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Beam stability is a crucial requirement for all particle accelerators. Coupled-bunch instability (CBI) is
driven by beam interaction with narrowband impedance of the resonant accelerator components. Loss of
Landau damping (LLD) for a single bunch is mainly determined by broadband impedance and can lead to
undamped bunch oscillations. For the first time, we solve numerically the longitudinal stability problem in
a self-consistent way for a general case of two impedance types and propose a simple analytical criterion
describing how the obtained LLD and CBI thresholds are combined. We demonstrate that LLD can modify
the CBI mechanism and reduce the instability threshold even below the LLD threshold. These findings
allow the existing beam observations in CERN Super Proton Synchrotron and Large Hadron Collider to be
explained and should be considered in design of the future accelerators.
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I. INTRODUCTION

The interaction of charged particles with the accelerator
environment (impedance) can result in the development of
undamped or exponentially growing bunch oscillations in
longitudinal [1] and transverse [2] planes. The broadband
(BB) and narrowband (NB) impedances are responsible for
single- and multibunch collective effects, respectively. In
the absence of synchrotron radiation damping, beam
stabilization is provided by the natural frequency spread
of individual particles, called Landau damping [3], and
accurate knowledge of the instability thresholds is neces-
sary for a reliable accelerator design. Macroparticle sim-
ulations with realistic impedance models are still not
feasible for thousands of bunches circulating in large-scale
accelerators, such as the Large Hadron Collider (LHC), and
cannot easily guide the parameter choice for the new
accelerators (HL-LHC, EIC, FCC-hh, etc. [4–6]).
For the longitudinal beam motion considered below, a

self-consistent set of equations determining beam stability
for arbitrary impedance sources was derived in 1967 [7,8].
However, due to its complexity, a simplified method of the
stability diagrams [9], developed initially for the coasting
(unbunched) beams [10], is still commonly used (e.g.,
[11–14]). It was demonstrated [15] that the use of the
stability diagrams [9] derived in a short-bunch approxima-
tion, significantly overestimates the threshold of coupled-
bunch instability (CBI) driven by the high-frequency

NB impedance. In the low-frequency regime, the predic-
tions are valid and were recently verified by an alternative
approach and macroparticle simulations [16]. For the loss
of Landau damping (LLD) caused by the BB (inductive or
space-charge) impedance, thresholds similar to [9] were
obtained in various studies [17–20], even if some discrep-
ancy was found in numerical calculations [21] based on the
Oide-Yokoya method [22].
As recently shown [23], the LLD threshold is in fact zero

for the reactive impedance ImZ=k ¼ const assumed in all
previous studies unless a cutoff frequency fc is introduced.
Indeed, impedance ImZk=k decays at high frequencies f ≫
c=b at least as k−3=2 [24,25], where k ¼ f=f0 is a harmonic
of the revolution frequency f0, and b is a typical transverse
size of the vacuum chamber. Some cutoff frequency is also
naturally present in all numerical calculations and particle-
tracking simulations. Then the LLD threshold is finite and
it is inversely proportional to the impedance cutoff fre-
quency fc (defined, e.g., as Z ¼ 0 for f > fc, see also
discussion in Sec. III C). Therefore, the original stability
diagrams give incorrect threshold values, except at a
specific bunch length τ ≈ 1=fc.
So far, the thresholds of CBI and LLD were calculated

separately, with few examples when the CBI growth rates
were found in the presence of two impedance sources
[26,27]. In this work, for the first time, we develop a
numerical approach to calculate self-consistently the insta-
bility threshold in the presence of both BB and NB
impedances. A simple analytical expression for the gener-
alized instability threshold is also proposed. The resulting
multibunch instability has a mechanism different from CBI
driven by the NB impedance only and can arise even below
the LLD threshold. The results are confirmed by macro-
particle simulations with a reduced number of bunches.
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This paper is organized in the following way. Section II
introduces main equations and definitions required for the
longitudinal beam stability analysis. A new approach to
derive the instability threshold is described in Sec. III after a
separate consideration of the CBI and LLD thresholds.
Section IV discusses expectations for the HL-LHC and
observations in CERN Super Proton Synchrotron (SPS).
The work is summarized in Sec. V. Appendices A, B, and C
contain detailed derivations of the induced voltage har-
monics, the Oide-Yokoya matrix equation, and the insta-
bility growth rates, respectively.

II. BEAM STABILITY ANALYSIS

Evaluation of beam stability is usually done in two steps.
First, a stationary solution should be found, e.g., by the
iterative procedure [21] for some particle distribution
function, bunch intensity, and impedance model. To pro-
ceed with the second step, a small perturbation F̃ ∝ eiΩt to
a stationary distribution function F is considered, which
should satisfy the linearized Vlasov equation. The beam is
unstable if ImΩ < 0 for the coherent mode Ω.

A. A stationary case

Let us consider a beam of M identical and equidistant
bunches, each containing N particles with a charge q. We
use a coordinate system relative to the synchronous particle
of the first bunch with the design energy E0 and the zero-
intensity rf phase ϕs0, so that ΔE and ϕ are the particle
energy and rf phase deviations. The evolution of a single-
particle position in conjugate coordinates fΔE=ðhω0Þ;ϕg
is governed by classical equations of motion (e.g., [28]):

dϕ
dt

≡ ϕ̇ ¼ h2ω2
0η

β2E0

�
ΔE
hω0

�
; ð1Þ

d
dt

�
ΔE
hω0

�
¼ q

2πh
½VtðϕÞ − Vtð0Þ�: ð2Þ

Here ω0 is the angular revolution frequency, h the harmonic
number, η ¼ 1=γ2tr − 1=γ2 the slip factor, γ the relativistic
Lorentz factor with value γtr at transition energy, and
β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ2

p
. The total voltage VtðϕÞ ¼ VrfðϕÞ þ

V indðϕÞ contains contributions from the rf field, VrfðϕÞ,
and the stationary beam-induced voltage (see Appendix A):

V indðϕÞ ¼ −qMNhω0

X∞
k¼−∞

Zðkω0Þλkeikhϕ; ð3Þ

with k ¼ ω=ω0 and ZðωÞ being the longitudinal imped-
ance. The Fourier harmonics of the line density

λk ¼
1

2πh

Z
πh

−πh
λðϕÞe−ikhϕdϕ ð4Þ

are nonzero only for k ¼ pM, p ¼ 0, �1;… The line
density λðϕÞ is related to the stationary distribution function
F as

λðϕÞ ¼
Z

∞

−∞
F ðϕ; ϕ̇Þdϕ̇;

and the normalization
R
πh
−πh λðϕÞdϕ ¼ 1 is imposed.

