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Beams with cross-plane coupling or extreme asymmetries between the two transverse phase spaces
are often encountered in particle accelerators. Flat beams with large transverse-emittance ratios are
critical for future linear colliders. Similarly, magnetized beams with significant cross-plane coupling are
expected to enhance the performance of electron cooling in hadron beams. Preparing these beams
requires precise control and characterization of the four-dimensional transverse phase space. In this
study, we employ generative phase-space reconstruction techniques to rapidly characterize magnetized
and flat-beam phase-space distributions using a conventional quadrupole-scan method. The
reconstruction technique is experimentally demonstrated on an electron beam produced at the Argonne
Wakefield Accelerator and successfully benchmarked against conventional diagnostics techniques.
Specifically, we show that predicted beam parameters from the reconstructed phase-space distributions
(e.g., as magnetization and flat-beam emittances) are in excellent agreement with those measured from
the conventional diagnostic methods.
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I. INTRODUCTION

Using magnetized electron beams, whose transverse
motion is dominated by angular momentum, to cool hadron
beams in circular accelerators has been proposed as an
effective way to reduce the transverse emittance of beams
in colliders [1–4]. In this process, a magnetized electron
beam copropagates with a hadron beam in the presence of a
solenoid magnetic field, transferring thermal energy from
the hadron beam to the electrons, thus improving the
emittance of the hadron beam. Generating magnetized
electron beams for this purpose using nonzero solenoid
fields on the cathode of electron photoinjectors is a
promising area of active study [5,6].

Furthermore, it is critical to preserve the beam magneti-
zation during transport between the electron source and the
electron-hadron interaction point. To overcome the issue of
the magnetized beam propagation for the case where the
beam energy is large (γ > 50), the use of skew quadrupole
magnets to eliminate transverse coupling was proposed and
demonstrated, enabling the use of existing normal quadru-
pole magnets to transport the decoupled beam [7–11].
Afterward, the decoupled electron beam is converted back
to a magnetized state again using the skew quadrupole
magnets for the actual application. Here, during the
magnetized beam transformation, the beam phase space
is repartitioned to each term of particle momentum in the
horizontal and vertical planes. This leads to asymmetry of
electron beam emittance in the transverse plane [7]. This
beam is called a flat beam, where the large emittance ratio is
associated with the magnetization. Flat-beam distributions
are not only applicable in the context of preserving
magnetization but are also useful for collider applications
to enhance the luminosity at the interaction point [12,13].
Finally, developing effective beam diagnostics to pre-

cisely characterize the magnetization of electron beams is
an equally important task required to match the beam
dynamics during electron-hadron copropagation in the
solenoid magnet, namely maintaining a constant electron
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beam envelope as it travels through the solenoid magnetic
field [14,15]. Accordingly, beam diagnostics are required to
characterize (i) the magnitude of beammagnetization before
the flat-beam transformation, (ii) the large ratio of transverse
beam emittances, and (iii) a lack of coupling between
horizontal and vertical phase spaces after the flat-beam
transformation. Measurements of the beam magnetization
have previously been conducted using a collimating slit
method [16,17] that estimates beam magnetization by
measuring the transverse angular deflection of the beam
after propagating through a drift. This method requires
specialized diagnostic elements (motorized slit) and only
measures the magnetization of a subset of the beam dis-
tribution, leading to over- or underestimation of the mag-
netization of the full beam.
Quadrupole scans using a single magnet are commonly

used to measure the transverse beam emittances. However,
they only provide scalar estimates of the beam distribution
(as opposed to detailed information) and do not character-
ize the transverse coupling between the horizontal and
vertical phase spaces. Characterizing the transverse cou-
pling requires additional measurements of the beam propa-
gating through a long drift section which can be time
intensive and require specific beamline configurations. The
practical use of flat beams in accelerator applications
requires fast methods for characterizing the four-dimen-
sional transverse phase space with and without coupling
terms between the horizontal and vertical phase spaces.
To solve this problem, we utilize a recently developed

method for reconstructing detailed phase-space distributions
from screen images using generative machine learning (ML)
models [18], referred to here as generative phase-space
reconstruction (GPSR). The GPSR method has two key
concepts in order to reconstruct beam distributions: (i) gen-
erative ML models that can parameterize arbitrary beam
distributions in phase space with unprecedented levels of
detail and complexity and (ii) differentiable beam dynamics
simulations that enable inexpensive calculations of model
output gradients [19] which are used to train the ML-based
representation of the beam distribution from experimental
data. Initial demonstration [18] shows that this method can
successfully reconstruct four-dimensional phase-space dis-
tributions of beams from basic quadrupole scan measure-
ments in both simulation and experiment.

