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This study developed a pressure-anomaly detection system utilizing machine learning for the vacuum
system of the SuperKEKB accelerator. The system identified abnormal pressure behaviors among
approximately 600 vacuum gauges before triggering the conventional alarm system, facilitating the early
implementation of countermeasures and minimizing potential vacuum issues. By comparing the recent
pressure behaviors of each vacuum gauge with the previous behaviors, the program detected anomalies
using the decision boundary of a feed-forward neural network previously trained on actual abnormal
behaviors. Realistic regression models for pressure data curves enabled a reasonable prediction of the
causes of anomalies. The program, implemented in python, has been operational since April 2024.
Although based on a rudimentary machine-learning concept, the developed anomaly detection system is
beneficial for ensuring the stable operation of large-scale machines, including accelerators, and is helpful in
designing systems for fault detection.
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I. INTRODUCTION

SuperKEKB, an electron-positron collider with asym-
metric energies, has been operated at KEK, Japan, to
explore new physics in the B-meson regime, achieving
an exceptionally high luminosity via the nanobeam colli-
sion scheme [1,2]. The main ring (MR) comprises a high-
energy ring (HER) for 7 GeV electrons and a low-energy
ring (LER) for 4 GeV positrons, each with a circumference
of approximately 3 km (Fig. 1). The operation commenced
in 2016, and full-scale physical experiments with a com-
plete Belle II detector began in 2019. Since 2020,
SuperKEKB has set world records for luminosity [3].
Throughout this period, the MR’s vacuum systems have
performed well [4]. Figure 2 shows the layout of the LER
and HER beam pipes, bellow chambers, cold cathode
vacuum gauges (CCGs), and sputter ion pumps in the
MR tunnel. The CCGs are installed approximately every
10 m on average along each ring.
The following challenges have arisen despite the

expected functionality of various vacuum components of
SuperKEKB: air leaks from connection flanges owing to
frequent thermal cycles induced by intense synchrotron
radiation (SR) from high-beam currents exceeding 1 A,

irregular pressure increases caused by discharging or
overheating from high-intensity beams, and air leaks from
aged vacuum components [4]. These issues lead to sig-
nificant disruptions, halt beam operations, and expose the
beam pipes to air. To avert major problems, preemptive
measures can be implemented by detecting signs of
abnormal pressure behavior before conventional alarms
are triggered or before operators notice anomalies among
approximately 600 vacuum gauges.
To address these challenges, this study developed

an anomaly-detection system employing machine lear-
ning (ML) to detect signs of pressure anomalies and

FIG. 1. Layout of the SuperKEKB MR. One ring consists of
four arc sections, four straight sections, and one collision point at
Tsukuba (Belle II).
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immediately alert the operators. While this system is based
on a basic ML approach, one key feature is the utilization of
realistic and scientific models to describe pressure behav-
iors, facilitating reasonable anomaly causes estimation with
relatively limited data.
ML holds great promise in detecting anomalies or faults

in vacuum and accelerator components [5–13]. This study
proposes an anomaly detection system utilizing ML to
ensure the stable operation of large-scale machinery, such
as accelerators, beyond vacuum systems. The proposed
detection system expands the scope of ML applications.

II. BASIC FLOW OF ANOMALY DETECTION

Various accelerator parameters, such as beam currents
and number of bunches, vary during daily beam tuning.
The anomaly in pressure is defined as the difference
between the actual and expected pressure behaviors based
on the observed behavior. An abrupt and significant
pressure increase should be detected by a conventional
alarm system with a predefined pressure threshold. The
basic flow of anomaly detection is outlined as follows:
(i) The operation periods, i.e., the storage, tail (just after a
beam abort), and no-beam periods of the accelerator are
defined (details of each period are described in Sec. III).
The storage and tail periods occur during beam operation,
whereas the no-beam period occurs during shutdown. For
each period, the check and reference data are defined for
anomaly analysis, and the former is compared to the latter
collected a few days prior. (ii) Regression curves are
derived to describe the pressure behaviors of the reference
data. Depending on the operation period, these data are
evaluated for each vacuum gauge based on a realistic model
as a function of the beam current or time. The regression
parameters of the model are determined using the steepest
descent method under reasonable assumptions. (iii) A two-
layer feedforward neural network (FNN) is constructed to

