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We present a detailed derivation of a formula for the small-gain calculation for an x-ray free electron
laser oscillator (XFELO) based on a medium-energy (3–4 GeV) storage ring. We found harmonic lasing
and strong focusing are essential for this beam energy range. Taking the small-signal low-gain formula
developed by Kim and his colleagues, we modified it in such a way that the gain can be calculated without
the “no focusing approximation,” and a strong focusing can be applied, as well as harmonic lasing. In this
formula, the gain is represented as a product of two factors with one of them depending only on the
harmonic number, undulator period, and gap. Using this factor, we show that it is favorable to use harmonic
lasing to achieve hard x-ray FEL working in the small-signal low-gain regime with the medium-energy
electron beam. Our formula also allows FEL optimization by varying the vertical gradient of the undulator,
the vertical dispersion, and the horizontal and vertical focusing, independently. As an example, we applied
this formula to study the feasibility of an XFELO option for the National Synchrotron Light Source II
(NSLS-II) upgrade. Since a quite high peak current is required for the FEL, collective effects of beam
dynamics in medium-energy synchrotrons significantly affect the electron beam parameters. We carried out
a multiparameter optimization taking collective effects into account. Note, even though our example is for a
ring-based XFELO at 3 to 4 GeV, the formula and, in particular, the approach developed here may be
applied to other types of FELs.
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I. INTRODUCTION

We present a more detailed derivation of the small-gain
formula for a ring-based x-ray free electron laser oscillator
(XFELO), published in the proceedings of IPAC2021 [1].
An x-ray FEL oscillator (XFELO) based on a transverse
gradient undulator (TGU) [2–4] considered by the APS and
SLAC collaboration [5,6] provides a promising direction
for a storage-ring-based fully coherent hard x-ray source.
The difficulty associated with the relatively large energy
spread of 10−3 in the storage ring is mitigated by intro-
ducing TGU and dispersion in the FEL by a trade-off with
increased transverse beam size.
The examples in the above references are for the electron

beam energy of 6 GeV. For a medium-energy light source
such as NSLS-II operated at 3 GeV, the first difficulty is the
relatively lower beam energy. To achieve a hard x-ray with
0.12 nm wavelength, an undulator period of less than 1 cm
and a gap of a few millimeters are required to satisfy
the resonance condition, which makes it very difficult to

achieve the required electron beam quality. Under this
circumstance, we are obliged to consider harmonic lasing.
Our motivation for developing a gain formula with

harmonic lasing and strong focusing is that we found these
features necessary for XFEL in a lower energy range of
3–4 GeV. As a result, we need to justify the need for
harmonic lasing and strong focusing here in the
Introduction. The formula about 1D gain relation with
the undulator period λu, field parameter K, and gap is
indeed simple, but the conclusion about the need to
consider harmonic lasing is by no means obvious because
we need to compare gain in detail: as far as we know, many
hard x-ray FELs in the world including those being
developed now are all using fundamental lasing without
optimization of harmonic number. We think if this opti-
mization procedure is applied, it may help to lower the
cost of future XFELs and also help to relax the require-
ments on the electron beam. In fact, we note here that
the method considered here is not only applied to XFELO
in 3 to 4 GeV storage rings as in the case we discussed in
this paper, it may also be extended to XFELO based on
superconducting linacs, it may also be applied to XFELOs
with higher energy and even shorter wavelengths XFELs to
relax some stringent requirements on undulator and elec-
tron beam parameters. The Maxell-Vlasov equations with
harmonic lasing and strong focusing included may be
incorporated into the high-gain FEL formula and applied

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 060702 (2024)

2469-9888=24=27(6)=060702(17) 060702-1 Published by the American Physical Society

https://orcid.org/0000-0002-4000-2284
https://orcid.org/0000-0002-2659-5300
https://ror.org/02ex6cf31
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.27.060702&domain=pdf&date_stamp=2024-06-21
https://doi.org/10.1103/PhysRevAccelBeams.27.060702
https://doi.org/10.1103/PhysRevAccelBeams.27.060702
https://doi.org/10.1103/PhysRevAccelBeams.27.060702
https://doi.org/10.1103/PhysRevAccelBeams.27.060702
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


to high-gain XFEL too. Without detailed gain calculation, it
is not clear whether or how much we can benefit from the
inclusion of harmonic lasing and strong focusing. Thus, we
are justified to give a more quantitative study of their
effects.
In this paper, we use a 3 to 4 GeV XFELO as an example

to study the possibility of harmonic lasing and strong
focusing because, on the one hand, one of our motivations
is to study whether it is possible to have an XFELO as an
option for NSLS-II upgrade, on the other hand, the main
advantage of XFELO is a combination of the synchrotron
and FEL capabilities and no need for a very expensive
superconducting linac. A storage ring FEL [7–9] can
operate at a high repetition rate (in the order of several
MHz range). Another advantage is that the single-pulse
energy of the storage ring x rays is higher because the pulse
is longer (10 ps as compared to 100 fs of high-gain FELs).
The electron beam in a storage ring is extremely stable
because of the use of advanced orbit feedback. Storage
rings operate with a constant beam intensity provided by
top-off injection, so the pulse-to-pulse fluctuations are
small. Note that the harmonic lasing gain formula derived
here is also valid for a low-energy linac-based XFELO,
hence even though in this paper, our example is limited
to XFELO, the method may be applied to other types
of XFELs.
The harmonic generation and harmonic lasing, for high

gain FEL, are analyzed, for example, in [10,11]. However,
we need more quantitative analysis of the scaling relation,
particularly because we are considering the case of lower
energy and large energy spread. We adopt the approach in
Refs. [5,6] for the low gain formula which is based on the
low gain formula derived by Kim [12]. For this purpose, we
need to follow through with the gain derivation to explicitly
allow for harmonic lasing without taking the “no focusing”
approximation. Before going into more detailed analysis,
we first consider the gain formula in 1D Madey theorem
with harmonic number h and when energy spread is
negligible; the FEL gain can be cast in a form convenient
for scaling with harmonic number h and undulator period
λu as follows:

G1D ¼
�
hK2½JJ�2h

λu

��
π2

I
IA

L3
u

γ3Σ

��
d
dΦ

�
sinΦ
Φ

�
2
�
; ð1Þ

where K is the undulator parameter given by the peak field
Bpeak in the resonance condition

λs ¼
λu

2γ20h

�
1þ K2

2

�
: ð2Þ

Here γ0 is the resonant electron beam energy in the unit
of electron rest mass, λs is the FEL wavelength, Lu ¼ Nuλu
is the undulator length with the number of period Nu.
½JJ�h ¼ ð−1Þðh−1=Þ2½Jðh−1Þ=2ð hK2

4þ2K2Þ − Jðhþ1Þ=2ð hK2

4þ2K2Þ� is

the Bessel function factor, Σ ¼ 2πσxσy is the electron
beam cross-section area with rms sizes σx and σy, and I
is beam peak current. IA ¼ 4πmc3ϵ0=e ≈ 17 kA is the
Alfvén current. Φ ¼ πΔνNu − 2ηhπNu is the phase
advance in the undulator due to detuning, with η ¼ ðγ −
γ0Þ=γ0 being the relative energy detuning of mean energy γ
from resonance, Δν ¼ hðω − ωsÞ=ωs the laser frequency
detuning from resonance frequency ωs ¼ 2π=λs with har-
monic number h.
The beam energy spread effect on the 1D gain given by

Eq. (1) can be estimated by averaging the third term
d
dΦ ðsinΦΦ Þ2 over the energy space spanned by the beam.
For a given wavelength λs, energy γ, peak current I,

undulator length Lu, and the electron beam cross section Σ,
the second factor is constant. Although the 1D gain is
directly proportional to the ratio of harmonic number to
undulator period, the need to increase the harmonic number
h becomes clear only after we calculate the first factor

ðK2½JJ�2hh
λu

Þ as a function of h and λu while taking into account
the resonance condition [Eq. (2)] and the relation of
undulator parameter K to the undulator period λu, peak
field Bpeak, and gap g. Assuming the relation between Bpeak

and g is given by the Halbach formula [13] for rare earth
cobalt magnets, we have

K ¼ eλuBpeak

2πmc
¼ 93.43λu½m�Bpeak½T�;

Bpeak ¼ 3.33 exp

�
−5.47

g
λu

þ 1.8

�
g
λu

�
2
�
: ð3Þ

For a given λu and h, the resonance condition [Eq. (2)]
determines K, then Eq. (3) determines Bpeak and the gap g.

