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Beam-beam interactions pose substantial challenges in the design and operation of circular colliders,
significantly affecting their performance. In particular, the weak-strong simulation approach is pivotal for
investigating single-particle dynamics during the collider design phase. This paper evaluates the limitations
of existing models in weak-strong simulations, noting that while they accurately account for energy
changes due to slingshot effects, they fail to incorporate longitudinal coordinate changes (z variation). To
address this gap, we introduce two novel transformations that enhance Hirata’s original framework by
including both z variation and slingshot effect-induced energy changes. Through rigorous mathematical
analysis and extensive weak-strong simulation studies, we validate the efficacy of these enhancements in
achieving a more precise simulation of beam-beam interactions. Our results reveal that although z variation
constitutes a higher-order effect and does not substantially affect the emittance growth rate within the
specific design parameters of the Electron-Ion Collider, the refined model offers improved accuracy,
particularly in scenarios involving the interaction between beam-beam effects and other random diffusion
processes, as well as in simulations incorporating realistic lattice models.
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I. INTRODUCTION

Luminosity, the primary metric in accelerator physics
for a collider, measures the rate of physics events per unit
cross section per second during beam collisions. Achieving
higher peak and integrated luminosity is pursued in
colliders across energy [1], precision [2], and quantum
chromodynamics froniters [3].
In circular colliders, beam-beam interactions—the electro-

magnetic forces between opposing beams—significantly
limit performance. For lepton colliders, this interaction
introduces a “beam-beam limit,” where luminosity increases
below the expected relationship with beam intensity beyond
a certain threshold [4]. In hadron colliders, beam emittance
growth, primarily driven by these interactions, curtails
luminosity lifetime, as demonstrated in empirical studies
[5,6]. The “beam-beam parameter,” quantifying the maxi-
mum tune shift during collisions, serves as a key metric for
assessing interaction strength.

The Electron-Ion Collider (EIC), to be constructed at
Brookhaven National Laboratory, aims to achieve an
unprecedented luminosity of 1034 cm−2 s−1 by colliding
10 GeV electrons and 275 GeV protons, requiring large
electron and proton beam-beam parameters [7].
Throughout the design phase of the EIC, a critical objective
is to minimize proton emittance growth amidst beam-beam
interaction.
Hadron–Elektron Ring Anlage (HERA) pioneered the

collision of leptons and protons, serving as the first
operational collider of its kind. However, in comparison
to the main parameters achieved during routine operation at
HERA [8], the EIC seeks to escalate the peak luminosity
objective by two orders of magnitude, accompanied by a
fourfold increase in both proton and electron beam-beam
parameters. Given the unprecedented nature of the EIC’s
design objective, beam-beam simulations emerge as the
sole method to validate the efficacy of the parameter
combination, with accurate modeling of beam-beam inter-
action being crucial for assessing proton emittance growth
in the simulation.
In beam-beam simulations, two principal approaches are

distinguished: strong-strong and weak-strong. The strong-
strong concept was introduced by Peggs in the 1980s [9]. In
this paper, the strong beam distribution is fixed during
tracking, and the role of the strong beam were switched
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between the interacting beams over successive tracking
turns. Modern strong-strong simulations have advanced to
a point where the beam distributions are dynamically
updated based on the electromagnetic fields calculated
from a two-dimensional Poisson equation. Subsequently,
these distributions evolve according to the Vlasov equation,
ensuring a self-consistent simulation process.
In contrast to the strong-strong approach, weak-strong

simulations simplify the modeling of beam-beam inter-
actions by assuming the strong beam maintains a rigid
Gaussian distribution. This simplification facilitates the
calculation of electromagnetic forces exerted on test
particles within the weak beam using the Bassetti-
Erskine formula [10], a method that, despite lacking
self-consistency and the ability to address coherent
effects, remains crucial for collider design due to its
lower computational demands. Particularly in hadron
storage ring design, where effective cooling methods
are absent and particles must be tracked over millions of
turns to ascertain stability, the weak-strong model proves
indispensable. Moreover, it introduces less numerical
noise compared to the strong-strong method, which
employs the particle-in-cell technique to expedite
Poisson equation solutions [11–13]. This technique,
while efficient, often leads to significant numerical noise
by projecting particle distributions onto a finite two-
dimensional grid, as observed during the EIC design
phase [14–18]. Such noise can obscure the particle
diffusion effects attributed to beam-beam interactions,
making them discernible only through weak-strong
simulations.
For the EIC, the adoption of a flat hadron beam

configuration—characterized by a vertical emittance that
is an order of magnitude smaller than horizontal emit-
tance—maximizes luminosity while introducing sensi-
tivity to various real-world fluctuations in the vertical
plane. The weak-strong simulation has emerged as a
cornerstone in addressing EIC design challenges, includ-
ing the dynamic aperture reduction from interaction
region (IR) magnetic field errors [19], emittance growth
due to electron orbit perturbations from dipole magnet
power supply variability [20], and crab cavity phase
noise [21,22]. The necessity for a precise weak-strong
model transcends the EIC, underscoring its critical
importance across the collider physics community for
ensuring the integrity of collider design.
This paper is organized as follows. Section II revisits

the concept of synchro-beam mapping, highlighting the z
variation effect, and the energy changes resulting from
slingshot effects. Section III introduces two symplectic
approaches designed to encompass both the z variation
effect and the slingshot effect-induced energy changes.
Section IV provides a comparative analysis of the simu-
lation outcomes using these three distinct methodologies.
A conclusive summary is presented in Sec. V.