classify the check data as “normal” or “abnormal” using
appropriate input parameters, including the root mean
square error (RMSE) calculated from the regression curves
and average pressures. (iv) Simultaneously, another two-
layer FNN is constructed to estimate the causes of
anomalies in the abnormal data from two or three possible
candidates using appropriate input parameters, such as the
obtained regression parameters. (v) The weight parameters
are learned and optimized for the decision boundaries of the
FNNs based on the actual abnormal pressure behaviors
(supervised learning). The FNN models, along with the
optimized weight parameters and so on, were saved and
utilized for anomaly detection in the check data during
actual operation. (vi) The detection program is imple-
mented in Python on a workstation connected to an
accelerator control system. The analysis is triggered by
the events at the beam abort time or regular intervals. The
program issues an alarm when anomalies are frequently
detected in specific vacuum gauges.
The aforementioned steps are described in the following

sections. References [14,15] detail the basic concepts of
ML and python programming used in this study.

III. DEFINITION OF OPERATION PERIODS
AND DATA FOR ANOMALY ANALYSIS

During the routine operation of SuperKEKB MR, the
stored beams are frequently aborted (damped) owing to beam
losses, rf trips of accelerating cavities, and failures of magnet
power supplies. Figure 3 illustrates a typical “fill” cycle
comprising beam injection, storage, and abort. Following an
abort, the beam is reinjected in approximately 5 min.
Notably, the beam storage duration remains irregular.
Issues related to the vacuum system occur while storing

a high beam current when the heat load is high, and just
after a beam abort when the variation in thermal stress is
significant. A single fill is divided into the following two
periods: the storage period that includes beam (re-)injection

FIG. 2. Photograph showing the layout of beam pipes, bellows
chambers, ion pumps, and cold-cathode gauges (CCGs) for LER
and HER in the MR tunnel.

FIG. 3. Typical fill consisting of beam injection, beam storage,
and beam abort.
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and storage and the tail period that occurs a few minutes
after beam abort.
During machine shutdown, the vacuum system continues

operating to maintain an ultrahigh vacuum state. However,
issues may arise owing to the aging of vacuum components
or high-voltage feedthrough discharges. Therefore, the no-
beam period is also defined as a constant period, such as 6
h, for regularly checking pressure behavior.
The abnormality of pressure behavior is analyzed using

the check data, which represents the latest data from the
storage, tail, or no-beam periods of approximately 600
vacuum gauges. Conversely, the reference data are the
measured pressures for a span of 3 and 8 days before
measuring the check data, which includes several datasets
from each period. Abnormalities in the check data are
assessed based on the reference data. Figure 4 shows the
relationship between the check and reference data, indicat-
ing the typical behavior of a vacuum gauge and beam
current for 2 weeks in 2022.

IV. DERIVATION OF REGRESSION CURVES

The regression curves depicting the pressure behavior
during each operation period are derived as a function of
the beam current or time. These curves from the reference
data are used to predict the normal behavior of each
vacuum gauge, aiding in anomaly detection in the check
data. Additionally, the regression curves of the check data
are used to estimate the potential causes of abnormalities
for anomalous data.
It is essential to employ an effective model to derive

these regression curves. The model serves two primary
purposes. First, future data behavior is predicted. The
regression curve from the reference data predicts the
pressure behavior at high beam currents in the check data,
for example, thereby facilitating anomaly detection across
various datasets. Second, the influence of parameters is
evaluated. Appropriate models enable the assessment of the

parameter impact on the output, which is crucial for
estimating the causes of abnormal behavior.
One approach involves constructing the model using

ML, for example, by utilizing the “Gaussian basis func-
tion.” Such models can accurately replicate various data
behaviors; however, we adopted rational and realistic
models based on physical phenomena and prior experience.
This approach ensures simplicity in model construction and
mitigates overfitting. Furthermore, these models facilitate
easier estimation of the causes of abnormal behavior, such
as component overheating or leaks, with relatively sparse
data, as mentioned later.