For beam stability analysis, it is convenient to use
another set of variables: the phase ψ and either action J
or energy E of the synchrotron oscillations defined as

E ¼ ϕ̇2=ð2ω2
s0Þ þ UtðϕÞ; ð5Þ

ψ ¼ sgnðηΔEÞ ωsðEÞffiffiffi
2

p
ωs0

Z
ϕ

ϕmax

dϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −Utðϕ0Þp : ð6Þ

In this case, a stationary distribution function depends only
on E or J , respectively, and not on ψ . Since J ∝

R
ϕ̇ðEÞdϕ,

the relation between J and E requires an additional
integral to be numerically computed. Therefore, it is more
efficient to use variables fE;ψg with the Jacobian of the
transformation dϕdϕ̇ ¼ ω2

s0 dψ dE=ωsðEÞ.
Below, we consider only a single-rf case, when

VrfðϕÞ ¼ V0 sinðϕs0 þ ϕÞ, with V0 being the rf voltage
amplitude. Then the angular frequency of small-amplitude
synchrotron oscillations ωs0 is

ωs0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
hω2

0ηqV0 cosϕs0

2πβ2E0

s
: ð7Þ

The amplitude-dependent synchrotron frequency ωsðEÞ ¼
2π=TsðEÞ is defined by the period of oscillations

TsðEÞ ¼
ffiffiffi
2

p

ωs0

Z
ϕmaxðEÞ

ϕminðEÞ

dϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − Utðϕ0Þp ; ð8Þ

where the total potential

UtðϕÞ ¼
1

V0 cosϕs0

Z
ϕ

Δϕs

½Vtðϕ0Þ − V0 sin ϕs0�dϕ0 ð9Þ

is modified by intensity effects (potential-well distortion).
Here ϕminðEÞ and ϕmaxðEÞ are the minimum and maximum
phases of the particle with the energy E satisfying the
condition E ¼ UtðϕmaxÞ ¼ UtðϕminÞ. The corresponding
synchronous phase shift Δϕs is defined by the rela-
tion V0 sinϕs0 ¼ V0 sinðϕs0 þ ΔϕsÞ þ VindðΔϕsÞ.

B. Time-dependent perturbation

Now, we consider a small, time-dependent perturbation
F̃ to the stationary function F ðEÞ. For M equidistant
bunches, the perturbation can be characterized by a
coupled-bunch mode number l (l ¼ 0; 1;…;M − 1),

IVAN KARPOV and ELENA SHAPOSHNIKOVA PHYS. REV. ACCEL. BEAMS 27, 074401 (2024)

074401-2



corresponding to the rf phase advance 2πl=M between
consecutive bunches (see also Appendix A). Since the
solution is a periodic function of ψ , it can be expanded in
the Fourier series

F̃ lðE;ψ ; tÞ ¼ F̃ lðE;ψ ;ΩÞeiΩt ¼
X∞

m¼−∞
F̃ l

mðE;ΩÞeiΩt−imψ

ð10Þ

with coefficients

F̃ l
mðE;ΩÞ ¼

1

2π

Z
π

−π
F̃ lðE;ψ ;ΩÞeimψdψ ; ð11Þ

where an azimuthal mode number m defines the type of
interbunch oscillations (dipole, quadrupole, etc.).
The perturbation should satisfy the linearized Vlasov

equation (see, e.g., [28]):

�
∂

∂t
þ ωsðEÞ

∂

∂ψ

�
F̃ l ¼ ωsðEÞ

∂Ũl
ind

∂ψ

dF
dE

: ð12Þ

The corresponding perturbed induced potential Ũl
ind is

related to the perturbed induced voltage Ṽl
ind, derived in

Appendix A:

Ũl
indðϕ; tÞ ¼

1

V0 cosϕs0

Z
ϕ

Δϕs

Ṽl
indðϕ0; tÞdϕ0

¼ iζMeiΩt

cosϕs0

X∞
k¼−∞

ZkðΩÞ
k

λ̃lkðΩÞðeikϕ=h − eikΔϕs=hÞ

¼ Ũl
indðE;ψ ;ΩÞeiΩt; ð13Þ

where the intensity parameter ζ was defined as

ζ ¼ qN h2 ω0=V0: ð14Þ

The Fourier harmonics of the perturbed line density are

λ̃lkðΩÞ¼
1

2πh

Z
πh

−πh
λ̃lðϕ;ΩÞe−ikϕ=hdϕ

¼ ω2
s0

2πh

Z
π

−π
dψ

Z
Emax

0

dE
F̃ lðE;ψ ;ΩÞ

ωsðEÞ
e−ikϕðE;ψÞ=h: ð15Þ

For any single-bunch intensity, there is an infinite
number of solutions of Eq. (12), which can be described
as van Kampen modes [21,29–31]. Most of them are
defined by singular functions F̃ l as they belong to the
incoherent spectrum, Ω∈mωsðEÞ. Above a certain beam
intensity, referred to as the threshold in this work, a
coherent mode can emerge, which is then described by a
regular function. For even higher intensity, more coherent
modes can be present, each with specific dependency
F̃mðE;ΩÞ on the radial variable E. For a given m, the

number of oscillations of F̃mðE;ΩÞ within the bunch
defines the radial-mode number n. The first self-consistent
set of equations that allows finding coherent modes was
proposed by Lebedev in 1967 [7,8]. Its derivation is briefly
revisited below.

C. Lebedev equation

The induced potential can be expanded as

Ũl
indðϕ; tÞ ¼ eiΩt

X∞
m¼−∞

Ũl
ind;mðE;ΩÞe−imψ ; ð16Þ

where based on Eq. (13),

Ũind;mðE;ΩÞ ¼
1

2π

Z
π

−π
Ũl

indðE;ψ ;ΩÞeimψdψ

¼ iζ
cosϕs0

X∞
k¼−∞

ZkðΩÞ
k

λ̃kðΩÞImkðEÞ: ð17Þ

Here the impedance ZkðΩÞ ¼ Zðkω0 þ ΩÞ, k ¼ pM þ l,
p ¼ �1;�2;…. The function

ImkðEÞ ¼
1

2π

Z
π

−π
eikϕðE;ψÞ=hþimψdψ ð18Þ

can be also written in a form that is convenient for the self-
consistent numerical analysis [32]:

ImkðEÞ ¼
ik

hπm

Z
ϕmaxðEÞ

ϕminðEÞ
eikϕ=h sin½mψðE;ϕÞ�dϕ: ð19Þ

Inserting Eqs. (10) and (16) into Eq. (12), one obtains

F̃ lðE;ψ ;ΩÞ¼
X∞

m¼−∞
F̃ l

mðE;ΩÞe−imψ

¼−ωsðEÞ
dF
dE

X∞
m¼−∞

mŨl
ind;mðE;ΩÞ

Ω−mωsðEÞ
e−imψ : ð20Þ

Finally, combining Eqs. (15), (17), and (20), the Lebedev
equation [7,8] reads as

λ̃lk0 ðΩÞ ¼
ζM

h cosϕs0

X∞
k¼−∞

Gk0kðΩÞ
ZkðΩÞ

k
λ̃lkðΩÞ: ð21Þ

The matrix elements Gk0kðΩÞ are
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Gk0k ¼ −
iωs0