In this paper, we apply GPSR to reconstruct magnetized
and flat-beam distributions using quadrupole scan mea-
surements. We first conduct a reconstruction of a magnet-
ized beam distribution from experimental data measured
at the Argonne Wakefield Accelerator (AWA) and com-
pare estimates of the beam magnetization from the
reconstruction with conventional diagnostic methods. We
then examine the application of GPSR to reconstruct a flat-
beam distribution to confirm a large beam emittance ratio
between the horizontal and vertical transverse phase spaces.
In the following section, we introduce the experimental

settings performed at the AWA facility. In Sec. III, we
demonstrate phase-space reconstruction and comparison of
beam parameters in case of magnetized beam. Then, in
Sec. IV, we cover the discussion of reconstructed phase
space for a transformed flat beam. Finally, we conclude
with a discussion of the results and propose future work in
Sec. V. Details of the phase-space reconstruction algorithm,
data acquisition, and discussions on uncertainty of mea-
surements are described in Appendixes A and B.

II. EXPERIMENTAL SETUP AND BRIEF
FUNDAMENTALS OF FLAT
AND MAGNETIZED BEAMS

Figure 1 presents a schematic of the AWA beamline. The
beamline consists of an rf gun, several solenoid magnets,
and linear accelerating cavities. The solenoid magnet
nominally used to buck the magnetic field on the photo-
cathode was used during this work to generate a nonzero
magnetic field at the cathode surface to produce a trans-
versely coupled beam distribution that has a nonzero
angular momentum. The nominal beam charge used for
this demonstration is 1.0 nC. The measured beam energy
using the spectrometer magnet at the end of the beamline
is approximately 43.4 MeV. This AWA beamline also
includes three skew quadrupole magnets (SQ1-3) and a
normal quadrupole magnet (DQ4). The DQ4 magnet is
used in this work to rotate the transverse phase space of the
distribution (often referred to as a quadrupole scan) which
is then imaged on a downstream YAG screen (YAG1). The
magnetic length of the DQ4 quadrupole magnet is 0.12 m,
and the distance between DQ4 and YAG1 is about 1.33 m
center-to-center. An additional YAG screen, indicated as
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FIG. 1. AWA drive linac and beam transport line used in this demonstration (not to scale) [20]. On the right, a cartoon is introduced on
measuring the magnetization L using slit and YAG screens.
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YAG2 in Fig. 1, is used to estimate the magnetization by
measuring the rms beam size and capturing the angle of the
beam slice when the beam is cut by the slit at the upstream
YAG1 position.
Throughout this paper, we consider the particle motion

in the four-dimensional phase space ðx; x0; y; y0Þ where
ðx; yÞ is the position coordinate and ðx0; y0Þ refers to the
angle with respect to the direction of motion ẑ. To describe
the magnetized beam, we start from the canonical momen-
tum P of an electron experiencing a magnetic field at the
photocathode surface

P ¼ pþ eA; ð1Þ

where p is the kinetic momentum andA ¼ Bc
2
ð−yx̂þ xŷÞ is

the vector potential produced by the solenoid with magnetic-
field valueBc at the photocathode surface. Note thatA ¼ Aθ̂
and jeAj ≫ jpj during the emission process so that the beam
is born with a nonvanishing canonical angular momentum.
Upon exiting the solenoid, the conservation of angular
momentum yields the kinetic momentum to acquire a large
angular component resulting in an angular-momentum-
dominated beam. Correspondingly, the canonical angular
momentum L becomes

L ¼ r × P ¼ ðxx̂þ yŷÞ × eA ¼ eBc

2
ðx2 þ y2Þẑ; ð2Þ

The ensemble-averaged angular momentum is called the
magnetization and is given by

L ¼ hjLji
2mec

¼ eBcσ
2
c

2mec
; ð3Þ

whereme is the electronmass, and c is the speed of light, e is
an elementary charge, andσc is the rms transverse spot size of
the beam distribution on the cathode, respectively. The h…i
indicates the statistical averaging over the distribution.
The four-dimensional beam matrix associated with the

angular-momentum-dominated beam can be written as [21]

Σ ¼
�
ϵeffTx LJ

−LJ ϵeffTy

�
; ð4Þ

where

Tx;y ¼
"

βx;y −αx;y

−αx;y
1þα2x;y
β2x;y

#
; J ¼

�
0 1

−1 0

�
: ð5Þ

βx;y and αx;y are Twiss parameters of the beam. Here, ϵeff ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2u þ L2

p
where ϵu is the uncorrelated emittance.

