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Light sources worldwide have experienced rapid growth in the last decades, pushing toward higher
brightness with lower emittance to meet growing demands from the user community. The quest for higher
brightness motivates the development of low-emittance ring lattices. At this point, all fourth-generation
storage ring light sources employ variations of the multibend achromat (MBA) lattice. In this paper, we
discuss an extension of this approach, known as complex bend achromat lattice in relation to the future
NSLS-II upgrade. A detailed approach for the lattice design will be described and the developed lattice will
be presented. The advantages of using our complex bend approach are evident in reaching a natural
emittance as low as 23 pm at a beam energy of 3 GeV, providing a straight section of 8.4 m for long
insertion devices, and acquiring a ratio of about 50% of free space with respect to the ring circumference.
The design includes the use of permanent magnets largely reducing the need for power supplies. Our new
approach provides an extension to the MBA concept for the next-generation light source lattice design.
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I. INTRODUCTION

Through the past few decades, synchrotron radiation
light sources have become major hubs for modern applied
science and have been driving research in various fields
ranging from biology to physics, chemistry, and material
science. Modern synchrotron light source accelerator tech-
nology continues to expand its capabilities to produce
bright and coherent radiation targeting the diffraction-limit
for high energy x-ray beams.
The brightness of synchrotron radiation is one of the key

characteristics of the source. It is defined by the electron
beam emittance and intensity in combination with the
chosen insertion device and the x-ray beam size and
divergence in a source point. Following the quest to
increase the source brightness, the ring designers seek
ways to reduce the beam emittance. The electron beam
emittance ϵx0 defined by the storage ring lattice scales as
E2=½NcNb�3, where E is the beam energy, Nc is the number
of cells in a ring, and Nb is the number of bending magnets
per cell [1]. Therefore, increasing the number of dipoles is
the most effective way to reach ultralow beam emittance.
This was recognized in the 90s by Einfeld et al. [2], and
currently, every modern storage ring light source upgrade
project is based on a certain variant of the multibend

achromat (MBA) approach. This powerful concept has
been detailed for MAX-IV [3], SIRIUS [4], ESRF-EBS [5],
APS-U [6], ALS-U [7,8], HEPS [9], SOLEIL II [10,11],
KOREA-4GSR [12], and DLSR [13] and customized at
many other light source facilities [14–16].
As one approaches the diffraction limit for the rings

within a conceivable range of circumferences (< 1 km), the
challenge of the available space for the ring elements
becomes apparent and dominating. As an example of the
ultimate lattice design for diffraction-limited source, a
lattice option of the upgrade of MAX-IV [3] features a
19-BA achromat, capable of reaching 16 pm rad in the
500-m-long ring tunnel [17]. This lattice provided a high-
performance solution by reducing the beam emittance with
a factor of 20 compared to the operating MAX-IV ring.
However, the composition of the lattice elements left very
limited space for insertion devices (IDs), vacuum compo-
nents, and other equipment.
This example adequately illustrates the limit of the MBA

approach in its current form. It motivates the search for new
accelerator technologies and lattice solutions, which is the
topic of this paper. The new accelerator methodology is
presented by the concept of the complex bend element [18],
a long-curved magnet containing a tight arrangement of
quadrupole-dipoles built using permanent magnets (PM).
The R&D on PMQ magnets is an active area of research
already delivering promising results at several facilities
[19–22].
Our approach described in this paper is based on the

concept of complex bend (CB) [23–25]. We aim to greatly
increase the number of bends in the ring by superimposing
dipole and quadrupole fields in the shortest CB segments,
whose parameters are limited by the possible gradient in
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PMQs at the magnet bore size constrained by the size
of the extraction channel for synchrotron radiation.
This leads to a modification of the expression above
ϵx0 ∝ E2=½NcNCBNb�3, where Nc is the number of cells,
NCB is the number of complex bends per cell, and Nb is the
number of short dipole-quadrupole magnets per complex
bend element. To illustrate the advantage of this approach,
we recall that the 7-BA APS-U lattice has a total of 280
dipoles in a ring (as compared with the APS lattice with 80
bends), while the complex bend lattice for NSLS-IIU could
fit 30 × 3 × 30 ¼ 900 dipoles. This opens an opportunity
to reduce the emittance further than that of MBA and
achieve a compact lattice arrangement that leaves ample
space for machine elements and IDs.
In the first version of a complete complex bend magnet