2πA

X∞
m¼−∞

Z
Emax

0

dgðEÞ
dE

Imk0 ðEÞI�mkðEÞ
Ω=m − ωsðEÞ

dE

¼ −
ωs0

2A
sgnðΩÞ

X∞
m¼1

dgðEmÞ=dE
dωsðEmÞ=dE

Imk0 ðEmÞI�mkðEmÞ

− i
ωs0

πA

X∞
m¼1

P
Z

Emax

0

dgðEÞ
dE

Imk0 ðEÞI�mkðEÞωsðEÞ
Ω2=m2 − ω2

sðEÞ
dE;

ð22Þ

where we introduced the function gðEÞ ¼ 2πωs0AF ðEÞ
with normalization

A ¼ ωs0

Z
dEgðEÞ=ωsðEÞ:

The real part of the matrix element Gk0k appears if
conditions ReΩ ¼ mωsðEmÞ and ImΩ → 0− are satisfied
and is obtained by applying the rule

lim
ε→0þ

1

x� iε
¼∓ iπδðxÞ þ P

�
1

x

�
;

where δ and P denote the Dirac delta function and the
principal value of the integral, respectively.
The coherent frequency Ω ¼ Ωg is the solution of

general matrix equation (22) when the determinant

det

�
δk0k −

ζM
h cos ϕs0

Gk0k
Zk

k

�
¼ detðI − ζXÞ ¼ 0; ð23Þ

where δk0k is the Kronecker delta and I is the unity matrix.
The beam is unstable if ImΩg < 0. The exact solution in a
general case has to be obtained numerically, and we
developed for this purpose the dedicated code MELODY

[33]. Below, we also propose the approximate solution and
discuss its validity.

III. GENERALIZED INSTABILITY THRESHOLD

A. Approximate dispersion relation

As follows from Eq. (23), one of the eigenvalues of the
matrix ζX equals one, e.g., ν0 ¼ 1. If νn is the nth
eigenvalue, so that

detðνnI − ζXÞ ¼ 0;

then, based on the property of the matrix trace
trðζXÞ ¼ P

n νn, we have

ζ ¼ ð1þ σÞ=trðXÞ; ð24Þ

where σ ¼ P
n≠0 νn and

trðXÞ ¼ M
h cos ϕs0

X∞
k¼−∞

ZkðΩÞ
k

GkkðΩÞ: ð25Þ

If one can estimate σ and show that it is small, the
complexity of the problem is significantly reduced.
Instead of computing all matrix elements, only the diagonal
elements need to be evaluated.
Many impedance sources in the accelerator ring can be

modeled by the resonances of the form:

ZðωÞ ¼ R
1þ iQðω=ωr − ωr=ωÞ

; ð26Þ

with a shunt impedance R and resonant frequency ωr.
Typically, the quality factors Q ∼ 1 and Q ≫ 1 correspond
to BB and NB impedances, respectively. We will show
below that for these, most interesting, cases σ < 1, and the
approximate threshold is

ζth ≈ 1=trðXÞ: ð27Þ

We will calculate the threshold ζ by different numerical
methods and estimate the value of σ for the various
combinations of the NB and BB impedances.

B. Narrowband impedance: Coupled-bunch instability

Considering only the NB impedance, all elements in
Eq. (21), except with k ¼ knb ¼ bωr;nb=ω0c, can be
neglected if

Δωnb ≪ Mω0; Δωnb ≪
����ωr;nb −

pMω0

2

����;
where Δωnb ¼ ωr;nb=2Qnb is the resonator bandwidth, and
bxc denotes the rounding of x to the nearest integer. In this
case, σ ¼ 0 in Eq. (24), so that ν0 ¼ 1 is the only nonzero
eigenvalue. Then, Eq. (27) is exact and can be rewritten in a
form:

GknbknbðΩÞ= cosϕs0 ¼
knbh

ZknbðΩÞζM
: ð28Þ

The analytical expression for the NB threshold can be
found by applying the method of threshold diagrams
proposed in [15].
We consider a general class of distribution functions

belonging to a binomial family

gðEÞ ¼ ð1 − E=EmaxÞμ; ð29Þ

which covers a wide range of bunch shapes, from a water-
bag (μ ¼ −1=2) to Gaussian (μ → ∞). First, we will derive
the threshold for μ ≥ 1 and then will briefly highlight the
difference with the case of μ < 1 as well as with the
distribution considered in the original work [15]:

IVAN KARPOV and ELENA SHAPOSHNIKOVA PHYS. REV. ACCEL. BEAMS 27, 074401 (2024)

074401-4



gðEÞ ¼
8<
:

1 − E2

aE2max
; 0 ≤ E < aEmax

1
1−a

�
1 − E

Emax

	
2
; aEmax ≤ E < Emax;

ð30Þ

where 0 < a < 1. Below, it will be referred to as a “flatten”
distribution, since it can be obtained in operation after some
beam manipulations (as, for example, rf phase modulation)
reducing the peak line density. This technique was used in
the past in the Tevatron to suppress oscillations of “dancing”
bunches [34], and it is still applied during LHC physics to
increase a full-width half-maximum bunch length [35].
The threshold diagram is a contour in the complex plane

obtained from the left-hand side of Eq. (28) (colored curve
in Fig. 1) by varying Ω. The right-hand side of Eq. (28)
corresponds to a vertical line, and its horizontal position is
given by knbh=ðRnbζMÞ. Crossing of the diagram and the
vertical line for a certain mode frequency Ω ¼ Ωnb defines
the threshold of instability. Therefore, the following con-
ditions are satisfied simultaneously:

ReGknbknbðΩnbÞ= cosϕs0 ¼
knbh

RnbζM
; ð31Þ

ImGknbknbðΩnbÞ= cosϕs0 ≈
knbh

RnbζM
ωnb − ωr;nb

Δωnb
; ð32Þ

where ωnb ¼ knbω0 þ Ωnb. If the resonator bandwidth
Δωnb ∼ ωs0, the lowest instability threshold for distribu-
tions with μ ≥ 1 corresponds to the maximum value of
ReGknbknbðΩnbÞ= cosϕs0 and defines Ωnb according to
Eq. (31). In this case, the precise value of the resonance
frequency ωr;nb is given by Eq. (32). Alternatively, if
Δωnb ≫ ωs0, the right-hand side of Eq. (32) weakly
depends on Ωnb and it is almost zero. Therefore, the
threshold based on the maximum value of

ReGknbknbðΩnbÞ= cosϕs0 can slightly underestimate the
actual threshold, as shown in Fig 1.
If we consider a stationary bucket (no acceleration)

above transition energy (ϕs0 ¼ π) and neglect potential-
well distortion, then, according to Eq. (22), Eq. (31)
becomes

knbh
RnbζM

¼ 16μðμþ 1Þ
ϕ4
max

sgnðΩnbÞ

×
X∞
m¼1

�
1 −

Em

Emax

�
μ−1

J2m

�
knb
h

ffiffiffiffiffiffiffiffi
2Em

p �
; ð33Þ

with ReΩnb ¼ mωsðEmÞ.
This equation was obtained in a short-bunch approxi-

mation assuming that

Emax ¼ 2sin2ðϕmax=2Þ ≈ ϕ2
max=2;