Using a proper symplectic transformation, the cross-
plane coupling can be removed resulting in a final beam
matrix that is 2 × 2 block diagonal as described in Eq. (6).

Σf ¼ MΣMT ¼
�
ϵþTþ 0

0 ϵ−T−

�
; ð6Þ

where ϵ� are the eigenemittances, which can be obtained
from the feature of the invariance of 4D emittance
ϵ4D ¼ ffiffiffiffiffiffiffiffiffiffiffi

detðΣp Þ [22]

ϵ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2u þ L2

q
� L: ð7Þ

The process of diagonalizing the four-dimensional
beam matrix is practically implemented using three skew
quadrupole magnets [7]—a beamline often referred to as a
round-to-flat-beam transformer (RFBT). As a result, the
diagonalized beam has eigenemittances that correspond to
the projected transverse emittances. When the magnetiza-
tion satisfies L ≫ ϵu, the eigenemittances simplify as

ϵþ ≃ 2L; ϵ− ≃
ϵ2u
2L

: ð8Þ

Thus, as L increases by applying a stronger magnetic
field at the cathode, the emittance of the flat beam becomes
increasingly asymmetric. Detailed descriptions of the opti-
mal skew quadrupole strengths for achieving the RFBT
condition (and vice versa), given the incoming beam param-
eters, are detailed in Refs. [23,24].

III. PHASE-SPACE RECONSTRUCTION
FOR A MAGNETIZED BEAM

First, we will discuss the phase-space reconstruction for
the magnetized beam case. With the skew and normal
focusing quadrupoles turned off, the magnetized beam was
transported to and imaged on YAG1. The normal quadru-
pole magnet (DQ4) gradient was scanned from −1.79 to
1.79 T=m over 21 steps with 3 images captured at each
quadrupole-magnet setting. A subset of the images cap-
tured appears in Fig. 2. Half of the measured cases
were then passed to the GPSR algorithm to reconstruct
the beam distribution, with the other half of the cases set
aside to be used as a test set to validate the reconstruction
accuracy. Details regarding the image processing and the
reconstruction algorithm are described in Appendix A.
Black, gray, and white lines in Fig. 2 indicate 95th, 50th,

and 25th percentile contour lines of the measured and
predicted beam densities for each quadrupole strength,
respectively. In the case of the measured beam density,
high-frequency modulations are observed around the core
of the measured beam density. These features originate
from the micro-lens array (MLA) [25] nominally used to
homogenize the transverse distribution of the UV laser
pulse on the photocathode surface. The MLA yields high-
frequency modulations arising from the formation of local
focal points from the microlenses composing the array.
Nevertheless, we observe that the predicted density dis-
tribution closely matches the characteristics of the training
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data. Furthermore, predictions of the beam distribution as a
function of normal quadrupole focusing strength also agree
well with the test measurements excluded from the training
set. As a result, we conclude that the reconstructed trans-
verse beam distribution matches the real beam distribution.
The reconstructed phase space at the entrance of the DQ4

quadrupole magnet is illustrated in Fig. 3. The (x − y)
distribution shown in Fig. 3(a) implies that the beam is
nearly round with beam sizes of σxðσyÞ ¼ 1.62ð1.58Þ mm
and projected emittance ϵnxðϵnyÞ ¼ 48.6ð44.9Þ mm mrad,
respectively, where the emittance has the contribution from
the canonical angular momentum terms. As can be seen in
Figs. 3(d) and 3(e), the position-divergence correlations
within the projected phase spaces ðx − x0Þ and ðy − y0Þ are
almost identical to each other.
Likewise, examining the cross-plane coupling by ana-

lyzing the projected phase-space distributions (x, y0) and
(y, x0) confirms, albeit for some imperfections, that average
coupling between the transverse positions and momenta
γhxy0i ¼ −43.4 μm and γhyx0i ¼ 44.6 μm are nearly equal
in magnitude but opposite in sign; see Figs. 3(c) and 3(f).
This is consistent with the analytical beam matrix that
describes a magnetized beam in Eq. (4). These coupling
terms yield a prediction of the beam magnetization,
jLj ¼ jγðhxy0i − hyx0iÞj=2 ¼ 44.0 μm. Compared to the
measured L of 47.2� 0.9 μm that was obtained by using
the slit [16] and measuring the angle of the beam slice
(see Fig. 1), the L from the reconstruction shows good
agreement within 10% error. Here, the error of the

