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Beam dynamics framework incorporating acceleration to define the
minimum aperture in two focusing schemes for proton radiotherapy linac
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In this paper, a self-consistent transverse beam dynamics framework is demonstrated that incorporates
acceleration into the transverse beam dynamics studies for a proton linac machine. Two focusing schemes
are developed and discussed: the FODO-like scheme and the minimum aperture scheme. The FODO-like
scheme is a simple scheme, requiring only one quadrupole per cavity. The scheme is analytically solved to
minimize the beam size at the cavity entrance/exit and ensures a constant beam size along the lattice, with
respect to adiabatic damping due to longitudinally accelerating rf cavities. The minimum aperture scheme
describes the regime that matches the beam ellipse to the acceptance ellipse of a cavity, allowing for the
smallest possible aperture, for a given cavity length. A simple approximation of an rf cavity map is
determined to allow changes in particle energy along a lattice, and acceleration is assumed only in the

longitudinal direction.
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I. INTRODUCTION

In the recent decades, all-linac solutions for proton
acceleration with medical applications have become an
increasing area of interest [1]. Two areas to have benefited
from such improvements are cancer radiotherapy and
medical imaging [2,3]. All-linac solutions have benefits
over the conventional cyc-linac and synchrotron machines
with respect to energy and intensity modulated on the scale
of ms. This allows for more efficient treatment of cancers
with proton beams, such as active spot scanning for moving
organs [4]. In addition to advantages to radiotherapy, linac
boosters can be used in conjunction with cyc-linac or all-
linac solutions to push proton energy to 350 MeV, the
energy required for medical imaging [5]. Proton medical
imaging allows a more accurate calculation of the required
proton energy during radiotherapy, over conventional x-ray
imaging, due to the proton stopping power.

All-linac machines benefit from a smaller beam emit-
tance than cyc-linac machines, and therefore, can operate
with smaller beam apertures, increasing the shunt imped-
ance. Limits are often placed on the beam aperture due to
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the transverse focusing requirements of the linac, in
addition to peak fields and power coupling.

This paper describes the method used to minimize the
beam aperture with respect to transverse beam losses, for a
given cavity length, analytically. This paper will discuss
two focusing schemes: namely the FODO-like scheme and
the minimum aperture scheme (MAS), incorporating longi-
tudinal momentum gain. The FODO-like scheme is similar
to the well-known FODO scheme, comprised of quadru-
pole of alternating polarity to produce a net focusing force
transversely. The MAS scheme produces a matching
section that aligns the transverse beam ellipse with the
cavity acceptance ellipse. An rf cavity transfer map is
produced to simulate longitudinal acceleration of protons,
and the corresponding adiabatic damping that occurs as a
result. Due to the very low beam currents used in proton
radiotherapy linacs [6] (of the order nA), space-charge
effects are ignored.

The Twiss parameter transfer matrix is adapted to
account for the change in beam emittance due to accel-
eration. The method requires minimizing the Twiss beta
function, f, at the cavity entrance and exit to minimize the
beam aperture for a given cavity length and beam emit-
tance, while ensuring maximum beam acceptance.

II. TWISS PARAMETERS WITH ACCELERATION

The phase space ellipse of a particle in a periodic beam
line, with geometric emittance ¢, is described

Egx = BX? 4+ 2a.xx +y,.x2, (1)
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1 2
where S, a,, and y, = ;"
' —dx _ P

[71, x is the transverse size of the beam, and x’ = &= p
longitudinal displacement, s. The maximum beam size at
any point s is given 6 = Xy, = /f(5)€,(s).