ϕðE;ψÞ ≈
ffiffiffiffiffiffi
2E

p
cosψ ;

ωsðEÞ ≈ ωs0ð1 − E=8Þ:

In this case, from Eq. (18), we get ImkðEÞ≈
imJmðk

ffiffiffiffiffiffi
2E

p
=hÞ, where ϕmax is the half bunch length in

the rf-phase radians, and Jm is the Bessel function of the
first kind and the order m. The applicability range of this
approximation can be estimated, for example, from the first
line above: for ϕmax ≤ 1.3 the relative error for Emax value is
less than 15%.
The analysis of Eq. (33) shows that the NB instability

threshold for μ > 1 and any knb is always the lowest for the
dipole mode m ¼ 1. Moreover, in our case, the contribution
of higher-order azimuthalmodesm is negligible, since the full
synchrotron frequency spread, equal toωs0Emax=8, is smaller
than ωs0=2. Thus the threshold can be written as [36]

ζnbth ¼ hϕ4
maxknb

16μðμþ 1ÞMRnb
min

x∈ ½0;1�

� ð1 − xÞ1−μ
J21ðknbϕmax

ffiffiffi
x

p
=hÞ

�
: ð34Þ

In the numerical calculations, we mainly use the LHC
parameters at injection energy from Table I. An example
of the stability analysis for the SPS parameters is shown
in Sec. IV.

FIG. 1. Example of the threshold diagram given by Gkk from
Eq. (22) and computed for ReΩ∈ ½ωsðEmaxÞ;ωsð0Þ� with m ≤ 3
for knb=h ¼ 11=9, Emax ¼ 0.73 (ϕmax ¼ 1.3), μ ¼ 2 and ϕs0 ¼ π.
The vertical dashed line corresponds to maximum
of ReGkk= cosϕs0.

TABLE I. Accelerator and rf parameters of the LHC and Super
Proton Synchrotron (SPS) at E0 ¼ 450 GeV [4,37].

Parameter Units LHC SPS

Circumference, C m 26658.86 6911.55
Harmonic number, h 35640 4620
Transition gamma, γtr 55.76 17.95
rf frequency, frf MHz 400.79 200.39
rf voltage, V0 MV 6.0 7.0
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The threshold shunt impedance as a function of the
resonant frequency found from Eq. (34) is shown in Fig. 2
for various distribution functions and two different bunch
lengths (top andbottom figures). Keeping the same full bunch
length, 2ϕmax, the threshold is typically higher for smaller μ
(top plot). However, in practice, the full bunch length is
difficult to determine due to the noise in themeasured signals.
Therefore, it is common to use in operation [38,39], the
effective bunch length obtainedby scaling thehalf-width half-
maximum (HWHM) bunch length with a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln 2

p
(defined by a Gaussian distribution):

ϕeff ¼ ϕHWHM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln 2

p
: ð35Þ

In a short-bunch approximation, we have

ϕHWHM ¼ ϕmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.5

2
2μþ1

q
:

For the same effective bunch length, the thresholds are very
similar for μ > 1, while the minimum threshold for μ ¼ 1 is
about 50% lower (see Fig. 2, bottom).

For binomial distribution with μ < 1, the function dg=dE
diverges when Em → Emax, and ReGknbknb → ∞. In this
case, ImGknbknb has to be evaluated numerically, and the
threshold will be defined by a maximum value of ReGknbknb
for which ImGknbknbðΩnbÞ ¼ 0.
Initially, the analytical threshold was found [15] for a

specific type of distribution function (30) with zero
derivative in the bunch center. Using another feature of
this distribution, that its derivative has a minimum,
−2=Emax, at E ¼ aEmax, one can obtain the threshold in
the short-bunch approximation for a > 0.5 [15]:

ζnbth ¼ ð1þ aÞhϕ4
maxknb

96MRnb
min
m≥1

�
J−2m

�
knb
h

ϕmax
ffiffiffi
a

p ��
: ð36Þ

For a < 0.5, one has to search numerically for a minimum
in both intervals E ∈ ½0; aEmax� and E ∈ ðaEmax; Emax�.
Examples of the thresholds computed for this particle
distribution function are shown in Fig. 2. The main
difference in comparison with threshold (34) is that above
a certain value of the resonance frequency, higher-order
azimuthal mode (m > 1) has the lowest CBI threshold
(seen as a jump in its derivative). The distribution with
a ¼ 1 has the lowest threshold in comparison to other
distributions with the same effective half-bunch length,
while above a certain resonant frequency, the binomial
distribution functions give more conservative estimates.
The analytical predictions were compared with the self-

consistent calculations done with the code MELODY based
on two approaches: the Oide-Yokoya method [22] (see
Appendix B) and direct evaluation of determinant (23). It
allowed stability analysis for LHC parameters (Sec. IV) by
treating each coupled-bunch mode separately in an
assumption of the uniformly filled ring. Due to a very
large number of the LHC bunches (∼3000), particle-
tracking simulations requiring many macroparticles are
computationally too expensive. Although they exist for a
few hundred bunches with up to 105 macroparticles per
bunch (e.g., [40]), simulations for more than 1010 of
macroparticles (a few millions per bunch) remain a chal-
lenge even using modern using modern techniques based
on parallelization [41]. To overcome this limitation, some
calculations were performed for nine equidistant bunches
(M ¼ 9) by reducing the harmonic number to nine (h ¼ 9)
and scaling other parameters to keep ζ and ωs0=ω0

unchanged. Once the numerical self-consistent calculations
were confirmed with macroparticle simulations carried out
with the particle-tracking code BLonD [42] (see Sec. III E),
the predictions for unscaled parameters can be justified.
For a single NB resonator with knb ¼ 11, a coupled-

bunch mode l ¼ 2 should become unstable above a certain
threshold, since knb ¼ p ×M þ l ¼ 1 × 9þ 2. Figure 3
(left) shows the dipole bunch-oscillation mode as a function
of intensity. A mode with a coherent frequency inside the
synchrotron frequency spread becomes unstable for

FIG. 2. Threshold shunt impedance for binomial (29) and flat
(30) distribution functions in assumption of the same full bunch
length with 2ϕmax ¼ 2.6 (top) and of the same effective bunch
length, 2ϕeff ¼ 1.6 (bottom). The thresholds are calculated for
the LHC parameters listed in Table I.
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ζ > ζnbth , and the instability growth rate increases with
intensity. The instability threshold found as the exact
solution of Eq. (23) coincides with the emergence of the
unstable mode. The solution (34) obtained in the short-
bunch approximation gives about a 10% higher threshold
for the bunch with ϕmax ¼ 1.3.