For a 3 GeV beam, and for λs ¼ 0.12 nm, we plot K
2½JJ�2hh
λu

as
a function of λu for h ¼ 1, 5, respectively, in Fig. 1(a). We
plot the gap g and K, respectively, in Fig. 1(b) and Fig. 2(a)
as function of λu for h ¼ 1 and h ¼ 5. From Fig. 1(b), we
see that the range of period to satisfy the resonance
condition is between 4.5 and 8.2 mm for h ¼ 1. At
4.5 mm, the gap is zero while at the other limit 8.2 mm,
the gap is 5.5 mm, but K approaches zero in Fig. 2(a).
For h ¼ 5, the range satisfying the resonance condition
is above 9.2 mm, and the gap is above 7 mm when
λu > 2.2 cm. The narrow gap makes it a tough choice to
realize a Sm-Co based undulator for the first harmonic
FEL; from this point of view of gap alone, we would need
to consider the possibility of higher harmonics.
The main issue here is whether there is sufficient gain

with h > 1, i.e., whether the single-pass FEL gain is larger
than the total power loss of the x-ray cavity in a round trip.
We considered a bow-tie configuration with a 200 m
roundtrip and the cavity consists of four crystals and
two focusing lenses as identified in Fig. (3) of Ref. [14].
To estimate power loss and out-coupling through the cavity,
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we considered a monochromatic radiation beam at 0.12 nm
with a Gaussian transverse profile in physical and angular
space expected at the steady-state XFELO. Since angular
filtering from Bragg-crystal in the reflecting plane domi-
nates power loss in the cavity, we stabilized cavities under
consideration by placing two Be lenses [15] with the same
focal length at either side of the undulator. The first lens
after the undulator collimates the diverging radiation beam
ensuring a parallel transverse profile of the radiation beam
while propagating through all crystals before the second
lens; the second lens then focuses the radiation beam at the
undulator center. Our analysis for monochromatic x rays
indicates highly transmissive Be refractive lenses with focal
lengths greater than 1 m are feasible for hard x rays [16].
We further confined crystal choices to symmetrical Bragg
reflection cases for simplicity and convenience and then
identified a few diamond Bragg crystals with very low
power losses. Our studies and the recent SLAC and ANL
articles [17–20] show the loss in each mirror is less than 1%
and two compound-refractive lenses (CRL) together con-
tribute less than 0.25% loss for focal lengths greater than or
equal to 20 m if the effective aperture of the CRL is bigger
than 3 times the rms size of the x-ray beam at the steady
state [16]. So, the total power loss in the optical cavity is
less than 4.5% and we can consider out-coupling up to
0.5%, then the total cavity loss including out-coupling is
less than 5%. As a result, we set the lower limit of the
required FEL gain to 6% to get some margin above the
lasing limit of 5%.

First, we consider the factor K2½JJ�2hh
λu

in the 1D gain.
Figure 1(a) shows the advantage of higher h. The
examples show for the contribution to the first factor,
for the same gap, a higher harmonic number has a
higher gain, while for the same gain, a higher harmonic
number has a larger gap. The magenta points in Figs. 1

and 2 are the working points we use in the following
sections.
However, the contribution from the third factor d

dΦ ðsinΦΦ Þ2
is more complicated. With a maximum of 0.54 at
Φ ¼ −1.3, the term 2ηhπNu ¼ 2ηπLu

h
λu
in Φ has a spread

proportional to h=λu. After averaging over energy spread
ση, the increased spread would reduce the average value of
the third factor. To see its effect on the spread of Φ, we plot
h=λu as a function of λu in Fig. 2(b). For the pair of points in
Fig. 1(a) with the same first gain factor 8.4, we see the ratio
h
λu

increases from 1.2 for h ¼ 1 to 2.6 for h ¼ 5. This
reduction is significant, hence the main question in the
following discussion is whether the gain reduction due to
the large energy spread can be mitigated by TGU and
dispersion sufficiently to maintain the required gain.
In the formulation developed in [5,6,12] about the 3D

gain, if we assume the gradient is in the vertical direction,
then the undulator parameter K ¼ K0ð1þ αyÞ, the energy
is γ ¼ γ0ð1þ ηÞ, for αy ≪ 1; η ≪ 1, the resonance con-
dition becomes

λ ¼ λu
2γ2h

�
1þ K2

2

�

¼ λu
2γ20h

1þ K2
0

2
ð1þ αyÞ2

ð1þ ηÞ2

≈
λu

2γ20h

�
1þ K2

0

2

��
1þ 2K2

0

2þ K2
0

αy − 2η

�
: ð4Þ

If we assume the dispersionD is in the vertical direction,
the vertical distribution in Gaussian takes the form

expð− ðy−DηÞ2
2σ2y

Þ. The centroid of the electron beam with

energy η is shifted to Dη. For small σy, y ≈Dη and the

FIG. 1. (a) K2½JJ�2hh
λu

vs λu, compare h ¼ 5 with h ¼ 1, showing the advantage of higher h. We compare two points with the same gap of
g ¼ 3.9 mm, the first factor is 8.4 for h ¼ 1, while it is 21.2 for h ¼ 5, even though this gap is too narrow to be practical. Another pair of

points has the same gain factor K2½JJ�2hh
λu

¼ 8.4, the gap is 3.9 mm for h ¼ 1, while for h ¼ 5, the gap is 6.1 mm. (b) Gap vs λu.
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deviation from the resonance condition due to the spread in

η is given by
2K2

0

2þK2
0

αDη − 2η. If αD ¼ 2þK2
0

K2
0

, then the gain

reduction due to large energy spread is mitigated. However,
there is a trade-off with increased vertical beam size. The

term 2K2
0

2þK2
0

ασy causes a deviation from resonance condition

in Eq. (4) and Dσy increases the transverse beam cross
section Σ in the gain formula [Eq. (1)]. Both effects reduce
the gain and both are determined by the emittance and
focusing in the undulator.
To study the beam quality required for an x-ray FEL

working in the medium energy range, we apply the gain
formula developed by Kim [12] for optimization, with the
3D effect of diffraction, beam divergence, and betatron
motion taken into account, and in particular, with addition
to include harmonic lasing. We note that the “brightness
function” based gain formula was obtained with “no
focusing” approximation in Ref. [12] and extended to
the TGU case for fundamental radiation [5,6]. The no
focusing approximation essentially neglects the undulator
or external beam focusing effect. We realized that nonzero
focusing was required to optimize the gain with TGU for
harmonic lasing. During the optimization, we often arrived
at parameters that violated the no focusing approximation.
Hence, it is desirable to develop an approach to calculate
the gain without taking the no focusing approximation. In
this paper, we present a derivation of the gain formula
without taking the no focusing approximation and some
examples of the required parameters for a medium energy
storage ring such as NSLS-II.
In the following, we present a derivation of the gain

formulawith harmonic lasing andwithout taking the no focu-
sing approximation, and some examples of the required para-
meters for a medium energy storage ring such as NSLS-II.
In Sec. II, we first follow [12] to describe the general 3D
gain formula that resembles 1-D Madey theorem, Eq. (23)

in [12]. This general gain formula is our starting point, which
is also the last step in [5,6,12] right before taking the no
focusing approximation. Although the equation does not
require a specific distribution, belowweuse aGaussian beam
because it allows us to solve the equation analytically. Then
in Sec. III, we consider a focusing lattice interlaced with the
undulator, the system has nearly constant beta and dispersion
functions and hence has nearly constant transverse beam
profile in the undulator, this allows us to carry out a
multivariable Gaussian integration without taking the no
focusing approximation and reduce the gain formula to a
double integral, similar to the result of [5,6,12]. In Sec. IV,we
present some examples of gain optimization using the
formula to study the required parameters for an x-ray FEL
oscillator in a medium energy storage ring such as the
upgrade being considered at theNSLS-II. In Sec. V, we carry
out gain optimization with collective effects taken into
account. The result indicates the feasibility of XFELO for
a 3 GeV storage ring at NSLS-II. In Appendix A, in order to
clarify the notations in this paper and in particular to include
theharmonic numberh in the formulation,webriefly describe
the steps that lead to the general 3D gain formula in Sec. I,
starting from the combined Maxwell-Vlasov equations.