[24], it is designed as an assembly of several complex bend
single cells, with every cell providing a specific dipole field
with alternating focusing and defocusing quadrupoles
(QF-drift-bend-drift-QD-drift-bend-drift). In [18,24], we
have shown that a much lower emittance could be reached
if a regular DBA dipole is replaced by a complex bend
element. Furthermore, we presented several versions of the
complex bend magnet in [24,25], where the bending was
achieved by either introducing an external dipole field to
the pure PM quadrupole field or shifting quadrupole
magnets off axis. In modeling such geometry, it has become
apparent that this viable solution presents difficulties with
achieving reasonable field quality at large transverse shifts
of the magnets. The alternative solution that we recently
developed and detailed is integrating quadrupole field into

dipole field via a permanent magnet quadrupole (PMQ) of
either Halbach or hybrid type [19,21], which are shown in
Fig. 1. PMQ of either type will be employed in our design
study of the complex bend lattice described below.
This paper complements ongoing efforts on designing

the complex bend element and focuses on developing
the lattice based on such elements. The optics that we
describe here rely on a large number of short PMQs
with the fields and strengths tailored to minimize
Courant-Snyder invariant H [1] while adjusting Twiss
functions for their optimal values in the chromatic sections,
matching sections, and ID straights.
Throughout the paper, we will demonstrate the advan-

tages of the CB approach in optimizing the following seven
performance metrics in the lattice design: (i) Low emit-
tance; (ii) long straights for IDs; (iii) sufficient space in the
lattice available for accelerator equipment; (iv) perfect
fitting of lattice solution to the present facility tunnel,
satisfying tight constraints of overlapping ID source points
with these for the existing facility beamlines; (v) minimal
number of power supply for reduced power consumption;
(vi) optimal beam dynamics properties for the ring lattice
leading to high injection efficiency and long beam lifetime;
and (vii) robustness to magnet errors and imperfections.
In this paper, we will be considering complex bend

lattice for NSLS-II upgrade (NSLS-IIU) as an example.
NSLS-II is a third-generation light source with a circum-
ference of 792 m. It contains 30 DBA cells and operates at
400 mA using top-off injection [26]. The horizontal
emittance is 2 nm for the bare lattice and can be reduced
below 1 nm with three sets of damping wigglers. The future
machine upgrade aims to increase brightness 10-fold at
1 keV to 50-fold at 10 keVof photon energy compared with
the current facility.
Figure 2 shows a single cell magnet layout of the NSLS-

IIU complex bend lattice candidate including multiple
sections. The central CB and two outer CBs contain arrays
of compact PMQ magnets. In addition, the central CB
consists of left and right halves as well as the drift space
between the two halves. A three-pole wiggler (3PW) is
planned to be installed in the drift space of central CB, and
IDs are located in the long straight and short straight, each
providing the source of the photon beam.
The structure of this paper is organized as follows: Sec. II

describes the approach for the complex bend lattice design.
Section III discusses the design of the complex bend

FIG. 1. Left plot: Halbach PMQ; right plot: hybrid PMQ.

FIG. 2. Magnet layout for a single cell of NSLS-IIU complex bend lattice.
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achromat (CBA) lattice for one of the developed solutions,
and shows its performance compared with NSLS-II lattice
and several selected MBA lattices. Section IV concludes
the paper.

II. LATTICE DESIGN STRATEGY

In our approach, the search for the best lattice solution is
converted into a “usual” accelerator methodology:

OjΔO ¼ MjΔMðPjΔs;ΔpÞ;
where∶

ðiÞP ¼ Pðs; pÞ is the vector of variables with constraintsΔs;Δp:

ðiiÞO is the vector of observables with constraintsΔO: ð1Þ

where observables in the O space include natural emittance
ϵx0, natural chromaticities ξ ¼ ðξx; ξyÞ, radiation loss per
turn U0, momentum compaction αc, and lengths of long
and short straights Ls ¼ ðLLS; LSSÞ. F ¼ F ðO;weightÞ is
the lattice figure of merit used for selection of the best
solution. ΔO are the ranges for Jx, αc, and Ls. In the P
space, P variables are the strengths “s” and positions “p”
of lattice elements. Δs and Δp are the allowed ranges for
strengths and constraints of the magnet’s positions. M is
a functional form between O and P. In addition, there
are constraints ΔM related to the functional form M.
These contain geometrical limitations related to fitting to
the ring tunnel and constraints imposed on the Twiss
parameters.
Below, we briefly describe our approach in the lattice

design [23]. The whole lattice cell is divided into a number
of bins. Every one of these bins is filled with one of several
lattice elements, e.g., drifts, complex bends, and quadru-
poles. The strengths of the CB elements are varied within
the limits given by the gradient constraints defined in the P
space. The single cell is split into several sections, i.e.,
central complex bend, dispersion bump, outer complex
bends, and straight sections. Under the P and M con-
straints, the P variables of each section are optimized to
achieve the best performance in O space by using several
optimization methods. The latter is based on a combination
of MAD8 [27], MATLAB [28], and a suite of optimization
algorithms. In the following, we describe in detail the
principles of setting up the space of P, the functional form
M, the space of O, and the methods to find the optimal
solution.
It is known that optimization problems fail when the

number of P variables greatly exceeds the number of
O observables, which is the specific challenge for the
problem that we studied. Below, we describe a method that
improves conditions of the P space where we use poly-
nomial forms to reduce the dimension of P vector.