C. Broadband impedance: Loss of Landau damping

Assuming only a BB impedance, one can observe either
LLD or single-bunch instability. Typically, the LLD thresh-
old is lower, since the instability requires a significant
potential-well distortion leading to the coupling of radial
oscillation modes n with different or the same azimuthal
mode numbers m [22,43,44]. Below, we revisit the recent
evaluation of the LLD threshold [23] with a new analysis of
its dependency on the cutoff frequency of BB impedance
for different distribution functions.
For the case above transition energy (as in LHC)

considered here, the dipole coherent mode typically
emerges first above the maximum incoherent frequency
ωsð0Þ, see Fig. 3 (center). Thus, at the LLD threshold
Ω ¼ Ωbb ¼ ωsð0Þ, the integral in Eq. (27) can be evaluated
analytically for any k, and the contribution of higher-order
azimuthal modes with m > 1 can be neglected. It was also
shown that the sum in Eq. (27) diverges linearly for
impedance ImZk=k ¼ const and distribution function
(29), so some impedance cutoff frequency fc should be
introduced. The corresponding LLD threshold, derived in
the short-bunch approximation, is

ζbbth ¼ πϕ5
max

32μðμþ 1Þχðkeffϕmax=h; μÞ
1

ðImZ=kÞeff
: ð37Þ

The function

χðy; μÞ ¼ y½1 − 2F3ð1=2; 1=2; 3=2; 2; μ;−y2Þ�

is approaching y for y ≫ 1, and therefore, ζbbth ∝ 1=keff for
large keff . Above, pFqða1;…; ap; b1;…; bq; zÞ is a gener-
alized hypergeometric function and the effective impedance
is defined as

ðImZ=kÞeff ¼
Xkeff

k¼−keff

Gkk ImZk=k


 Xkeff
k¼−keff

Gkk; ð38Þ

with the effective keff , which maximizes the cumulative
sum in the nominator and plays the role of the cutoff
frequency fc ¼ f0keff. Justification for the choice of fc can
be found in [45,46]. In practice, the effective cutoff can be
estimated from beam-based measurements [47]. For a
broadband resonator, keff ¼ kbb ¼ ωr;bb=ω0. The elements
Gkk can be expressed in terms of the generalized hyper-
geometric function:

Gkk ¼ i
16μðμþ 1Þ

πϕ4
max

�
1 − 1F2

�
1

2
; 2; μ;−y2

��
; ð39Þ

where y ¼ kϕmax=h. For μ ¼ 2, one gets Gkk ∝
½1=2 − J20ðyÞ − J21ðyÞ þ J0ðyÞJ1ðyÞ=y� [23].
To verify the validity of the analytical threshold (37), we

need to evaluate the relative contribution σ of eigenvalues
of the matrix ζX. The matrix elements Gk0k can be
approximated as

Gk0k ≈ i
16μðμþ 1Þ

πϕ4
max

�
k0=k; jk0j < jkj
k=k0; jk0j ≥ jkj: ð40Þ

For this simple matrix and impedance ImZk=k ¼ const
truncated for jkj > fc=f0, the contribution of other eigen-
values is shown in Fig. 4. Since σ < 1, the maximum error
in using Eq. (37) for the LLD threshold is a factor of 2. The
eigenvectors of this matrix define the spectrum of the mode

FIG. 3. Evolution of coherent dipole modes (black and colored circles) and incoherent frequency bands (gray) versus normalized
intensity parameter ζ defined in Eq. (14). Left: CBI with NB impedance. Center: LLD with BB impedance, no instability. Right: CBI
with BB and NB impedances. Thresholds found with semianalytical code MELODY from Eq. (21) are shown with dashed lines while
corresponding approximate solutions (37), (34), and (43) with dotted lines. The second dipole mode emerging at ζ=ζnbth > 1 is a higher-
order radial mode. Examples for nine bunches in the scaled LHC ring with parameters from Table I and knb=h ¼ 11=9, Qnb ¼ 100,
Rnb ¼ 37 kΩ, kbb=h ¼ 5, Qbb ¼ 1, and Rbb ¼ 30 kΩ.
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at the LLD threshold. As was demonstrated in [23], the
position of the maximum of the mode spectrum depends
on the effective cutoff frequency of the impedance.
For the truncated inductive impedance ImZk=k ¼ const,
max jλ̃lkðΩÞj is located at ≈0.63kc (see Fig. 5). The higher
the kc is, the broader mode spectrum is, and it has a smaller
amplitude at lower frequencies.
Similar analysis can be done for distribution function

(30). For example, according to Eq. (27), the LLD thresh-
old has a logarithmic dependency on the cutoff frequency,
while the numerical solutions of Eq. (23) show that ζbbth does
not depend on kc [23]. For a distribution with a ¼ 1, the
Gk0k elements can be computed analytically in the short-
bunch approximation:

Gk0k ¼
96i

πϕ4
max

8<
:

J2
0
ðykÞ
2

þ J2
1
ðykÞ
2

− J0ðyÞJ1ðykÞ
yk

; k ¼ k0

yk0J0ðyk0 ÞJ1ðykÞ−ykJ0ðykÞJ1ðyk0 Þ
y2k−y

2
k0

; k ≠ k0
; ð41Þ

where yk ¼ kϕmax=h. Evaluating numerically, we find that
the maximum eigenvalue of the corresponding matrix ζX is
not affected by increasing the cutoff frequency for
kc=h > π=ϕmax, and therefore, the LLD threshold does
not depend on kc. However, σ increases logarithmically as a
function of kc leading to the growth of the matrix trace as
shown in Fig. 4. Thus, in this case, the LLD threshold can
be evaluated according to Eq. (27) after the matrix
truncation at kc=h ≈ π=ϕmax. Analyzing the eigenvalues
at the LLD threshold, one can also see that the mode spectra
do not depend on the cutoff frequency (dashed lines
in Fig. 5).
The results of numerical calculations with MELODY for a

pure BB resonator impedance are shown in Fig. 3 (center)
together with the approximate threshold. The LLD mode
emerges at ζ ¼ ζbbth above the maximum incoherent fre-
quency ωsð0Þ leading to undamped but stable bunch
oscillations. Similar to the case of NB impedance consid-
ered above, the LLD threshold computed from the Lebedev
equation agrees with the Oide-Yokoya method. As one can
see, the analytical approximation overestimates it by∼30%,
with jσj < 0.3 in the most cases [23].