II. GAIN FORMULA

The gain in small signal, low-gain regime taking into
account the 3D effect of diffraction, beam divergence, and
betatron motion, is given in the following Eq. (5), which is
Eq. (23) of [12], with a minor elaboration of introducing the
transverse gradient and dispersion for TGU as in [5,6]. For
convenience, we adopt nearly identical notation as [12],
with only a few exceptions to unite with the notations in
[5,6,12] and the notations we used in the early development
of the coupled Maxwell-Vlasov equations for high-gain
FEL [21–24]. The gain expression has multiple integrations
to be carried out for application as given by

FIG. 2. (a) K vs λu, (b)
h
λu
vs λu. For the pair of points in Fig. 1(a) with the same first gain factor 8.4, we see the ratio h

λu
increases from

1.2 for h ¼ 1 to 2.6 for h ¼ 5.
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G ¼ −ch

R
dηdxdpF̄ðx;p; η; 0Þ ∂

∂η j
R
dϕAð0Þ

ν ðϕ; 0ÞU�
νðη;ϕ;p;xÞj2R jAð0Þ

ν ðϕÞj2dϕ
; ð5Þ

where x ¼ ðx; yÞ, p ¼ ðpx; pyÞ, ϕ ¼ ðϕx;ϕyÞ. F̄ is the averaged smooth electron beam background distribution.
We assume

F̄ðx;p; η; zÞ ¼ e−η
2=ð2σ2ηÞ

ð2πÞ3=2σpxσpyση
exp

�
−

x2

2σ2x
−
ðy −DηÞ2

2σ2y

�
exp

�
−

p2
x

2σ2px
−

p2
y

2σ2py

�
: ð6Þ

The electron beam density n0 is given by n0 ¼R
dηdpxdpyF̄ðx; p; η; zÞ, independent of z. n0 is normal-

ized such that when D ¼ 0, i.e., before entering into the
dispersion region, the peak density at x ¼ y ¼ 0 is n0,
so
R
dηdpxdpyF̄ð0; 0; px; py; η; 0ÞjD¼0 ¼ 1. We assume

the electron beam in the undulator is approximately
matched with constant betatron functions such that σpx ¼
kβxσx ¼ σx=βx, σpy ¼ kβyσy ¼ σy=βy, px ¼ dx

dz, py ¼ dy
dz.

Here β represent betatron function and kβ is its inverse.
Aνðϕx;ϕy; zÞ is the angular representation of Fourier

transform aν of the horizontal electric field component E
at frequency ω ¼ νω1, while the resonance harmonic
frequency is ωs ¼ hω1 in Eq. (2), where ω1 ¼ 2πc=λ1 is
the fundamental frequency for fundamental wavelength λ1.
We have

Eðx; y; z; tÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

e−iΔνkuze−iνðk1z−ω1tÞaνðx; y; zÞω1dν

Aνðϕx;ϕy; zÞ ¼
1

λ2

Z
dxaνðx; zÞeikðxϕxþyϕyÞ; ð7Þ

where detuning from a harmonic frequency ωs is given
by ðω − ωsÞ=ωs ¼ ðν − hÞ=h ¼ Δν=h. The corresponding

wave number for frequency ω is k ¼ ω=c ¼ 2π=λ ¼ νk1.
Likewise, the undulator wave number is ku ¼ 2π=λu for a
given undulator period λu.

We assume the input radiation að0Þν ðx; y; zÞ, the solution
of the Maxwell equation in free space, is a Gaussian beam

with frequency ν and Rayleigh ranges zRx ¼ πw2
x

λ and

zRy ¼ πw2
x

λ , where wx ¼ 2σrx and wy ¼ 2σry are correspond-
ing waist sizes in x and y, respectively; σrx and σry are
respective rms sizes of the input laser beam. Since the

factor Að0Þ
ν A�ð0Þ

ν appears in both the numerator and the
denominator of Eq. (5), we shall take the constant coef-

ficients as 1 in að0Þν ðx; y; zÞ wi in G. In other words,

Eðx; zÞ ∼ að0Þν ðx; y; zÞ expð−ikzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
qxðzÞ

p 1ffiffiffiffiffiffiffiffiffiffiffi
qyðzÞ

p
× exp

�
−ik

x2

2qxðzÞ
− ik

y2

2qyðzÞ
− ikz

�
;

for qxðzÞ ¼ zþ izRx, and qyðzÞ ¼ zþ izRy. Then Eq. (7)
gives the angular representation of input radiation

Að0Þ
ν ðϕx;ϕy; 0Þ in Eq. (5) as follows:

Að0Þ
ν ðϕx;ϕy; zÞ ¼

1ffiffiffi
λ

p exp

�
ikðzþ izRxÞ

ϕx
2

2

�
1ffiffiffi
λ

p exp

�
ikðzþ izRyÞ

ϕy
2

2

�
¼ Að0Þ

ν ðϕx;ϕy; 0Þ exp
�
ikz

ϕx
2 þ ϕy

2

2

�
;

with Að0Þ
ν ðϕx;ϕy; 0Þ ¼

1

λ
exp

�
−kzRx

ϕx
2

2
− kzRy

ϕy
2

2

�
: ð8Þ

Thus, the angular divergence rms values are σϕx ¼ σrx=zRx and σϕy ¼ σry=zRy. Similarly, the undulator radiation
amplitude in Eq. (5) is given by

U�
νðϕ; η;x;p; zÞ ¼

Z
L=2

−L=2
dse−ikx:ϕei

R
s

0
ds1ξνðϕ;η;x;p;s1Þ

where ξνðϕ; η;x;p; sÞ ¼ ðΔν − 2νηÞku þ ν
2K2

0

2þ K2
0

αkuy0 þ
k
2
ððp0x − ϕxÞ2 þ k2βxx

2
0 þ ðp0y − ϕyÞ2 þ k2βyy

2
0Þ; ð9Þ

where x0ðs;x, p), p0ðs;x;pÞ are solutions of the equations of betatron equation of motion

dx0
ds

¼ px0;
dy0
ds

¼ py0 ;

dpx0

ds
¼ −k2βxx0;

dpy0

ds
¼ −k2βyy0 ð10Þ
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with the initial condition x0ðs ¼ 0;x;pÞ ¼ x, p0ðs ¼ 0;
x;pÞ ¼ p. Here we neglect the focusing introduced by the
gradient α, and we assumed the focusing comes from the
natural focusing and the external focusing by quadrupole
magnets and approximate the beta functions by constant
values.
About Eq. (9) representing the FEL phase, for the

introduction of the focusing terms k2βxx
2
0, we refer to [23],

as it is important for the development of Maxwell-Vlasov
equations in high-gain FEL theory, in particular, this term
allows the emittance condition ϵ < λs

4π to be relaxed for
sufficient gain in the early design of LCLS, and it is also
important for this paper itself. The derivation details can be
found in, for example, Ref. [25]. The ϕx in ðp0x − ϕxÞ2 was
introduced in Ref. [12] when Kim introduced the angular
representation into the low gain formula.

The second term ν
2K2

0

2þK2
0

αkuy0 in Eq. (9) is related to the

resonance condition [Eq. (4)], where αy represents the K
value change due to the vertical gradient α and vertical
displacement y in the transverse gradient undulator. This
extra term is discussed in Ref. [5]. It represents the detuning
due to the change of K value induced by the energy-
correlated vertical displacement. The first term in Eq. (9)
represents the detuning of the radiation and the detuning
due to the energy spread η. Thus the first two terms
combined represent the detuning due to the energy spread
being compensated by the detuning due to the effect
induced by the transverse gradient and vertical dispersion.
We can see this compensation effect also in Eq. (4).