It is required to use the Lorentz invariant normalized
emittance, defined as &, = £,(s)y,(s)p,(s) [7], where
v-(s),p.(s) are the Lorentz factor and normalized particle
velocity, respectively. Using Eq. (1) to equate the normal-
ized emittance of a particle before and after an rf cavity:

are the Twiss parameters in x

for

7r0ﬁr0(/jx1x/12 + 2axlxlxll + yxlx%)
= leﬂrl (ﬂx0x62 =+ 2'aJCOJCOXE) + 7/x0x(2))7 (2)

where y,0f,0 and y,f,, are the Lorentz factor and nor-
malized particle velocity at the start and end of the cavity,
respectively. The cavity can be described with a linear
transfer map, R:

X1 Ry Rip X0
()G w)@) o
X Ry Ry /) \x
Assuming only longitudinal acceleration, the divergence
before and after the cavity is given

A /
x/1 — Px+'x0pZ0, (4)
Pz

where Ap, can be determined from Lorentz force, for a
particle of charge ¢, longitudinal velocity f.c, and at
azimuthal angle 6:

Ap, = gcos() <% + / Bgdz>. (5)

rz

In an azimuthally symmetric cylindrical cell, the radial
electric field (£,) and azimuthal magnetic field (By) can be
written as functions of the longitudinal electric field, E,,
using a first order expansion about r = 0:

rdE, wr
-, =—E, 6
2 dz 072027 (©6)

E, =

where o is the angular frequency. A typical E, field
component can be written as a Fourier series [8], with
the most simple case being:

E. .= sin< e > sin (0t + ¢y), (7)
Lcell

for a given cell length, L. ¢ represents the mean phase
over the cavity. The value of E, as observed by a particle at
constant velocity can be determined by substituting ¢ = -*

into Eq. (7).

Using Egs. (7), (6), (5), and (4) produces an approxi-
mation for x/:

Nrn 1 . P20
Xy = ——| Pr0— = | sin(¢hg)xo + —xo, 8
= o (Pea= 5 sntono + 22, 8)

where N is the number of rf cells in the rf cavity, and
NL = L, Integrating Eq. (8) over the cavity length
produces a similar form for x;. The final result of the cavity
map is shown below:

148 (B0 = 5 ) sin(do) L' 7,0BcomelL

R= . 9)
e (ﬁrzo - /%0) sin(¢) Ay
where
L
/ = $ h—l A
A}/ Cos(gbo)mc (COS [7r0 + 7C05(¢0)]
— cosh™! (7,0)). (10)

with Ay =y,1 — 7,9, and

Ay = (1 + Ay cos(¢y) Ar cos(dy) + 2},’0)_1/2. (11)

}’30—1

To proceed, the rf phase is chosen such that longitudinal
acceleration is maximized, and defocusing forces are
minimized, ¢, = 0, as these are the conditions of the ideal
particle:

Y10Pr0 YrBratrn
R — 1 Lcav Ti—Two In (7,0ﬁ,zo+ym) (12)
0 70Pre0

yrlﬂrzl

The transfer matrices described in Egs. (9) and (12) are
related to the well-known transfer matrix derived by
Rosenzweig and Serafini [9]. However, the Rosenzweig-
Serafini (RS) matrix assumes ultrarelativistic particles,
whereas the derivation described in this article is extended
to partially relativistic particles, which is more appropriate
when modeling protons. In addition, the RS formalism
averages the periodic radial force experienced by charged
particles in an rf cavity. Furthermore, the RS matrix
includes focusing and defocusing terms from the fringe
fields at the start and end of the cavity, although this could
be easily incorporated into Eqgs. (9) and (12) if required, by
including the same edge-focusing terms that Rosenzweig
and Serafini use. The Twiss parameter transfer matrix can
be derived by substituting xq,x( as functions of xi,x]
[using the inverse form for Eq. (3)] into Eq. (2):
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P 5 RY, —2Ry1Ry2 R},
Yr1Pri
a, | = —Ri1Ry1 RiiRpn+RppRyy —RipRy
Y0P 5 2
Yl R3, —2Ry Ry R3,
:BxO
X (o4%) (13>
Vx0

The Twiss parameter transfer matrix takes on the recog-
nized form for zero acceleration, when % =1, as

i

expected.

The basic start point has now been established, with a
simple cavity transfer map, and the Twists parameter
transfer matrix incorporating acceleration.

III. FODO-LIKE SCHEME

The aim of the FODO-like scheme is to analytically
provide the quadrupole k-strength and length such that the
beam size is minimized at the cavity entrance/exit, pro-
ducing the smallest beam aperture possible for a given
chosen cavity length.