D. Broadband and narrowband impedances

Finally, if we combine the BB and NB impedances, the
sum over k in Eq. (27) can be split into two terms, and the
threshold ζth ¼ ζthðΩgÞ presented as

1

ζth
≈

M
h cosϕs0

X∞
k¼−∞

ZkðΩgÞ
k

GkkðΩgÞ

¼ M
h cosϕs0

X
k≠knb

ImZkðΩgÞ
k

GkkðΩgÞ

þ M
h cosϕs0

ReZknbðΩgÞ
knb

GknbknbðΩgÞ; ð42Þ

where the contribution of the real part of Zk in the sum is
close to zero due to the symmetry Gkk ¼ G−k−k, while
ImZknb can be neglected according to Eq. (32). The
coherent mode Ωg for the general case differs from Ωnb

and Ωbb found for each impedance separately. If
ζbbth ðΩbbÞ ≪ ζnbth ðΩnbÞ, Ωg ≈ Ωbb and the NB instability
threshold is reduced, as shown in Fig. 3 (right), where it
is even below the LLD threshold. In the opposite case, the
BB impedance has a negligible impact and Ωg ≈Ωnb.
Although Eq. (42) should be solved numerically in the
general case, we find that an approximate threshold

1=ζth ≈ 1=ζnbth þ 1=ζbbth ð43Þ

FIG. 4. Sum of eigenvalues (except ν0 ¼ 1) of the matrix ζX
given by Eqs. (40) and (41) as functions of the cutoff frequency
kcf0 of inductive impedance ImZk=k ¼ const. The value ζ is
chosen such that the maximum eigenvalue ν0 ¼ 1. Other param-
eters: ϕmax ¼ 1.3 and h ¼ 9.

FIG. 5. Normalized spectra jλ̃lkðΩÞj=max jλ̃lkðΩÞj of the largest
eigenvalues (ν0 ¼ 1) of the matrix ζX given by Eqs. (40) (solid
lines) and (41) (dashed lines) for different cutoff frequencies kcf0
of inductive impedance ImZk=k ¼ const. Main parameters:
μ ¼ 2, a ¼ 1, ϕmax ¼ 1.3, and h ¼ 9.
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describes well the results of the full self-consistent calcu-
lations. For the binomial particle distribution (29), ζnbth and
ζbbth are given by Eqs. (34) and (37), respectively. We also
see from the numerical calculations that the resulting error
for the general analytical expression (43) does not exceed
the one for the LLD threshold.
The relative role of each contribution in Eq. (43) can be

also seen in Fig. 6 from instability thresholds numerically
obtained for different ðImZ=kÞeff and kbb using Eq. (21). As
expected, a larger BB impedance leads to a lower CBI
threshold, except for the case when ζbbth ðΩbbÞ ≫ ζnbth ðΩnbÞ.
The ratios of the CBI threshold with and without BB
impedance ζth=ζnbth support the analytical expression (43).
For example, for Abb ¼ 2, one gets ζth=ζnbth ¼ 1=ð1þ
1=0.53Þ ≈ 0.35 as compared to the value 0.31 found
numerically from Eq. (21).
The impact of the parameter keff (related to the cutoff

frequency) on the CBI is shown in Fig 6 (bottom). The CBI
threshold is reduced for larger kbb, since the LLD threshold

is lower and its overall effect in Eq. (43) is bigger. We see,
however, that the growth rates above a certain intensity
become smaller for larger kbb. For larger kbb, the mode
spectrum shifts toward higher frequencies as for LLD
mode [23] (solid lines in Fig. 5) and for knb < kbb interacts
weaker with NB impedance, according to Eq. (C2). This
effect can be also illustrated by the character of perturbation
in longitudinal phase space. For NB impedance (Zbb ¼ 0),
it mainly involves high-amplitude particles (see Fig 7, left),
while the perturbation looks very different for the case of a
single-bunch LLD and it is located in the bunch center
(Fig 7, center). For this new mechanism of coupled-bunch
instability in the presence of BB impedance, the mode is
also localized in the bunch center (Fig 7, right).

E. Comparison with macroparticle simulations

For comparison of the results obtained with the code
MELODY and analytical approximations with macroparticle
simulations, we deployed the code BLonD [42]. In the
present work, up to 4 × 106 macroparticles per bunch were
tracked for a few hundred synchrotron periods. The
expected coupled-bunch mode was seeded at the start of
simulations by applying an initial kick with an amplitude
of 0.1 deg to the rf phase of each bunch. The mean values of
particle coordinates for each bunch were computed turn-by-
turn, and the fit was performed to extract the growth rate of
instability. The results of macroparticle simulations follow
closely the growth rates obtained using the Oide-Yokoya
method, as can be seen in Fig. 6.

IV. EXAMPLES FOR LHC AND SPS

The effect of a low LLD threshold on the CBI threshold
can be seen for the LHC beam in the full ring with
parameters without scaling (Table I). In this case, the
lowest CBI threshold due to a higher-order mode
(HOM) of the future crab cavities [4] with Rnb ¼ 280 kΩ,
fr;nb ¼ 582 MHz, and Qnb ¼ 1360 calculated with

FIG. 6. Growth rate of the most unstable coupled-bunch mode
(l ¼ 2, m ¼ 1) versus the normalized intensity parameter ζ for
various strengths (top) and cutoff frequencies (bottom) of the BB
impedance. Vertical lines show the LLD (dotted) and instability
(dashed) thresholds found with MELODY from Eq. (21). The black
dashed line corresponds to the NB impedance threshold. BLonD
simulations are marked with crosses. The parameters from Table I
were scaled to h ¼ 9; knb=h ¼ 11=9, Qnb ¼ 100, Rnb ¼ 37 kΩ,
Qbb ¼ 1, and Rbb ¼ 3Abb × ðkbb=hÞ kΩ. Top: kbb=h ¼ 5 and
bottom: Abb ¼ 2.

FIG. 7. Perturbed particle distribution function F̃ ðϕ; ϕ̇Þ in
phase space for the unstable mode driven by NB impedance at
ζ=ζnbth ¼ 1.1 (left), LLD mode due to BB impedance only at
ζ=ζnbth ¼ 0.5 (center), and for the unstable mode with NB and BB
impedance sources together at ζ=ζnbth ¼ 0.5 (right). The dotted
line is the outermost particle trajectory in the bunch. Other
parameters are as in Fig. 3.
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MELODY in the presence of BB impedance is 3 times
smaller (see Fig. 8) [48].
The Super Proton Synchrotron (SPS) at CERN, being the

LHC injector, also provides beams for the fixed-target
experiments. These beams, filling the whole SPS ring, are
different from the LHC-type trains. The CBI is driven by
an HOM of the main 200 MHz rf system with fr ≈
915 MHz [49]. The CBI thresholds, found for the realistic
SPS impedance model [50,51] and for the HOM impedance
only, practically coincide (see Fig. 9), since in this case, the
CBI threshold is lower than the LLD threshold by an order
of magnitude due to a low single-bunch intensity. If the
bunches fill every fifth rf bucket (as LHC-type beams), the
HOM-driven CBI threshold is higher and the resulting
threshold is more affected by the BB part of the SPS
impedance. This explains why the LHC bunch train in the
SPS has a very low CBI threshold, which also weakly
depends on the number of bunches in a train [48]. To
deliver high-intensity LHC beams, an additional 800-MHz

rf system, increasing the synchrotron frequency spread and
the CBI threshold, is routinely deployed in operation [37].

