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The passive superconducting harmonic cavity (PSHC) scheme is adopted by several existing and future
synchrotron light source storage rings, as it has a relatively smaller R=Q and a relatively larger quality
factor (Q), which can effectively reduce the beam-loading effect and suppress the mode-one instability. By
using a minimum search algorithm to solve the mode-zero Robinson instability equation of uniformly filled
rigid bunches, we have revealed that the fundamental mode of PSHC with a large loaded Q possibly
triggers the D-mode Robinson instability [T. He et al., Mode-zero Robinson instability in the presence of
passive superconducting harmonic cavities, Phys. Rev. Accel. Beams 26, 064403 (2023)]. This instability
is a mode-zero coupled bunch instability, with an oscillation frequency close to the PSHC detuning (D-
mode). Uniquely, it is anti-damped by the radiation damping effect. In this paper, we derive analytical
formulas for the frequency and growth rate of the D-mode Robinson instability by taking several
appropriate approximations. These formulas provide crucial insights for analyzing and understanding the
D-mode Robinson instability.
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I. INTRODUCTION

In the third generation of synchrotron light sources, such
as SLS and ELETTRA, passive superconducting harmonic
cavities (PSHCs) have been successfully used to elongate
the bunch length and thus improve the beam lifetime, with a
history of around 20 years. It was reported that SLS and
ELETTRA successfully increased the beam lifetime by
more than a factor of 2 and 3, respectively [1]. Recently,
SSRF has also installed a two-cell PSHC and tested the
bunch lengthening performance, successfully doubling the
beam lifetime [2]. Their success has to some extent driven
more fourth generation synchrotron light sources to adopt
the PSHC scheme, such as HALF [3], Diamond-II [4], and
Sirius [5], expecting to lengthen the beam by a factor of at
least 3 to ensure their high performance of operation.
The loaded quality factor (Q) of PSHC is generally at the

level of 1 × 108, which is significantly higher than that
of the normal-conducting cavity. In a previous study [6],
we revealed that the PSHC fundamental mode impedance
may cause a special mode-zero Robinson instability. This
instability has an oscillation frequency close to the PSHC
detuning (D), so it was called the D-mode Robinson

instability. It is worth mentioning that this special mode
was initially referred to as the cavity mode by Towne and
Wang [7], but it was proposed for the main cavity (MC)
accelerating mode. ThisD-mode instability driven by PSHC
is enhanced with a larger loaded Q value and a smaller
radiation damping time. The latter characteristic of the D
mode is opposite to any conventional instability that can be
mitigated through radiation damping.Generally, theD-mode
instability will not be triggered unless the PSHC detuning is
sufficiently low. Thatmeans it will impose a limitation on the
bunch lengthening at a relatively low current.
This D-mode oscillation was not only observed in

simulations [6,8–10] but also likely to be observed in
experiments. As early as 20 years ago, in Ref. [1], it was
reported for ELETTRA that the voltage feedback loop
acting on the PSHC tuning system is opened at about
160 mA because, for lower currents, an instability is then
observed causing beam loss. Because Vh ∝ I0=Δfr (with
Vh, I0, and Δfr denoting the PSHC voltage, beam current,
and PSHC detuning, respectively), the voltage feedback
will reduce the detuning in an equal proportion as the beam
current decreases. It will be shown later that the PSHC
detuning of ELETTRA below 160 mA possibly touches the
D-mode threshold detuning, resulting in beam loss.
Another experiment that can be treated as possible evidence
of D mode was conducted in SLS and reported at the
workshop of HarmonLIP 2022. The threshold detuning for
beam loss was measured to be 23.6 kHz at 100 mA [10],
which is very close to that of the theoretical D-mode
threshold detuning [6]. We also noticed that SSRF achieved
a bunch lengthening by a factor of about 2.1 for the case of
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four uniformly distributed subtrains filling at 200 mA [2],
which was still considerably lower than the theoretical near-
optimum lengthening ratio. When reducing the PSHC
detuning to achieve a larger bunch lengthening ratio, it
was observed a beam instability oscillated close to the PSHC
detuning and even a beam loss [11]. The above resulting
experiments for SSRF are consistent with the prediction
based on the D-mode theory, proposed in our previous
study [6].
To further prove our viewpoint, we continue this study

for the D-mode instability, as a follow-up to our previous
study. The possible effects of the MC fundamental mode
impedance on the D mode are also considered. It is found
that simple analytical formulas for the D-mode oscillation
frequency and growth rate can be derived by taking
appropriate approximations, and that the MC impedance
can enhance the D-mode instability. We will see the
limitations imposed by the D mode on the bunch length-
ening for the aforementioned three light sources.
The rest of this paper is organized as follows: In Sec. II,

we briefly review the mode-zero Robinson instability
equation, which is extended to include the MC fundamental
mode impedance compared to that in Ref. [6]. In Sec. III,
the analytical formulas for the D mode are derived in detail
and verified accurately using the Hefei Advanced Light
Facility (HALF) storage ring parameters. In Sec. IV, we
further apply the analytical formulas to three existing
storage rings that employed PSHC. Finally, conclusions
and discussions are presented in Sec. V.

