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In this paper, a self-consistent transverse beam dynamics framework is demonstrated that incorporates
acceleration into the transverse beam dynamics studies for a proton linac machine. Two focusing schemes
are developed and discussed: the FODO-like scheme and the minimum aperture scheme. The FODO-like
scheme is a simple scheme, requiring only one quadrupole per cavity. The scheme is analytically solved to
minimize the beam size at the cavity entrance/exit and ensures a constant beam size along the lattice, with
respect to adiabatic damping due to longitudinally accelerating rf cavities. The minimum aperture scheme
describes the regime that matches the beam ellipse to the acceptance ellipse of a cavity, allowing for the
smallest possible aperture, for a given cavity length. A simple approximation of an rf cavity map is
determined to allow changes in particle energy along a lattice, and acceleration is assumed only in the
longitudinal direction.
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I. INTRODUCTION

In the recent decades, all-linac solutions for proton
acceleration with medical applications have become an
increasing area of interest [1]. Two areas to have benefited
from such improvements are cancer radiotherapy and
medical imaging [2,3]. All-linac solutions have benefits
over the conventional cyc-linac and synchrotron machines
with respect to energy and intensity modulated on the scale
of ms. This allows for more efficient treatment of cancers
with proton beams, such as active spot scanning for moving
organs [4]. In addition to advantages to radiotherapy, linac
boosters can be used in conjunction with cyc-linac or all-
linac solutions to push proton energy to 350 MeV, the
energy required for medical imaging [5]. Proton medical
imaging allows a more accurate calculation of the required
proton energy during radiotherapy, over conventional x-ray
imaging, due to the proton stopping power.
All-linac machines benefit from a smaller beam emit-

tance than cyc-linac machines, and therefore, can operate
with smaller beam apertures, increasing the shunt imped-
ance. Limits are often placed on the beam aperture due to

the transverse focusing requirements of the linac, in
addition to peak fields and power coupling.
This paper describes the method used to minimize the

beam aperture with respect to transverse beam losses, for a
given cavity length, analytically. This paper will discuss
two focusing schemes: namely the FODO-like scheme and
the minimum aperture scheme (MAS), incorporating longi-
tudinal momentum gain. The FODO-like scheme is similar
to the well-known FODO scheme, comprised of quadru-
pole of alternating polarity to produce a net focusing force
transversely. The MAS scheme produces a matching
section that aligns the transverse beam ellipse with the
cavity acceptance ellipse. An rf cavity transfer map is
produced to simulate longitudinal acceleration of protons,
and the corresponding adiabatic damping that occurs as a
result. Due to the very low beam currents used in proton
radiotherapy linacs [6] (of the order nA), space-charge
effects are ignored.
The Twiss parameter transfer matrix is adapted to

account for the change in beam emittance due to accel-
eration. The method requires minimizing the Twiss beta
function, β, at the cavity entrance and exit to minimize the
beam aperture for a given cavity length and beam emit-
tance, while ensuring maximum beam acceptance.

II. TWISS PARAMETERS WITH ACCELERATION

The phase space ellipse of a particle in a periodic beam
line, with geometric emittance εg;x, is described

εg;x ¼ βxx02 þ 2αxxx0 þ γxx2; ð1Þ
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where βx, αx, and γx ¼ 1þα2x
βx

are the Twiss parameters in x

[7], x is the transverse size of the beam, and x0 ¼ dx
ds ¼ px

pz
for

longitudinal displacement, s. The maximum beam size at
any point s is given σ ¼ xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðsÞεgðsÞ

p
.

It is required to use the Lorentz invariant normalized
emittance, defined as εn ¼ εgðsÞγrðsÞβrðsÞ [7], where
γrðsÞ; βrðsÞ are the Lorentz factor and normalized particle
velocity, respectively. Using Eq. (1) to equate the normal-
ized emittance of a particle before and after an rf cavity:

γr0βr0ðβx1x021 þ 2αx1x1x01 þ γx1x21Þ
¼ γr1βr1ðβx0x020 þ 2αx0x0x00 þ γx0x20Þ; ð2Þ

where γr0βr0 and γr1βr1 are the Lorentz factor and nor-
malized particle velocity at the start and end of the cavity,
respectively. The cavity can be described with a linear
transfer map, R:

�
x1
x01

�
¼
�
R11 R12

R21 R21

��
x0
x00

�
: ð3Þ

Assuming only longitudinal acceleration, the divergence
before and after the cavity is given

x01 ¼
Δpx þ x00pz0

pz1
; ð4Þ

where Δpx can be determined from Lorentz force, for a
particle of charge q, longitudinal velocity βzc, and at
azimuthal angle θ:

Δpx ¼ q cosðθÞ
�R

Erdz
βrzc

þ
Z

Bθdz

�
: ð5Þ

In an azimuthally symmetric cylindrical cell, the radial
electric field (Er) and azimuthal magnetic field (Bθ) can be
written as functions of the longitudinal electric field, Ez,
using a first order expansion about r ¼ 0:

Er ¼ −
r
2

dEz

dz
; Bθ ¼

ωr
2c2

Ez; ð6Þ

where ω is the angular frequency. A typical Ez field
component can be written as a Fourier series [8], with
the most simple case being:

Ez ¼ sin

�
πz
Lcell

�
sin ðωtþ ϕ0Þ; ð7Þ

for a given cell length, Lcell. ϕ0 represents the mean phase
over the cavity. The value of Ez as observed by a particle at
constant velocity can be determined by substituting t ¼ z

βzc

into Eq. (7).

Using Eqs. (7), (6), (5), and (4) produces an approxi-
mation for x01:

x01 ¼
Nπ

4pz1

�
βrz0 −

1

βrz0

�
sinðϕ0Þx0 þ

pz0

pz1
x0; ð8Þ

where N is the number of rf cells in the rf cavity, and
NLcell ¼ Lcav. Integrating Eq. (8) over the cavity length
produces a similar form for x1. The final result of the cavity
map is shown below:

R¼

0
B@1þ Nπ

4

�
βrz0 − 1

βrz0

�
sinðϕ0ÞL0 γr0βrz0mcL0

Nπ
4γrsβrz1mc

�
βrz0− 1

βrz0

�
sinðϕ0Þ Ad

1
CA; ð9Þ

where

L0 ¼ Lcav

Δγ cosðϕ0Þmc
ðcosh−1½γr0 þ Δγ cosðϕ0Þ�

− cosh−1ðγr0ÞÞ; ð10Þ

with Δγ ¼ γr1 − γr0, and

Ad ¼
�
1þ Δγ cosðϕ0Þ

Δγ cosðϕ0Þ þ 2γr0
γ2r0 − 1

�
−1=2

: ð11Þ

To proceed, the rf phase is chosen such that longitudinal
acceleration is maximized, and defocusing forces are
minimized, ϕ0 ¼ 0, as these are the conditions of the ideal
particle:

R ¼

0
B@ 1 Lcav

γr0βrz0
γr1−γr0

ln
�
γr1βrz1þγr1
γr0βrz0þγr0

�
0

γr0βrz0
γr1βrz1

1
CA: ð12Þ

The transfer matrices described in Eqs. (9) and (12) are
related to the well-known transfer matrix derived by
Rosenzweig and Serafini [9]. However, the Rosenzweig-
Serafini (RS) matrix assumes ultrarelativistic particles,
whereas the derivation described in this article is extended
to partially relativistic particles, which is more appropriate
when modeling protons. In addition, the RS formalism
averages the periodic radial force experienced by charged
particles in an rf cavity. Furthermore, the RS matrix
includes focusing and defocusing terms from the fringe
fields at the start and end of the cavity, although this could
be easily incorporated into Eqs. (9) and (12) if required, by
including the same edge-focusing terms that Rosenzweig
and Serafini use. The Twiss parameter transfer matrix can
be derived by substituting x0; x00 as functions of x1; x01
[using the inverse form for Eq. (3)] into Eq. (2):
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0
B@
βx1

αx1

γx1

1
CA¼ γr1βr1

γr0βr0

0
B@

R2
11 −2R11R12 R2

12

−R11R21 R11R22þR12R21 −R12R22

R2
21 −2R21R22 R2

22

1
CA

×

0
B@
βx0

αx0

γx0

1
CA: ð13Þ

The Twiss parameter transfer matrix takes on the recog-
nized form for zero acceleration, when γr1βr1

γr0βr0
¼ 1, as

expected.
The basic start point has now been established, with a

simple cavity transfer map, and the Twists parameter
transfer matrix incorporating acceleration.