V. CONCLUSIONS

We proposed the approach to analyze beam stability in
the presence of both broadband and narrowband impedance
sources. The broadband impedance can significantly
reduce the threshold of coupled-bunch instability driven
by the narrowband impedance, and there is a new instability
mechanism associated with it. The proposed generalized
analytical expression shows the key role of the LLD
threshold and demonstrates how two impedance contribu-
tions add up. For the LLD-dominated case, the values of the
effective BB impedance and its cutoff frequency play an
important role. The main conclusions are verified by
macroparticle simulations and they are consistent with
beam observations in the SPS. This understanding can
help in finding mitigation measures aimed at increasing
Landau damping for the existing high-current synchrotrons
and should also be taken into account in design of the
future rings.
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APPENDIX A: MULTIBUNCH INDUCED
VOLTAGE

ForM equidistant bunches in the ring, the perturbation of
the distribution function of jth bunch can be written as
follows:

F̃ l
jðE;ψ ; tÞ ¼ F̃ lðE;ψ ;ΩÞeiΩðt−jT0=MÞe−i2πlj=M;

where l ¼ 0; 1;…;M − 1 is the coupled-bunch mode
number. The corresponding line density is

λ̃ljðϕ;Ω; tÞ ¼
Z

∞

−∞
F̃ l

jðE;ψ ; tÞdϕ̇

¼ 2ωs0

Z
Emax

UtðϕÞ

F̃ l
jðE;ψ ; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −UtðϕÞ

p dE

¼ λ̃lðϕ;ΩÞeiΩðt−jT0=MÞe−i2πlj=M; ðA1Þ

with

λ̃lðϕ;ΩÞ ¼ 2ωs0

Z
Emax

UtðϕÞ

F̃ lðE;ψ ;ΩÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −UtðϕÞ

p dE: ðA2Þ

Since in the stationary case all bunches are indistinguish-
able, there is a free choice of the zeroth bunch. Its induced
voltage, including contributions from other bunches and
previous turns, can be written in the form

FIG. 8. Growth rates of multibunch instability versus bunch
intensity calculated for LHC with M ¼ h=10, ϕmax ¼ 2.4 (see
Table I) and NB impedance with Rnb ¼ 280 kΩ,
fr;nb ¼ 582 MHz, and Qnb ¼ 1360, in two cases: with (orange)
and without (blue) BB impedance having Rbb ¼ 38 kΩ,
fr;bb ¼ 5 GHz, and Qbb ¼ 1.

FIG. 9. Growth rates of the most unstable coupled-bunch mode
(solid lines) versus bunch intensity for the SPS with M ¼ h
(blue), M ¼ h=5 (orange), and LHC-type train of 72 bunches
spaced by 5=frf (green). The corresponding CBI thresholds
driven by an HOM at 915 MHz only (dashed lines). The LLD
threshold is shown by a black dotted line. The SPS parameters
from Table I, zero-intensity ϕmax ¼ 0.9, and μ ¼ 1.5. Calcula-
tions with code MELODY.
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Ṽl
ind;0ðϕ; tÞ ¼ −qN

Z
∞

−∞
dϕ0X∞

k¼0

λ̃lðϕ0;ΩÞ

×
XM−1

j¼0

W
�
ϕ − ϕ0 þ 2πhkþ 2πhj

M

�

× eiΩðt−kT0−jT0=MÞe−i2πlj=M: ðA3Þ

Here, W is the wake function, and the sum can be also
extended to k < 0 because of causality [Wðϕ < 0Þ ¼ 0].
Below we will omit index 0 in the derivations. Using the
connection of the wake function with impedance

WðϕÞ ¼ 1

2π

Z
∞

−∞
ZðωÞeiωϕ=ωrfdω; ðA4Þ

one obtains

Ṽ indðϕ; tÞ ¼ −
qN
2π

eiΩt
Z

∞

−∞
λ̃lðϕ0;ΩÞdϕ0

×
Z

∞

−∞
ZðωÞeiωðϕ−ϕ0Þ=ωrfdω

×
X∞
k¼−∞

ei2πkðω−ΩÞ=ω0

XM−1

j¼0

eijT0ðω−lω0−ΩÞ=M:

ðA5Þ

Here the first sum is the Dirac comb and the second sum

XM−1

j¼0

eijT0ðω−lω0−ΩÞ=M ¼ 1 − eiT0ðω−lω0−ΩÞ

1 − eiT0ðω−lω0−ΩÞ=M :

Using these relations and performing integration over ω,
the induced voltage can be written as

Ṽ indðϕ; tÞ ¼ −qNhω0eiΩt

×
X∞
k¼−∞

ZkðΩÞλ̃lkðΩÞeikϕ=heiΩϕ=ωrf

×
1 − ei2πðk−lÞ

1 − ei2πðk−lÞ=M
; ðA6Þ

where Zk ¼ Zðkω0 þΩÞ. The last term in Eq. (A6) is
nonzero only for k ¼ pM þ l, where p ¼ 0;�1;�2;….
Applying L’Hopital’s rule,

1 − ei2πpM

1 − ei2πp
¼ lim

x→2π

1 − eixpM

1 − eixp
¼ lim

x→2π

−ipMeixpM

−ipeixp
¼ M;

and finally we get the induced voltage in the multibunch
case:

Ṽl
indðϕ; tÞ ¼ −qMNhω0eiΩt

×
X∞
k¼−∞

ZkðΩÞλ̃lkðΩÞeikϕ=heiΩϕ=ωrf ; ðA7Þ

with the harmonic of the line-density perturbation

λ̃lkðΩÞ ¼
1

2πh

Z
πh

−πh
dϕλ̃lðϕ;ΩÞe−ikϕ=he−iΩϕ=ωrf ; ðA8Þ

where k ¼ pM þ l. Typically, the phase factor e�iΩϕ=ωrf in
the equations above can be neglected since Ω ≈mωs0 ≪
ω0 for low azimuthal modes m ¼ 1; 2; 3;….
To obtain the induced voltage in the stationary situation,

it is sufficient to set in Eqs. (A7) and (A8)Ω → 0 and l → 0
leading to

V indðϕÞ ¼ −qMNhω0

X∞
k¼−∞

Zðkω0Þλkeikϕ=h; ðA9Þ

with

λk ¼
1

2πh

Z
πh

−πh
λðϕ;ΩÞe−ikϕ=hdϕ ðA10Þ

and, naturally, k ¼ pM.