II. MODE-ZERO ROBINSON INSTABILITY

In electron storage rings uniformly filled with M equal
bunches, the beam instability caused by a narrowband
resonator impedance can be described by a well-known
equation [12,13]:

Ω2 − ω2
sg ¼ −i

I0αc
T0E=e

X∞
p¼−∞

fpMω0ZðpMω0Þ

− ðpMω0 þ μω0 þΩÞZðpMω0 þ μω0 þ ΩÞg;
ð1Þ

where Ω ¼ Ωr þ iΩi is the complex angular oscillation
frequency,Ωr represents the coherent angular frequency,Ωi
is the instability growth rate (Ωi < 0 means damping), i is
the imaginary unit, I0 is the beam average current, αc is the
momentum compaction factor, E is the beam energy, T0 is
the revolution time, ω0 is the angular revolution frequency,
μ is the coupled-bunch mode number taken from 0 to
M − 1, and p is an integer taken from −∞ to þ∞, ωsg ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hω0αcVgj cosðφgÞj=ðT0E=eÞ

p
is the angular synchronous

frequency under beam loading, Vg is the main cavity
generator-induced voltage amplitude, φg is the correspond-
ing voltage phase, and h is the harmonic number. Note that
the ratio h=M is an integer for the uniformly filling case.

It should be noted that Eq. (1) is derived based on the
point-like-bunch and linear-wake-force model. Generally, it
works well for the case of a narrowband resonator and
dipole-oscillation approximation. Here we focus only on
the mode-zero (μ ¼ 0) coupled bunch instability driven by
both the main cavity and the PSHC fundamental modes.
The fundamental mode is generally modeled as a single
resonator with

ZjðωÞ ¼
Rj

1þ iQjðωrj

ω − ω
ωrj
Þ ; ð2Þ

where Rj, Qj, ωrj are the characteristic parameters of
a resonator, representing the loaded shunt impedance,
loaded quality factor, and angular resonance frequency,
respectively. In the following formulas, for simplicity, we
use the subscript j ¼ 1 and j ¼ n to represent the MC and
the PSHC fundamental modes, respectively, and n is the
harmonic order of the PSHC.
For the mode-zero instability, the summation of the

series on the right-hand side of Eq. (1) is dominated by
pM ¼ �nh (for j ¼ n mode) and �h (for j ¼ 1 mode).
Then Eq. (1) can be simplified as

Ω2 − ω2
sg þ i

I0αc
T0E=e

X
j¼1;n

fi2jhω0Im½Zjðjhω0Þ�

− ωþ
pjZjðωþ

p Þ − ω−
pjZjðω−

pjÞg ¼ 0; ð3Þ

where ω�
pj ¼ �jhω0 þ Ω. For the MC fundamental mode,

we have Im½Z1ðhω0ÞÞ� ¼ −R1 cosðψ1Þ sinðψ1Þ, where ψ1

is the detuning phase satisfying tanðψ1Þ ¼ 2Q1Δωr1=ωr1,
and Δωr1 is the angular detuning frequency. In practical
operation, the generator-induced voltage will be adjusted
to compensate for the beam-induced voltage so that the
total cavity voltage is kept constant. Therefore, with the
help of phasor diagram, we can know VgjcosðφgÞj þ
Vb1j sinðψ1Þj ¼ Vrf jcosðφsÞj, where Vb1 ¼ 2I0R1 cosðψ1Þ
is the beam-induced voltage amplitude, Vrf is the main
voltage amplitude, and φs is the corresponding phase
satisfying Vrf sinðφsÞ ¼ U0, U0 should be considered as
the total energy loss per turn, including the radiation loss
and the PSHC induced loss. While for the PSHC with a
very large loaded quality factor, the energy loss caused
by the PSHC is very small and can thus be safely
ignored. Besides, we can use the approximation of
Im½Znðnhω0Þ� ≈ −Rnωrn=ð2QnΔωrnÞ, with Δωrn being
the angular detuning. Based on the above analysis,
Eq. (3) can be further simplified as

Ω2 − ω2
s − iξ

X
j¼1;n

fjZjðωþ
pjÞ − jZjðω−

pjÞg ¼ 0; ð4Þ

where we define that
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ξ ¼ hI0αcω0

T0E=e
; ð5Þ

ω2
s ¼ ω2

s0 −
nξRnωrn

QnΔωrn
; ð6Þ

and

ω2
s0 ¼ ω2

sg þ
hω0αcVb1j sinðψ1Þj

T0E=e
¼ ξVrf j cosðφsÞj

I0
: ð7Þ

Due to the significant role played by radiation damping
effect in the D-mode instability [6], it is now time to add it
to Eq. (4). Then it gives