III. FODO-LIKE SCHEME

The aim of the FODO-like scheme is to analytically
provide the quadrupole k-strength and length such that the
beam size is minimized at the cavity entrance/exit, pro-
ducing the smallest beam aperture possible for a given
chosen cavity length.
The lattice starts at a location such that the Twiss alpha

function is 0 in both transverse planes:

αx0 ¼ αy0 ¼ 0: ð14Þ

It is arbitrarily chosen:

βx ¼ Max; βy ¼ Min: ð15Þ

The focusing scheme is a periodic array of the following
elements, constructing the FODO cell:

½half-FQ�½drift�½DQ�½drift�½half-FQ�: ð16Þ

It is convenient to split the FODO cell into half-FODO
cells, where the split is at some point within the DQ such
that αx1 ¼ αy1 ¼ 0. For zero acceleration, the split is at the

midpoint. The drift sections are replaced with cavity
sections, sandwiched between short drift lengths, of length
lg, to closer approximate a realistic beam line. The half
focusing quadrupoles are described with length lq1;2 [where
the second index (2) refers to the quadrupole being the
second half of a complete quadrupole] and strength k1,

where k ¼ 1
Bρ

∂By

∂x and Bρ is the magnetic rigidity, as shown
in Fig. 1. For now, the second quadrupole index is
dropped (lq1;2 ¼ lq1).
The half-FODO cell in the x plane is thus:

M ¼ ½half-FQ�½drift�½cavity�½drift�½half-DQ�: ð17Þ

Explicitly, the transfer map is as follows:

M¼

0
B@ coshð ffiffiffiffiffi

k2
p

lq2Þ 1ffiffiffiffi
k2

p sinhð ffiffiffiffiffi
k2

p
lq2Þffiffiffiffiffi

k2
p

sinhð ffiffiffiffiffi
k2

p
lq2Þ coshð ffiffiffiffiffi

k2
p

lq2Þ

1
CA

×

�
1 Leff

0 γr0βr0
γr1βr1

�0B@ cosð ffiffiffiffiffi
k1

p
lq1Þ 1ffiffiffiffi

k1
p sinð ffiffiffiffiffi

k1
p

lq1Þ

−
ffiffiffiffiffi
k1

p
sinð ffiffiffiffiffi

k1
p

lq1Þ cosð ffiffiffiffiffi
k1

p
lq1Þ

1
CA:

ð18Þ

Where the [drift][cavity][drift] matrix has been multiplied
together, and

Leff ¼ lg

�
γr0βr0
γr1βr1

þ 1

�
þ lcav

γr0βr0
γr1 − γr0

ln

�
γr1βr1 þ γr1
γr0βr0 þ γr0

�
:

ð19Þ

Using Eq. (13) to transform the Twiss parameters due to
transfer map M from αx0 ¼ 0 to αx1 ¼ 0:

0 ¼ −M11M21βx0 −
M12M22

βx0
: ð20Þ

This produces an analytical form for the Twiss β functions
at the start of the half-FODO cell, as functions of the half-
FODO transfer map M:

βx0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M12M22

M11M21

s
; βy0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M34M44

M33M43

s
: ð21Þ

Enforcing the beam size in x at the start of the half-
FODO is equal to the y beam size at the end of the half-
FODO:

σx0 ¼ σy1; σx1 ¼ σy0: ð22Þ

The beam size can be determined with the following:FIG. 1. FODO-like schematic.
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σ ¼
ffiffiffiffiffiffiffiffiffi
βεn
γrβr

s
; ð23Þ

therefore, Eq. (22) becomes

γr1βr1
γr0βr0

βx0 ¼ βy1;
γr1βr1
γr0βr0

βy0 ¼ βx1: ð24Þ

Therefore,

βx0βx1 ¼ βy0βy1: ð25Þ

The ratio of the β functions at each half-FODO cell, r, is
given

βx0
βy0

¼ βy1
βx1

¼ r: ð26Þ

The Twiss β and γ functions at the end of the half-FODO
can be determined using Eq. (13):

βx1 ¼
γr1βr1
γr0βr0

�
M2

11βx0 þ
M2

12

βx0

�
; ð27Þ

βy1 ¼
γr1βr1
γr0βr0

�
M2

33βy0 þ
M2

34

βy0

�
; ð28Þ

γx1 ¼
1

βx1
¼ γr1βr1

γr0βr0

�
M2

21βx0 þ
M2

22

βx0

�
; ð29Þ

γy1 ¼
1

βy1
¼ γr1βr1

γr0βr0

�
M2

43βy0 þ
M2

44

βy0

�
: ð30Þ

Combining the above equations, along with Eqs. (21),
(25), and the equality detðMxÞ ¼ detðMyÞ, it can be shown