A. Storage period

The pressure (P) during beam operation can be generally
expressed as follows:

PðIÞ ¼ Pb þ ΔPs þ ΔPt; ð1Þ

where P is a function of the beam current (I); Pb represents
the base pressure, i.e., the constant pressure before beam
injection; and ΔPs and ΔPt denote the pressure rise owing
to synchrotron radiation (SR) and component heating,
respectively. ΔPs arises from photon-stimulated desorption
and is proportional to I, as the number of photons is directly
proportional to I.

ΔPs ∝ I: ð2Þ

Contrastingly, ΔPt originates from thermal gas desorption.
Assuming quasiequilibrium between the number of mol-
ecules in space and those on the surface, ΔPt can be
expressed as follows [16]:

ΔPt ∝ exp

�
− Ed

RðT þ ΔTÞ
�
− exp

�
− Ed

RT

�
; ð3Þ

where Ed represents the adsorption energy of the gas
molecules [J], R is the gas constant (8.314 JK−1mol−1),
and T is the temperature [K]. However, the dependence of
ΔPt on ΔT is exponential and intricate, making the model
complex for deriving the regression curve as a function of I.
However, experimental findings indicate that ΔPt is well
approximated by squaring ΔT for the low-temperature
region (T ∼ 50 °C), as in our case [4], thus yielding the
following simplified equation:

ΔPt ∝ ðΔTÞ2: ð4Þ

The next step involves expressing ΔT in terms of I. ΔT
can be attributed to the power of the SR, which is directly
proportional to I for a constant beam energy. However,
water cooling is applied near or behind the irradiated
surface, resulting in a minimal increase in temperature.
Additionally, the SR cannot account for the observed ΔP

FIG. 4. Typical operation status in June 2022, highlighting the
relation between the check and reference data. The vertical lines
of the beam current correspond to the times of beam abort.
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dependence on the number of bunches (Nb) [4]. Another
possible cause of ΔT is the heating induced by the
electromagnetic field power generated by the beam, which
is proportional to I2=Nb and accounts for the observed Nb
dependence ofΔP. Consequently, PðIÞ can be expressed as
follows:

PðIÞ ¼ Pb þ ΔPs þ ΔPt ¼ w0 þ w1I þ w2ðI2=NbÞ2; ð5Þ

where w0 − w2 are constants and w0 − w2 > 0 (reasonable
assumption). The values of w0 − w2 were determined using
the gradient method to minimize the mean square error
(MSE) (i.e., the least-squares method). Figure 5 shows
instances of the pressure behaviors and their regression
curves for the reference data of the storage period. Note that
these pressure values correspond to 3 times the actual
reading (nitrogen equivalent) of the CCGs located above
the sputtering ion pump [4].

B. Tail period

During this operational period, the pressure is timede-
pendent following the beam abort. The typical behavior ofP
(approximately 2 min after beam abort) in the reference data
is shown in Fig. 6(a). Notably, this pressure varies with the
beam current (I) at the time of beam abort (t ¼ 0). Because
the raw reference data encompass multiple fills, several lines
of data indicate different initial beam currents.
The behavior of P should be similar to that observed

immediately after the vacuum chamber is evacuated.
Considering the typical behavior of P during the initial
stage of the pumping-down process [16], PðtÞ can be
expressed as follows:

PðtÞ ¼P0þΔPvþΔPw ¼P0þ k0expð−k1tÞþ k2
t
; ð6Þ

where P0 denotes the initial pressure at t ¼ 0ðPt¼0Þ, i.e., at
the time of beam abort, and k0 − k2 are constants. ΔPv

FIG. 5. (a) and (b) Two examples of the measured pressure
behaviors (orange) and regression curves (blue) for the storage
period as a function of beam current.

FIG. 6. Behaviors of measured pressures (orange) and the
regression curve (blue) (a) before and (b) after normalizing the
raw data of the reference data in the tail period as a function of
time step after beam abort.
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corresponds to the pumping of molecules in space and is
proportional to − expð−αtÞ, where α is a constant related to
space volume and pumping speed. ΔPw corresponds to the
pumping of molecules adsorbed on the surface and is
empirically proportional to 1=t.
However, Pt¼0 depends on the beam current at the time

of beam abort. Therefore, we use the normalized pressure
ΔPn, defined as ðP − PbÞ=ðPt¼0 − PbÞ, which allows the
model to capture the temporal pressure behavior even for
the varying Pt¼0 values. Here, Pb represents the base
pressure. Furthermore, only the behavior after a sampling
time (Δt) is considered to avoid divergence at t ¼ 0 in
Eq. (6). Consequently, the pressure behavior for the tail
period is expressed as follows:

ΔPn ≡ P − Pb

Pt¼0 − Pb
¼ w0expð−w1tÞ þ

w2

tþ Δt
þ w3

t ≥ Δt: ð7Þ

Here, w0 − w3 are constants and w0 − w3 > 0 (reason-
able assumption). Pb represents the base pressure after a
sufficient time has elapsed. However, during beam oper-
ation, the beam is typically reinjected after beam abort,
usually within 5 min. Therefore, Pb is set to the detection
limit of the cold-cathode gauges (3 × 10−8 Pa) for sim-
plicity. Most vacuum gauges actually attain this limit after
long periods of time [4]. Similarly, the values of w0 − w3

were determined using the gradient method to minimize
MSE with reasonable assumptions. The normalized pres-
sure ΔPn and regression curve of the reference data in
Fig. 6(a) are illustrated in Fig. 6(b). Evidently, the regres-
sion curve for the normalized pressure effectively captures
the behavior of the raw data at various initial pressures.

C. No-beam period

During this period, there was no beam and the pressure
ideally remained constant. However, the pressure may
deteriorate owing to air leaks caused by the aging of
vacuum components, among other factors. To detect such
abnormal behaviors, the pressure was regularly monitored
and gradual variations within a specific interval were
considered. A linear function of time was employed to
simplify the modeling of the no-beam period as follows:

PðtÞ ¼ w0 þ w1t; ð8Þ

where w0 and w1 are the constants. The second term can be
used to discern the trend of time variation, which is
essential for estimating the cause of abnormal behavior.
The values ofw0 andw1 were determined using the gradient
method to minimize the MSE. Figure 7 shows examples of
the reference data and their regression curves.

V. CONSTRUCTION OF FNN

A. FNN to detect abnormal behavior

A two-layer FNN, as shown in Fig. 8, is designed to
identify anomalies in the check data and characterize them
as abnormal or normal. Here, x0 − xN represents the N þ 1
number of input parameters. z0 − zM are the output
parameters in the intermediate layer, and the activation
function is the following hyperbolic tangent function:

zj ¼
expðbjÞ − expð−bjÞ
expðbjÞ þ expð−bjÞ ; j ¼ 0 −M; ð9Þ

where M þ 1 is the number of output parameters in the
intermediate layer. y0 − yK are the final output parameters.
The output function is the following softmax function:

FIG. 7. Example of the pressure behavior (orange) and regres-
sion curve (blue) of the no-beam period as a function of the
sampling step.

FIG. 8. Two-layer FNN for detecting anomalies and estimating
their potential causes in the check data.
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yj ¼
expðajÞP
K
l¼0 expðalÞ

; j ¼ 0 − K; ð10Þ

where K þ 1 denotes the number of output parameters. In
classifying the check data into normal and abnormal, K
equals 1. The output parameters indicate the probabilities
of the specified classes. Table I summarizes the input
parameters, M, N, and K for the storage, tail, and no-beam
periods, respectively.
Here, Rcal and Rchk represent the RMSEs of the check

data calculated using the regression curve of the reference
data and its own regression curve, respectively; Rref denotes
the RMSE of the reference data calculated using its own
regression curve; Pavechk and Pmaxchk denote the average
and maximum values of pressure in the check data, respec-
tively; Paveref represents the average pressure of the refer-
ence data.
The suffix “log” indicates the logarithm of the param-

eters to handle large variations in pressures, such as

Rcal log ¼ flogðRcalÞ;
flogðxÞ ¼ sgnðxÞlog10ðjxj × 1012Þ;

jxj ¼ 1 × 10−12 for jxj < 1 × 10−12: ð11Þ

The function sgnðxÞ represents the sign function. The
function flogðxÞ can handle the negative variables of x;
however, all parameters are positive in the present case. The
value 1 × 10−12 was determined from the typical minimum
value of the implemented datasets here.
The suffix “std” indicates the standardized variables used

to equalize the weights of each parameter, which is a
common method in ML [15]. For instance, in the case of
Rcallogstd

Rcal log std ¼ fstdðRcal logÞ
fstdðxÞ ¼

x −mtr

σtr
; ð12Þ

where mtr and σtr represent the average and standard
deviation of Rcal log of the training data, respectively.
For training data x, the function fstdðxÞ adjusts the dis-
tribution of x to have a mean and standard deviation of 0
and 1, respectively.