FIG. 3. Reconstructed phase space of the magnetized beam in
front of DQ4 quadrupole magnet. x0 and y0 are normalized
quantities by the reference momentum that corresponds to the
kinetic energy of 43.4 MeV. Here, the center of the phase space is
shifted by considering its original mean position. White lines
denote density projections onto the horizontal and vertical axes.
All units in the subfigure are mm or mrad.

FIG. 2. Measured magnetized beam images at YAG1 screen and contour lines with different quadrupole strength. Black-gray-white
contour lines represent 95-50-25 percentile of the beam distribution. Solid lines indicate the measured distribution, and dashed lines
show the predictions from the reconstructed beam. (a)–(d) show the training dataset, while (e)–(h) with orange border line show the test
set. Quadrupole magnet strengths are indicated on the bottom right of each subfigure.
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measured L was determined by considering the standard
deviation of the rms beam size and angle of the beam slice
where the angle was determined by using linear fitting.

IV. PHASE-SPACE RECONSTRUCTION
FOR A FLAT BEAM

We then demonstrate phase-space reconstruction of a
flat-beam distribution to estimate the ratio of transverse
beam emittances after the RFBT. The skew quadrupole
magnet focusing strengths were adjusted such that they
applied the RFBT to the magnetized beam, removing the
cross-plane correlation and partitioning the beam emittan-
ces along the principal horizontal and vertical axes. Once
the transformation was established, we repeated the quad-
rupole scan performed in Sec. III. Here, note that the
applied solenoid field at the cathode for this flat-beam case
is different compared to that in Sec. III. The magnetic field
gradient of the quadrupole magnet was adjusted from −3.2
to 2.4 T=m over 22 steps to cover the entire evolution of the
beam focusing in horizontal and vertical planes. Likewise,
we acquired three images for each quadrupole-magnet
setting for the reconstruction process.
Figure 4 shows the measured beam distribution with

different quadrupole strengths at YAG1. Similar to Fig. 2,
the top row shows the training dataset, whereas the bottom
row describes test data used to validate the reconstruction
accuracy. We again observe that the contour areas predicted
by the reconstruction well represents those from the
measurements, including a nonlinear distortion in the beam
distribution in Figs. 4(d) and 4(h) as the beam is strongly
focused in the horizontal plane. We hypothesize that
the main source of this distortion is the residual nonlinear
space charge effect associated with the transverse beam
distribution which is slightly deviated from the elliptical
shape [17].

The reconstructed 4D phase space at the entrance of DQ4
quadrupole magnet appears in Fig. 5. Figures 5(b) and 5(e)
qualitatively show that the transverse correlations are
minimized, consistent with the beam matrix given by
Eq. (6) when the angular momentum of the beam is
minimized. The reconstruction predicts that the magneti-
zation L of the flat beam is 3.1 μm, an order of magnitude
smaller than that of the round beam before the round-to-
flat-beam transformation. Additionally, as described in
Appendix C, correlations between the horizontal and
vertical phase-space coordinates are minimized.
In addition, we can see the large emittance ratio between

the horizontal and vertical phase spaces, shown in
Figs. 5(a), 5(c), and 5(d). This is the expected feature
from Eqs. (6) and (7) where the eigenemittances in the
horizontal and vertical planes are largely dominated by the
magnetization, and those terms will contribute to the block
diagonal terms of the beam matrix. Therefore, it is expected
that the flatness of the beam is maintained.
We also compared scalar characterizations of the recon-

structed transverse phase space with scalar measurements
from quadrupole scan in Table I. We see good agreement
(<10%) between most of the scalar parameters determined
by the quadrupole scan measurements with the recon-
structed beam distribution, with the exception of the
vertical Twiss parameters.
A likely cause of the discrepancy between the vertical