A. Setup of the P space

We start our design effort by introducing a method
that we call the binning principle in the lattice layout [23].

This principle standardizes the lattice as a sequence of bins
of the following five element types: drift, complex bend
(CB), quadrupole, sextupole, and octupole. For instance,
according to Fig. 3, a 26.4-m-long single cell of NSLS-II
upgrade lattice is represented as a sequence of 264 10-cm-
long bins, where adjacent bins with the same element type
are grouped into an element with each type marked by a
different color. It should be noted that the actual layout of
elements may be adjusted based on the tunnel geometry
and further design optimization.
The choice of the bin’s length as 10 cm comes from the

basic scale of the magnetic design of CB PMQs. According
to our analysis, the lengths of permanent magnet elements
PMQs will be 20 or 30 cm, producing a natural scale of
focusing length within a cell.
Having digitized the lattice into 264 bins of 5 types, we

can proceed to optimize the parameters of the bins,
focusing on finding the optimal solutions of P variables
for Eq. (1) above. Once the solution is demonstrated, we
“erase” the grid and continue with the final tuning of the
lattice where the locations of components are unconstrained
longitudinally unless they are a part of the three complex
bends.
The initial setup of bins contains three element types:

drift, quadrupole, and complex bend. Once a reasonable set
of linear lattice solutions is established, we switch some of
the drift bins to chromatic sextupoles for chromaticity
correction, to harmonic sextupoles or octupoles for opti-
mization of dynamic aperture and momentum aperture, and
to correctors and BPMs for orbit correction.
In addition, the P constraints of Δs and Δp in Eq. (1)

include: (i) The bending angles of each half central CB and
outer CB are chosen as 4° and 2°, respectively. (ii) The
bending field is below 0.5 T (i.e., bending angle of each
PMQ is below 15 mrad, when length is 30 cm and beam
energy is 3 GeV), and the gradient value is below 130 T=m
as imposed by the field limitations at the chosen PMQ bore
radius of 8 mm.
At this point, the P space is defined. It is worth noting

here that the bins could be redefined during the optimiza-
tion process. For instance, one might want to increase an ID
straight length or need to slightly adjust the lattice to match
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with the NSLS-II floor coordinates. It is relatively easy to
accomplish, as sliding the bins in either direction and
changing their properties is realized in a 1D vector
describing the whole cell. Furthermore, this technique
makes it seamless to develop special cells, such as injection
or double minimum beta cells, as just a few bins are
reoptimized. Finally, if we need a lower emittance lattice, it
is straightforward to change several bins from drifts to CB
PMQs and rerun the optimization loop.

B. Setup of the functional form M

In the next step, a single cell is broken into sections of the
bin areas as shown in Fig. 4, which correspond to the layout
table presented in Fig. 3. The LS, OCB, DB, CCB, 3PW,
QFC, and SS stand for long straight, outer complex bend,
dispersion bump, central complex bend, three-pole wiggler,
central quadrupole, and short straight. Each section is
optimized separately in the following order: central com-
plex bend, dispersion bump, outer complex bend, and
straight sections. The matching conditions (constraints on
the Twiss parameters) related to the M constraints of ΔM
in Eq. (1) need to be satisfied when interfacing these
sections: (i) The mirror condition ðαx;αy; η0xÞ ¼ 0 should be
matched in the center of CCB, and (βx, βy, ηx) could be
determined subject to further optimization. (ii) In the center
of DB, a large dispersion height ηx is desired. In addition,
optimal η0x and αy are set to create a dispersion region for
placing sextupoles. (iii) The phase advance between two
DBs should be matched close to (3π, π) so that the −I
transformation between a pair of chromatic sextupoles will
help to cancel third-order geometrical RDTs within a cell.
(iv) At the end of OCB, the ηx and η0x are matched to zero
for dispersion-free straight sections. (v) In the center of
straights/IDs, the Twiss functions (βx, βy) are matched to
less than 3 m for higher brightness of the photon beam with
ðαx; αyÞ ¼ 0 for creating the beam waists. (vi) The overall
beta functions do not exceed 25 m to keep chromaticities
within a reasonable range. (vii) Length of each section is
fixed as defined by the geometry of the tunnel.