B. FNN to estimate the possible causes of anomalies

For the check data classified as abnormal, the potential
causes of the anomaly are estimated using a two-layer
FNN, which is similar to that in Fig. 8. The input
parameters N, M, and K are listed in Table II.

TABLE II. Input parameters, M, N, K, Ntr , Ntst, Lr, epoch number, and batch number for the storage, tail, and no-beam periods,
respectively, for FNN to estimate the possible causes of anomalies.

Periods Input parameters N M K Ntr , Ntst Lr Epoch Batch

Storage w0 ref log std, w1 ref log std, w2 ref log std, w0 chk log std,
w1 chk log std, w2 chk log std, Pmax chk log std, Pmax ref log std

7 4 2 112, 73 0.0004 1500 20

Tail w0 ref log std, w1 ref log std, w2 ref log std, w3 ref log std, w0 chk log std,
w1 chk log std, w2 chk log std, w3 chk log std, Pmax chk log std, Pmax ref log std

9 5 2 121, 73 0.0004 1500 20

No beam w0 ref log std, w1 ref log std, w0 chk log std, w1 chk1 log std,
Pmax chk log std, Pmax ref log std, Rchk log std

6 2 1 67, 46 0.0004 1500 10

TABLE I. Input parameters, M, N, K, Ntr , Ntst, Lr, epoch number, and batch number for the storage, tail, and no-beam periods,
respectively, for FNN to detect abnormal behavior.

Periods Input parameters N M K Ntr , Ntst Lr Epoch Batch

Storage Rcal log std, Rref log std, Rchk log std, Pave chk log std,
Pmax chk log std, Pave ref log std

5 3 1 249, 186 0.0002 1000 20
Tail 177, 107 0.0004 1200 40
No beam 108, 87 0.0004 1000 24

TABLE III. Potential causes of anomalies for each period.

Periods Possible causes

Storage Leak or pump failure Overheating or discharge Abnormal orbit or leak
Tail Leak or pump failure Overheating or discharge Pressure burst or leak
No-beam Leak or pump failure Pumping down or leak
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Here, w0 − w3 represent the regression parameters in
Eqs. (5), (7), and (8). The meanings of the suffixes of
each parameter are identical to those described in Sec. VA.
The primary input parameters are mainly the regression
parameters of each equation.
Table III enlists the potential causes of anomalies for

each period. For the storage period, Figs. 9–11 show
instances of abnormal behaviors caused by “leak or pump
failure,” “overheating or discharge,” and “abnormal orbit or
leak. For leak or pump failure, the pressure is inflated by a
certain value, leading to a larger parameter w0 in Eq. (5) in
the check data compared with the reference data. Similarly,

for overheating or discharge, the nonlinear term of Eq. (5),
represented by parameter w2, may be large in the checked
data. For abnormal orbit or leak, the linear part, represented
by the parameter w1, is expected to be large.
For the tail period, Figs. 12(a)–12(c) show instances of

abnormal behaviors caused by leak or pump failure, over-
heating or discharge, and pressure burst. If an air leak
occurs at the time of beam abort, then the pressure in the tail
period either remains nearly constant or increases over
time. In such cases, the regression parameters in the check
data, particularly w1, are small, or w3 is large, compared to
those in the reference data. For overheating or discharge,

FIG. 9. Example of abnormal pressure behavior caused by leak
or pump failure of the check data in the storage period.
(a) Behaviors of the measured (red) and calculated pressures
from the regression curves of the reference (cyan) and check
(blue) data. (b) Time trend of pressure (red), and the beam current
(black dots) for the corresponding time.