The constant ch ¼ e2K2½JJ�2hn0
8mc2ϵ0γ3λ2

, where the electron beam

density, n0, at the peak is determined by current I ¼
ecn0Σ ¼ 2πσxσyecn0 (the current of an approximately
flattop bunch with transverse Gaussian distribution). To
write the gain G into a form convenient for scaling with h
and λu, as shown in Eq. (1), we have (with Alfvén current
IA ¼ 4πmc3ϵ0=e)

ch ¼
I
IA

πK2½JJ�2h
γ3

1

4πσxσyλ
2
: ð11Þ

To calculate the gain G, we need to carry out the multi-
variable integral in Eq. (5). Before the multivariable inte-
gration, the approach in [5,6] is to first take a “no focusing
approximation” by neglecting the terms k2βxx

2
0 þ k2βyy

2
0,

following the step prescribed in [12]. With this approxima-
tion, a gain formula can be transformed into a formwhere the
integrand becomes a convolution of the distribution function

with the radiation brightness and undulator brightness.
This form is appropriate for a Gaussian integration which
finally leads to a double integral convenient for numerical
calculation.
The condition for neglecting k2βxx

2
0 in ðp0x − ϕxÞ2 þ

k2βxx
2
0, because px and kβxx are about the order of kβxσx,

corresponds to require σϕx ≫ kβxσx. This condition
becomes σϕy ≫ kβyσy in y. We found our optimization
often leads to a set of parameters that violate this condition,
in particular, when emittance is not very small and we need
to increase kβ. In fact, in the example we developed in
Sec. IV, for ϵx0 ¼ 80 pm, the optimized βx ¼ 6.6 m and
Rayleigh range ZRx ¼ 4 m give kβσx=σϕx ≈ 2.3.
Hence, we would like to try to take into account the

effect of the betatron motion in the gain optimization
without the limitation imposed by this condition. For a
lattice of the undulator section with quasiuniform focusing
and constant dispersion, we consider a segmented undu-
lator interleaved with quadrupole doublets providing
almost constant beta functions and dipole correctors next
to the quadrupoles to keep the beam trajectory almost
straight for an approximately constant dispersion in the
transverse gradient undulator. We also need to include
proper phasers to match the wavefront propagation through
the segmented undulator. Although we have a preliminary
example of such a lattice, this work is still in its early stage,
and more studies are needed to work out all details and
determine the tolerances for the deviation from constant
beta functions and dispersion. This paper is only the first
step in this direction, the detailed lattice design and study of
its effects on the FEL performance is a separate R&D
project, which is outside the scope of this article.
When the beta functions and dispersion are kept approx-

imately constant, the beam transverse profile is approx-
imately invariant along the undulator, and the interaction
between the effects of the betatron motion, the dispersion,
and the FEL embodied in the integral in Eq. (5) is
significantly simplified. Under this circumstance, it turns
out that without neglecting the focusing, the multiple
integrals are still possible to be reduced to a double integral,
mainly because the integrations over x; px; y; py; η;ϕx;ϕy

are all Gaussian in nature, as shown in Sec. III.

III. GAIN CALCULATION BY GAUSSIAN
INTEGRATION

To write the integrand in Eq. (5) into a Gaussian integral,
we first separate the variable ϕ in Eq. (9) as follows:

ξνðϕ; η;x;p; sÞ ¼ ξð0Þν ðη; x; p; sÞ − kp0ðsÞϕþ k
2
ϕ2;

where ξð0Þν ðη; x; p; sÞ≡ ξνðϕ ¼ 0; η;x;p; s1Þ ¼ ðΔν − 2νηÞku þ ν
2K2

0

2þ K2
0

αkuy0 þ
k
2
ðp2

x þ k2βxx
2 þ p2

y þ k2βyy
2Þ: ð12Þ
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Because the last term in ξð0Þν is invariant independent of s, x0 and p0 are replaced by their initial values x and p, and the

only term dependent on s is ν
2K2

0

2þK2
0

αkuy0ðsÞ. Since xþ R s0 ds1p0ðsÞ ¼ x0ðsÞ, we have U�
νðϕ; η;x;p; zÞ ¼R L=2

−L=2 dse
−ikx0ðsÞϕþik

2
ϕ2sei

R
s

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þ in Eq. (9), so the gain in Eq. (5) becomes

G ¼ −chI1e
�Z

jAð0ÞðϕÞj2dϕ
�

−1
;

where I1e ≡
Z Z Z

dηdxdpF̄ðx;p; η; 0Þ ∂

∂η
j
Z

L=2

−L=2
dsI1re

i
R

s

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þj2

with I1rðsÞ≡
Z

dϕAð0ÞðϕÞe−ikx0ðsÞϕþik
2
ϕ2s: ð13Þ

Substituting Eq. (8) into I1rðsÞ and using x0ðsÞ ¼ x cosð sβxÞ þ βxpx sinð sβxÞ, y0ðsÞ ¼ y cosð sβyÞ þ βypy sinð sβyÞ assuming the

constant beta approximation, we find

I1rðsÞ ¼ −i
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zRx − is
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zRy − is
p exp ½cxðsÞx2 þ 2cxpðsÞxpx þ cpxðsÞp2

x� exp ½cyðsÞy2 þ 2cypðsÞypy þ cpyðsÞp2
y�

where cxðsÞ≡ −k
cos2ð sβxÞ

2ðzRx − isÞ ; cpxðsÞ≡ −k
β2xsin2ð sβxÞ
2ðzRx − isÞ ; cxpðsÞ≡ −k

βx cosð sβxÞ sinð sβxÞ
2ðzRx − isÞ ;

cyðsÞ≡ −k
cos2ð sβyÞ

2ðzRy − isÞ ; cpyðsÞ≡ −k
β2ysin2ð sβyÞ
2ðzRy − isÞ ; cypðsÞ≡ −k

βy cosð sβyÞ sinð sβyÞ
2ðzRy − isÞ ;

�Z
jAð0ÞðϕÞj2dϕ

�
−1

¼ 2πwxwy;

I1e ¼
Z Z Z

dηdxdpF̄ðx;p; η; 0Þ ∂

∂η

Z
L=2

−L=2

Z
L=2

−L=2
dsdzjI1rðsÞI�1rðzÞjei

R
s

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þe−i

R
z

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þ: ð14Þ

Now substituting
R
s
0 ds1y0ðsÞ into Eq. (12), we get

Z
s

0

ds1ξ
ð0Þ
ν ðη; x; p; s1Þ ¼ ðΔν − 2νηÞkusþ

k
2
ðp2

x þ k2βxx
2 þ p2

y þ k2βyy
2Þs

þ ν
2K2

0

2þ K2
0

αkuβyy

�
sin

�
s
βy

�
− sin

�
z
βy

��
− ν

2K2
0

2þ K2
0

αkuβ2ypy

�
cos

�
s
βy

�
− cos

�
z
βy

��
: ð15Þ

Finally with ∂

∂η i
R
s
0 ds1ξ

ð0Þ
ν ðη; x; p; s1Þ − ∂

∂η i
R
z
0 ds1ξ

ð0Þ
ν ðη; x; p; s1Þ ¼ −2iνkuðs − zÞ, we have

I1e ¼
Z

L=2

−L=2

Z
L=2

−L=2
dsdz

Z Z Z
dηdxdpI1rðsÞI�1rðzÞF̄ðx;p; η; 0Þei

R
s

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þe−i

R
z

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þð−2iνkuÞðs − zÞ:

Collecting all the exponential factors in I1rðsÞI�1rðzÞ F̄ðx; p; η; 0Þ and in ei
R

s

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þ; e−i

R
z

0
ds1ξ

ð0Þ
ν ðη;x;p;s1Þ together

[see Eqs. (6), (14), and (15)] and defining

DRðs; zÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zRx − is

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zRy − is

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zRx þ iz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zRy þ iz

p
; ð16Þ

we find
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I1e ¼
Z

L=2

−L=2

Z
L=2

−L=2
dsdz

�ð−i2νkuÞðs − zÞ
DRðs; zÞ

exp½iΔνkuðs − zÞ�
ð2πÞ3=2σpxσpyση

�
Ixðs; zÞIyηðs; zÞ;

where Ixðs; zÞ ¼
Z Z

dxdpx expð−ΦxÞ

and Iyηðs; zÞ ¼
Z Z

dηdydpy expð−ΦyηÞ ð17Þ

with

Φx ¼ Axx2 þ Apxp2
x þ Bxpxpx;