The lattice starts at a location such that the Twiss alpha
function is O in both transverse planes:

Ay = ay() =0. (14)
It is arbitrarily chosen:
B, = Max, p, = Min. (15)

The focusing scheme is a periodic array of the following

elements, constructing the FODO cell:
[half-FQ][drift][DQ][drift] [half-FQ]. (16)

It is convenient to split the FODO cell into half-FODO

cells, where the split is at some point within the DQ such
that a,; = a,; = 0. For zero acceleration, the split is at the

Px Lcavz |

< ><_
D-HHH;J

lql 2 q2 1| lq2 2 q3 1
ki gafropo Kz ik2  marropo ks
FIG. 1. FODO-like schematic.

midpoint. The drift sections are replaced with cavity
sections, sandwiched between short drift lengths, of length
ly, to closer approximate a realistic beam line. The half
focusing quadrupoles are described with length /,; , [where
the second index (2) refers to the quadrupole being the
second half of a complete quadrupole] and strength ky,

where k = as shown

198
Bp 0
in Fig. 1. For now, the second quadrupole index is
dropped (1,1, = 141).

The half-FODO cell in the x plane is thus:

M = |half-FQ][drift][cavity][drift] [half-DQ].  (17)
Explicitly, the transfer map is as follows:
B cosh(v/kyly2) ﬁsinh(\/glqz)
Vkysinh(y/kyl,5)  cosh(v/kalp)
1 Ly COS(\/qul) ﬁSin(ﬁlql)
(o e —Ersin(VEly)  cos(vEily)
(18)

Where the [drift][cavity][drift] matrix has been multiplied
together, and

Leff = lg (J}:r(l),/;r(l) + 1) + lcav

}/rOﬁrO In <7rlﬁr1 + yrl)
Yri =70 7r0ﬂr0 + 70

(19)

Using Eq. (13) to transform the Twiss parameters due to
transfer map M from a,, =0 to a,; = O:

M12M22

0= _MHMZLBXO ﬂo
x

(20)

This produces an analytical form for the Twiss  functions
at the start of the half-FODO cell, as functions of the half-

FODO transfer map M:
MMy MMy
Poo =\ Po=\m
My M, M33M 3

Enforcing the beam size in x at the start of the half-

FODO is equal to the y beam size at the end of the half-
FODO:

00 = Oyl Ox1 = Oy0- (22)

The beam size can be determined with the following:
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o= [P (23)

vbBr

therefore, Eq. (22) becomes

7rlﬁrl yrlﬂrl
Pro =Py, Pyo = P 24
YroPro 0 M YroPro v : ( )
Therefore,
ﬁx()ﬁxl :ﬁy()ﬁyl' (25)

The ratio of the f functions at each half-FODO cell, r, is
given

ﬂxO ﬁyl
ﬁyO ﬁxl

The Twiss f and y functions at the end of the half-FODO
can be determined using Eq. (13):

(26)

- yrlﬂrl 2 M2 )
= M 27
M2
ﬁ}l _ yrlﬁrl < 33ﬂ)0 + ﬁ ) (28)
70 »0
— L — }/rlﬂrl (M2 M%z) 29
T ﬁxl erﬁrO ZIﬁXO * ﬂxO , ( )

1 yrlﬁ rl 3 2 )
8 ﬁyl }/rOﬁrO < 430 /} ( )

Combining the above equations, along with Egs. (21),

(25), and the equality det(M,) = det(M,), it can be shown
My = £M3,, My = £My;
and
M My, = M3z M. (31)

Now that the basic relationships between half-FODO cell
elements have been determined, it is required to expand the
elements as functions of quadrupole, drift length, and
cavity parameters. In order to proceed, quadrupole maps
are simplified using the semithin lens approximation.

The semithin lens approximation expands trigonometric
and hyperbolic functions and truncates at second order. For
sensible values of k; and [ 5 kil, ~ 1, k l <1, and
kll < 1. Therefore, terms of the order k! l’”r2 are ignored

in the semithin lens approximation, for any integer n:

It also assumed that [, ~ [ ;, thus any terms of the order

ql>
ki12+2 are also ignored.