FIG. 10. Example of abnormal pressure behavior caused by
overheating or discharge of the check data in the storage period.
(a) Behaviors of the measured (red) and calculated pressures from
the regression curves of the reference (cyan) and check (blue)
data. (b) Time trend of pressure (red), and the beam current (black
dots) for the corresponding time.
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the decrease in pressure occurs more slowly in the check
data. Pressure bursts at the time of beam abort have been
observed since 2016 [17], which occur owing to collisions
between the beam and dust particles in the beam pipe,
leading to larger values of w0 and w1 in Eq. (7) compared to
those in the normal cases.
Figures 13(a) and 13(b) show examples of abnormal

behaviors in the no-beam period caused by leak or pump
failure and “pumping down or leak.” In the former case, the
pressure is either inflated by a certain value or increases
gradually. Consequently, the parameter w0 or w1 in Eq. (8)

FIG. 11. Example of abnormal pressure behavior caused by
abnormal orbit or leak of the check data in the storage period.
(a) Behaviors of the measured (red) and calculated pressures from
the regression curves of the reference (cyan) and check (blue)
data. (b) Time trend of pressure (red), and the beam current (black
dots) for the corresponding time.

FIG. 12. Examples of abnormal pressure behaviors caused by
(a) leak or pump failure, (b) discharge or overheating, and
(c) pressure burst of the check data in the tail period. Behaviors
of the normalized (red) and calculated pressures from the
regression curves of the reference (cyan) and check (blue) data
are plotted as a function of the time step after beam abort.
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for the check data was greater than that in the reference
data. Conversely, for “pump down or leak,” the pressure is
higher than that in the reference data but gradually
decreases, and the weight parameter w1 will be negative.

VI. LEARNING OF THE FNN WEIGHT
PARAMETERS

Theweight parameters defining the decision boundary of
FNN were acquired from the actual data observed during
the operation and shutdown periods from 2016 to 2024.
This learning process, known as “supervised learning,”
involved human experts determining anomaly judgments
and selecting potential causes. The entire dataset from each
period was shuffled and split into training and test data at a
ratio of 6∶4. The weight parameters are learned using the
Keras library within the TensorFlow framework [18].
Optimization was achieved by minimizing the mean
cross-entropy error using the gradient method. The model
follows a sequential structure, and the optimization utilizes
the Adam method, which is a stochastic gradient descent

technique based on the adaptive estimation of the first- and
second-order moments implemented in Keras. Details of
the learning parameters, including the number of training
and test data points, learning rate (Lr), epoch number, and
batch number for each case, are also summarized in Tables I
and II.
Figures 14(a) and 14(b) show the decrease in MCEE and

classification accuracies over the epoch number for the
training and test data, respectively, for the classification of
normal and abnormal during the storage period. The MCEE
decreased monotonically for both datasets without over-
fitting, and the accuracy exceeded 90%. For other cases,
accuracies greater than 90% were achieved.
Figures 15(a) and 15(b) show the decrease in MCEE and

classification accuracies over the epoch number for the
training and test data, respectively, for the classification of
possible causes for the tail period. Similar to the example
above, the MCEE decreased for both datasets without
overfitting, and the accuracy exceeded 95%. For other
cases, accuracies greater than 95% were achieved. The high
accuracies should be due to the use of realistic and rational

FIG. 13. Example of abnormal pressure behavior caused by
(a) leak or pump failure and (b) pumping down or leak of the
check data in the no-beam period. Behaviors of the measured
(red) and calculated pressures from the regression curves of the
reference (cyan) and check (blue) data are plotted as a function of
the sampling step.

FIG. 14. Learning curves of the FNN weight parameters for
anomaly detection in the storage period, where the variation in
(a) the MCEE and (b) accuracies are plotted against the epoch
numbers for training and test data.
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models for the regression curves. However, the possible
causes listed in Table III still include ambiguities. We
cannot distinguish the anomaly caused by “discharge” and
“overheating,” for example. More clear estimation of
causes will be realized by utilizing the data of temperatures
together with pressures. These are limitations of the present
system and to be solved in the future.
The FNN models, along with the optimized weight

parameters and the averages and standard deviations of
the training data, were saved and utilized for anomaly
detection in the check data during actual operation.