Ω2 þ i
2Ω
τz

− ω2
s − iξ

X
j¼1;n

fjZjðωþ
pjÞ − jZjðω−

pjÞg ¼ 0: ð8Þ

The second term on the left-hand side of Eq. (8) represents
the radiation damping. If we define a function gðΩÞ, whose
form is given as follows:

gðΩÞ ¼ Ω2 þ i
2Ω
τz

− ω2
s − iξ

X
j¼1;n

fjZjðωþ
pjÞ − jZjðω−

pjÞg;

ð9Þ

the solution of Eq. (8) should meet gðΩÞ ¼ 0. Referring to
Ref. [6], a search algorithm for the minimum of jgðΩÞj can
also be utilized to find the solution.
It has shown in Ref. [6] that the PSHC with a very large

loaded quality factor possibly triggers the D-mode insta-
bility. Additionally, by fixing the real part Ωr and drawing
to analyze the dependence of RefZðωþ

p Þ − Zðω−
pÞg on the

imaginary part Ωi, it was found that the dependence can be
fitted by a straight line near Ωi ¼ 0, that is, it can be
expressed as

Re½Zðωþ
p Þ − Zðω−

pÞ� ≈ kΩi þ b; ð10Þ

where k and b are real coefficients as a function of Ωr.
Inspired by Eq. (10), we can derive more simplified

analytical formulas for the D-mode instability by taking
several reasonable approximations. Now we will show the
derivation details.

III. DERIVATION OF ANALYTICAL FORMULAS

A. Take the real part

Substitute Ω ¼ Ωr þ iΩi into Eq. (9) and take the real
part Re½gðΩÞ�, we have

Ω2
r −Ω2

i −
2Ωi

τz
− ω2

s þ ξ
X
j¼1;n

fjIm½Zjðωþ
pjÞ − Zjðω−

pjÞ�g

¼ 0: ð11Þ

For the D-mode oscillation, its Ωr is slightly lower than the
angular detuning of PSHC. In general, we can have
Ωr ≫ Ωi. Thus, the second and the third terms on the
left-hand side of Eq. (10) can be ignored, and it gives

Ω2
r − ω2

s þ ξ
X
j¼1;n

fjIm½Zjðωþ
pjÞ − Zjðω−

pjÞ�g ≈ 0: ð12Þ

Taking Ωr ≈ Δωrn and ignoring Ωi, the terms relevant to
the j ¼ 1 mode can be transformed as follows:

ξIm½Z1ðωþ
p1Þ − Z1ðω−

p1Þ�

¼ ξIm

8<
: R1

1þ i 2Q1ðΔωr1−ΔωrnÞ
ωr1

−
R1

1 − i 2Q1ðΔωr1þΔωrnÞ
ωr1

9=
;

¼ −0.5ξR1½sinð2ψ−Þ þ sinð2ψþÞ� ¼ ζ1; ð13Þ

where ψ� is determined by

tanðψ�Þ ¼
2Q1ðΔωr1 � ΔωrnÞ

ωr1
: ð14Þ

Under the optimal detuning condition expected to com-
pensate for the beam loading effect, the MC detuning can
be expressed as [14]

Δωr1 ¼
hω0I0 cosðφsÞ

Vrf

R1

Q1

: ð15Þ

It is in general that Δωr1 < 0 and Δωrn > 0, so ψ− is
ranged from −π=2 to 0, and ψ− þ ψþ < 0.
Let Δω1 ¼ Δωrn −Ωr > 0 and Δω2 ¼ Δωrn þ

Ωr ≈ 2Δωrn, then the terms relevant to the PSHC can be
transformed as follows:

ξnIm½Znðωþ
pnÞ − Znðω−

pnÞ�

¼ ξnIm

"
Rn

1þ i 2QnΔω1

ωrn

−
Rn

1 − i 2QnΔω2

ωrn

#

≈ −
ξnRn

2Qn

�
ωrn

Δω1

þ ωrn

2Δωrn

�
: ð16Þ

Substitute Eqs. (13) and (16) into Eq. (12) and take
Ωr ¼ Δωrn − Δω1, we get

Δω3
1 − 2ΔωrnΔω2

1 þ
�
Δω2

rn þ ζ1 − ω2
s −

ξnRnωrn

4QnΔωrn

�
Δω1

−
ξnωrnRn

2Qn
¼ 0: ð17Þ

Note that Eq. (17) is a cubic equation about Δω1, which is
not difficult to solve. Equation (17) has three solutions,
among which only the one closest to zero is desired.
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Actually, for the D-mode oscillation, it is in general that
Δω1 ≪ Δωrn. Hence, the first term on the left-hand side of
Eq. (17) can be neglected. Then we get

Δω2
1 −

�
Δωrn

2
þ ζ1 − ω2

s

2Δωrn
−

ξnRnωrn

8QnΔω2
rn

�
Δω1

þ ξnωrnRn

4ΔωrnQn
¼ 0: ð18Þ

Equation (18) is a quadratic equation aboutΔω1, which can
be solved analytically. If we introduce

B1 ¼
Δωrn

4
þ ζ1 − ω2

s

4Δωrn
−

ξnRnωrn

16QnΔω2
rn

ð19Þ

and

B2 ¼
ξnωrnRn

4ΔωrnQn
; ð20Þ

then Eq. (18) has two solutions given as B1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 − B2

p
.