M12 ¼ �M34; M21 ¼ �M43

and

M11M22 ¼ M33M44: ð31Þ

Now that the basic relationships between half-FODO cell
elements have been determined, it is required to expand the
elements as functions of quadrupole, drift length, and
cavity parameters. In order to proceed, quadrupole maps
are simplified using the semithin lens approximation.
The semithin lens approximation expands trigonometric

and hyperbolic functions and truncates at second order. For
sensible values of k1 and lq1; k1lq1 ∼ 1, k1l2q1 < 1, and
k1l3q1 ≪ 1: Therefore, terms of the order kn1l

nþ2
q1 are ignored

in the semithin lens approximation, for any integer n:

cos
� ffiffiffiffiffi

k1
p

lq1
�
≈ 1 − k1l2q1=2;

sin
� ffiffiffiffiffi

k1
p

lq1
�
≈

ffiffiffiffiffi
k1

p
lq1;

cosh
� ffiffiffiffiffi

k1
p

lq1
�
≈ 1þ k1l2q1=2;

sinh
� ffiffiffiffiffi

k1
p

lq1
�
≈

ffiffiffiffiffi
k1

p
lq1:

It also assumed that lg ∼ lq1, thus any terms of the order
kn1l

nþ2
g are also ignored.
Substituting the semithin lens approximations into

Eq. (18), it is possible to show that the results in
Eq. (31) can be simplified to the following identities:

k1l2q1 ¼ k2l2q2; ð32Þ

lq1 ¼
γr0βr0
γr1βr1

lq2; ð33Þ

k1 ¼
γ2r1β

2
r1

γ2r0β
2
r0
k2; ð34Þ

γr0βr0
γr1βr1

k1lq1 ¼ k2lq2: ð35Þ

For zero acceleration, Eqs. (33)–(35) return to the expected
case. The above results are also solutions for full order
quadrupole elements.
In order to find the minimum aperture possible for a

given cavity length, the βx=βy function at the start/end of
the cavity is at a minimum. The transfer map, Λx, that
transforms phase space from the initial position to the
cavity entrance in x is a (semithin lens) focusing quadru-
pole of length lq1 followed by a drift of length lg:

Λ ¼
�
1 lg
0 1

� 
1 − k1l2q1=2 lq1

−k1lq1 1 − k1l2q1=2

!
: ð36Þ

The β function at the cavity entrance, βxc0, is determined
using Eqs. (13) and (36):

βxc0 ¼ Λ2
11βx0 þ

Λ2
12

βx0
: ð37Þ

βxc0 is minimized by differentiating Eq. (37) with respect to
quadrupole parameters, k1, and equating to 0. It was found
that differentiating with respect to lq1 was not optimal, as
produces quadrupole lengths of the order 1 m:

dβxc0
dk1

¼ 2Λ11

dΛ11

dk1
βx0 þ Λ2

11

dβx0
dk1

þ 2Λ12

dΛ12

dk1

1

βx0
− Λ2

12

1

β2x0

dβx0
dk1

¼ 0: ð38Þ

Rearranging for the derivative of βx0 with respect to k1:
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dβx0
dk1

¼
−2Λ11βx0

dΛ11

dk1
− 2Λ12β

−1
x0

dΛ12

dk1

Λ2
11 − Λ2

12β
−2
x0

: ð39Þ

A form for βx0 can be computed in the semithin lens regime
using Eq. (21). The result is

βx0 ≈
ffiffiffi
r

p
k1lq1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lq1

Leff;1

s
; ð40Þ

which is subsequently differentiated with respect to k1

dβx0
dk1

¼ βx0

�
1

2r
dr
dk1

−
1

k1

�
: ð41Þ

The aspect ratio, r, can be expanded in the semithin lens
regime:

r ¼ M33

M11

≈
1þ Leff;1k1lq1 þ k1l2q1 −

Leff;1k21l
3
q1

2

1 − Leff;1k1lq1 − k1l2q1 −
Leff;1k21l

3
q1

2

; ð42Þ

which can be differentiated with respect to k1, as required in
Eq. (41). Combining Eqs. (36), (39)–(42), before simplify-
ing and ignoring all terms smaller than the semithin lens
limit, produces a cubic in k1:

−
l4q1L

2
eff

2
k31 þ l2q1ð2lgLeff − 2lq1Leff − L2

effÞk21
− lq1ðLeff þ lq1Þk1 þ 1 ¼ 0: ð43Þ

It can be shown that for reasonable values for lq1; k1; Leff,
Eq. (43) has three real roots, and thus trigonometric
solutions exist [10]. The solutions are as follows for
m ¼ 0, 1, 2:

k1 ¼ 2

ffiffiffiffiffiffiffi
−p
3

r
cos

�
arccos

�
3q
2p

� ffiffiffiffiffiffi
−1
3p

s
−
2πm
3

�
−

b
3a

; ð44Þ

where

p ¼ 3ac − b2

3a2
; q ¼ 2b3 − 9abcþ 27a2

27a3
;

and

a ¼ −L2
eff;1l

4
q1

2
;

b ¼ l2q1Leff;1ð2ðlg − lq1Þ − Leff;1Þ;
c ¼ −lq1ðLeff;1 þ lq1Þ:

Equation (43) can also be solved using the thin lens
approximation, keeping terms of the form kn1l

n
q1. The result is

k1 ¼
1

lq1Leff;1

ffiffiffi
5

p
− 1

2
: ð45Þ

Equations (44) and (45) produce analytical methods to
determine the optimum value of k1 such that the maximum
transverse beam size is minimized at the cavity entrance/exit,
for a given cavity length and quadrupole length, within a
FODO-like scheme.
It can be shown that the value of βxc0 is relatively

insensitive to lq1. As a result, the user defined value of lq1 is
not heavily constrained. However, as the semithin lens
regime is adopted, lq1 cannot approach similar values to
lcav. Figure 2 displays βxc0 as a function of cavity length
and lq1. The value of k1 is calculated with Eq. (44). For

FIG. 2. Optimum value of βxc0 as a function of cavity length
and the first quadrupole length.

FIG. 3. Percentage difference between optimal value of k1 as
calculated by thick lens and the thin and semithin regimes.
lq1 ¼ 0.05 m, lg ¼ 0.05 m.
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longer cavity lengths, βxc0 is larger, as expected. The value
of βxc0 is highly insensitive to initial values of lq1.

A. Semithin lens relative to thin lens

Figure 3 displays the percentage difference between the
optimal value of k1 as calculated by the thick lens regime
(solved numerically) and the thin/semithin regimes. For the
minimum ratio Lcav=lq1 ¼ 2, the percentage difference
between the semithin and thick lens regime is less than
1%, approximately 10 × less than the thin lens regime.
While the accuracy of the semithin lens regime is a function
of Lcav=lq1, the error increases with lq1, for the same value
of Lcav=lq1.

IV. CONCATENATING MULTIPLE
HALF-FODO CELLS

As there is nothing special about the first half-FODO cell
used to derive important constraints, the constraints extend
to all half-FODO cells in a lattice, allowing for propagating
equations to be formed. First, the second index describing
the quadrupole length is reintroduced, describing if the
quadrupole is the first or second half of the complete
quadrupole unit, recall:

lq1 → lq1;2; lq2 → lq2;1:

For a set of N half-FODO cells, there exists 2N half
quadrupoles. The k strengths behave as follows:

k1 ¼
k2

ðγr0βr0γr1βr1
Þ2 ¼

k3
ðγr0βr0γr1βr1

Þ2

¼ k4
ðγr0βr0γr1βr1

Þ2ðγr1βr1γr2βr2
Þ2 ¼ � � � ¼ k2NQ

N−1
i¼0

�
γriβri

γrðiþ1Þβrðiþ1Þ

�
2
: ð46Þ

Where we define that k2N ¼ k2Nþ1 as they are two sections
of the same quadrupole but separated into two half-FODO
cells. From Eq. (35), the relationship between consecutive
quadrupole lengths (first section) can also be determined:

lqðnÞ;1 ¼
γrðn−1Þβrðn−1Þ

γr0βr0
lq1;2: ð47Þ

By defining lq1;2 and values for the Lorentz factor, all
quadrupole k strengths and first section lengths can be
determined. The second section lengths of quadrupoles
must now be determined.
In order to satisfy the constraint in Eq. (24), Eq. (40) is

combined with the fact

βy1 ≈
ffiffiffi
r

p
k2lq2;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lq2;2

Leff;2

s
; ð48Þ

producing a constraint on values for Leff;n:

Leff;2 ¼
γr1βr1
γr0βr0

Leff;1: ð49Þ

As a constant aspect ratio was assumed, this constraint must
be enforced

r1 ≈
1þ Leff;1k1lq1;2 þ k1l2q1;2 −

Leff;1k21l
3
q1;2

2

1 − Leff;1k1lq1;2 − k1l2q1;2 −
Leff;1k21l

3
q1;2

2

≈ r2 ≈
1þ Leff;2k2lq2;2 þ k2l2q2;2 −

Leff;2k22l
3
q2;2

2

1 − Leff;2k2lq2;2 − k2l2q2;2 −
Leff;2k22l

3
q2;2

2

: ð50Þ

Substituting with Eqs. (34) and (49), it is a requirement that

lq2;2 ¼
γr1βr1
γr0βr0

lq1;2: ð51Þ

From Eq. (47), lq2;1 ¼ lq2;2. This result: quadrupole sec-
tions of the same quadrupole unit are the same length (in
addition to k strength), and the maximum/minimum beam
size occurs at the center point of the quadrupole unit.
In order to satisfy Eq. (49), either the drift or cavity

length (or a combination of the both) can be altered within
consecutive half-FODO cells [see Eq. (19)]. The required
change in element length manifests differently in each
elements. As drift lengths are short relative to cavity
lengths, the drifts become long, and the real estate gradient
drops. When the constraint term is absorbed by increasing
consecutive cavity lengths, the additional length does not
cause a drop in real estate gradient. In fact, it can be shown
that a FODO-like scheme is possible such that cavity
lengths increase faster than quadrupole lengths, thus
producing a lattice with higher real estate gradient than
the standard FODO scheme. Figure 8 shows the change in
real estate gradient for different methods to solve Eq. (49).
In this section, the FODO-like focusing scheme was

explored. Given an initial set of parameters, namely the first
quadrupole length, drift length, and cavity length, the value
of all quadrupole lengths and k strengths is determinable,
such that the limiting beam size is minimized at the cavity
entrance/exit. In addition to the quadrupole parameters,
consecutive cavity lengths and drift lengths are constrained
such that the aspect ratio and beam size are constant at each
half-FODO cell.

V. FODO RESULTS

Figure 4 displays the βx (a) and αx (b) Twiss parameters
as a function of longitudinal displacement, s, over four
FODO cells. Twiss parameters are shown for both the
standard (zero acceleration) and FODO-like (nonzero
acceleration) lattices. The standard FODO refers to the
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case of constant quadrupole strengths and lengths along the
lattice, in addition to the drift lengths. The FODO-like
lattice refers to the case where lattice parameters change as
describe by Eqs. (46), (47), (49), and (51). The lattice is
comprised of cavities with lengths of the order 1 m and
gradients of 50 MeV=m. lq1 ¼ 0.01 m and lg1 ¼ 0.05 m.
The maximum βx function for a FODO-like lattice
increases with s, as the Lorentz factor increases due to
acceleration from rf cavities.
The total length of the FODO lattice is longer for the

FODO-like lattice, as the quadrupole lengths, cavity
lengths, and/or drift lengths increase with Lorentz factor,
from Eqs. (33) and (49). Figure 5 demonstrates the
decrease/increase in consecutive quadrupole k strength/
lengths along a FODO-like lattice. The constant beam size
in both transverse planes along a FODO-like lattice are
shown in Fig. 6, as required.
Figure 7 displays the x phase space ellipse at the entrance

of the fifth half-FODO cell as calculated by both a constant
(standard FODO) and constrained (FODO-like) FODO
lattices. For constant lattice parameters, the phase space

ellipse is over/under focused at half-FODO cell boundaries,
as the constant aspect ratio and beam size constraint are not
met. The constrained lattice produces a well matched
ellipse at the boundary, as required. In the limit of a high
number of periodic FODO cells, the standard FODO
scheme remains stable, when acceleration is incorporated.
The standard FODO lattice produces larger real estate

gradients to the FODO-like lattice when considering long
and fixed cavity lengths. In this case, the drift length must
increase along the lattice to keep Eq. (49) satisfied. As the
cavity lengths are long, the correction to subsequent lg is
large, and the real estate gradient drops. In addition,
increased lg causes the beam to defocus longitudinally.
For linacs with short cavity lengths, the correction

absorbed by lg is small, and the defocusing effect is
suppressed. Thus for short cavity length, the FODO-like
scheme becomes an effective focusing scheme. As pre-
viously discussed, cavity lengths can be defined to increase
in length, such that the FODO-like lattice has higher real
estate to the standard FODO lattice. Figure 8 displays the
change in cavity and drift length for three three different
FODO-like lattice adopting different methods to satisfy
Eq. (49). The real estate is defined as the percentage of
active accelerating length relative to the total longitudinal
length of the beam line. The maximum real estate is

FIG. 4. Twiss β (a) and α (b) functions along FODO-like lattice.