VII. DETECTION PROGRAM

The detection program, written in python, is operated on
a Linux machine dedicated to the vacuum system of the
KEKB accelerator network. The program runs continu-
ously and is triggered by either a beam abort event during
operation or at regular intervals, such as every 6 hours,
during shutdown. Even during the operation, the checking

process is initiated if the beam remains uninterrupted
beyond a specified interval.
Practical testing of the program was conducted using the

data from 2022 to 2024. Within the program, anomalies
detected in the latest eight checks were tallied for all
vacuum gauges after each fill or interval, and historical
counts were graphed on the terminal desktop for vacuum
gauges in which the anomalies were frequently detected.
Figure 16(a) shows a graph for the storage period,

demonstrating the increasing number of detected anomalies
for the gauge “VAHCCG_D001_H16:PRES” with each
check process. Figure 16(b) shows the pressure trend of the
gauge over time along with the beam current at that time.
Here, abnormal pressure increases are observed despite a
relatively constant beam current caused by “overheating or
discharge” (Fig. 10). An investigation during a long shut-
down time revealed traces of abnormal discharge at the gate
valve flange near the vacuum gauge.

FIG. 15. Learning curves of the FNN weight parameters for
estimating possible causes in the tail period, where the variation
in (a) the MCEE and (b) accuracies are plotted against the epoch
numbers for training and test data.

FIG. 16. (a) Historical plot of the number of anomalies tallied
during the last eight checks for the frequently detected two
vacuum gauges, and the maximum beam current in each fill
(black dot) in the storage period. (b) Time trends of the pressure
of a suspicious vacuum gauge (red) and beam current (blue) for
6 days at that time.
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Figure 17 provides an example of the tail period,
showing frequent abrupt pressure increases (pressure
bursts) immediately after beam abort, which are particu-
larly noticeable at high beam currents. The suspected
cause is a pressure burst or leak [Fig. 12(c)]. It was finally
revealed that an air leak near the vacuum gauge VALCCG:
D04_L07:PRES originated from a connection flange of
the beam pipes. Figure 18 shows another example of a
no-beam period observed during a long shutdown in
2023. An air leak from a welding line of the beam
pipe was discovered near the vacuum gauge VAHCCG:
D04_H19:PRES.
While the program is continuously refined, promising

results have been achieved in detecting pressure anomalies
during operational and shutdown periods.

VIII. SUMMARY AND FUTURE PLAN

This study explored the implementation of a pressure
anomaly detection system using basic ML techniques to
capture signs of vacuum problems within the large-scale
vacuum system of the SuperKEKB accelerator. The study
aimed to swiftly detect early anomalies in approximately
600 vacuum gauges before issuing a standard alarm.
Rational models were employed to derive the regression
curves for both the reference and check datasets. Two-
layer FNNs were constructed to differentiate between the
normal and abnormal states and to estimate the potential
causes of anomalies. The weight parameters of the FNNs
for the decision boundaries were learned and optimized
using historical data by the Keras library within the
TensorFlow framework. Subsequently, a Python program
was developed to detect and track the anomaly frequencies

FIG. 17. (a) Historical plot of the number of anomalies tallied
during the last eight checks for the frequently detected five
vacuum gauges, and the beam current at each beam abort (black
dot) in the tail period. (b) Time trends of the pressure of a
suspicious vacuum gauge (red) and beam current (blue) for 6 days
at that time.

FIG. 18. (a) Historical plot of the number of anomalies tallied
during the last eight checks for a frequently detected vacuum
gauge in the no-beam period. (b) Time trend of the pressure of a
suspicious vacuum gauge at that time.
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in the vacuum gauges integrated into the accelerator net-
work. Practical tests conducted using operational and shut-
down data from 2022 to 2024 yielded promising results.
Future enhancements to the system include the following:

(i) Improving detection accuracy: A feature can be incorpo-
rated into the program to introduce new data into the training
set for subsequent optimizations. (ii) Expanding anomaly
detection to include the discharge currents of sputter-ion
pumps and temperatures: Combining pressure data with
discharge currents will help distinguish between anomalies
caused by leaks and those caused by vacuum gauge failures.
Additionally, integrating the pressure and temperature data
can enhance the detection of component overheating.
The developed program has been operational within the

SuperKEKB since February 2024, contributing to the stable
functioning of the vacuum system. Although still in develop-
ment, the proposed anomaly-detection system leveraging
ML has significant potential for large-scale vacuum systems,
such as accelerators. Although initially designed for vacuum
systems, this concept is beneficial for ensuring the stability of
various large-scale systems. The proposed detection system
expands the scope of ML applications.
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