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The novel experimental system “S-POD” (Simulator of Particle Orbit Dynamics) is employed to explore
the stability of short hadron bunches in high-intensity linacs. In a previous study with the S-POD [M. Goto
et al., Phys. Rev. Accel. Beams 25, 054201 (2022)], a static potential was used to focus the bunch in the
longitudinal direction. We here make a step forward to include the possibility of pure synchrotron
resonance, introducing periodic modulation to the longitudinal potential well. The modulation period was
taken a half of the transverse alternating-gradient focusing period, which reflects the most typical lattice
condition of a drift-tube linac. Detailed stability maps are constructed to reveal dangerous parameter
regions where serious beam loss may occur due to resonance. We reconfirm the existence of various
betatron and synchrobetatron resonance stop bands whose widths and locations change in tune space
depending on the bunch intensity. It turns out that the periodicity of the longitudinal focusing potential
brings about no pronounced effect on the resonance feature; the result is very similar to what we obtained in
the previous study with a static longitudinal potential. As long as the lattice periodicity mentioned above is
maintained, no serious noncoupling synchrotron resonance appears even with a high synchrotron phase
advance above 90° per unit alternating-gradient cell. Severe envelope instability may, however, be excited
in the longitudinal direction if the axial focusing force includes error components that affect the original
lattice periodicity. The experimental observations can be explained with the stop-band diagram free from
the concept of incoherent tune spread.
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I. INTRODUCTION

In high-intensity hadron accelerators, natural Coulomb
interaction among accelerated particles plays a crucial
role in beam stability [1]. Space-charge-induced effects
are generally more severe at a lower beam energy, which
means that extra attention is required for the basic design of
an injector linac. In fact, they set an upper limit on the
allowable phase advance of betatron oscillation; the bare
phase advance is supposed to be chosen below 90° per unit
alternating-gradient (AG) focusing cell so that we can avoid
serious beam loss due to the excitation of the second-order
collective resonance driven by the Coulomb self-field
potential [2,3].
A systematic study of space-charge effects is not so easy

in practice. The flexibility and controllability of operating
tunes and other fundamental beam-dynamics quantities are

quite limited in most accelerators, which forces one to give
up a wide-range survey of parameter space. Self-consistent
theoretical investigation is also very tough as the beam
consists of a huge number of particles interacting each
other. To overcome these difficulties in conventional
approaches, we constructed the novel experimental appa-
ratus named “S-POD” (Simulator of Particle Orbit
Dynamics) that allows for detailed exploration of various
space-charge issues in a local tabletop environment [4].
A similar Paul-trap system “IBEX” (Intense Beam
EXperiment) is in operation at the Rutherford Appleton
Laboratory in the United Kingdom to support theoretical
studies of next-generation high-intensity accelerators [5].
An ion cloud provided by the S-POD obeys the equa-

tions of motion almost identical to those for a relativistic
beam travelling in an AG focusing channel [6,7]. What
occurs in the former dynamical system, therefore, occurs in
the latter and vice versa, so we can elucidate the nature of
intense hadron beams experimentally without relying on
large-scale machines.
In past S-POD experiments, we mostly employed axially

long ion clouds of sausagelike configurations, bearing a
long bunch or coasting beam in mind. The linear Paul trap
(LPT) dedicated to the present study is designed to produce
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an ellipsoidal ion cloud whose aspect ratio is around
unity [8]. Such a short bunch is typical in injector linacs.
Comprehensive experimental data on a short-bunch stabil-
ity were recently acquired under a simplified lattice
condition, i.e., with a time-independent potential well
along the LPT axis [9]. We here make the axial ion
confinement force periodic and see if any essential differ-
ence from the simple static confinement case arises.
The paper is organized as follows. In Sec. II, we start

with a brief description of the S-POD system and exper-
imental procedure. Before proceeding to experimental
observations, the resonance theory developed by the
authors’ group is briefly reviewed in Sec. III, followed
by results of self-consistent multiparticle simulations in
Sec. IV. Section V is devoted to a summary of S-POD
experiments that reveal a short-bunch stability in the low-
density and high-density regimes. Concluding remarks are
finally made in Sec. VI.