Only the solution closest to zero is required, which is

Δω1 ¼ B1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1 − B2

q
: ð21Þ

The D-mode angular oscillation frequency is

Ωr ¼ Δωrn − Δω1: ð22Þ

Note that in the above derivations, we utilized the
characteristics of the D-mode instability: (i) the loaded
Q-value of PSHC is very large at the level of 108

and (ii) Δω1 ≪ Δωrn.

B. Take the imaginary part

Take the imaginary part Im½gðΩÞ�, it gives

2ΩrΩiþ
2Ωr

τz
−ξ

X
j¼1;n

fjRe½Zjðωþ
pjÞ−Zjðω−

pjÞ�g¼ 0: ð23Þ

Also taking Ωr ≈ Δωrn, then the terms relevant to the MC
can be transformed as follows:

ξRe½Z1ðωþ
p1Þ − Z1ðω−

p1Þ�

¼ ξRe

�
R1

1þ i 2Q1Δω−
ωr1

−
R1

1 − i 2Q1Δωþ
ωr1

�

≈ k1Ωi þ b1; ð24Þ

where Δω� ¼ Δωr1 � Δωrn � iΩi. To obtain b1, just let
Ωi ¼ 0, we can have

b1 ≈ ξR1½cos2ðψ−Þ − cos2ðψþÞ�: ð25Þ

To obtain k1, we should first get the first-order derivation of
Re½Z1ðωþ

p1Þ − Z1ðω−
p1Þ� about Ωi, then let Ωi ¼ 0, finally,

we get

k1 ≈−ξ
2R1Q1

ωr1
Re

��
1

1þ i 2Q1Δω−
ωr1

�
2

−
�

1

1− i 2Q1Δωþ
ωr1

�
2
�

¼ −ξ
2R1Q1

ωr1
½cos2ðψ−Þcosð2ψ−Þ− cos2ðψþÞ cosð2ψþÞ�:

ð26Þ

Introducing ΔΩ1 ¼ Δωrn −Ωr − iΩi ¼ Δω1 − iΩi and
ΔΩ2 ¼ Δωrn þΩr þ iΩi ¼ Δω2 þ iΩi, the terms in
Eq. (23) relevant to the PSHC can be transformed as
follows:

ξnRe½Znðωþ
pnÞ − Znðω−

pnÞ�

¼ ξnRe

�
Rn

1þ i 2QnΔΩ1

ωrn

−
Rn

1 − i 2QnΔΩ2

ωrn

�

≈ knΩi þ bn: ð27Þ

Using the same tricks as above for obtaining b1 and k1, we
can get

bn ≈ ξnRe

�
Rn

1þ i 2QnΔω1

ωrn

�
≈
ξnRnω

2
rn

4Q2
nΔω2

1

; ð28Þ

and

kn ≈ −
2ξnQn

ωrnRn
Re

�
R2
n

ð1þ i 2QnΔω1

ωrn
Þ2
�
≈
ξnRnωrn

2QnΔω2
1

: ð29Þ

Note in Eqs. (28) and (29) that the terms relevant to
Re½Znðω−

pnÞ� are neglected due to Δω2 ≫ Δω1, and
that bn ¼ knωrn=2Qn.
Substitute Eqs. (25), (26), (28), and (29) into Eq. (23),

we obtain the D-mode growth rate

Ωi ≈
bn þ b1 − 2Ωr=τz
2Ωr − kn − k1

: ð30Þ

C. Verification with the HALF parameters

The Hefei Advanced Light Facility (HALF) [15] is being
constructed to be a fourth generation synchrotron light
source, with a beam energy of 2.2 GeV and a nominal
current of 350 mA. To mitigate the intrabeam scattering and
Touschek scattering effects, a PSHC will be adopted to
stretch the bunch in the longitudinal direction. Table I
summarizes the HALF main parameters as well as both the
MC and the PSHC parameters, which will be used for
verification of the aforementioned analytical formulas for
the D-mode instability.
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Note that we chose a relatively low current of 40 mA
rather than the nominal current as a study case. This case
has already been studied in Ref. [6], mainly to reveal the
characteristics of theD-mode instability. In this section, we
will prove that the approximate analytical formula is
accurate and feasible for the D-mode instability by

comparing it with the approach of solving directly the
Robinson instability equation.
Figure 1 shows the value of Δω1=2π (the frequency

deviation of the PSHC detuning from the D-mode
oscillation angular frequency) as functions of the PSHC
detuning ranged from 5 to 36 kHz. Figure 2 shows the
corresponding growth rates. It can be seen that the
analytical results are in good agreement with those obtained
by directly solving the Robinson equation of Eq. (8).
Additionally, it can be seen from Fig. 2 that the D-mode
damping rate approaches the cavity half bandwidth of
ωrn=2Qn when increasing the PSHC detuning. This can be
understood as a consequence of both 2Ωr − k1 ≪ kn and
2Ωr=τz − b1 ≪ bn. Actually, the above two inequality
relationships in general hold true for the case of relatively
large detuning of PSHC. In this case, the D-mode growth
rate can thus be given as