Ax ¼
1

2σ2x
Dx; Dx ¼ 1 − 2σ2x½cxðsÞ þ c�xðzÞ� − ikk2βxσ

2
xðs − zÞ;

Apx ¼
1

2σ2px
Dpx; Dpx ¼ 1 − 2σ2px½cpxðsÞ þ c�pxðzÞ� − ikσ2pxðs − zÞ;

Bxp ¼ −2½cxpðsÞ þ c�xpðzÞ�; ð18Þ

and

Φyη ¼ Aηη
2 þ Ayy2 þ Apyp2

y þ Bηyyηþ Bypyηþ Bηηþ Byyþ Bpypy;

Aη ≡ 1

2σ2η
þ D2

2σ2y
; Apy ≡ 1

2σ2py
Dpy; Dpy ¼ 1 − 2σ2py½cpyðsÞ þ c�pyðzÞ� − ikσ2pyðs − zÞ; ð19Þ

Ay ≡ 1

2σ2y
− ½cyðsÞ þ c�yðzÞ� − i

k
2
k2βyðs − zÞ;

Bηy ¼ −
D
σ2y

; Byp ¼ −2½cypðsÞ þ c�ypðzÞ�; Bη ¼ 2iνkuðs − zÞ;

By ¼ −Bαcsðs; zÞ; Bpy ¼ Bαβyccðs; zÞ; Bα ≡ iν
2K2

0

2þ K2
0

αkuβy;

where csðs; zÞ≡
�
sin

�
s
βy

�
− sin

�
z
βy

��
; ccðs; zÞ≡

�
cos

�
s
βy

�
− cos

�
z
βy

��
: ð20Þ

Φx and Φyη are quadratic polynomials in x; px and in η; y; py, respectively. Their coefficients are functions of s, z only. By
linear transformation, they can be transformed into diagonal quadratic form. Hence Ixðs; zÞ and Iyηðs; zÞ are Gaussian
integrals. We give a brief description of the process of transforming to Gaussian integration in Appendix B. The result is

Ix ¼
2πσpxσxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDxDpx − σ2xσ
2
pxB2

xpÞ
q ;

Iyη ¼
ð2πÞ32ffiffiffiffiffiffiffiffi
Dpy

p σησyσpyffiffiffiffiffiffiffiffi
Dηy

p exp

�
Nηy

Dηy
σ2ησ

2
y

�
; ð21Þ

where Dx;Dpx;Dpy; Bxp are given in Eqs. (18) and (19) and

Dηy ¼ 1þ ðσ2y þD2σ2ηÞ
�
2Ay −

1

σ2y
−
σ2pyB2

yp

Dpy

�
;

Nηy ¼ Cssc2sðs; zÞ þ C0 þ Cscsðs; zÞ þ Csccsðs; zÞccðs; zÞ þ Cccc2cðs; zÞ þ Ccccðs; zÞ: ð22Þ

The sinusoidal functions csðs; zÞ and ccðs; zÞ are given by Eq. (19). Their coefficients in Nηyðs; zÞ are also functions of
s, z given by
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Css ¼ B2
αAη; C0 ¼ B2

η

�
Ay −

B2
yp

4Apy

�
; Cs ¼ BηBαBηy;

Csc ¼
BypB2

αβyAη

Apy
; Ccc ¼

B2
αβ

2
y

Apy

�
AηAy −

1

4
B2
ηy

�
; Cc ¼

BηBαBηyBypβy
2Apy

: ð23Þ

With these provisions,we find thegainG as a double integral over s, z. First substitutingEq. (22) intoEq. (17) to find I1e, then
substituting I1e, ð

R jAð0ÞðϕÞj2dϕÞ−1 from Eq. (14), and the constant ch in Eq. (11) into Eq. (13), with ν ≈ h, we finally have

G ¼ −
�
hK2½JJ�2h

λu

��
I
IA

π2

γ3

�
ð2I3DÞ

2πwxwy

λ2
;

with I3D ¼
Z

L=2

−L=2

Z
L=2

−L=2
dsdz

−iðs − zÞ exp½iΔνkuðs − zÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxDpx − σ2xσ

2
pxB2

xpÞ
q ffiffiffiffiffiffiffiffi

Dpy
p ffiffiffiffiffiffiffiffi

Dηy
p exp

�
Nηy

Dηy
σ2ησ

2
y

�
1

DRðs; zÞ
; ð24Þ

where Dηy; Nηy are given by Eqs. (22) and (23). The
coefficients in Dηy; Nηy are expressed by the coefficients
Aη; Ay; Apy, Bη; Bα; Bηy; Byp; Bxp and Dx;Dpx;Dpy of the
polynomial Φx;Φyη in the Gaussian integral, as given by
Eqs. (18) and (19). The expressions in these coefficients,
cxðsÞ; cxpðsÞ; cpxðsÞ; cyðsÞ; cypðsÞ; cpyðsÞ, are given in
Eq. (14). The sinusoidal functions csðs; zÞ; ccðs; zÞ in
Nηy are given in Eq. (19).
Because of the effect of the betatron motion, the structure

of the factors in I3D is more complicated than the
corresponding double integral in [5,6]. However, the
numerical calculation of the double integral is simple, so
it is appropriate for optimization.
As a check, in the 1D limit, Dx ¼ Dpx ¼ Dpy ¼

Dηy ¼ 1,Bxp ¼ 0, DRðs; zÞ ¼ zRxzRy ¼ π2w2
xw2

y

λ2
. The radia-

tion beam size is the same as the electron beam size
σrx ¼ wx=2 ¼ σx, σry ¼ wy=2 ¼ σy. If energy spread is
negligible, ση ¼ 0, we have

I3D ¼
�Z

L=2

−L=2

Z
L=2

−L=2
dsdzf−iðs − zÞ exp½iΔνkuðs − zÞ�g

�

×
λ2

π2w2
xw2

y

¼ −L3
1

2

d
dΦ

�
sinΦ
Φ

�
2

Φ¼ΔνkuL=2

�
λ2

π2w2
xw2

y

�
:

Then G becomes the G1D given by Eq. (1).

IV. AN EXAMPLE OF GAIN CALCULATION

Equation (24) is the main result of this paper. As an
example, we apply this formula to explore the possibility of
a hard x-ray FEL oscillator for a light source at energy as
low as 3 GeV and explore the required electron beam
quality and undulator for an upgrade option of NSLS-II
with an XFELO.

FIG. 3. Maximum gain resulted from the iterative scan of detuning (a) Δν, (b) vertical dispersion D, the input radiation Rayleigh
ranges (c) zRx, (d) zRy, beta functions (e) βx, (f) βy, (g) the transverse gradient ðα − α0Þ=α0, and (h) the undulator length L. The variables
were scanned one by one taking the optimal value from the previous variable scan. All of the figures except the last one are calculated at
undulator length of 42 m where the gain reaches the maximum.
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First, taking collective effects into account, we assume
a 3 GeV FEL at 0.12 nm, approximate the bunch as a
flattop pulse, and the current I ¼ 73A for a bunch length of
180 ps. For this example, we assume a local coupling
correction in the undulator section to minimize the local
vertical emittance and to blow up the vertical emittance in
the rest of the ring for mitigation of the intrabeam
scattering. The revolution period is about 2.6 μs, so the
bunch current is 5 mA. As discussed in Sec. I, we plot the

first factor K2½JJ�2hh
λu

in the 1D gain formula as a function
of λu in Fig. 1(a) and plot the gap g vs λu in Fig. 1(b). For
h ¼ 5, as a compromise between larger gain and gap, we

choose λu ¼ 2.26 cm and K2½JJ�2hh
λu

¼ 4.96 m−1, with gap
g ¼ 7.5 mm, K0 ¼ 1.29.
We assume the emittance ϵx ¼ 80 pm, ϵy ¼ 1.7 pm,

energy spread ση ¼ 10−3, and undulator length L ¼
42 m and scan the seven variables: detuning Δν, dispersion
D, focusing beta functions βx, βy, the input radiation
Rayleigh ranges zRx; zRy, and the transverse gradient α
to find maximum gain. During the scan, we find the
transverse gradient α should be allowed to deviate from