APPENDIX B: OIDE-YOKOYA METHOD

The Oide-Yokoya method was developed for the numeri-
cal study of longitudinal single-bunch instabilities [22].
Here, we consider its application to the multibunch
stability case.
The perturbed distribution function F̃ lðE;ψ ;ΩÞ in

Eq. (10) can be presented in the form

F̃ lðE;ψ ;ΩÞ ¼
X∞
m¼1

Cl
mðE;ΩÞ

�
cos mψ −

iΩ
mωsðEÞ

sin mψ

�
;

ðB1Þ

where Cl
mðE;ΩÞ are the functions describing the type of

perturbation. Inserting F̃ lðE;ψ ; tÞ in Vlasov equation (12),
multiplying it by sin mψ, and integrating by ψ ∈ ð−π; πÞ,
one obtains the following equation:

Cl
mðE;ΩÞπ

�
Ω2

mωs
−mωs

�

¼−mωsðEÞ
dF
dE

Z
π

−π
dψŨindðE;ψ ;ΩÞcosmψ

¼−
i2πMζmωsðEÞ

h cosϕs0

dF
dE

X∞
k¼−∞

ZkðΩÞ
k

λ̃lkðΩÞImkðEÞ: ðB2Þ

Note that here k ¼ pM þ l with p ¼ 0;�1;�2;…, which
is the main difference from the single-bunch case, where all
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harmonics are present in the sum. To obtain the final
integral equation, the perturbed harmonics of the line
density need to be expressed via Cl

mðE;ΩÞ. Thus, sub-
stituting F̃ l into Eq. (15) by functions (B1), we get

λ̃lkðΩÞ ¼
ω2
s0

h

X∞
m¼1

Z
Emax

0

dE
Cl
mðE;ΩÞI�mkðEÞ

ωsðEÞ
; ðB3Þ

and their further insertion into Eq. (B2) leads to

�
Ω2

ω2
s0
−
m2ω2

sðEÞ
ω2
s0

�
Cl
mðE;ΩÞ

¼ −
2iMζm2ω2

sðEÞ
h cos ϕs0

dF ðEÞ
dE

X∞
m0¼1

Z
Emax

0

dE0

ωsðE0Þ

×
X∞
k¼−∞

ZkðΩÞ
k

ImkðEÞI�m0kðE0ÞCl
m0 ðE0;ΩÞ: ðB4Þ

In the original work [22], the functions equivalent to
Cl
mðE;ΩÞ were defined as a combination of the step-like

functions. It is convenient, however, for further analysis of
the instability growth rates to perform a substitution:

Cl
mðE;ΩÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωsðEÞ

dF ðEÞ
dE

r
m
ωsðEÞ
ω2
s0

C̃l
mðE;ΩÞ ðB5Þ

and introduce a set of orthonormal functions sðmÞ
n

Z
Emax

0

sðmÞ
n ðEÞsðmÞ

n0 ðEÞdE ¼ δnn0 :

Then, Eq. (B4) becomes

�
Ω2

ω2
s0
−
m2ω2

sðEÞ
ω2
s0

�
C̃l
mðE;ΩÞ

¼ −2iζ
X∞
m0¼1

Z
Emax

0

Kmm0 ðE; E0ÞC̃l
m0 ðE0;ΩÞdE0; ðB6Þ

where the kernel Kmm0 is defined as

Kmm0 ðE; E0;ΩÞ ¼
X∞
k¼−∞

ZkðΩÞ=k
hZ0

×m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωsðEÞ

dF ðEÞ
dE

r
ImkðEÞ

×m0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωsðE0Þ dF ðE0Þ

dE0

r
I�m0kðE0Þ: ðB7Þ

The next step is to decompose C̃l
m and Kmm0 , similar

to [31]:

C̃l
mðE;ΩÞ ¼

X∞
n¼0

C̃ln
mðΩÞsðmÞ

n ðEÞ; ðB8Þ

Kmm0 ðE; E0;ΩÞ ¼
X∞
n¼0

X∞
n0¼0

Knn0
mm0s

ðmÞ
n ðEÞsðm0Þ

n0 ðE0Þ; ðB9Þ

with the coefficients

C̃ln
mðΩÞ ¼

Z
Emax

0

C̃l
mðE;ΩÞsðmÞ

n ðEÞdE; ðB10Þ

and

Knn0
mm0 ðΩÞ¼

Z
Emax

0

Z
Emax

0

Kmm0 ðE;E0;ΩÞsðmÞ
n ðEÞsðm0Þ

n0 ðE0ÞdEdE0:

ðB11Þ
Finally, one obtains the following system of equations:

Ω2

ω2
s0
C̃ln
mðΩÞ ¼

X∞
n0¼0

X∞
m0¼1

Mnn0
mm0 ðΩÞC̃ln0

m0 ðΩÞ; ðB12Þ

where the matrix elements are defined as

Mnn0
mm0 ðΩÞ ¼ m2δmm0

Z
Emax

0

ω2
sðEÞ
ω2
s0

sðmÞ
n ðEÞsðmÞ

n0 ðEÞdE

− 2iζKnn0
mm0 ðΩÞ: ðB13Þ

Choosing the step-like orthogonal functions

sðmÞ
n ðEÞ ¼

� 1ffiffiffiffiffiffi
ΔEn

p ; En −
ΔEn
2

< E ≤ En þ ΔEn
2

0; elsewhere;

the matrix, equivalent to the one introduced in [22], is

Mnn0
mm0 ðΩÞ ¼ m2ω2

sðEnÞ
ω2
s0

δnn0δmm0

− 2iζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔEnΔEn0

p
Kmm0 ðEn; En0 ;ΩÞ: ðB14Þ

Since the number of orthogonal functions is finite, the
system of Eq. (B12) becomes finite. Additionally, the sum
over harmonics k has to be also truncated and the
dependency of the impedance Zkðkω0 þ ΩÞ on Ω has to
be neglected. Therefore, the eigenvalues Ω2=ω2

s0 and
eigenvectors C̃ln

m can be found by solving a standard
eigenvalue problem.

APPENDIX C: INSTABILITY GROWTH RATES

To derive the instability grow rates, we multiply Eq. (B6)
by C̃l�

mðE;ΩÞ and integrate over E:
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Ω2 ¼
X∞
m¼1

Z
Emax

0

m2ω2
sðEÞ

jC̃l
mðE;ΩÞj2
BlðΩÞ dE

þ 2ζhω2
s0

BlðΩÞ
X∞
k¼−∞

ImZkðΩÞ
k

jλ̃lkðΩÞj2

−
2iζhω2

s0

BlðΩÞ
X∞
k¼−∞

ReZkðΩÞ
k

jλ̃lkðΩÞj2; ðC1Þ

where

BlðΩÞ ¼
X∞
m¼1

Z
Emax

0

jC̃l
mðE;ΩÞj2dE:

In the case of instability, the eigenfunctions become regular
functions, and we obtain

ImΩ ¼ −
ζhω2

s0

BlðΩÞReΩ
X∞
k¼−∞

ReZkðΩÞ
k

jλ̃lkðΩÞj2: ðC2Þ

For a combination of narrowband and broadband imped-
ances (see Sec. III D), the growth rate is dominated by the
spectral harmonic λ̃k at k ¼ knb for the narrowband reso-
nant frequency knbf0.
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