Ωi ≈ −
bn
kn

¼ ωrn

2Qn
: ð31Þ

IV. APPLICATION TO REALISTIC
STORAGE RINGS

In Sec. III, we obtained the analytical formulas for the
D-mode oscillation. In this section, we will use them to
analyze the D-mode instability for three realistic storage
rings those employed PSHC, including SLS [16],
ELETTRA [17,18], and SSRF [19]. Table II summarizes
their main parameters.
In practice, the PSHC should be detuned to meet the

specific requirements of cavity voltage for reaching the
desired bunch lengthening. To facilitate the following
discussions, we focus on the near-optimum bunch length-
ening condition, with only setting the PSHC voltage
amplitude at the optimum lengthening point (due to the
nonoptimum phase, it is in general called near optimum). In
that case, the PSHC voltage amplitude can be expressed as

Vopt
h ¼ koptVrf ¼ FoptI0ωrnRn

ΔωrnQn
; ð32Þ

where kopt is the corresponding ratio of the PSHC voltage
and the MC voltage, and Fopt is the corresponding bunch
form factor amplitude. Generally, kopt can be pregiven
according to the near-optimum lengthening condition, as
well as Vopt

h and Fopt. As a result, the PSHC detuning at the
near-optimum lengthening point can be computed by

Δωopt
rn ¼ FoptI0ωrnRn

Vopt
h Qn

¼ η · I0; ð33Þ

where η is defined as

η ¼ FoptωrnRn

Vopt
h Qn

: ð34Þ

FIG. 1. Frequency deviation Δω1=2π as functions of the PSHC
detuning, obtained by solving directly Eq. (8) and using Eq. (21),
respectively.

FIG. 2. D-mode growth rate as a function of the PSHC
detuning, obtained by solving directly Eq. (8) and using the
analytical formula of Eq. (30), respectively.

TABLE I. Main parameters of the HALF storage ring used for
the following calculations.

Parameter Symbol Value

Beam energy E 2.2 GeV
Ring circumference C 479.86 m
Assumed beam current I0 40 mA
Longitudinal damping time τz 14 ms
Momentum compaction αc 9.4 × 10−5

Harmonic number h 800
Energy loss per turn U0 400 keV
MC voltage Vrf 1.2 MV
MC normalized shunt impedance R1=Q1 45 Ω
MC loaded quality factor Q1 1.14 × 105

MC detuning Δfr1 −700 Hz
PSHC harmonic order n 3
PSHC normalized shunt impedance Rn=Qn 39 Ω
PSHC loaded quality factor Qn 2 × 108

PSHC near-optimum detuning Δfrn 6 kHz
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The values of Vopt
h , Fopt, and η are also listed in Table II.

Obviously, under the near-optimum PSHC voltage set-
ting, the detuning is proportional to the beam current.
In other words, the detuning should be reduced in an
equal proportion as the beam current decreases in order
to keep the PSHC voltage constant as well as the bunch
lengthening. However, the minimum allowable detuning
will be limited by the instability. In this paper, we
focus on the D-mode threshold detuning, which can be
easily computed with the formulas derived in Secs. III B
and III C.
It should be noted that the low-level radio-frequency

(LLRF) feedback implemented in the main cavities can
affect the mode-zero motion, which is, however, not
considered in Eq. (8). Equation (8) can be regarded as
equivalent to opening the LLRF feedback loop in the
presence of MC fundamental mode. To analyze the
influence of the LLRF feedback on the D-mode insta-
bility and also to validate the analytical results, we
will use the STABLE code to conduct multiparticle multi-
bunch tracking simulations [20]. The STABLE is a
dedicated longitudinal beam dynamics simulation code
that is graphics-processing-unit accelerated. Recently, a
proportional-integral (PI) feedback algorithm model has
been implemented into the STABLE to achieve a realistic
LLRF feedback for the main cavity. The details of the PI
model can be found in Appendix A. For a given beam
current, we can scan the PSHC detuning in a fixed
frequency interval to determine the threshold detuning
through observing the oscillations of the mean energy
deviation and the PSHC voltage amplitude. In tracking
simulations, we only consider the uniform bunch filling.
Each bunch is represented by 20,000 macroparticles, and
100,000 turns are tracked.

A. Cases of SLS and ELETTRA
with normal-conducting main cavities

Figures 3 and 4 show the resulting threshold detuning
frequencies for SLS and ELETTRA, respectively. The
legends give the cases of consideration, where “w/ MC”
means considering the MC fundamental mode under the
open-loop PI feedback, “ideal MC” means treating the MC
voltage as an ideal sine wave, the values of kp and ki are
given corresponding to the proportional and the integral
gains, respectively, and Δωopt

rn is the detuning required for
near-optimum bunch lengthening.
First, we can see that for the case of open-loop PI

feedback, both the analytical and tracking results are in
good agreement, no matter when considering or ignoring
the influence of the MC fundamental mode. We can also
see that the presence of the MC fundamental mode severely

TABLE II. Summary of main parameters of SLS, ELETTRA, and SSRF storage rings used for the following
calculations and simulations.