Substituting the semithin lens approximations into

Eq. (18), it is possible to show that the results in
Eq. (31) can be simplified to the following identities:
kB =kl (32)
70bro
l = 33
al yrl/}rl “ ( )
2 g2
by
ky =Lk, (34)
vroPro
7r0ﬁr0
}/rlﬁrl kllql — k21q2. (35)

For zero acceleration, Egs. (33)—(35) return to the expected
case. The above results are also solutions for full order
quadrupole elements.

In order to find the minimum aperture possible for a
given cavity length, the $,/f, function at the start/end of
the cavity is at a minimum. The transfer map, A,, that
transforms phase space from the initial position to the
cavity entrance in x is a (semithin lens) focusing quadru-
pole of length [, followed by a drift of length /;:

- <1 zg) 1—k11311/2 Ly (36)
0 1 —kylyy — k22 )

The f function at the cavity entrance, f3,, is determined
using Egs. (13) and (36):

2

Aty
ﬁxc() A%lﬁx() + =

ﬂxO (37)

Pco 1s minimized by differentiating Eq. (37) with respect to
quadrupole parameters, k;, and equating to 0. It was found
that differentiating with respect to /,; was not optimal, as
produces quadrupole lengths of the order 1 m:

dﬂch dAll dﬂxO
=2A
dk, N ﬁxo +A gk,
dA 1 1 4
4+ 2A, 12 2 o _, (38)

diky B 2B dk,

Rearranging for the derivative of f,, with respect to ky:
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By —2MnBu it = 20nf G
dk, A = ALBo

(39)

A form for S, can be computed in the semithin lens regime
using Eq. (21). The result is

\/;

Iy
1+
kllql

chf,l

ﬂxO ~ (40)

which is subsequently differentiated with respect to k,
1 dr 1
=bol57 =)
dkl 2r dkl k 1

The aspect ratio, r, can be expanded in the semithin lens
regime:

(41)

0 Leff.lk%lzl
LM U+ Legr i kilgy + ki [y —— (42)
ML Lt KB, °
W 1= Legg by lgy — kllfzﬂ _#

which can be differentiated with respect to k, as required in
Eq. (41). Combining Egs. (36), (39)-(42), before simplify-
ing and ignoring all terms smaller than the semithin lens
limit, produces a cubic in k;:

4 72
lqlLeff

K+ 1 (2 Loir = 211 Lot = L)k
— g (Ler + L )k + 1= 0. (43)

It can be shown that for reasonable values for [,;, ky, Leg,
Eq. (43) has three real roots, and thus trigonometric

solutions exist [10]. The solutions are as follows for
m=20,1, 2:

[— 3 [-1 2 b
ky =2 ?pcos <arccos<ﬁ> 5—%’”) ~34° (44)

where

2b% = 9abc + 274>
2743

_ 3ac —b?

3a2 1=

tl

and

_ —Lg1 1y
2 b
b =1 Lesr.1 (2(Ly = 1) = Leit.r):
¢ =Ly (Lery + Lg1)-

Equation (43) can also be solved using the thin lens

approximation, keeping terms of the form k{77, . The resultis

0.10
2.50 o
2.25 o 0.08
—~ 2.00 o —
£ s 0.06'c
o e -
s 1.75 :n \-3_
Q. -~
1.50 0.04
1.25 K
o 0.02
1.00

0.2 0.4 0.6 0.8 1.0
Leay (M)

FIG. 2. Optimum value of S, as a function of cavity length
and the first quadrupole length.

1 V5-1

k —
"Ly 2

(45)

Equations (44) and (45) produce analytical methods to
determine the optimum value of k; such that the maximum
transverse beam size is minimized at the cavity entrance/exit,
for a given cavity length and quadrupole length, within a
FODO-like scheme.