FIG. 5. Quadrupole k strength (a) and length (b) as a function of
quadrupole number in FODO-like scheme.
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achieved by keeping lg constant and increasing Lcav, as
expected.

VI. MINIMUM APERTURE SCHEME

The MAS considers the focusing scheme by which a set
of focusing elements are placed upstream of a cavity that
orients the beam ellipse to match the acceptance ellipse of
the cavity. For a given cavity length, the MAS produces the
minimum cavity aperture that can be realized, for a given
transverse beam emittance. A schematic of the MAS is
shown Fig. 9.
The MAS scheme realizes the case of minimum beam

size at the cavity entrance/exit. The first constraint thus
forces equal beam size either side of the cavity:

σxc0 ¼ σxc1; → βxc0
γr1βr1
γr0βr0

¼ βxc1: ð52Þ

The input beta function, βxc0, is a constrained value given by
the beam emittance and aperture size. βxc1 is determinable
using the Twiss parameter transform matrix [Eq. (13)]:

βxc1 ¼
γr1βr1
γr0βr0

ðR2
11βxc0 − 2R11R12αxc0 þ R2

12γxc0Þ: ð53Þ

The matrix elements R are defined by the rf cavity map
shown in Eq. (12). Solving Eq. (53) for αxc0 produces a
quadratic, solved using the quadratic formula. As there is
only one set of Twiss parameters that can produce the
required beam ellipse, the determinant must be zero. The
results are shown below:

FIG. 6. Transverse beam size in the FODO-like scheme.

FIG. 7. Phase space ellipse at fifth half-FODO cell calculated
with constant or constrained lattice parameters.

FIG. 8. Development of the cavity and drift length, for different
methods of satisfying Eq. (49).

FIG. 9. (a) MAS schematic. (b) Input/output phase space ellipse
in MAS.

M. SOUTHERBY and R. APSIMON PHYS. REV. ACCEL. BEAMS 27, 064401 (2024)

064401-8



βxc0 ¼ Lcav
γr0βr0

γr1 − γr0
ln

�
γr1βr1 þ γr1
γr0βr0 þ γr0

�
≈ Lcav; ð54Þ

αxc0 ¼ 1; ð55Þ

and

γxc0 ¼
2

Lcav
γr0βr0
γr1−γr0

lnðγr1βr1þγr1
γr0βr0þγr0

Þ : ð56Þ

It can be shown that for a given transverse emittance, the
minimum cavity aperture as a function of cavity length is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εn

	
Lcav

γr1 − γr0
ln

�
γr1βr1 þ γr1
γr0βr0 þ γr0

�
s
: ð57Þ

Figure 10 displays the minimum cavity aperture for a 5σ
beam as a function of cavity length with gradient
of 50 MeV=m.
The MAS requires multiple quadrupoles to produce the

required matching for the beam ellipse and thus uses more
quadrupole per cavity than the FODO-like scheme.
However, the MAS can produce optimal focusing schemes,
where the increase in nonactive length (quadrupoles, drift
lengths) is less than the increase in active cavity length.

VII. CONCLUSION

In this paper, a self-consistent framework was demon-
strated that allowed the incorporation of acceleration into
transverse beam dynamics studies for a proton linac
machine. Two focusing schemes were developed and
discussed: the FODO-like scheme and the minimum

aperture scheme. The FODO-like scheme is a simple
scheme, requiring only one quadrupole per cavity. The
scheme was analytically solved to minimize the beam size
at the cavity entrance/exit and ensures constant beam size
along the lattice. It was shown that lattice parameters must
be altered along the FODO cell, to meet the design
constraints for an accelerating scheme. The MAS describes
the regime that matched the beam ellipse to the acceptance
ellipse of a cavity, allowing for the smallest possible
aperture, for a given cavity length. The MAS will require
more than one quadrupole per cavity, and therefore, will
only have higher real estate gradients than the FODO-like
scheme in special cases.
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