Parameters Unit SLS ELETTRA SSRF

Beam energy GeV 2.4 2.0 3.5
Circumference m 288 259.2 432
Harmonic number · · · 480 432 720
Longitudinal damping time ms 4.5 8 3
Momentum compaction · · · 7 × 10−4 16 × 10−4 4.2 × 10−4

rms bunch energy spread · · · 9.0 × 10−4 8.0 × 10−4 11.1 × 10−4

Energy loss per turn keV 600 256 1700
MC voltage MV 2.08 1.7 4.5
MC R1=Q1 Ω 312 316 133.5
MC Q1 · · · 1.333 × 104 1.1 × 104 1.7 × 105

PSHC resonance frequency MHz ∼1500 ∼1500 ∼1500
PSHC R3=Q3 Ω 88.4 88.4 88
PSHC Q3 · · · 2 × 108 2 × 108 2 × 108

PSHC Vopt
h kV 660 559 1374

Bunch form factor Fopt · · · 0.883 0.853 0.885
η in Eq. (31) · · · 1.11 × 106 1.27 × 106 5.34 × 105

FIG. 3. Threshold detuning as functions of the beam current for
SLS, obtained by solving directly Eq. (30) and tracking simu-
lations. For the case of closed-loop PI feedback, the loop delay is
set to 1.4 μs. The scanning frequency interval is set to 0.2 kHz,
and the threshold detuning is given corresponding to beam loss.
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increases the D-mode threshold detuning. This discovery
surprised us. How to understand that under the open-loop
PI feedback, the presence of the MC fundamental mode
enhances theD-mode instability? A reasonable explanation
can be given as follows. For the case of normal-conducting
main cavities, the term k1 in Eq. (30) can be given as

jk1j < ξ
4R1

ωr1Q1

Q2
1; ð35Þ

while for the PSHC, we have

kn ≈ ξ
n2Rn

2ωr1Qn

�
ωr1

Δω1

�
2

: ð36Þ

Comparing kn to k1, we can get

kn=jk1j >
n2RnQ1

8QnR1

�
ωr1

Δω1Q1

�
2

: ð37Þ

For the D-mode oscillation, the Δω1=2π is generally less
than 5 kHz. Using this value and the parameters listed in
Table II, we can obtain kn=jk1j > 18 and 26 for SLS and
ELETTRA, respectively. Considering that this is still under
conservative estimates, we can thus conclude that com-
pared to kn, k1 can be safely neglected when using Eq. (30)
for the D mode. Finally, for the cases of SLS and
ELETTRA, the D-mode growth rate can be given as

Ωi ≈
bn þ b1 − 2Ωr=τz

2Ωr − kn
: ð38Þ

Note that both kn and bn are positive, and b1 < 0 due to the
fact that ψ− þ ψþ < 0.
To facilitate the subsequent analysis, Eq. (38) should be

changed as

Ωi ¼
1

τz

knτzωrn=2Qn − ð2Ωr − b1τzÞ
2Ωr − kn

: ð39Þ

Considering the radiation damping time realistically
ranged from 1 to 20 ms and the PSHC loaded Q value
generally larger than 1 × 108, we can have τzωrn=2Qn < 1.
Consequently, as the PSHC detuning decreases, the numer-
ator approaches zero faster than the denominator.
Therefore, for the D mode of interest, it is in general
that 2Ωr < kn. In other words, the D mode is naturally
damped by the PSHC fundamental mode impedance, while
it is antidamped by the radiation-damping effect and is
enhanced by the MC fundamental mode impedance. This
enhancement is observed to be significant because b1 is not
small compared to the radiation damping term.
For the case of closed-loop PI feedback, as can be seen

from Figs. 3 and 4, the feedback can significantly reduce
the threshold detuing of beam loss, which is even lower
than that of only considering PSHC fundamental mode
impedance. It should be noted that the threshold detuning
of beam loss may not only be limited by theDmode, but in
some cases, it may also be limited by other types of
instability, such as the S −D mode coupling [6]. The
setting of feedback parameters has a significant impact on
the specific beam instability behavior. Nevertheless, based
on the resulting threshold, we can conclude that the D-
mode instability can be suppressed effectively with the PI
feedback on the main cavities. It should be pointed out that
theoretical analysis of the specific effects of PI feedback on
beam instabilities is complex and beyond the scope of this
paper. Nevertheless, a qualitative understanding can be
given as follows.
We noticed that the loaded Q values of the SLS and

ELETTRA main cavities are approximately 104, corre-
sponding to a bandwidth of approximately 25 kHz; while
the PSHC detuning is close to or even lower than this
bandwidth. Therefore, the D-mode oscillation will also
excite the MC voltage oscillation. As we know that the
PI feedback aims at stabilizing the MC voltage, which can
naturally help to suppress the D-mode oscillation. In addi-
tion, when the PI feedback is on, we should consider the
closed-loop cavity impedance, which is the cavity imped-
ance seen by the beam in the presence of feedback [21]. In
that case, the term of b1 in Eq. (30) can be reduced, and the
amount of reduction largely depends on the feedback
parameters, especially the value of kp. From this point,
the PI feedback can reduce the enhancement of D-mode
instability caused by the MC impedance.