It can be shown that the value of f,. is relatively
insensitive to /,;. As a result, the user defined value of /,; is
not heavily constrained. However, as the semithin lens
regime is adopted, /,; cannot approach similar values to
l..y- Figure 2 displays f,.o as a function of cavity length
and [,;. The value of k; is calculated with Eq. (44). For

e Thin Lens
e Semi Thin Lens

=
N
.

=
o
.

oo.....
2 ooo......

Percentage difference from thick lens
[e)]

0
5 10 15 20 25 30
Lcav/ Iql
FIG. 3. Percentage difference between optimal value of k; as

calculated by thick lens and the thin and semithin regimes.
Iy =0.05m, [, =0.05 m.
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longer cavity lengths, f,. is larger, as expected. The value
of f,co 1s highly insensitive to initial values of [,

A. Semithin lens relative to thin lens

Figure 3 displays the percentage difference between the
optimal value of k; as calculated by the thick lens regime
(solved numerically) and the thin/semithin regimes. For the
minimum ratio L, /I, = 2, the percentage difference
between the semithin and thick lens regime is less than
1%, approximately 10 x less than the thin lens regime.
While the accuracy of the semithin lens regime is a function
of Leay /141, the error increases with [, for the same value
of Lcav/ lql

ql>

IV. CONCATENATING MULTIPLE
HALF-FODO CELLS

As there is nothing special about the first half-FODO cell
used to derive important constraints, the constraints extend
to all half-FODO cells in a lattice, allowing for propagating
equations to be formed. First, the second index describing
the quadrupole length is reintroduced, describing if the
quadrupole is the first or second half of the complete
quadrupole unit, recall:

ljg = 112, lp = g
For a set of N half-FODO cells, there exists 2N half
quadrupoles. The k strengths behave as follows:

f ek
T 10BN2 T (10Br)2
(}/rlﬂrl) <yrl)ﬁrl)
ky kon

_ _ 46)
708 Yribr (
(7r(l)ﬂ:{l]) (7r2ﬂr2)

N-1 (_rabi )
H <}’» i+1)Pr 1+1))
Where we define that ko = kpy.| as they are two sections
of the same quadrupole but separated into two half-FODO
cells. From Eq. (35), the relationship between consecutive
quadrupole lengths (first section) can also be determined:

yr(n—l)ﬂr(n—l)

YroPro - (47)

lyma =

By defining [/, , and values for the Lorentz factor, all
quadrupole k strengths and first section lengths can be
determined. The second section lengths of quadrupoles
must now be determined.

In order to satisfy the constraint in Eq. (24), Eq. (40) is
combined with the fact

T lgpn
Pur——4 1+
" kol

, 48
Leff.z ( )

producing a constraint on values for L ,:

yrlﬂrl
———Lesr 1
robBro

As a constant aspect ratio was assumed, this constraint must
be enforced

Legrn = (49)

Leg K31

2 12
L+ Leggakilyin +kilyy , ——=
o~ Legg1 k3183
elr,
L= Legrakilgin — kllil,z - 2
Legrak303
Ut Legrokalypn + kplly 5 — =522
~ ry ~ 2B (50)
2 Ler2ks 0o
1= Legrokolypo —kalyp ) ——5

Substituting with Egs. (34) and (49), it is a requirement that

I by = 7r1ﬂr1
K Y/

lg12- (51)

From Eq. (47), 1,51 = l,,. This result: quadrupole sec-
tions of the same quadrupole unit are the same length (in
addition to k strength), and the maximum/minimum beam
size occurs at the center point of the quadrupole unit.

In order to satisfy Eq. (49), either the drift or cavity
length (or a combination of the both) can be altered within
consecutive half-FODO cells [see Eq. (19)]. The required
change in element length manifests differently in each
elements. As drift lengths are short relative to cavity
lengths, the drifts become long, and the real estate gradient
drops. When the constraint term is absorbed by increasing
consecutive cavity lengths, the additional length does not
cause a drop in real estate gradient. In fact, it can be shown
that a FODO-like scheme is possible such that cavity
lengths increase faster than quadrupole lengths, thus
producing a lattice with higher real estate gradient than
the standard FODO scheme. Figure 8 shows the change in
real estate gradient for different methods to solve Eq. (49).