C. Setup of the O space

Next, we discuss the process of setting up the O space.
The observables of O space include: C1: natural emittance
ϵx0; C2: natural chromaticities ξ; C3: radiation loss per turn
U0; C4: momentum compaction αc; and C5: lengths of long
and short straights Ls.
These figures of merit define the O space. The selection

of the best solution is in finding a lattice yielding the best
function F , which is defined as a weighted sum of
observables in the O space:

F ¼
X
i

ωiCi; ð2Þ

where Ci represents each observable and ωi indicates the
corresponding weight. To achieve minimal value of func-
tion F in lattice design, 1=αc and 1=Ls are used, as larger
αc and Ls are desired.
We have chosen the O constraints of ΔO in Eq. (1) as

follows: (i) Horizontal partition number Jx within the range
of [1.8, 2.3]; (ii) momentum compaction αc > 5 × 10−5;
and (iii) minimum lengths Ls of long straight and short
straight are 8.4 and 5.4 m, respectively.

FIG. 3. Arrangement of bins for a single cell, where adjacent
bins of the same type are grouped into an element. The type of
element is marked with a specific color. The two outer CBs are
located within the ranges of 5.8 to 7.2 m and 20.5 to 21.9 m. The
central CB is located at 10.6 to 17.1 m with a 30-cm gap for a
3PW in the middle. The dispersion bumps are the sections
between the central CB and the two outer CBs.
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D. Setup of the optimization method

Figure 5 illustrates the optimization process for solving
Eq. (1) [23]. The NSGA-II algorithm [29] integrated into
the MATLAB scripts [30] has been employed with an
interface to the MAD8 program [27] for carrying out the
local matching. Local matching is realized in MAD8 under
constraints given by initial and final Twiss parameters. In
NSGA-II, the chromosome is a vector of P variables, and
the gene is a variable. The altered P variables (gradient
values) are then carried over to the chromosome to generate
a new population. Under the O constraints, the optimized
solutions output the observables, and the corresponding
function F is calculated. The best solution will be selected
if the outputs reach the target values, otherwise, the next
round of optimization will be conducted. For the setup of
the NSGA-II algorithm, the simulated binary crossover
and polynomial mutation are used with the distribution
indices for crossover and mutation equal to 20. The cross-
over probability is set to 0.9, and mutation probability is
chosen as 1=n, where n is the number of decision variables.
To evenly sample the points in the decision space, the Latin

hypercube sampling [31] method is used to generate the
initial population. The population size in each generation is
set to 2000.

III. DESIGN OF CBA LATTICE

A. Central complex bend and dispersion
bump optimization

Figure 6 displays the layout of right half CCB and half
dispersion bump. The source planned for a 3PW beamline
is in the drift space of CCB, and the center quadrupole is
used to match mirror conditions. In the dispersion bump
section, two symmetrical QFs are separated by a drift space
for placing a sextupole.
To optimize the right half CCB, the field distributions of

PMQs are flexibly defined to follow an analytical function
with a total bending angle of 4°. For example, all PMQs
follow a polynomial or piece-wise function. In our work, the
CCB1 (PMQ1 to PMQ5) and CCB2 (PMQ6 to PMQ10) are
optimized separately and K0;i and K1;i of PMQ1 to PMQ10
are defined as the following distributions:

FIG. 5. Flowchart of optimization process.

FIG. 4. Sections of a single cell with their corresponding number of bins, where red and blue blocks represent quadrupoles and
complex bends, respectively. Labels in the bottom line indicate the M constraints of ΔM in the center of long straight, at the end of
outer complex bend, in the center of dispersion bump, in the center of central complex bend, and in the center of short straight.

FIG. 6. Illustration of layout of right half CCB containing 10 PMQs and half dispersion bump. LC is the half drift length of the
reserved space for a 3PW. QFC is the center quadrupole that matches mirror conditions in the center of CCB. QF is the quadrupole
placed in the dispersion bump, and LDB is the half drift length between two QFs.
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K0;i ¼

8>><
>>:

A1; i ¼ 1; 3; 5

A2; i ¼ 2; 4P
m
amði − 6Þm; i ¼ 6;…; 10; m ¼ 0;…; 3;

ð3Þ

K1;i ¼

8>><
>>:

B1; i ¼ 1; 3; 5

B2; i ¼ 2; 4

optimalK1;i; i ¼ 6;…; 10;