B. Case of SSRF with superconducting main cavities

Figure 5 shows theD-mode threshold detuning for SSRF
as functions of the beam current ranged from 100 to
300 mA. It can be seen that the resulting analytical and
tracking threshold detunings are in good agreement for the
case of open-loop PI feedback. In addition, it can be seen
that the presence of MC impedance slightly increases the
threshold detuning, which is considerably different from
those shown in Figs. 3 and 4. This can be attributed to the

FIG. 4. Threshold detuning as functions of the beam current for
ELETTRA, obtained by solving directly Eq. (30) and tracking
simulations.
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fact that the term of b1 in Eq. (30) is relatively small
compared to the radiation damping term.
For the case of closed-loop PI feedback, it can be seen

that the PI feedback affects slightly the D-mode threshold
detuning, even if the proportional gain kp changes a lot.
Similar to the analysis for the case of normal-conducting
main cavities, we can also understand that from the
perspective of cavity bandwidth. The MC loaded Q value
of SSRF is approximately 1.7 × 105, corresponding to a
bandwidth of less than 3 kHz; while the PSHC detuning is
larger than 15 kHz, which is largely beyond the bandwidth.
Therefore, the D-mode oscillation driven by the PSHC is
almost transparent to the MC voltage variation, and in turn,
the PI feedback used to stabilize the MC voltage will hardly
affect the D-mode motion.
We can see that there is an intersection between the near-

optimum lengthening detuning line and theD-mode thresh-
old detuning line. The intersection point is at the beam
current of approximately 262 mA. For the case of beam
current lower than that point, it is clear that theDmode will
impose a limitation on the bunch lengthening, resulting in
the failure to reach the near-optimum bunch lengthening.

V. CONCLUSION AND DISCUSSION

As a follow-up to our previous research [6], we have
made further efforts in this paper to derive simpler
analytical formulas for analyzing the D-mode instability.
The contributions of this paper can be summarized as
follows: (i) Based on the characteristic of D mode that it
has a small frequency deviation from the PSHC detuning,
appropriate approximations are taken to derive analytical
formulas for calculating the D-mode frequency and
growth rate, which makes its dependency on relevant
parameters more intuitive. (ii) For the case of a relatively
large detuning, the D-mode has a negative growth rate
(is damped) whose absolute value approaches the PSHC
half bandwidth. This has not been discovered in our
previous study. (iii) The analytical formulas can be used
more easily to compute the threshold detuning, and the
results are in good agreement with those obtained by

tracking simulations, which holds at least for three realistic
storage rings. Based on the analytical formulas, it has
revealed that the MC fundamental mode impedance can
enhance the D mode significantly (or slightly), depending
on whether the cavity is normal-conducting (or super-
conducting). (iv) Combined with tracking simulations, it
has shown that the PI feedback can suppress the D mode
effectively for the case of normal-conducting main cavities;
while for the case of superconducting main cavities, it
affects hardly theDmode. This difference can be attributed
to the different cavity bandwidth. (v) It can be seen from the
derivation process for the D-mode growth rate formula of
Eq. (30) that the real part of the PSHC fundamental mode
impedance determines the value of bn; while the imaginary
part determines the value of kn, which is positive and has a
so large value that 2Ωr − kn < 0. The latter is the main
factor of determining the D-mode characteristic of being
antidamped by the radiation damping effect. Therefore, the
imaginary part plays a more crucial role in the D-mode
motion.
It should be pointed out that the derivation method

demonstrated in this paper is not limited to analyzing theD-
mode instability but can also be extended to mode 1
instability [22,23]. However, this part is beyond the scope
of this paper and will be discussed elsewhere.
Finally, it should be emphasized that the D-mode

instability needs to be considered only when the PSHC
is operated in bunch lengthening mode. For the case of
bunch shortening, we can directly solve the mode-zero
Robinson instability equation, and of course, we can also
derive analytical formulas for analyzing the D-mode
instability. In that case, it can be found that the D mode
is always stable. The relevant derivations are shown in
Appendix B for the reader’s reference.
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APPENDIX A: PI FEEDBACK IMPLEMENTED
IN THE STABLE CODE

The STABLE code can be available via the link [24]. A
realistic PI feedback has already been implemented in the
STABLE to stabilize the MC voltage. The whole procedure
of the PI feedback, as shown in Fig. 6, mainly consists of
three parts:
(i) To compute the error current phasor ΔṼ=RL, where

RL is the loaded shunt impedance, and ΔṼ is the error
voltage phasor between the desired voltage phasor Ṽset and
the measured voltage phasor hṼci. The measured voltage

FIG. 5. Threshold detuning as functions of the beam current for
SSRF, obtained by solving directly Eq. (30) and tracking
simulations.
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phasor is assumed to be the averaged voltage phasor among
a certain number of buckets (tens of buckets).
(ii) Input the error current phasor to the PI controller,

then output the corrected generator current phasor ΔĨg.
(iii) To update the generator current phasor with

Ĩg0 þ ΔĨg, where Ĩg0 is the initialized generator current
phasor. After a delay of a certain number of buckets
(1 − 2 μs), this updated generator current starts acting on
the cavity voltage.