α0 (where α0D ¼ 2þK2
0

K2
0

). Actually, we find the optimized α

close but larger than α0.
The plot of the scan in the last scan cycle is given in

Fig. 3. The maximum gain is 7% in the last cycle for
dispersion at 8 cm. However, we limit the vertical
dispersion to 5 cm and the gain is 6.0%. In the subplot
of G vs L, the maximum gain is reached at L ¼ 42 m. The
parameters for this setting are given in Table I. In Table I,
the energy spread is ση ¼ 10−3, the undulator length is
taken as L ¼ 42 m, the x-ray wavelength is λs ¼ 0.12 nm

and gap g ¼ 7.5 mm. For dispersion D, (V) is vertical
dispersion.
Although the vertical emittance of 1.7 pm seems quite

small, it is within the achievable range for a fourth-
generation synchrotron light source. A few projects already
consider operations with the vertical emittance of the same
order, e.g., for APS-U with 10% coupling, the vertical
emittance is about 4 pm [26], and for Elettra 2.0, it is
2.5 pm with 1% coupling [27]. During the commissioning,
ESRF-EBS demonstrated the measured vertical emittance
below 1 pm with full coupling correction [28]. For a ring-
based XFELO study assuming PETRA-IV parameters, the
vertical emittance of 2.7 pm is considered [29]. Note that
we consider the possibility of local coupling correction
to provide 1.7 pm vertical emittance within the XFEL
undulator section only.
We remark that no meaningful comparison can be made

between the formula derived in this paper and other
approximate formulas discussing higher harmonic gain
under similar conditions. First, because the 3D no-focusing
gain formula cited in the introduction does not consider
higher harmonics, and second, because the 1D gain formula
is too inaccurate and does not allow for comparison.
However, in Fig. 4, we provide a comparison with the
1D gain using the same set of parameters in Fig. 3 and use
this as a justification for the necessity for the newly derived
3D harmonic gain approximation.
The 1D gain does not take the diffraction and betatron

oscillation into account; thus, it should be much larger than
the 3D gain that considers those factors. However, when
we added the effect of the energy spread, which is large for
a storage ring, into the 1D gain estimation, the 1D gain
became much smaller (3 orders’ magnitude). Since in the

TABLE I. Parameters for maximum G.

E (GeV) I (A) λu (cm) h G (%) K0 ϵx (pm) ϵy (pm) D (m) βx (m) βy (m) zRx (m) zRy (m) α (m−1) σx (μm) σy (μm)

3 73 2.26 5 6.0 1.29 80 1.7 0.05(V) 6.6 6.9 4.0 6.3 49 23 3.5

FIG. 4. 1D gain compared with 3D gain formula derived in this paper. (a) Gain vs Lu, (b) gain vs detuning at Lu ¼ 42m.
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3D case, we apply the optimized transverse gradient scheme
to mitigate the large energy spread of a storage ring, the 1D
gain has become smaller than the 3Dgain, as shown in Fig. 4.
This can be understood via how the 1D and 3D gains are
influenced differently by the detuning. Because of these, the
1D calculation can change between either very high gain or
very small gain as we vary the different parameters, and none
of the results can be trusted, let aside whether it will provide
information about where the maximum gain is.

V. GAIN OPTIMIZATION WITH COLLECTIVE
EFFECTS

As one can see in the previous section, XFELO requires
quite a high peak beam current and small emittance. The
emittance of synchrotron light sources has been continu-
ously reduced in past decades. Implementation of the
multibend achromat (MBA) technology resulted in the
development of a new generation of synchrotrons with
much lower emittance. Recently, three new MBA-based
rings have been commissioned [30–32] and a few upgrade
projects are being developed worldwide [26,27,33–36]. We
consider an XFELO option for a lattice based on the
recently developed complex bend approach for the future
low-emittance upgrade of NSLS-II [37]. This lattice pro-
vides a horizontal emittance of 25 pm at a beam energy of
3 GeV fitting the present NSLS-II tunnel with a circum-
ference of 792m. We propose to place the 42m long
XFELO undulator in a straight section with a vertical
dispersion bypassing 3 out of 30 achromat cells.
However, collective effects of beam dynamics signifi-

cantly affect electron beam parameters in medium-energy
(3–4 GeV) storage rings because the beams are small in all
three dimensions and the particle density in the bunch is
quite high. The main adverse effect impeding the achieve-
ment of the required combination of beam parameters is
intrabeam scattering (IBS). To mitigate the collective
effects, higher-harmonic rf cavities are used for bunch
lengthening. The other strong intensity-dependent effect is
the bunch lengthening due to potential well distortion by
the longitudinal impedance of the vacuum chamber.
For a realistic assessment of a ring-based XFELO, we

carried out multiparameter optimization of the FEL gain
[Eq. (24)] assuming the vertical dispersion of 5 cm,
emittance, energy spread, and bunch length determined
by the lattice model taking into account the effect of IBS
together with the impedance-driven bunch lengthening and
higher-harmonic cavities. For the low-emittance synchro-
trons, the light-generating insertion devices make a major
contribution to the total energy loss per turn U0 determin-
ing the radiation damping, so we include them in the lattice
model. We optimized the detuningΔν, beta functions βx, βy,
the input radiation Rayleigh ranges zRx; zRy, and the trans-
verse gradient α to find the maximum gain. We optimized
these six variables using a gradient-based method imple-
mented in MATLAB [38] that is designed towork on problems

where the objective and constraint functions are both
continuous and have continuous first derivatives.
We applied the high-energy approximation of the IBS

theory [39]. The equilibrium emittance εx;y and relative
energy spread σp are expressed as

εx;y ¼
εx0;y0

1 − τx;y=Tx;y
; σ2p ¼ σ2p0

1 − τp=Tp
;

where εx0;y0 and σp0 are the emittance and energy spread,
respectively, at zero beam current; τx, τy, and τp are the
radiation damping times. Txy and Tp are the IBS growth
times given by

1

Tp
≃

r20cN
32γ3εxεyσsσ

2
p

�
εxεy

hβxihβyi
�

1=4
ln
hσyiγ2εx
r0hβxi

; ð25Þ

1

Tx;y
≃
σ2phH x;yi

εx;y

1

Tp
; ð26Þ

r0 is the classical electron radius, σs is the rms bunch
length, σy is the vertical beam size, and H x;y is the lattice
function given by

H ¼ βxη
02
x þ 2αxηxη

0
x þ γxη

2
x; ð27Þ

where βx is the amplitude function of betatron oscillation

(beta function), αx ≡ −β0x=2, γx ≡ 1þα2x
βx

; ηx and η0x is the
dispersion function and its derivative, respectively. As one
can see, the IBS strongly depends on the beam energy, so
its effect is not so significant for high-energy rings.
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FIG. 5. FEL gain optimized for the beam energy of 3, 3.5, and
4 GeV, taking collective effects into account. Here, we assume a
constant coupling of 3%, a factor of 3 bunch lengthening by a
higher-harmonic cavity (HHC:3), and an inductive longitudinal
impedance Zjj ¼ 0.5Ω.
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The bunch lengthening caused by the beam interaction
with the longitudinal impedance was calculated using the
modified Zotter equation [40] in differential form.
The effect of higher-harmonic cavities was simply modeled
by a multiplication of the zero-intensity bunch length by a
factor of 3.
As a result of the optimization, Fig. 4 shows the FEL gain

as a function of single-bunch current for the beam energy of
3, 3.5, and 4 GeV and for a low coupling of 3%. With the
constant coupling, the energy increases up to 3.5 GeVand,
especially, up to 4 GeV results in a feasible gain of 6% and
11.5%, respectively, but the gain is too small (limited to
within 2%) at 3 GeVand the XFELO looks unrealistic at this
energy. However, there is a hope to make a 3 GeV XFELO
feasible if it is possible to implement a local coupling
correction reducing the vertical beam size only in the
undulator sectionwhile keeping 100% coupling everywhere
else in the ring to mitigate the intrabeam scattering.
Although there is a theory developed a while ago [41]
and a few simulation studies, e.g., [42], the local coupling
correction is not a well-elaborated and widely used tech-
nique. So, the development of a realistic local correction
scheme needs a separate intensive study, which is out of the
scope of this article.We believe if a local coupling correction
is implemented to reduce the vertical beam size only in the
undulator section with coupling of 2% while keeping 100%
coupling everywhere else in the ring, the XFELO looks
feasible with gain reaching 6% even for 3 GeV energy. As
one can see in Fig. 5, the gain at 4 GeV is much higher with
the local 3%coupling (green curve) than the gainwith global
3% coupling (red curve in Fig. 4) because of the significant
mitigation of the intrabeam scattering by keeping large
coupling outside the undulator section.