Twiss parameters is the limited vertical resolution with the
phase-space reconstruction algorithm. The large aspect
ratio of the flat-beam distribution makes it difficult to
accurately resolve changes in the vertical beam size as a
function of quadrupole strength. Using a diagnostic with a
higher resolution or a beam manipulation that can increase
the phase advance of the vertical phase space would likely
remedy this issue. Alternatively, the GPSR algorithm can
be used to stitch together multiple, magnified images of

FIG. 4. Measured flat-beam images at YAG1 screen with different quadrupole strength. Black-gray-white contour line represents
95-50-25 percentile of the beam distribution. Solid lines indicate the contour line for measured distribution, and dashed lines show the
contour lines for the reconstructed beam. (a)–(d) show train dataset, while (e)–(h) with orange border line show test set. On top right of
subfigure, strength of the quadrupole magnet is indicated.
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individual portions of the beam distribution, resulting in a
higher resolution multishot measurement.
Finally, the original magnetization can be estimated from

the reconstructed flat beam. According to Eq. (8), the
horizontal emittance is approximately 2 times larger than
the L. Therefore, the resultant L from the reconstruction
becomes 70.1 μm. We confirmed that the reconstructed
beammagnetization has quantitative agreement within 10%
error compared to the measured value L ¼ 59.3� 7.3 μm
when considering 1σ of the measured magnetization, where
the measurement was done using the magnetized beam
before the RFBT and method introduced in Sec. III. The
source of the measurement error is same as what is
described in the previous section.

V. CONCLUSION

In this work, we have demonstrated that phase-space
reconstruction using the GPSR technique is effective at
accurately reconstructing magnetized and flat-beam distri-
butions at the AWA using simple quadrupole scans, as
well as accurately estimating key parameters of interest,
including the beam magnetization and emittance ratios.
Particularly, this phase-space reconstruction technique can
capture the entire information of four-dimensional beam
phase space without additional beam diagnostic tool such
as the slit to measure the cross-plane correlations.
To enhance the performance of the GPSR technique,

such as capturing higher frequency features due to the use
of the MLA, we will perform further investigation such as
the use of increased number of particles during the
reconstruction and kernel density estimation with different
method in addition to the Gaussian distribution [26,27]. In
addition, including space charge effect during the GPSR
process is considered as one of the future works.
In addition to reconstructing the four-dimensional phase

space, the demonstrated technique could be further
extended by adding a transverse-deflecting cavity and
dipole magnet to enable the reconstruction of the complete
six-dimensional phase space using the GPSR method.
Therefore, this will opens a path for data-based, physics-
informed reconstruction for experiments that require the
understanding of transverse-longitudinal couplings along
emittance exchange [28] and double-emittance exchange
[29] beamlines for 6D beam phase-space manipulations.
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APPENDIX A: DATA ACQUISITION
AND GPSR SETUP

First, we obtained the measured dataset for flat and
magnetized beams. In the magnetized beam case, first, we
took 15 images at each quadrupole strength by applying a
charge window of �3%. Among them, we used only three
samples that are close to the nominal charge of 1.0 nC.
Likewise, in case of the flat beam, we measured ten shots
with a charge window of �5% from nominal 1.0 nC for

FIG. 5. Reconstructed phase space of the flat beam in front of
DQ4 quadrupole magnet.

TABLE I. Comparison of the flat-beam emittance and Twiss
parameters. Measurement error source is the standard deviation
of the measured beam size.

Case Measurement Reconstruction Unit

ϵnx 144.64� 1.36 140.14 mmmrad
ϵny 1.47� 0.10 1.53 mmmrad
βx 0.93� 0.02 0.88 m
βy 1.42� 0.04 1.14 m
αx −1.02� 0.02 −0.90 rad
αy 1.61� 0.02 0.43 rad
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each case of the quadrupole magnet strength. Afterward,
we again took only three samples with charge levels close
to the nominal value.
The initial number of pixels of the screen image is 1000 ×