II. SYNCHRO-BEAM MAPPING

A single-particle dynamics is described by the set of
canonical coordinates:

x ¼ ðx; px; y; py; z; pzÞ; ð1Þ

where x and y represent the transverse positions in the
horizontal and vertical planes, respectively, and px;y are
their associated momenta, normalized to the design
momentum, P0, of the reference particle. The longitudinal
position is given by z ¼ s − l, where s is the designed path
length for the reference particle, and l is the actual path
length. The term pz ¼ ðP − P0Þ=P0 denotes the deviation
in momentum relative to the reference particle. For the
purposes of clarity and focus, this paper restricts its scope
to the case of high-relativistic dynamics.
The choice of canonical coordinates and the Hamiltonian

is discussed in Appendix A.

A. Hirata’s original approach

The synchro-beam mapping, formulated by Hirata,
Moshammer, and Ruggiero, is extensively utilized for
simulating beam-beam interactions in the presence of
synchrotron motion, providing a symplectic mapping within
a six-dimensional phase space [23]. This method involves
longitudinally splitting the strong bunch into multiple slices
and employing a drift-kick-drift model to calculate the
particle-slice interaction. In this approach, the particle
engages in a virtual drift from the interaction point (IP) to
the collision point (CP), receives a beam-beam kick from the
opposing slice at the CP, and then returns back to the IP.
Denoting z� the longitudinal coordinate of the strong

slice in its own axis, the separation between the IP and CP
is represented as

Sðz; z�Þ ¼ z − z�

2
: ð2Þ

Throughout this paper, we will use S to represent Sðz; z�Þ
without causing any ambiguity.
The virtual drift from the IP to the CP is characterized by

an exponential Lie operator D0, defined as

D0 ¼ exp ð−∶SH0∶Þ; where H0 ¼
p2
x þ p2

y

2
: ð3Þ

This operator’s action on the canonical coordinates results
in the transformation:

D0x ¼ xþ pxS; D0px ¼ px;

D0y ¼ yþ pyS; D0py ¼ py;

D0z ¼ z; D0pz ¼ pz −
p2
x þ p2

y

4
: ð4Þ
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The beam-beam interaction at the CP is represented by
another Lie operator B, expressed as

B ¼ exp ð−∶U∶Þ; ð5Þ

where U denotes the beam-beam potential induced by
the strong slice. The application of the operator B to the
coordinates results exclusively in modifications to the
momenta, described by

ðΔpx;Δpy;ΔpzÞ ¼ −∇U: ð6Þ

The spatial coordinates remain unaffected by the beam-
beam interaction, given the assumption that the slice is
sufficiently “thin.” Transverse momentum changes, Δpx;y,
are derived from the well-established Bassetti-Erskine
formula, and the formulation for the longitudinal momen-
tum change, Δpz, follows Hirata’s proposal in [23].
Appendix B provides detailed formulas for momentum
changes by a strong slice characterized by a bi-Gaussian
distribution.
Upon experiencing the beam-beam kick at the CP, the

test particle is subjected to another virtual drift, leading it
back from the CP to the IP. This sequential process is
encapsulated by the overall mapping equation:

M0 ¼ D0BD−1
0 ; ð7Þ

which represents the combined effect of the initial drift, the
beam-beam interaction, and the subsequent return drift.
The resultant transformation of the particle’s coordinates
and momenta is given by

xnew ¼ x − SΔpx;

pnew
x ¼ px þ Δpx;

ynew ¼ y − SΔpy;

pnew
y ¼ py þ Δpy;

znew ¼ z;

pnew
z ¼ pz þ Δpz −

p2
x þ p2

y

4
þ ðpnew

x Þ2 þ ðpnew
y Þ2

4
; ð8Þ

where the new positions and momenta are adjusted accord-
ing to the shifts induced by the beam-beam interaction.

B. z variation and slingshot effects

Hirata’s approach provides a symplectic mapping for
the beam-beam interaction, which includes the energy
change and the bunch-length effect. This approach employs
exponential Lie operators to represent both the virtual drift
and the beam-beam kick, ensuring that each component
of the synchro-beam mapping maintains symplecticity.
Consequently, the cumulative mapping that results

from sequentially applying these steps preserves the
symplecticity.
However, it is imperative to acknowledge a critical

distinction: the transformation characterizing the transition
between the IP and the CP does not retain symplecticity
when considered in the context of the standard accelerator
coordinates ðx; px; y; py; z; pzÞ. This discrepancy arises
from the dynamic nature of the CP location, which varies
among particles based on their initial coordinates at the IP.
Specifically, some particles engage in collisions at CP1,
others at CP2, and so forth, necessitating the computation of
particle coordinates at their respective CPs. Once all particles
have transitioned to their respective CPs, the overarching
transformation from the IP to these dynamically defined CPs
does not conform to symplectic principles.
To illustrate this concept, we can incorporate Eq. (2) into

an actual drift map. Consider the simple drift Hamiltonian
given by H0 ¼ ðp2

x þ p2
yÞ=2. The transformation corre-

sponding to a real drift over a distance S is described by

x ¼ x0 þ px;0S; px ¼ px;0;

y ¼ x0 þ py;0S; py ¼ py;0;

z ¼ z0; pz ¼ pz;0:

The corresponding Jacobian matrix is given by

M ¼ ∂ðx; px; y; py; z; pzÞ
∂ðx0; px;0; y0; py;0; z0; pz;0Þ

¼

2
6666666664

1 S 0 0 px;0=2 0

0 1 0 0 0 0

0 0 1 S py;0=2 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
7777777775
:

It is straightforward to verify that

MTJM ¼

2
6666666664

0 1 0 0 0 0

−1 0 0 0 −px;0=2 0

0 0 0 1 0 0

0 0 −1 0 −py;0=2 0

0 px;0=2 0 py;0=2 0 1

0 0 0 0 −1 0

3
7777777775
≠ J;

where J is the 6-by-6 symplectic form matrix.
This deviation from symplecticity can be intuitively

understood through an analogy to photography in phase
space. According to Liouville’s theorem, in a closed
and isolated system, where dynamics are governed by
Hamiltonian principles without any dissipation or diffusion,
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the volume occupied by the system in phase space remains
invariant over time. When all particles are captured in a
single “photograph,” the phase volume should remain
constant. However, when we capture only a subset of
particles in sequential “photographs,” the volume of phase
space represented in each image may vary depending on the
distribution evolution. Consequently, when summing the
volumes from these sequential photographs taken at different
times, the total phase volume may not remain constant.
Easing off the symplectic constraint, Fig. 1 presents the

actual drift of a particle between the IP and the CP. The
respective path lengths are quantified as follows:

lIP→CP ¼
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x02 − y02
p ; ð9Þ

lCP→IP ¼ Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx0 þ Δx0Þ2 − ðy0 þ Δy0Þ2

p ; ð10Þ

where x0 ¼ dx=ds and y0 ¼ dy=ds denote the derivatives of
x and y with respect to the path length s, while Δx0 and Δy0
represent the deflections due to the beam-beam interaction
at the CP. This difference in path length accounts for the
alteration in the z coordinate as the test particle returns to
the IP:

Δz ¼ lCP→IP − lIP→CP

≈
S
2
½ðx0 þ Δx0Þ2 þ ðy0 þ Δy0Þ2 − x02 − y02�: ð11Þ

In this paper, the longitudinal coordinate change is referred
as z variation effect.
When every particle undergoes a beam-beam kick at

the CP and returns to the IP, the entire process as a whole
must retain symplecticity. However, given the actual drift
between the IP and the CP deviates from symplectic
behavior, the beam-beam interaction at the CP must also
be nonsymplectic in nature to ensure the overall process
conserves symplecticity.
In addition to the momentum change or energy change

induced by distribution variation, as shown in Eq. (6), there
is an additional mechanism of energy alteration reminiscent
of the gravitational slingshot effect encountered in orbital
mechanics, as explained in [24]. The comprehensive

derivation of this effect is provided in Appendix C. In
terms of the accelerator coordinates, the momentum change
due to the slingshot effect is

ðΔpzÞslingshot¼
ðx0 þΔx0Þ2þðy0 þΔy0Þ2−x02−y02

4
: ð12Þ

By comparing Eqs. (11) and (12) with Eq. (8), we
observe that while Hirata’s approach encapsulates the
energy change attributable to the slingshot effect, it does
not account for z variation. In the original formulation by
Hirata, the z coordinate is presumed to remain unchanged
throughout the interaction. This assumption, however, does
not fully capture the dynamics of the system. The effect of z
variation may have significant implications in the design,
especially given that the hadron particles are often tracked
over millions of turns. Recognizing and addressing this z
variation is crucial for accurately modeling the long-term
behavior of particles within accelerators, pointing to areas
where existing theoretical frameworks might be enhanced
to better reflect physical realities.

III. MODIFIED VIRTUAL DRIFT

Despite the nonsymplectic nature of the actual trans-
formation from the IP to the CP in practical scenarios,
Hirata’s approach retains its significance for two key
reasons: first, it ensures the symplecticity of the overall
synchro-beam mapping, and second, it accurately captures
the slingshot effects. Building on this foundation, we aim to
extend Hirata’s methodology in this section by devising an
approximate yet symplectic transformation for the virtual
drift. This transformation will account for both z variation
and slingshot effects at the lowest order, thereby refining
the model to more closely mirror the complexities observed
in Sec. II B.

A. Chromatic Hamiltonian

Incorporating pz into the Hamiltonian expansion allows
for calculation of z variation effects. This leads to the
refined Hamiltonian:

H1 ¼
p2
x þ p2

y

2ð1þ pzÞ
: ð13Þ

Following Hirata’s strategy, the associated exponential Lie
operator is defined as

D1 ¼ exp ð∶h1∶Þ where h1 ¼ −SH1: ð14Þ
We remind the reader that the Lie operator is a shorthand
notation for the Poisson bracket. For any two functions of
f and g, the Poisson bracket is defined as

∶f∶g ¼ ½f; g� ¼
X

u¼x;y;z

∂f
∂u

∂g
∂pu

−
∂f
∂pu

∂g
∂u

: ð15ÞFIG. 1. Illustration of test particle drift between the IP and CP.
The trajectory from IP to CP is depicted by the blue line, whereas
the return path from CP to IP is represented by the red line.
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Application of the ∶h1∶ operator to longitudinal
coordinates

∶h1∶z ¼ ½−SH1; z� ¼ S
∂H1

∂pz
¼ h0

ð1þ pzÞ2
;

∶h1∶pz ¼ ½−SH1; pz� ¼ −H1

∂S
∂z

¼ h00
1þ pz

; ð16Þ

where

h0 ¼ −H0S ¼ −
�
p2
x þ p2

y

2

�
S;

h00 ¼ −H0

∂S
∂z

¼ −
�
p2
x þ p2

y

2

�
S0: ð17Þ

Iterative applications of the operator reveal

∶h1∶nz ¼
S
S0

�
−
1

2

�
n

ð2S0H0Þn
ð1þ pzÞ2n

;

∶h1∶npz ¼
�
−
1

2

�
n

ð2S0H0Þn
ð1þ pzÞ2n−1

; ð18Þ

for n ≥ 1. Here ð·Þn is the Pochhammer symbol of rising
factorial

ðqÞn ¼ qðqþ 1Þðqþ 2Þ � � � ðqþ n − 1Þ: ð19Þ

The resulting transformations for z and pz are

D1z ¼ zþ
X∞
n¼1

∶h1∶nz
n!