ð4Þ

where i is the index of PMQ and am are the coefficients of a
polynomial function. In addition, A1, A2, B1, and B2 are the
coefficients of step-wise periodic functions. The conversion
of optimization variables to the coefficients of functions
reduces the number of P variables by a number of 5, which
significantly benefits the search for optimal solutions in a
complicated decision space.
The optimal A1, A2, B1, and B2 for CCB1 are found by

scanning FODO-like PMQs (PMQ1 and PMQ2) with the
objective of minimizing quantum excitation, which is
approximately proportional to the emittance contribution.
Figure 7 shows the scan results for different Asum with
varied r, where r is the ratio of A1 to A2 and Asum is the sum
of A1 and A2. With the considerations of emittance
contribution and allocation of bending angles for CCB1
and CCB2, we choose A1 ¼ 0.6° and A2 ¼ 0.2° with their
corresponding gradient values are B1 ¼ −11 m−2 and
B2 ¼ 13 m−2, respectively.
We optimize CCB2 and half DB simultaneously using

the method described in Sec. II D. The optimization
variables include am, K1;i of CCB2, K1 of QF, and drift
length LDB. The optimization objectives are evaluated
from the center of CCB to the center of DB, as shown in
Fig. 6. The optimization goal is to simultaneously minimize
emittance contribution from right half CCB and the sum of
absolute natural chromaticities jξxj þ jξyj. Figure 8 presents
the evolution of distributions of objective values in gen-
erations 2, 10, 20, 30, 40, and 50. The optimization is
almost converged after 50 generations. The selected sol-
ution is marked with a magenta box with a value of about
22 pm for emittance contribution.
Figure 9 presents the field values and corresponding

Twiss function values for the selected solution, where the

FIG. 7. Scan results for FODO-like PMQs (PMQ1 and PMQ2)
with four different Asum (¼ A1 þ A2) range from 0.7° to 1.0° with
an interval of 0.1°. The plot displays the minimum emittance
contribution from FODO-like PMQs versus the ratios of r
(¼ A1=A2). The inner picture indicates that PMQ with a large
bending angle should be defocusing.

FIG. 8. Evolution of distributions of objective values in gen-
erations 2, 10, 20, 30, 40, and 50, where different colors represent
different generations, and the selected solution is marked with a
magenta box.

FIG. 9. Top plot: field values from the center of CCB to the
center of DB, including the values of field gradients and bending
angles, where green circles show the selected bending angles of
CCB2 (PMQ6 to PMQ10) follow a polynomial function. Bottom
plot: the corresponding Twiss function values from the center of
CCB to the center of DB.
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purple dashed line indicates the end of right half CCB
and the start of the dispersion bump. A short 3PW is
planned to be installed in the gap of CCB for the source
of a beamline and aligned to the window in the rachet
wall [32]. In the top plot, the optimized bending angles
of CCB2 are represented by the green circles, which
show they follow a polynomial function. The bottom plot
shows Twiss function values from the center of CCB to
the center of DB, and the phase advance is matched close
to (1.5π, 0.5π). Therefore, when introducing three sextu-
pole families (one for focusing and two for defocusing)
in the two dispersion bumps, the symmetrical beta
functions (βx, βy) and the phase advance of (3π, π)
between three pairs of sextupoles will enable effective
cancellation of third-order geometrical resonance driving
terms (RDTs) [33] within a cell.

B. Outer complex bend optimization

Figure 10 illustrates the layout of OCB containing
PMQ11 to PMQ15. Similar as we did in CCB2 optimiza-
tion, the variables of am and K1;i of OCB are optimized
under the constraint of a 2° total bending angle. The
optimization objectives are evaluated from the center of

CCB to the end of OCB, containing both CCB and OCB
segments, even though only OCB is optimized. The goal of
optimization is to simultaneously minimize emittance and
the sum of absolute natural chromaticities jξxj þ jξyj. In
reality, we calculate the emittance for the entire ring by
evaluating the contributions from each CB segment within
it. Because the optical functions for CB segments are
symmetrical, the emittance presented here accurately
reflects the actual emittance of the storage ring.
Figure 11 shows the optimization results with two

rounds using the method described in Sec. II D. The
second round can start from the first round due to the
stochastic characters of the NSGA-II algorithm. As
shown in Fig. 11, the optimization almost converges
after 34 generations in the second round. It is clear to
note the “chromaticity wall” when pushing emittance
close to 22 pm. This shape of distributions of objective
values indicates that a solution with lower chromaticities
can be selected without sacrificing emittance too
much. However, in the selection of a solution, the
Twiss function values at the end of OCB need to be
considered for subsequent matching of straight sections.
Consequently, the selected solution is marked with a
magenta box in Fig. 11, which indicates that the ring’s
natural emittance is about 23 pm.
The top plot of Fig. 12 shows the values of magnetic

fields and field gradients for the selected solution for the
outer complex bend, where the green circles represent

FIG. 10. Illustration of layout of OCB containing PMQ11 to
PMQ15.