1000 both for flat and magnetized beams, but it was down-
scaled to 250 × 250 due to the memory resources of the
computation. Before down-scaling the image, we subtract a
threshold value to remove the background noise; the value
obtained by the triangle thresholdmethod [30] was scaled by
multiplying it by 1.7. In addition, a Gaussian filter with a
standard deviationof one pixelwas applied on the beam image.
For the phase-space reconstruction process, we used

the PYTHON package PYTORCH [31]. For the snapshot
ensembling, we utilized TORCHENSEMBLE [32]. Table II
shows the parameter lists that are used for the phase-space
reconstruction. The number of epochs was set to 4000. The
number of reconstructed particles was set to 105 to ensure
that the reconstruction successfully predicts the feature of the
beam distributions. Within these epochs, we clearly saw that
the transverse 4D parameters are well converged even under
snapshot ensembling to check whether the reconstructed
result is not stuck in local minima. Here, the minimum and
maximum learning rates were 10−5 and 101, respectively.
The loss parameter, λ, which is the parameter for evaluating
the loss associatedwith the beam’s six-dimensional emittance
(stated as entropy) [18] is varied from 1010 to 1013, and we
observed that the reconstruction result converged. The recon-
struction process was performed using the PERLMUTTER

cluster at NERSC, and its execution time was about several
minutes. Details of the GPSR method can be found in the
supplemental material of Ref. [18].

APPENDIX B: UNCERTAINTY
OF MEASUREMENTS

The radius of the UV laser at the virtual cathode is set to
approximately 2.7 mm during the experiment. In the case of
the transverse distribution of the UV laser, we tried to make
the distribution uniform using the MLA. For the case
described in Sec. III, the solenoid field at the cathode is set
to 0.1 T. Thus, the theoretically calculated L is 53.4 μm.
Likewise, the solenoid field used for the case in Sec. IV
is 0.14 T, which corresponds to L ¼ 74.7 μm. The mea-
sured values are slightly deviated from those theoretical
estimations. It is expected that the measured L using the
YAG screens and slit has some systematic errors in addition

to the measurement jitter, such as setting of the camera gain
level that determines the amount of captured light of the
scintillation screen (including the virtual cathode image).
Particularly, the rms quantity strongly affects the measured
L using the slit; when there is 3% error of the rms beam size
at each YAG screen, then these will contribute to the total
error of 6% on the L of our reconstruction cases. Moreover,
the angle of the beam slice may have an error range of �1°
due to the nonlinearity of the slice. This will lead to
�½6 − 8�% changes on the L of the demonstrated cases.
Therefore, under consideration of the uncertainty in the
measurements, the reconstructed beam phase space well
predicts the transverse emittance and cross-plane correla-
tions of the measured beam distributions.

APPENDIX C: EVALUATION OF
CORRELATIONS

In order to discuss the transverse coupling quantitatively,
we computed the Pearson correlation coefficient [33] on
the prediction of the reconstructed flat and magnetized beam
phase spaces. A correlation coefficient close to zero indicates
aweak linear correlation betweenvariables, and a correlation
coefficient close to �1 indicates strong linear correlation.
In the reconstructed beam cases, the correlation coef-

ficients are shown in Eqs. (C1) and (C2), where ρmag shows
the coefficients for magnetized beam and ρflat for flat beam,
respectively. The correlations were calculated under the
transverse coordinate system; ρði; jÞ ¼< XiXj > = <
X2
i >

1=2< X2
j >

1=2 where X ¼ ðx; x0; y; y0Þ.

ρmag ¼

2
6664

1.000 0.644 −0.013 −0.705
0.644 1.000 0.719 0.019

−0.013 0.719 1.000 0.664

−0.705 0.019 0.664 1.000

3
7775; ðC1Þ

ρflat ¼

2
6664
1.000 0.673 0.295 0.189

0.673 1.000 −0.158 0.246

0.295 −0.158 1.000 −0.402
0.189 0.246 −0.402 1.000

3
7775: ðC2Þ

The transverse coupling between x½y� and y0½x0� can be
estimated by ρð1; 4Þ½ρð3; 2Þ�. As can be seen, the magnitude
of the correlation coefficients of the magnetized beam
becomes close to 1, while it is close to zero for the flat-
beam case. In case of the transformed flat beam obtained by
the AWA drive linac simulation, magnitude of the coef-
ficients regarding ðx − yÞ and ðx0 − y0Þ is similar to that in
Eq. (C2). We found that the space charge effect affects the
transformed flat beam, causing nonlinear distortions in
ðx − yÞ and ðx0 − y0Þ phase spaces that lead to non-zero
coefficients. Thus, it is expected that the space charge effect
is inherent in the measured flat beam through the prediction
using the GPSR method.

TABLE II. Parameters that are used in the phase-space
reconstruction.

Parameters Value

Number of reconstructed particles 100,000
Number of epochs 4000
Number of neural network layers 2
Number of neurons in each layer 20
Loss parameter λ 1010–1013
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