¼ z −
S
S0
þ S
S0 1

F0

�
−
1

2
; ;

2S00H0

ð1þ pzÞ2
�
;

D1pz ¼ pz þ
X∞
n¼1

∶h1∶npz

n!

¼ −1þ ð1þ pzÞ1F0

�
−
1

2
; ;

2S0H0

ð1þ pzÞ2
�
; ð20Þ

where 1F0 is the generalized hyper-geometric function mFn
with m ¼ 1, n ¼ 0.
Utilizing the identity

1F0ða; ; xÞ ¼
1

ð1 − xÞa ; ð21Þ

the transformation of the virtual drift from the IP to the CP
can be expressed as

Φðpx; py; pzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S0 ·

p2
x þ p2

y

ð1þ pzÞ2

s
− 1;

D1x ¼ xþ Spx

1þ pz
; D1px ¼ px;

D1y ¼ yþ Spy

1þ pz
; D1py ¼ py;

D1z ¼ zþ S
S0
Φðpx; py; pzÞ;

D1pz ¼ pz þ ð1þ pzÞΦðpx; py; pzÞ: ð22Þ

The transformation from the CP to the IP reverses the
effects of D1, achieved by inverting the sign of S and S0:

Ψðpx; py; pzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S0 ·

p2
x þ p2

y

ð1þ pzÞ2

s
− 1;

D−1
1 x ¼ x −

Spx

1þ pz
; D−1

1 px ¼ px;

D−1
1 y ¼ y −

Spy

1þ pz
; D−1

1 py ¼ py;

D−1
1 z ¼ zþ S

S0
Ψðpx; py; pzÞ;

D−1
1 pz ¼ pz þ ð1þ pzÞΨðpx; py; pzÞ: ð23Þ

The operator D1 in Eq. (14) implies that the location of
the CP is determined by the longitudinal coordinate z at the
IP. During the drift from the IP to the CP, z is no longer a
constant, as shown in Eq. (22). This variation means
that the test particle may not engage with the counter-
propagating slice at the initially calculated CP location. To
effectively apply the collision map B, delineated in Eq. (5),
we have to presume that the z variation—arising from the
modified virtual drift—exerts negligible influence on the
collision map B.
This assumption, despite not being entirely realistic, is

not anticipated to introduce significant discrepancies.
The electromagnetic field generated by a relativistic
beam is characterized by a narrow angular width of
1=γ�, where γ� denotes the Lorentz factor of the strong
slice. Let σ represent the transverse size encountered by a
test particle interacting with this strong slice. The test
particle will predominantly experience the electromagnetic
field from the thin slice if:

Δz ≪ σ=γ�: ð24Þ

In most practical scenarios, this condition is generally met.

B. Exact Hamiltonian

By applying an exponential Lie operator to obtain the
virtual drift transformation, we have extended Hirata’s
methodology for the chromatic drift Hamiltonian.
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However, it proves to be impractical for the exact drift
Hamiltonian due to the resulting expression’s complexity
and unwieldiness. Therefore, it is imperative to explore an
alternative strategy to effectively tackle this challenge.
In Sec. III A, it is demonstrated that the CP location is

not solely determined by the initial longitudinal coordi-
nates. Here, we continue to use S to represent the drift
length from the IP to the CP. To account for geometric
effects, S must be contingent on the transverse momenta
px;0 and py;0, and to consider the chromatic effect, S is
also influenced by pz;0. The superscript “0” means these
quantities are evaluated at the IP. As a result, the relation-
ship governing S can be expressed as follows:

S ¼ Sðz0; z�; px;0; py;0; pz;0Þ: ð25Þ

The variable z� remains constant when the thin slice
traverses between the IP and the CP.
At the CP, the test particle has a longitudinal coordinate

z. Although the expression of z is still unknown yet, S can
be expressed by z and z�. The elapsed time for the reference
particle from the IP to the CP is tr ¼ S=vr. The superscript
“r” indicates that vr is the velocity of the reference particle.
Using the definition of z in Eq. (A7),

z ¼ sr − l ¼ vrtr − vt ⇒ t ¼ vrtr − z
v

¼ S − z
v

; ð26Þ

where t is when the test particle arrives at CP. For the
opposite slice, the arrival time is obtained by substituting S
with −S, where the negative sign comes from the opposite s
axis:

t� ¼ −S − z�

v�
: ð27Þ

The test particle will collide with the slice when t ¼ t�:

S − z
v

¼ −S − z�

v�
⇒ Sðz; z�Þ ¼ v�z − vz�

vþ v�
: ð28Þ

Taking the relativistic limit v ¼ v� ¼ c, Eq. (28) will turn
into Eq. (2). It is crucial to note, however, that the
interpretation of the variable z varies between the two
equations. In Eq. (28), z represents the longitudinal
coordinate at the CP, whereas in Eq. (2), the same symbol
z actually denotes the quantity z0 determined at the IP.
As a result, S has a form of