FIG. 11. Evolution of distributions of objective values in gen-
eration 118 of the first round and in generations 20 and 34 of the
second round, where different colors represent different gener-
ations, and the selected solution is marked with a magenta box.

FIG. 12. Top plot: field values from the start of OCB to the end
of OCB including the values of field gradients and bending
angles, where green circles show the selected bending angles of
PMQ11 to PMQ15 follow a polynomial function. Bottom plot:
the corresponding Twiss function values from the start of OCB to
the end of OCB.
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bending angles of PMQ11 to PMQ15. The bottom plot of
Fig. 12 presents the Twiss function values along the outer
complex bend.

C. Straight section design

After referring to the layout of the NSLS-II straight
sections used to place diagnostic instrumentation, vacuum
components, rf cavities, etc., the O constraints on the
minimum lengths required for the entire long straight and
short straight should be 8.4 and 5.4 m, respectively. Taking
the Twiss function values at the end of OCB as the initial
conditions, the positions and strengths of matching triplets
are optimized to match the Twiss functions in the center of
straights/IDs. The optimized field gradients and positions
of matching triplets, along with corresponding Twiss
function values for half of the long straight section and
half of the short straight section, are displayed in the left
and right plots of Fig. 13, respectively. As indicated by
Fig. 13, the achieved lengths for half of the long straight
and half of the short straight are 4.2 and 3.05 m,
respectively.

D. Complex bend achromat lattice solution

As a result of the optimization described above, we
continue with the lattice design by integrating the following
sections: central complex bend, dispersion bumps, outer
complex bends, and straight sections. The top plot of
Fig. 14 shows the layout of magnets and Twiss function
values along one standard supercell, starting from the
center of a single short straight section to the center of
the next short straight section. Due to the compact arrange-
ment of complex bend elements, a substantial amount of
free space (∼50%) is available for various accelerator
equipment, including correctors, vacuum components,
and diagnostic devices, etc. Furthermore, due to our choice

of permanent magnet technology, the number of power
supplies will be largely reduced, and the power consump-
tion regarding magnets will be roughly 20% of that for the
NSLS-II lattice.
The parameters and their values for the developed

complex bend lattice at 3 GeV composed from 15
standard supercells are listed in Table I compared to
the NSLS-II bare lattice. The natural emittance of the
NSLS-II upgrade lattice is minimized to approximately
23 pm at 3 GeV, which is about 90 times smaller than
that of the NSLS-II bare lattice. The beta functions in the
center of the long straight are between 2 and 3 m, and
they are between 1 and 2 m in the center of the short
straight. In addition, the ID source points of developed
NSLS-IIU lattice match with the NSLS-II lattice layout
within 100 μm. These benefits for user programs dem-
onstrate the advantages of employing complex bend
lattice for NSLS-II upgrade.
The middle plot of Fig. 14 shows the Twiss function

values along one supercell with double minimum beta
functions in the long straight section, which are created by
putting a triplets in the middle of the long straight section as
denoted by the purple ellipse.
In practice, the NSLS-II upgrade lattice may consist of

one supercell with high beta functions shown in the bottom
plot of Fig. 14 for off-axis injection, and the rest are
standard supercells for IDs. Double minimum beta struc-
tures will possibly replace several supercells.
Table II shows a comparison of multibend lattices

for several facilities with the complex bend lattice for
NSLS-IIU. The NSLS-IIU CBA lattice features a long
straight for every supercell, offering the opportunity for the
installation of long or tandem/canted undulators to provide
higher photon beam energy and brightness. In the future,
new alignment and correction techniques may be necessary
to adapt to this novel lattice structure.

