimal and exponential impedance profiles at T=T line ¼ 1.
The reflection component of the NTL is predominantly due
to the component reflected once; thus a smaller once-
reflected component correlates with higher transmission
efficiency. According to Fig. 10, the optimal impedance
profile does not outperform the exponential one across all
frequency bands. In the low-frequency band, the optimal
profile exhibits higher transmission efficiency than the
exponential profile, whereas in the high-frequency band, it
performs less effectively. This suggests that the optimal
impedance profile sacrifices some high-frequency character-
istics to enhance low-frequency transmission efficiency.
Given that the spectrum of the input pulse primarily resides
in the low-frequency band, as shown in Fig. 5, the power
transmission efficiency of the optimal profile surpasses that
of the exponential one. Similarly, the explanation of Fig. 6
can be linked to these results in Fig. 10. As T=T line increases,

the input pulse’s spectrum increasingly dominates the low-
frequency band, making the optimal result more effective.
As shown in the above case, the optimal impedance

profile can be obtained conveniently by employing the
method proposed in this paper. Although the optimal
impedance profile is more complex, it can be effectively
realized through precise modifications, such as creating
specific patterns of holes in the transmission line plates [2].
Given the substantial investment associated with acceler-
ators and the challenge of enhancing efficiency, the addi-
tional complexity in manufacturing the transmission line
plates is justified.

IV. CONCLUSION

Through detailed theoretical analysis, it was found that
the power transmission efficiency of the NTL is influenced
by four factors: the ratio of output impedance to input
impedance, the ratio of input pulse width to the NTL’s one-
way transit time, the normalized impedance profile, and the
normalized input pulse. Based on these insights, a method
to determine the optimal impedance profile was developed,
centered on minimizing the reflection component within
the operating frequency range. A case taken from an
existing reference demonstrates that, compared to the
exponential impedance profile, the optimal impedance
profile intentionally reduces high-frequency transmission
efficiency to enhance performance at lower frequencies.
This trade-off is justified since the input pulse predomi-
nantly consists of low-frequency components, resulting in
higher power transmission efficiency for the optimal
impedance profile.
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FIG. 8. Input pulse and output pulses for the optimal and
exponential impedance profiles at T=T line ¼ 1.

FIG. 10. Amplitude of the component reflected once in the
frequency domain for the optimal and exponential impedance
profiles at T=T line ¼ 1.

FIG. 9. Comparison of results obtained from CST simulation
software and the code.
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APPENDIX A: EXPRESSIONS OF THE OUTPUT
COMPONENTS

The reflection coefficient at any point x is determined by
Eq. (A1) and the frequency response of the components
contributing to the output voltage is presented in Eq. (A2).
Hout0, Hout2, and Hout4 are the frequency responses of the
no-reflection, two-reflection, and four-reflection compo-
nents, respectively. xi is the position coordinate where the
ith reflection occurs.

UsingEq. (1), Eq. (A2) can be simplified. Taking theHout2
as an example, the simplified expression is present in
Eq. (A3). The other components can be simplified similarly:

γðxÞ ¼ Zðxþ dxÞ − ZðxÞ
Zðxþ dxÞ þ ZðxÞ ¼

Z0ðxÞ
2ZðxÞ dx; ðA1Þ

8>>>>><
>>>>>:

Hout0 ¼ ρ0e−jωT line

Hout2 ¼
R
L
0

R x1
0 ρ0

Z0ðx1Þ
2Zðx1Þ

Z0ðx2Þ
2Zðx2Þ e

−jωT lineð1þ2ðx1−x2Þ
L Þdx1dx2

Hout4 ¼
R
L
0

R x1
0

R
L
x2

R x3
0 ρ0

Z0ðx1Þ
2Zðx1Þ

Z0ðx2Þ
2Zðx2Þ

Z0ðx3Þ
2Zðx3Þ

Z0ðx4Þ
2Zðx4Þ e

−jωT lineð1þ2ðx1−x2þx3−x4Þ
L Þdx1dx2dx3dx4;

…

ðA2Þ

Hout2 ¼
Z

1

0

Z
x̄1

0

ρ0
ðρ02 − 1ÞZ̄0ðx̄1Þ

2½1þ ðρ02 − 1ÞZ̄ðx̄1Þ�
ðρ02 − 1ÞZ̄0ðx̄2Þ

2½1þ ðρ02 − 1ÞZ̄ðx̄2Þ�
e−jωT lineð1þ2ðx̄1−x̄2ÞÞdx̄1dx̄2: ðA3Þ

APPENDIX B: OBJECTIVE FUNCTION AND ITS
DIFFERENTIAL EXPRESSION

The constraints between coefficients ai (i ¼ 0;
1; 2; ...; k) are Zð0Þ ¼ Zin and ZðLÞ ¼ Zout. Combining
these two constraints and Eq. (8), it can be found that when
ai (i ¼ 1; 2; ...; k) is determined, the value of a0 should be

a0 ¼
1

2L
ln
Zout

Zin
−
Xk
n¼1

an
nþ 1

Ln: ðB1Þ

Using Eq. (B1), the expression of Pref1 become Eq. (B2).
To minimize Pref1, Pref1 performs partial differentiation
on each unknown quantity ai and sets the result to zero.
For example, when partially differentiating an, we have
Eq. (B3):

Pref1 ¼
�

1

2L
ln
Zout

Zin

�
2

fð0;0Þþ 1

L
ln
Zout

Zin
ai
Xk
i¼1

�
fð0; iÞ− Li

iþ1
fð0;0Þ

�
þaiaj

Xk
i¼1

Xk
j¼1

�
Liþjfð0;0Þ
ðiþ1Þðjþ1Þ−

2Li

iþ1
fð0;jÞþfði;jÞ

�
;

ðB2Þ

Xk
i¼1

�
2Liþnfð0; 0Þ
ðiþ 1Þðnþ 1Þ −

2Li

iþ 1
fð0; nÞ − 2Ln

nþ 1
fð0; iÞ þ 2fði; nÞ

�
ai þ

1

L
ln
Zout

Zin

�
fð0; nÞ − Ln

nþ 1
fð0; 0Þ

�
¼ 0: ðB3Þ
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