We know the peak bunch current is more familiar for the
FEL community, but here we plot the gain as a function of
the single-bunch average current Ib because, in the ring

case, the peak current Ip ¼ Ib
ffiffiffiffi
2π

p
Raver
σs

, where Raver is the
average radius of the ring, depends on the bunch length
σsðIbÞ affected by collective effects, so it is not a constant.
This dependence is nonlinear and varies with the energy, as
shown in Fig. 6. So, it is not convenient to use the peak
current as an independent variable. For the convenience of
the readers in FEL community who maybe more familiar
with peak current as an independent variable, we present a
relation between peak current and average current in Fig. 7.
Although the gain shown in Figs. 4 and 5 is monoton-

ically growing with the bunch current, especially at higher
energies, one can see the slope is significantly decreasing at
higher currents. So, we limited the single-bunch current to
5 mA and the total beam current to 50 mA assuming a
uniform ten-bunch fill pattern, because a further increase of
the beam intensity is not so efficient for the FEL gain and
can be challenging due to shorter lifetime and possible
collective instabilities.

VI. SUMMARY

We developed a gain formula for a hard x-ray FEL in the
medium energy range between 3 and 4 GeV so that we do
not need to take no focusing approximation in the calcu-
lation, in the hope this can be of use in exploring the
possibility of x-ray FEL in this energy range. The formula
allows gain calculation with harmonic lasing and strong
focusing. We present an example to explore the limit of
stringent conditions for an XFELO at the lowest possible
energy. The example indicates hard x-ray FEL in 3 GeV is
feasible, even though it sets rather challenging conditions
for the storage ring parameters. The work presented here
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justified our future effort to make a low-energy hard x-ray
FEL possible. First, we need to develop numerical simu-
lations to confirm the analytical calculation. For example,
we need to use GENESIS code to confirm the gain calcu-
lation developed here, we need to develop a model for the
lattice in the undulator section to check the tolerances for
deviation from constant beta functions and dispersion,
undulator errors, etc. The required small local emittance
within the undulator section is the main challenge, we need
to study nonlinear dynamics, coupling correction, and
collective effects with extensive simulations and optimiza-
tion for the storage ring lattice. We need to study whether
the 1.7 pm local emittance is realistic, and if not, what
would be the lowest energy that would make it realistic if
we are not limited to 3 GeV. Actually, the 4 GeVoption of
the NSLS-II upgrade is not an impossible consideration
either. In addition to these, we hope the approach of using
harmonic lasing and strong focusing to lower the energy of
hard x-ray FEL may be applied to other facilities. The
optimization procedure taking harmonic number and focus-
ing into account may also be applied to low-energy XFELO
based on superconducting linac or maybe even high-gain
single-pass XFEL. For higher energy XFEL (e.g., 6 to
8 GeV range), the optimization might also help to relax
some stringent conditions on electron beam, undulator
period, gap, etc.
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APPENDIX A: OUTLINE OF DERIVATION
OF FEL GAIN IN SMALL SIGNAL,

LOW-GAIN REGIME

The FEL gain is derived from the coupled Maxwell-
Vlasov equations, which initially was developed for high-
gain FEL theory [21–24]. Later it is used for small gain
FEL in [5,6,12]. We outline the gain formula derivation
here as given in [12] in order to clarify the inclusion of the
TGU, the dispersion, and we pay attention to the harmonic
number ν ≈ h in this paper. Many of the notations here have
been introduced in Sec. II when we introduce the gain
formula. The Maxwell equation in the notation here is

�
∂

∂z
− iΔνku þ

i
2k

∇2⊥
�
aνðx; zÞ

¼ −gn
Z

dη
Z

dpδFνðη;x;p; zÞ; ðA1Þ

where gn ¼ eK½JJ�hn0
4ϵ0γω1

and n0Fðz; θ; η;x;pÞ ¼ k1
P

δðη −
ηjÞδðx − xjÞδðp − pjÞδðθ − θjÞ is the electron beam dis-
tribution function, θ ¼ ðk1 þ kuÞz − ω1t̄ is the micro-
bunching phase, and t̄ is the time of electron passing
through z averaged over a period of the undulator. The
function F is separated into two parts F ¼ F̄ þ δF, F̄ is the
averaged smooth electron beam background distribution in
Eq. (6) and δF is the deviation from F̄ including shot noise
in the beam and the microbunching due to FEL interaction.
δFνðz; θ; η;x;pÞ is the Fourier transform of δF:

δFνðη;x;p; zÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

eiνθδFðz; θ; η;x;pÞdθ: ðA2Þ

The Vlasov equation is essentially the Liouville theorem
applied to perturbation theory in a small signal regime.
After Fourier transform from θ to ν, it is in the form�

∂

∂z
þ θ̇

∂

∂θ
þ ẋ

∂

∂x
þ ṗ

∂

∂p

�
δFνðη;x;p; zÞ

¼ −hhaνðx; zÞ
∂

∂η
F̄ðη;x;p; zÞ; ðA3Þ

where the Fourier transformed energy equation is
1ffiffiffiffi
2π

p
R
η̇eiνθdθ ¼ −hhaνðx; y; zÞ, with hh ¼ eω1K½JJ�h

2mc2γ2 , ẋ; ṗ

are given by betatron motion [Eq. (10)], and the phase
equation is

θ̇ ¼ dθ
dz

¼ ku

�
2η −

K2
0

1þ K2
0

2

αy

�
−
k1
2
wðx;pÞ;

where wðx;pÞ≡ p2
x þ k2βxx

2 þ p2
y þ k2βyy

2:

To solve the coupled Maxwell-Vlasov equations with
two unknowns aνðx; zÞ and δFν, we eliminate the unknown
δFν by first solving the Vlasov equation [Eq. (A3)] to
express δFν in terms of aνðx; zÞ. Treating this linear partial
differential equation as a one variable linear ordinary
differential equation with δFν as a function of z, using
the “method of variation of constants,” the result is

δFνðη;x;p; zÞ ¼ δFð0Þ
ν ðη;x;p;zÞ− hn

Z
z

0

dsaνðx0; sÞ
�
∂

∂η
F̄ðη;x0ðx;p; z; sÞ;p0ðx;p; z; sÞ; sÞ

�

× exp

 
−2iνηkuðs− zÞ þ i

νk1
2

Z
s

z
dz1w½x0ðx;p; z; z1Þ;p0ðx;p; z; z1Þ� þ iνku

K2
0

1þ K2
0

2

α

Z
s

z
dz1y0

!
; ðA4Þ

where δFð0Þ
ν ðη;x;p; zÞ is the solution without FEL interaction, related to the spontaneous radiation and will be neglected in

the small gain calculation, and x0ðx;p; z; sÞ;p0ðx;p; z; sÞ are solutions of the betatron motion [Eq. (10)] with an initial
condition such that at s ¼ z, x0ðx;p; z; s ¼ zÞ ¼ x, and p0ðx;p; z; s ¼ zÞ ¼ p.
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Inserting Eq. (A4) into the Maxwell equation [Eq. (A1)] and neglecting the first term which contributes to the
spontaneous radiation, we get the field equation for aνðx; zÞ�
∂

∂z
− iΔνku þ

i
2k

∇2⊥
�
aνðx; zÞ ¼ −gnhn

Z
dη
Z

dp
Z

z

0

dsF̄ðη;x0ðsÞ;p0ðsÞ; sÞ
∂

∂η
aνðx0ðsÞ; sÞ

× exp

 
−2iνηkuðs − zÞ þ i

k
2

Z
s

z
dz1w½x0ðz1Þ;p0ðz1Þ� þ iνku

K2
0

1þ K2
0

2

α

Z
s

z
dz1y0ðz1Þ

!
:

ðA5Þ

We abbreviate x0ðx;p; z; sÞ as x0ðsÞ, and similarly for p0ðsÞ. x;p; z in the argument is implied, and k ¼ νk1. The version
of this equation with the transverse gradient α ¼ 0 has been used as a dispersion relation [23] to derive the gain length
formula including the effect of finite emittance, diffraction, and betatron focusing on the development in the high-gain
regime for the first time.