FIG. 13. Field gradients and positions of matching triplets, along with corresponding Twiss function values for half of the long straight
section (left plot) and half of the short straight section (right plot) within a standard cell.
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E. Nonlinear dynamics optimization

The nonlinear dynamics optimization targeting sufficient
dynamic and momentum apertures is in progress at the time
of writing this paper, so we are presenting here some
preliminary results. We installed three chromatic sextupole
families used to correct the chromaticities (ξx, ξy) to

ðþ2;þ2Þ as shown in Fig. 15. The phase advances between
three pairs of sextupoles are close to (3π, π) to cancel the
third-order geometrical resonance driving terms (RDTs).
To further improve the performance of DA and MA, three
chromatic octupole families are also placed in phase
with three chromatic sextupole families to simultaneously

FIG. 14. Layout of magnets and Twiss function values along one supercell for standard structure, double minimum beta structure, and
high beta structure from the top to the bottom plots, starting from the center of a single short straight to the center of the next short
straight. The complex bends are colored blue, and the red blocks represent the quadrupoles. The sextupoles and octupoles are not shown
in this figure.
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correct the fourth-order geometrical resonance driving
terms (RDTs) and amplitude-dependent tune shift
(ADTs) [35]. Particle tracking simulations are carried
out with the elegant [36].

During the early stage of nonlinear dynamics optimiza-
tion, we assume that the CB lattice consists of 30 cells, with
one long straight section matched to achieve high beta at
the injection point (see the bottom plot of Fig. 14). The ring

TABLE I. Parameters of the NSLS-II bare lattice and the developed NSLS-IIU CBA lattice comprise 15 standard
supercells operating at 3 GeV.

Values

Paramters NSLS-II bare lattice NSLS-IIU CBA lattice

Circumference C (m) 791.958 791.7679
Beam energy E (GeV) 3 3
Natural emittance ϵx0 (pm-rad) 2086 23.4
Damping partitions (Jx, Jy, Jδ) (1, 1, 2) (2.24, 1, 0.76)
Ring tunes (νx, νy) (33.22, 16.26) (84.67, 28.87)
Natural chromaticities (ξx, ξy) (−98.5, −40.2) (−135, −144)
Momentum compaction αc 3.63 × 10−4 7.76 × 10−5

Energy loss per turn U0 (keV) 286.4 196
Energy spread σδ (%) 0.0514 0.073
(βx, βy) at LS center (m) (20.1, 3.4) (2.95, 2.99)
(βx, βy) at SS center (m) (1.8, 1.1) (1.87, 1.99)
(βx;max, βy;max) (m) (29.99, 27.31) (13.37, 20.82)
(βx;min, βy;min) (m) (1.84, 1.17) (0.35, 0.84)
(βx;avg, βy;avg) (m) (12.58, 13.79) (3.99, 7.51)
Length of long straight LLS (m) 9.3 8.4
Length of short straight LSS (m) 6.6 6.1
Sum of K2 of chromatic sextupoles per cell (m−3) ∼100 ∼1600
rms bunch length at Vrf ¼ 3 MV and frf ¼ 499.681 MHz (mm) 2.70 1.77

TABLE II. Comparison of multibend lattices from several facilities with respect to the complex bend lattice for
NSLS-IIU.

C (m) E (GeV) ϵx0 (pm-rad) Ls (m) αc (×10−5) σδ (%) U0 (MeV)

NSLS-IIU CBA 791.7679 3 23 (8.4, 6.1) 7.76 0.073 0.196
ALS-U [8] 196.51 2 108 ∼5 20.3 0.102 0.245
SLS-II [14] 288 2.7 158 ∼ð12; 6; 4Þ 10.5 0.116 0.688
SOLEIL II [10,11] 353.97 2.75 83 (3.1, 3.7, 4.2, 7.9, 9.0) 10.6 0.091 0.453
SIRIUS [4,34] 518.4 3 250 (7.5, 6.5) 16.3 0.085 0.475
KOREA-4GSR [12] 799 4 58 6.5 7.86 0.120 1.010
ESRF-EBS [5] 843.98 6 133 5.3 8.51 0.094 2.56
APS-U [6] 1103.61 6 42 ∼6 4.04 0.135 2.870
HEPS [9] 1360.4 6 34 ∼6 1.56 0.106 2.890

FIG. 15. Locations of three chromatic sextupole families and three chromatic octupole families in the high beta cell. The phase
advances between three pairs of sextupoles are close to (3π, π).
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tunes are moved to ðνx; νyÞ ¼ ð84.219; 28.273Þ to away
from leading order resonances. To further enlarge the
DA and MA, the positions and strengths of chromatic
sextupoles and chromatic octupoles are optimized. One of
our recent optimized results for on-momentum and off-
momentum frequency maps is shown in Fig. 16. At the
injection point, the achieved range of DA is approximately
−9=þ9 mm, and MA has reached about 3%. The ampli-
tude of third-order RDTs along the whole ring for this
nonlinear solution is also displayed in Fig. 17. In the
future, methods of using harmonic sextupoles [37], min-
imizing the fluctuation of RDTs [38], and optimizing theW
functions [39] can be used to maximize the dynamic
aperture and momentum aperture.
One goal of the storage ring lattice design is to deliver

a robust lattice resilient to errors and imperfections. To
check the robustness of a lattice, it typically generates

FIG. 16. On-momentum frequency map (left) and off-momentum frequency map (right) at the injection point. The maps are generated
by tracking particles for 1024 turns.