In this section, the FODO-like focusing scheme was
explored. Given an initial set of parameters, namely the first
quadrupole length, drift length, and cavity length, the value
of all quadrupole lengths and k strengths is determinable,
such that the limiting beam size is minimized at the cavity
entrance/exit. In addition to the quadrupole parameters,
consecutive cavity lengths and drift lengths are constrained
such that the aspect ratio and beam size are constant at each
half-FODO cell.

V. FODO RESULTS

Figure 4 displays the 3, (a) and a, (b) Twiss parameters
as a function of longitudinal displacement, s, over four
FODO cells. Twiss parameters are shown for both the
standard (zero acceleration) and FODO-like (nonzero
acceleration) lattices. The standard FODO refers to the
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w3, (M) - NON Zero Acceleration
3.0 === B, (M) - Zero Acceleration

— 0, - Zero Accerelation
1, - NON Zero Acceleration

Wi

FIG.4. Twiss f (a) and a (b) functions along FODO-like lattice.

=

Qx
o

case of constant quadrupole strengths and lengths along the
lattice, in addition to the drift lengths. The FODO-like
lattice refers to the case where lattice parameters change as
describe by Eqgs. (46), (47), (49), and (51). The lattice is
comprised of cavities with lengths of the order 1 m and
gradients of 50 MeV/m. [,; = 0.01 m and [, = 0.05 m.
The maximum f, function for a FODO-like lattice
increases with s, as the Lorentz factor increases due to
acceleration from rf cavities.

The total length of the FODO lattice is longer for the
FODO-like lattice, as the quadrupole lengths, cavity
lengths, and/or drift lengths increase with Lorentz factor,
from Eqgs. (33) and (49). Figure 5 demonstrates the
decrease/increase in consecutive quadrupole k strength/
lengths along a FODO-like lattice. The constant beam size
in both transverse planes along a FODO-like lattice are
shown in Fig. 6, as required.

Figure 7 displays the x phase space ellipse at the entrance
of the fifth half-FODO cell as calculated by both a constant
(standard FODO) and constrained (FODO-like) FODO
lattices. For constant lattice parameters, the phase space

a | e
IE 125 o Kk,
< 120 °
s
5 115
[ L]
O 110
I °
& 105
9 10.01 o
g
5 95 °
S
o 9.0 J
O 851 . . . i i . hd
1 2 3 4 5 6 7 8
Quadrupole number
(a)
X
- 0.120 1 X an,l
S x
z ® an,2
B, 01151 x
C
9 X
9 o110
[°) X
S
S 0.105 | x
3 x
o
01001 ®
1 2 3 4 5 6 7 8
Quadrupole number
(b)
FIG.5. Quadrupole & strength (a) and length (b) as a function of

quadrupole number in FODO-like scheme.

ellipse is over/under focused at half-FODO cell boundaries,
as the constant aspect ratio and beam size constraint are not
met. The constrained lattice produces a well matched
ellipse at the boundary, as required. In the limit of a high
number of periodic FODO cells, the standard FODO
scheme remains stable, when acceleration is incorporated.
The standard FODO lattice produces larger real estate
gradients to the FODO-like lattice when considering long
and fixed cavity lengths. In this case, the drift length must
increase along the lattice to keep Eq. (49) satisfied. As the
cavity lengths are long, the correction to subsequent /, is
large, and the real estate gradient drops. In addition,
increased /, causes the beam to defocus longitudinally.
For linacs with short cavity lengths, the correction
absorbed by [, is small, and the defocusing effect is
suppressed. Thus for short cavity length, the FODO-like
scheme becomes an effective focusing scheme. As pre-
viously discussed, cavity lengths can be defined to increase
in length, such that the FODO-like lattice has higher real
estate to the standard FODO lattice. Figure 8 displays the
change in cavity and drift length for three three different
FODO-like lattice adopting different methods to satisfy
Eq. (49). The real estate is defined as the percentage of
active accelerating length relative to the total longitudinal
length of the beam line. The maximum real estate is
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0.65 -
= g, - nonzero Acceleration
0.60 = g, - nonzero Acceleration
0.55
—~ 0.50
€
E 0.45
[\
0.40
0.35
0.30
0 1 2 3 4 5 6 7
S (m)

FIG. 6. Transverse beam size in the FODO-like scheme.