APPENDIX B: ANALYTICAL FORMULAS
FOR THE D MODE IN THE CASE

OF BUNCH SHORTENING

For the case of PSHC operated in bunch shortening
mode, the search algorithm for minimum can be also used
directly to solve the mode-zero Robinson instability equa-
tion. We still take the HALF storage ring as an example.
Using the parameters listed in Table I and assuming the
detuning frequency of −6 kHz, the resulting 2D contour
maps of logðjgðΩÞjÞ are shown in Fig. 7. It can be seen that
for both cases of τz ¼ 14 ms and τz ¼ 2 ms, the D-mode
frequency is slightly larger than the detuning of PSHC,
which is opposite to the case of bunch lengthening. This
feature can be utilized to derive the oscillation frequency
and growth rate formulas for the D mode.
Take the real part of Eq. (8) and ignore unimportant

terms, it also gives

Ω2
r − ω2

s þ ξ
X
j¼1;n

fjIm½Zjðωþ
pjÞ − Zjðω−

pjÞ�g ≈ 0: ðB1Þ

Here, we set Δωrn ¼ nhω0 − ωrn > 0, and it is already
known that Ωr is slightly higher than Δωrn. If introduce
Δω1 ¼ Ωr þ Δωrn and Δω2 ¼ Ωr − Δωrn, then the terms
related to the PSHC can be transformed as follows:

ξnIm½Znðωþ
pnÞ − Znðω−

pnÞ�

¼ ξnIm

"
Rn

1 − i 2QnΔω1

ωrn

−
Rn

1 − i 2QnΔω2

ωrn

#

≈ −
ξnRn

2Qn

�
ωrn

Δω2

−
ωrn

2Δωrn

�
: ðB2Þ

For the terms relevant to the MC, we can obtain the same
equation as Eq. (13). Substitute Eqs. (B2) and (13) into
Eq. (B1) and take appropriate simplifications, a quadratic
equation about Δω2 is finally obtained

Δω2
2 þ

�
Δωrn

2
þ ζ1 − ω2

s

2Δωrn
þ ξnRnωrn

8QnΔω2
rn

�
Δω2

−
ξnωrnRn

4ΔωrnQn
¼ 0: ðB3Þ

If we introduce

B3 ¼
Δωrn

4
þ ζ1 − ω2

s

4Δωrn
þ ξnRnωrn

16QnΔω2
rn
; ðB4Þ

and still use Eq. (20) of B2, it is easy to know Eq. (B3) has
two solutions of −B3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
3 þ B2

p
, where only the one

closest to zero is required. Therefore, we get

Δω2 ¼ −B3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
3 þ B2

q
: ðB5Þ

The D-mode angular frequency can be written as

Ωr ¼ Δωr þ Δω2: ðB6Þ

FIG. 7. Contour map of logðjgðΩÞjÞ for the case of detuning of
−6 kHz. The top and the bottom correspond to the cases of
damping times of 14 and 2 ms, respectively. The left local
minimum corresponds the synchronous oscillation (labeled as S),
while the right one to the PSHC detuning (labeled as D).

FIG. 6. Implementation of the PI feedback loop in the STABLE

tracking code. The PI controller is represented by the transfer
function of kp þ ki=s, where kp and ki are the proportional and
integral gains, respectively. The cavity voltage phasor Ṽc is
driven by both the generator current and the beam current.
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Taking the same derivations as introduced in Sec. III B,
we can also obtain the D-mode growth rate for the case of
bunch shortening:

Ωi ≈
bn þ b1 − 2Ωr=τz
2Ωr − kn − k1

; ðB7Þ

where b1 and k1 can also be given by Eqs. (25) and (26),
respectively, since we set Δωrn ¼ nhω0 − ωrn > 0. In
addition, bn and kn are given, respectively, as follows:

bn ≈ −
ξnRnω

2
rn

4Q2
nΔω2

2

; ðB8Þ

and

kn ≈ −
ξnRnωrn

2QnΔω2
2

: ðB9Þ

It should be noted that all of b1, bn, and kn are always less
than zero. Additionally, it is in general that jk1j ≪ jknj.
Consequently, the denominator in Eq. (B7) is always larger
than zero. It indicates that for the case of bunch shortening,
theD-mode oscillation is always damped, which is ensured
by the PSHC and the MC fundamental modes, as well as
the radiation damping effect.
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