FIG. 17. Amplitude variation of third-order RDTs along the
whole complex bend achromat ring lattice.

FIG. 18. β-beat of 20 perturbed lattices with random error seeds (left). On-momentum dynamic aperture of ideal lattice, lattices with
random error seeds, and lattice with average performance (right).
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several perturbed lattices, each having a random error
seed, and then evaluates their performances. In our work,
we generated 20 lattices with random gradient errors.
No alignment errors are specified, as they will be addressed
in future detailed studies. The level of gradient errors to
complex bends and quadrupoles is chosen to have an
amplitude of 0.02% (rms) to cause a beta-beating on the
order of 1%–2% in both horizontal and vertical planes, as
shown in the left plot of Fig. 18. It simulates the residual
beta-beating after the lattice correction in the real machine.
In addition, the random errors introduced to sextupoles and
octupoles have an amplitude of 0.01% (rms). The right plot
in Fig. 18 presents the on-momentum dynamic aperture
tracking results for 20 perturbed lattices. The average
performance of the perturbed lattices is close to the ideal
lattice.

IV. CONCLUSIONS

We presented the complex bend (CB) approach in the
lattice design exemplified for the case of the NSLS-II
upgrade lattice.
The advantages of using the CB approach for the high-

performance lattice design are demonstrated as follows:
(i) We achieved a low natural emittance of 23 pm and a path
of further reducing the emittance by adding more CB poles
to the elements in the lattice will be demonstrated in the
future work. (ii) The 8.4-m-long long straight and 6.1-m-
long short straight provide room for long IDs and hence
help to achieve higher brightness of photon beam. (iii) A
larger free space in the lattice is available for accelerator
equipment, where the fraction of free space to the ring
circumference is about 50%. This larger free space, if not
fully used by accelerator equipment, could be used for
additional CB poles, thus potentially further improving the
performances of the lattice in terms of natural horizontal
emittance. (iv) The use of complex bend reduces the
number of power supplies, and overall power consumption
by the magnet system for the developed NSLS-II upgrade
lattice is about 20% of that for the present NSLS-II lattice.
(v) On-going nonlinear dynamics optimization has already
indicated appreciable DA and MA. The work is continuing
in an effort to secure efficient injection and long beam
lifetime.
Thus far, the hard-edge model for the complex bend is

being used, and more accurate magnet modeling is needed.
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APPENDIX A: ESTIMATION OF RADIATION
INTEGRALS WITH BINS

The natural emittance, radiation loss, and momentum
compaction of a CBA lattice have the following relations
with radiation integrals [1]:

ϵx0 ∝
I5

I2 − I4
; U0 ∝ I2; αc ∝ I1: ðA1Þ

The evaluations of radiation integrals contributed from
short PMQs of complex bends are expressed as [40]

I1 ¼
I

ηxhds ≈
X
i

hηxiiK0;i; ðA2Þ

I2 ¼
I

h2ds ≈
1

L

X
i

K2
0;i; ðA3Þ

I3 ¼
I

jhj3ds ≈ 1

L2

X
i

jK0;ij3; ðA4Þ

I4 ¼
I

ηxðh3 þ 2hK1Þds ≈
X
i

�
K3

0;i
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þ 2K0;iK1;i

�
hηxii;

ðA5Þ

I5 ¼
I

jhj3Hds ≈
1

L2

X
i

jK0;ij3hHii; ðA6Þ

where h ¼ 1
ρ is the orbit curvature, H ¼ γxη

2
x þ 2αxηxη

0
x þ

βxη
02
x is the Courant-Snyder invariant defined by Twiss

parameters (αx, βx, γx) and dispersion functions (ηx, η0x).
By taking advantage of the binning method mentioned in
Sec. II, we can estimate radiation integrals via summa-
tions through the complex bend segments before further
dividing the magnets into more slices to achieve more
accurate results, where K0;i and K1;i are the bending
angle and gradient value for ith PMQ with a constant
length of L ¼ 3 bins. In these equations, hηxii and hHii
correspond to ηx and H of ith PMQ averaged along the
respective bins.
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APPENDIX B: OPTIMIZATION RANGES OF VARIABLES

The optimization ranges of variables used in the lattice design are summarized in Table III.
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