Later, this equation was applied to solve for small gain regime [5,6,12]. Applying the transform 1
λ2

R
dxeikðxϕxþyϕyÞ in

Eq. (7) to both sides of Eq. (A5) converts it to a field equation for Aνðϕx;ϕy; zÞ given by�
∂

∂z
− iΔνku −

ik
2
ϕ2

�
Aνðϕ; zÞ ¼ bðzÞ

where bðz;ϕÞ ¼ −
1

λ2
gnhn

Z
dηdp

Z
dx
Z

dϕ0 exp
�
Δνkuzþ i

k
2
ϕ2z

�
F̄ðη;x; p; zÞ ðA6Þ

×
∂

∂η
eikxϕ exp

�
−i
Z

z

0

dz1ξνðϕ; η;x;p; z1Þ
� Z

z

−L=2
ds1e−ikxϕ

0
exp

�
i
Z

s1

0

dz1ξνðϕ0; η;x;p; z1Þ
�
Aνðϕ0; 0Þ

and ξνðϕ0; η;x;p; z1Þ ¼ ðΔν − 2νηÞku þ νku
K2

0

1þ K2
0

2

αy0ðz1Þ þ
k
2
wðx0ðz1Þ;p0ðz1Þ − ϕÞ: ðA7Þ

The input radiation Að0Þ
ν ðϕx;ϕy; zÞ in Eq. (7), the Gaussian beam, is the solution of this equation with bðzÞ set to zero.

When substituting Að0Þ
ν ðϕx;ϕy; 0Þ as Aνðϕ0; 0Þ into Eq. (A6) first-order perturbation, the equation is considered as a linear

ordinary differential equation with z as variable and bðzÞ as the inhomogeneous term, the solution at the end z ¼ L=2 is

Aνðϕ;L=2Þ¼Að0Þ
ν ðϕ;L=2ÞþAð1Þ

ν ðϕ;L=2Þ

with Að0Þ
ν ðϕ;L=2Þ¼ exp

�
iΔνkuL=2þ

ik
2
ϕ2L=2

�
Að0Þ
ν ðϕ0;0Þ;

Að1Þ
ν ðϕÞ¼−

1

λ2
ghhh exp

�
iΔνkuL=2þ

ik
2
ϕ2L=2

�Z
dηdp

Z
dx
Z

dϕ0F̄ðη;x;p;0Þ

×
∂

∂η

Z
L=2

−L=2
dseikxϕ exp

�
−i
Z

s

0

dz1ξνðϕ;η;x;p;z1Þ
�Z

s

−L=2
ds0e−ikxϕ0

exp

�
i
Z

s0

0

dz1ξνðϕ0;η;x;p;z1Þ
�
Aνðϕ0;0Þ:

ðA8Þ

Here F̄ðη;x; p; zÞ in Eq. (A6) has been replaced by F̄ðη;x; p; 0Þ because it is independent of z. In Eq. (A8), and in Eq. (5)
of Sec. II, the x0ðs;x;pÞ,p0ðs;x;pÞ in ξνðϕ0; η;x;p; z1Þ are solutions of the equations of betatron motion Eq. (10) with the
initial condition.
The gain is defined as

G ¼
R ðjAνðϕ;L=2Þj2 − jðAð0Þ

ν ðϕ;L=2Þj2ÞdϕR jðAð0Þ
ν ðϕ;L=2Þj2dϕ

≈
R ðAð0Þ�

ν ðϕ;L=2ÞAð1Þ
ν ðϕ; L=2Þ þ c:c:ÞdϕR jðAð0Þ

ν ðϕ;L=2Þj2dϕ
; ðA9Þ
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where the term of the second power of 1
λ2
gnhn is neglected.

Upon substituting Eq. (A8) with Eq. (A9), we arrive at the
gain formula of Eq. (5).

APPENDIX B: GAUSSIAN INTEGRAL
OF SEVERAL VARIABLES

We brief on the calculation of the three variable Gaussian
integrals Iyη in Eq. (21) of Sec. III. The integral Ix is a
two-variable Gaussian and can be considered a sim-
plified version of Iyη. The exponent in Iyηðs; zÞ ¼R R

dηdydpy expð−ΦyηÞ is

Φyη ¼ Aηη
2 þ Ayy2 þ Apyp2

y þ Bηyyηþ Bypyη

þ Bηηþ Byyþ Bpypy; ðB1Þ

where the coefficients are given by Eq. (19). The first step
is to transform the coefficients of the three quadratic terms

to 1 by a transform Aη ⇒ Aη=
ffiffiffiffiffi
Aη

p
y ⇒ y=

ffiffiffiffiffi
Ay

p
; py ⇒

py=
ffiffiffiffiffiffiffiffi
Apy

p
so

Iyη ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AηApyAy
p Z Z

dηdydpy expð−Φyη1Þ

Φyη1 ¼ η2 þ p2
y þ y2 þ dyηþ cypy þ aηþ byþ gpy;

where a ¼ Bηffiffiffiffi
Aη

p , b ¼ −Bαffiffiffiffi
Ay

p ½sinð sβyÞ − sinð zβyÞ�; Bα ≡ iν 2K2
0

2þK2
0

×

αkuβy, c ¼ Bypffiffiffiffiffiffiffiffiffi
ApyAy

p , d ¼ Bηyffiffiffiffiffiffiffiffi
AηAy

p , and g ¼ Bαβyffiffiffiffiffiffi
Apy

p ½cosð sβyÞ−
cosð zβyÞ�.
Next, we shift the origin to the maximum of Φyη1

at η0; py0; y0 by a transform η ⇒ ηþ η0; py ⇒ py þ
py0; y ⇒ yþ y0, which is found by solving three linear
equations. The result is

Iyη ¼
1ffiffiffiffiffi

Aη

p ffiffiffiffiffiffiffiffi
Apy

p ffiffiffiffiffi
Ay

p exp

�
−
4b2 þ a2ð4− c2Þ− 4abd− 4bcgþ ð4− d2Þg2 þ 2acdg

4ð4− c2 − d2Þ
�Z Z

dηdydpy expð−Φyη2Þ

Φyη2 ¼ XT:m:X ¼ η2 þp2
y þ ðηdþ cpyÞyþ y2

where X ¼

0
B@

η

py

y

1
CA; m¼

0
B@

1 0 d
2

0 1 c
2

d
2

c
2

1

1
CA:

Φyη2 is in quadratic form and can be transformed into diagonal quadratic form using the eigenvectors V of the matrix m

V ¼

0
BB@

− c
d − dffiffiffiffiffiffiffiffiffi

c2þd2
p dffiffiffiffiffiffiffiffiffi

c2þd2
p

1 − cffiffiffiffiffiffiffiffiffi
c2þd2

p cffiffiffiffiffiffiffiffiffi
c2þd2

p
0 1 1

1
CCA: ðB2Þ

Now apply transform: X ⇒ VX with determinant detðVÞ ¼ 2
ffiffiffiffiffiffiffiffiffi
c2þd2

p
d to obtain

Iyη ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AηApyAy
p 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p

d
exp

�
4b2 þ a2ð4 − c2Þ − 4abd − 4bcgþ ð4 − d2Þg2 þ 2acdg

4ð4 − c2 − d2Þ
�

×
Z Z

dηdydpy exp

�
−
�
1þ c2

d2

�
η2 −

�
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p �
p2
y −
�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p �
y2
�
:

The integrals over η,y, and py are separately carried out, and finally, with a,b,c,d, and g substituted and rearranged,
the result is Eq. (21).
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