S ¼ Sðz0; z�; px;0; py;0; pz;0Þ
¼ Sðzðz0; px;0; py;0; pz;0Þ; z�Þ: ð29Þ

The spatial coordinate transformation governed by the
exact drift Hamiltonian is detailed as

x ¼ x0 þ
�
px;0

ps;0

�
Sðz; z�Þ;

y ¼ y0 þ
�
py;0

ps;0

�
Sðz; z�Þ;

z ¼ z0 −
�
H0

ps;0

�
Sðz; z�Þ; ð30Þ

where

ps;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ pz;0Þ2 − p2

x;0 − p2
y;0

q
¼ 1þ pz;0 −H0: ð31Þ

The variable z on the right-hand side in Eq. (30) is
evaluated at the CP, and z can be resolved by combining
Eqs. (28) and (30).
We introduce the generating function to find out the

transformation of px;y;z:

G3 ¼ −xpx;0 − ypy;0 − zpz;0 þH0Sðz; z�Þ: ð32Þ

The spatial coordinates at the IP are given by

x0 ¼ −
∂G3

∂px;0
; y0 ¼ −

∂G3

∂py;0
; z0 ¼ −

∂G3

∂pz;0
: ð33Þ

This relationship confirms the alignment of the spatial
coordinate transformation equations with those previously
established in Eq. (30).
The transformation of momentum coordinates at the CP

is similarly derived from the partial derivatives of G3 with
respect to the spatial coordinates, yielding:

px ¼ −
∂G3

∂x
¼ px;0;

py ¼ −
∂G3

∂y
¼ py;0;

pz ¼ −
∂G3

∂z
¼ pz;0 −H0

∂Sðz; z�Þ
∂z

: ð34Þ

Similar to the Hirata’s approach, the transverse momenta
remain unchanged, and the correction is applied to pz to
preserve the symplectic structure of the system.
The reverse transformation, from the CP back to the IP, is

achieved by representing the initial coordinate and momen-
tum set ðx0; px;0; y0; py;0; z0; pz;0Þ in terms of the final set
ðx; px; y; py; z; pzÞ, utilizing a combination of Eqs. (30)
and (34).
For relativistic case, the transformation from the IP to the

CP is summarized as
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S ¼ ðz0 − z�Þps;0

2ps;0 þH0

;

x ¼ x0 þ
�
px;0

ps;0

�
S; px ¼ px;0;

y ¼ y0 þ
�
py;0

ps;0

�
S; py ¼ py;0;

z ¼ z� þ 2S; pz ¼ pz;0 −
H0

2
; ð35Þ

and the reverse transformation from the CP to the IP:

H0 ¼
p2
x þ p2

y

2ð1þ pzÞ
; ps;0 ¼ 1þ pz −

1

2
H0; S ¼ z − z�

2
;

px;0 ¼ px; x0 ¼ x −
�
px

ps;0

�
S;

py;0 ¼ py; y0 ¼ y −
�
py

ps;0

�
S;

pz;0 ¼ pz þ
1

2
H0; z0 ¼ zþ

�
H0

ps;0

�
S: ð36Þ

IV. SIMULATION

Section III details the derivation of the enhanced virtual
drift, incorporating z variation and energy adjustments due
to slingshot effects. Weak-strong simulations are conducted
to validate the enhanced map’s accuracy and assess its
implications, ensuring the theoretical modifications are
both substantiated and practically relevant.

A. Model difference demonstration

To demonstrate the distinctions among the three models,
simulations are performed using artificially constructed
parameters. These “man-made” parameters, which do not
correspond to real-world machines, are specifically
designed to highlight the differences between the models.
The beam-beam parameters are set at 0.01, with the
associated beam characteristics presented in Table I.
Figure 2 illustrates the variation in the longitudinal

coordinate z after the test particle undergoes a virtual drift
from the IP to the CP, receives a beam-beam kick at CP, and
drifts back to IP. The initial coordinate of the test particle is
set at ðσ; 0; σ; 0; 0; 0ÞT, where σ ¼ 70 μm. As the location
of the thin slice changes, so does Δz. For Hirata’s model,
Δz ¼ 0. In both the chromatic and exact models, Δz is
aligned with each other but remains small with a magnitude
of 10−11 m.
The z variation is too small to impact beam dynamics

observably when the beam-beam kick is not sufficiently
large. Figure 3 depicts the frequency diffusion over the
course of tracking 1000 turns. The thin slice is positioned at
z� ¼ −β=2 ¼ 30 cm. The initial particle distribution spans

�5σ across the x–y plane, with the longitudinal coordinates
and px;y set to zero. The diffusion index D is determined
using the formula:

D ¼ log10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνx;2 − νx;1Þ2 þ ðνy;2 − νy;1Þ2

q
: ð37Þ

Here, ν1 and ν2 are the frequencies computed from the first
and second 500 turns, respectively. The results across all
three models show similar frequency maps. A seventh order
resonance 4νy ¼ 7 can be observed.
To enhance the z variation, one effective approach is to

amplify the beam intensity. The beam-beam parameters can
be preserved by reducing the β functions and maintaining
the slice position at z� ¼ −β=2. Suppose the beam intensity
is increased by a factor of A, and concurrently, the β
functions are reduced by the same factor. This adjustment

TABLE I. Artificial parameters used to illustrate z variations
among different virtual drift models. The transverse working
point is based on the SuperKEKB design [25].