—— Start (Constrained) P

—— End (Constrained) g

........ Start (Constant)
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0.00
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-0.25

—-0.50

-0.75

—0.002 —0.001 0.000 0.001 0.002

X (m)

FIG. 7. Phase space ellipse at fifth half-FODO cell calculated
with constant or constrained lattice parameters.
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FIG. 8. Development of the cavity and drift length, for different

methods of satisfying Eq. (49).

achieved by keeping [, constant and increasing L, as
expected.

VI. MINIMUM APERTURE SCHEME

The MAS considers the focusing scheme by which a set
of focusing elements are placed upstream of a cavity that
orients the beam ellipse to match the acceptance ellipse of
the cavity. For a given cavity length, the MAS produces the
minimum cavity aperture that can be realized, for a given
transverse beam emittance. A schematic of the MAS is
shown Fig. 9.

The MAS scheme realizes the case of minimum beam
size at the cavity entrance/exit. The first constraint thus
forces equal beam size either side of the cavity:

yrlﬂrl
Oxc0 = Oxels - ﬁch = ﬂxcl' (52)
Yr0Pro

The input beta function, /3,9, is a constrained value given by
the beam emittance and aperture size. .., is determinable
using the Twiss parameter transform matrix [Eq. (13)]:

7rlﬂrl
ﬂxcl =
erﬂrO

(R%lﬂxco - 2R11R12O"xc0 + R%Zych)' (53)

The matrix elements R are defined by the rf cavity map
shown in Eq. (12). Solving Eq. (53) for a,. produces a
quadratic, solved using the quadratic formula. As there is
only one set of Twiss parameters that can produce the
required beam ellipse, the determinant must be zero. The
results are shown below:

LCHV

1

Minimum Aperture Scheme

(a)

Phase Space Ellipse

-

FIG. 9.
in MAS.

(a) MAS schematic. (b) Input/output phase space ellipse
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FIG. 10. Beam aperture as a function of cavity length in the
MAS scheme.

ﬂxco _ Lcav 7r0ﬂr0 In (7/rlﬁr1 + yrl) ~ Lcav’ (54)

=70 \robro+70
Ao = 1, (55)
and
2
Vxc0 = . (56)
Y0P YriPritrn
Ay =10 ln(7y0/3r0+7r0)

It can be shown that for a given transverse emittance, the
minimum cavity aperture as a function of cavity length is

a= \/Sn|: Lcav ln<7rlﬁr1 +7r1):|. (57)
Yr1 =70 YrOﬁrO + 70

Figure 10 displays the minimum cavity aperture for a 56
beam as a function of cavity length with gradient
of 50 MeV/m.

The MAS requires multiple quadrupoles to produce the
required matching for the beam ellipse and thus uses more
quadrupole per cavity than the FODO-like scheme.
However, the MAS can produce optimal focusing schemes,
where the increase in nonactive length (quadrupoles, drift
lengths) is less than the increase in active cavity length.

VII. CONCLUSION

In this paper, a self-consistent framework was demon-
strated that allowed the incorporation of acceleration into
transverse beam dynamics studies for a proton linac
machine. Two focusing schemes were developed and
discussed: the FODO-like scheme and the minimum

aperture scheme. The FODO-like scheme is a simple
scheme, requiring only one quadrupole per cavity. The
scheme was analytically solved to minimize the beam size
at the cavity entrance/exit and ensures constant beam size
along the lattice. It was shown that lattice parameters must
be altered along the FODO cell, to meet the design
constraints for an accelerating scheme. The MAS describes
the regime that matched the beam ellipse to the acceptance
ellipse of a cavity, allowing for the smallest possible
aperture, for a given cavity length. The MAS will require
more than one quadrupole per cavity, and therefore, will
only have higher real estate gradients than the FODO-like
scheme in special cases.
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