Parameter Unit Proton and antiproton

Energy GeV 275
Particles per bunch 1011 2.1
βx at IP cm 60.0
βy at IP cm 60.0
rms bunch size (H/V) μm 70.0
Horizontal fractional tune · · · 0.530
Vertical fractional tune · · · 0.570
Synchrotron tune · · · −0.001

FIG. 2. Longitudinal coordinate variation after projecting back
to IP. The legend describes the virtual drift models employed in
the simulations: original Hirata’s method (blue), chromatic
Hamiltonian (orange), and exact Hamiltonian (green). The orange
and green curves overlap with each other.
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results in an A-fold increase in both beam divergence and
the beam-beam kick. According to Eq. (11):

Δz ≈
S
2
ð2x0Δx0 þ Δx02 þ 2y0Δy0 þ Δy02Þ; ð38Þ

where x0, y0, Δx0, and Δy0 also increase by a factor of A,
while the distance S between the CP and IP is reduced by a
factor of A. Consequently, it leads to an A-fold increase
in Δz.
In our case, the initial longitudinal coordinates are set

to 0. Therefore, the longitudinal action is derived from the
energy kick due to beam-beam interactions. When the
beam intensity is scaled up, the associated longitudinal
energy kick also increases proportionally. Consequently,
the change in the longitudinal coordinate, Δz, remains
negligible compared to the longitudinal action. As the β
functions decrease during this scaling process, the hour-
glass effect becomes relevant when Δz approaches the
magnitude of the β function. This variance in Δz across
different models will influence long-term particle diffusion.
Figure 4 displays the frequency maps obtained from

different models when the beam intensity is increased by a
factor of 100. The reduction in β functions leads to fewer
particles, indicated in red color, being affected by the
seventh order resonance. In the chromatic and exact virtual
models, particles close to the center exhibit a higher
diffusion index. Therefore, in long-term tracking, the z
variance effect should be included.

B. Realistic case: Simulation for EIC

The parameters used in simulations are shown in
Table II. The crossing angle is as large as 25 mrad,
and the Lorentz transformation is applied to accurately
address the crossing angle within the simulation [26]. In all
subsequent simulations, the weak proton beam is repre-
sented by one million macroparticles. A second order
harmonic crab cavity is used to flatten the proton bunch
[27]. The one-turn map at IP is represented by the linear
betatron map. There is no momentum dispersion and crab
dispersion at IP [28]. The electron beam, functioning as the
strong beam, exhibits a rigid bi-Gaussian distribution.
Parameters for the electron beam, as listed in Table II,

FIG. 3. Frequency map analysis in amplitude space (top) and
tune space (bottom).

FIG. 4. Frequency map analysis in amplitude space when the
beam intensity is scaled by 100 times.
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are anticipated to be achieved upon reaching equilibrium,
accounting for the effects of beam-beam interactions.
Figure 5 illustrates the evolution of proton emittance

through three distinct mapping approaches. The blue curve
represents the original Hirata’s mapping, detailed in Eq. (8).
Meanwhile, the orange curve displays the results obtained

from a modified virtual drift model incorporating the
chromatic Hamiltonian, as derived from Eqs. (22) and (23).
Finally, the green curve showcases the outcomes derived
from employing a modified virtual drift model with the
exact Hamiltonian, as outlined in Eqs. (35) and (36).
The emittance growth rate is determined through a linear

fit of the final 50% of the tracking data. To more clearly
illustrate the trend of emittance evolution, the data are
averaged over every 1000 turns. In the context of the EIC
design, vertical emittance growth is of particular concern.
For the baseline design, it is imperative that the vertical
emittance growth does not surpass 20%/h, a limit set by
the Strong Hadron Cooling requirements. As depicted in
Fig. 5, the vertical emittance growth observed across the
three examined approaches shows negligible differences.
This outcome is expected, given that the z variation effect
constitutes a higher-order effect, and the parameters listed
in Table II have been fine-tuned to minimize vertical
emittance growth.
Figure 6 presents the normalized relative error derived

from tracking data, offering valuable insights into our
enhanced model. The linear progression of relative error
over time suggests that the proton beam is free from
significant resonance phenomena. Furthermore, the error’s
magnitude is notably small, on the order of 10−5, affirming
the effectiveness of Hirata’s original mapping across a

TABLE II. Simulation parameters from EIC-CDR [7]. “H”
stands for horizontal and “V” denotes vertical below. The electron
beam, acting as the strong beam, is characterized by design
parameters anticipated to be realized upon achieving equilibrium.

Parameter Proton Electron

Circumference (m) 3834
Energy (GeV) 275 10
Particles per bunch (1011) 0.688 1.72
Crossing angle (mrad) 25.0
Crab cavity frequency (MHz) 200.0 400.0
β�x=β�y (cm) 80.0=7.20 45.0=5.60
rms emittance (H/V) (nm rad) 11.3=1.00 20.0=1.29
rms bunch size (H/V) (μm) 95.0=8.5
rms bunch length (cm) 6.0 0.7
rms energy spread (10−4) 6.6 5.5
Transverse fractional tune (H/V) 0.228=0.210 0.08=0.14
Synchrotron tune −0.010 −0.069
Transverse damping time (turns) ∞ 4000
Longitudinal damping time (turns) ∞ 2000

FIG. 5. Evolution of proton emittance depicted through weak-
strong simulations: top (horizontal plane) and bottom (vertical
plane). The legend describes the virtual drift models employed
in the simulations: original Hirata’s method (blue), chromatic
Hamiltonian (orange), and exact Hamiltonian (green).

FIG. 6. Relative error of proton emittance in weak-strong
simulations: top (horizontal plane), bottom (vertical plane).
The legend describes the virtual drift models employed in
the simulations: original Hirata’s method (blue), chromatic
Hamiltonian (orange), and exact Hamiltonian (green).
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majority of scenarios. Additionally, a comparison between
the modified drift model, which integrates the chromatic
Hamiltonian, and the exact Hamiltonian model reveals a
remarkable degree of consistency, highlighting the robust-
ness of our approach.
It is important to note that a relative error on the order

of 10−5 or 10−4 per turn may not be considered negligible
when compared to the magnitude of random diffusion
processes, such as intrabeam scattering (IBS). In the
context of the EIC, where the horizontal or longitudinal
IBS growth time is approximately 2–3 h, the relative
amplitude of IBS diffusion is about 10−7 per turn. From
this perspective, the inclusion of the z variation effect in
beam-beam interaction becomes essential in the design of
the hadron ring, when addressing the interplay between
beam-beam interaction and the IBS.
In accelerator physics, it is a well-established fact that

minor deviations can be exponentially magnified over time
for chaotic particle motion. This scenario typically arises
when there is an overlap of multiple resonance lines within
the tune space. Specifically, for the EIC beam-beam
simulation, high-order synchro-betatron resonances are
present within the footprint, as detailed in [29]. Figure 7
illustrates the tracking outcomes when the strong electron
beam is artificially displaced by one σx in the horizontal
plane. This displacement excites the higher-order synchro-
betatron resonances, leading to a noticeable increase in
vertical emittance across three distinct simulation models.

Incorporating a realistic lattice model inevitably intro-
duces more higher-order resonances, particularly at larger
amplitudes. Figure 7 underscores the necessity of incor-
porating z variation in the dynamic aperture study.

V. CONCLUSION AND OUTLOOK

In weak-strong simulations for beam-beam interactions,
Hirata’s model is widely used, which offers an approxi-
mate, yet symplectic mapping that accounts for energy
changes and bunch length effects. However, it operates
under the assumption of constant longitudinal coordinates
(z), thereby excluding z variation from its considerations.
In the design of hadron rings, it is essential to track

particles across millions of turns, making it impractical
to disregard z-variation during beam-beam interactions.
Building upon Hirata’s pioneering work, we propose two
new models designed to refine the virtual drift process. It can
be shown that these models are symplectic and accurately
integrate the z-variation effect at the lowest order.
Simulations are performed to benchmark these three

distinct models. Although the result indicates that z
variation is a higher-order effect that does not substantially
alter the emittance growth rate under the specific design
considerations of the EIC, the discrepancy among the
models is significant when contrasted with the amplitude
of IBS diffusion. This distinction becomes even more
critical when considering realistic lattice models that
involve higher-order resonances, underscoring the impor-
tance of accounting for z variation.
Moreover, the approach discussed in Sec. III B can be

readily adapted to include external fields, such as those
from a detector solenoid, without having to assume that the
z coordinate remains constant in the presence of such fields.
We have to emphasize that the enhanced models pre-

sented in Sec. III, along with Hirata’s original model,
should be regarded as approximations. These models
presuppose that the transformations between the IP and
the CP adhere to symplectic principles with respect to
accelerator coordinates, a notion that deviates from physi-
cal reality as discussed in Sec. II B. Nonetheless, we also
recognize that in the absence of dissipation and diffusion,
real-world physical processes must inherently conform to
symplectic characteristics.
An alternate approach involves standard tracking (no

energy kick) between IP and CP with the distance between
IP and CP determined by the longitudinal coordinates z of
the test particle and the z� of the opposing slice along with
the trajectory of the test particle. This is coupled with a
beam-beam interaction at the CP that includes an energy
kick due to the slingshot effect and an energy kick due to
the varying shape of the slice. This strategy has been
applied within the framework of Bmad [24].
Shatilov and Zobov in [30] also employed this strategy:

they used the real drift map and modify the beam-beam
kick accordingly. In their paper, the additional energy kick

FIG. 7. Proton emittance evolution in weak-strong simulation
with strong electron beam offset by one σx in the horizontal plane:
top (horizontal plane) and bottom (vertical plane). Here, σx
represents the rms horizontal size of the electron beam at the IP.
The legend follows the same conventions as in previous figures.
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is attributed to vxBy − vyBx, where vx;y are transverse
velocities and Bx;y are transverse magnetic field from beam-
beam interaction. In Bmad and in Appendix C, this energy
kick is derived by analogy to the slingshot effect. Both
treatments yield consistent formulas under the high-
relativistic approximation.
The advantage of this method is that it more closely

mirrors what is actually happening. The disadvantage is that
symplecticity of the overall map is not assured. Future work
will entail a detailed comparison between the methodologies
employed by Hirata and the one used by Bmad and Shatilov.
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APPENDIX A: HAMILTONIAN
AND CANONICAL VARIABLES

In accordance with Forest [31], the Hamiltonian for a
relativistic particle in an external magnetic vector potential
A, navigating through a curved coordinate system of
radius ρ, is formulated as

K ¼ −
�
1þ x

ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ δÞ2 −p2

x −p2
y

q
þ x
ρ
þ x2

2ρ2
−
Asðx; yÞ
B0ρ

:

ðA1Þ

Here, δ ¼ ðP − P0Þ=P0 represents the relative momentum
deviation from the reference momentum P0, and px, py

denote canonical momenta normalized by P0.
The canonical variables in this context are represented by

two equivalent sets:

ðx; px; y; py;−l; δÞ or ðx; px; y; py; δ; lÞ; ðA2Þ

with l denoting the particle’s path length. The reference
particle’s design path length, s, serves as the independent
variable in the Hamiltonian K expressed in Eq. (A1).
The generating function

F3ðz; δ; sÞ ¼ ðs − zÞδ ðA3Þ

yields the transformations:

−l ¼ −
∂F3

∂δ
¼ z − s ⇒ z ¼ s − l ðA4Þ

and

pz ¼ −
∂F3

∂z
¼ δ ðA5Þ

leading to a new Hamiltonian formulation:

H ¼ 1þ K þ ∂F3

∂s

¼ 1þ pz −
�
1þ x

ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ pzÞ2 − p2

x − p2
y

q

þ x
ρ
þ x2

2ρ2
−
Asðx; yÞ
B0ρ

: ðA6Þ

The corresponding canonical variables are�
x;px¼

Px

P0

;y;py¼
Py

P0

;z¼ s− l;pz¼
P−P0

P0

�
: ðA7Þ

Similar to [26], a constant 1 is added to the Hamiltonian.
It has no effect on beam dynamics.
For a particle in a drift space, where ρ ¼ ∞; As ¼ 0,

the Hamiltonian simplifies to

Hdrift ¼ 1þ pz −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ pzÞ2 − p2

x − p2
y

q
: ðA8Þ

APPENDIX B: BEAM-BEAM KICK
FOR BI-GAUSSIAN DISTRIBUTION

For a bi-Gaussian particle distribution, the beam-beam
potential U is given by

Uðx; y; σx; σyÞ ¼
Q1Q2Nr0

γ0

Z
∞

0

du
exp ð− x2

2σ2xþu −
y2

2σ2yþuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2x þ u

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2y þ u

q ;

ðB1Þ

where N is the total particle number, r0 ¼ e2=ð4πϵ0mc2Þ
the classical radius, γ0 the relativistic factor of the test
particle, Q1;2 the charge numbers of particles from two
colliding bunches, and σx;y are the rms beam sizes of the
strong slice at the CP. The parameters σx and σy are not
constants but vary as functions of the distance S from the IP
to the CP.
The first order differential was derived by Bassetti and

Erskine [10]

Uy þ iUx ¼ −
Q1Q2Nr0

γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

σ2x − σ2y

s �
wðz2Þ

− wðz1Þ exp
�
−

x2

2σ2x
−

y2

2σ2y

��
; ðB2Þ
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where

Ux ≡ ∂Uðx; yÞ
∂x

; Uy ≡ ∂Uðx; yÞ
∂y

z1 ¼
σy
σx
xþ i σxσy yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðσ2x − σ2yÞ

q ; z2 ¼
xþ iyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðσ2x − σ2yÞ

q :

In Eq. (B2), wðzÞ is the Faddeeva function defined as

wðzÞ≡ exp ð−z2Þ
�
1þ 2iffiffiffi

π
p

Z
z

0

dt et
2

�
: ðB3Þ

Its derivative is given by

w0ðzÞ ¼ 2iffiffiffi
π

p − 2zwðzÞ: ðB4Þ

The parameters σx;y vary as functions of the longitudinal
coordinate z. The derivative Uz was first given by Hirata
in [23]:

Uz ¼
∂U
∂σx

∂σx
∂z

þ ∂U
∂σy

∂σy
∂z

¼ σxUxx
∂σx
∂z

þ σyUyy
∂σy
∂z

: ðB5Þ

Taking the partial derivatives on both sides of Eq. (B2), the
second order derivatives can be obtained

Uxx ¼ −
xUx þ yUy

σ2x − σ2y
−
2Q1Q2Nr0
γ0ðσ2x − σ2yÞ

×
�
1 −

σy
σx

exp
�
−

x2

2σ2x
−

y2

2σ2y

��
; ðB6Þ

Uyy ¼
xUx þ yUy

σ2x − σ2y
þ 2Q1Q2Nr0
γ0ðσ2x − σ2yÞ

×

�
1 −

σx
σy

exp

�
−

x2

2σ2x
−

y2

2σ2y

��
: ðB7Þ

As a result, the momentum changes in Eq. (6) for a
strong slice with bi-Gaussian distribution are fully resolved.

APPENDIX C: ENERGY CHANGE DUE
TO A MOVING MAGNET

The four-momentum of a test particle in the laboratory
frame is denoted as ðE=c;PÞ, where E represents the
energy of the particle, c is the speed of light, and P is
its momentum vector. When transitioning to the rest frame
of the moving magnet, the energy of the test particle
undergoes a transformation as per the principles of Lorentz
transformation. This transformation is articulated as

Ē
c
¼ γ�

�
E
c
þ β�P cos θ

�
; ðC1Þ

where β� ¼ v�=c is the magnet’s velocity normalized by
the speed of the light, and γ� is the corresponding Lorentz
factor. θ represents the angle between the particle’s
momentum vector and the opposite direction of the
magnet’s motion. The notation Ē indicates the energy
measured in the magnet’s rest frame.
In this rest frame, the test particle’s trajectory is altered

while its energy is conserved. Therefore,

γ�
�
E2

c
þ β�P2 cos θ2

�
¼ γ�

�
E1

c
þ β�P1 cos θ1

�
: ðC2Þ

For relativistic scenarios, we approximate

P2 ≈
E2

c
; P1 ≈

E1

c
; ðC3Þ

where subscripts “1” and “2” denote the states before and
after the interaction with the magnet, respectively.
Substituting these approximations into Eq. (C2) yields

the energy change:

ΔE ¼ E2 − E1 ¼
E1β

�ðcos θ1 − cos θ2Þ
1þ β� cos θ2

: ðC4Þ

Utilizing the paraxial approximation where θ1;2 ≈ 0 and
considering the high relativistic limit where β� ≈ 1, the
formula simplifies further to

ΔE ≈
E1

4
ðθ22 − θ21Þ: ðC5Þ
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