II. S-POD

The core of the S-POD apparatus is a compact LPT
sitting in a vacuum chamber, where the base pressure is
kept below 10−8 Pa [10]. As illustrated in Fig. 1, the
ion trap consists of three independent quadrupole sec-
tions 0.5 mm apart from each other. The minimum
distance from the LPT axis to the electrode surfaces is
r0 ¼ 5 mm. Ions are stored in the central section, where
an axial potential well is created by dc or ac voltages Vk
added to the quadrupole sections on both sides. A radio-
frequency (rf) quadrupole field is excited in all three
sections for transverse ion confinement. The frequency of
the quadrupole field is fixed at 1 MHz.
What ion species we use for the S-POD experiment is

unessential for the physics of interest to us here; the mass
and charge state of the ions are just a part of scaling
parameters to determine some important beam-dynamics
quantities, such as the betatron and synchrotron phase
advances and tune depressions. Among several possible
choices, we picked 40Arþ that can readily be produced
from neutral Ar gas through the electron bombardment
process.
The length of the central quadrupole rods (8.9 mm) has

been optimized to make the axial ion confinement potential

nearly parabolic. An approximate Hamiltonian describing
the motion of an ion cloud in the LPT is then given by

H¼p2
xþp2

yþp2
z

2
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where K⊥ðτÞ is proportional to the rf quadrupole voltage
V⊥ for transverse ion confinement while KkðτÞ to the
additional bias Vk for axial ion confinement, Iq is a
constant depending on the bunch intensity, ϕsc represents
the Coulomb self-field potential, and the independent
variable is τ ¼ ct with c being the speed of light. Note
that Vk applied to the two end sections generates a
transverse defocusing force, which corresponds to the
effect known as rf defocusing in accelerating gaps [11].
This Hamiltonian is basically the same as that often
assumed in past theoretical studies of space-charge effects
in AG beam transport channels [1–3,8,11].
The most standard waveform for the transverse focusing

function K⊥ðτÞ is the FODO type (Focus-Drift-Defocus-
Drift) widely adopted in drift-tube linacs (DTLs). Our
previous experimental and numerical studies have demon-
strated that there is no significant difference in resonance
features between the sinusoidal focusing and FODO lattice
[12,13]. For the present experiment, therefore, we used the
simple sinusoidal V⊥ oscillating at 1 MHz. Each FODO
period includes two accelerating gaps if all drift tubes have
a quadrupole magnet inside. Considering this fact, the
waveform of the axial focusing functionKkðτÞwas taken as
sketched in Fig. 2. Vk oscillating at 2 MHz must always be
positive because the bunch receives only a focusing force
axially at every gap (weak focusing). The synchrotron
phase advance σk per FODO cell is determined solely by
Vk, while the betatron phase advance σ⊥ depends on both
V⊥ and Vk as is evident from Eq. (1). In what follows, we
assume for simplicity that the horizontal and vertical phase
advances are both equal to σ⊥.
The initial number of ions can be controlled by changing

the electron beam current from the e-gun and/or the amount
of neutral Ar gas introduced in the chamber. The ionization
procedure typically lasts for about 1 s. We then shut down
the e-gun, store Arþ ions for a certain period at a certain
operating point, and finally launch surviving ions from the
trap toward the microchannel plate (MCP) detector by
removing the axial potential barrier on the MCP side. This
measurement cycle takes only several seconds, including
the data transfer to a hard disk unit for saving. The whole
experimental procedure is automated. After completion of a
single measurement cycle, the operating betatron and
synchrotron phase advances are changed to another target
values automatically until the end of a stability survey over
a wide area in σ⊥-σk plane.

xy

z

e-gun

MCP

ion cloud

FIG. 1. Schematic layout of the LPT electrodes and other
components.
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III. RESONANCE CONDITIONS
AND STOP-BAND DIAGRAM

The concept of incoherent tune spread or the so-called
necktie diagram has been commonly used to explain
resonance-induced particle losses observed especially in
circular machines. Such a conventional notion, however,
does not work very well as the motions of individual
particles in the beam core are not independent but rather
correlated through the Coulomb self-fields [1,2,14,15]. In
fact, neither self-consistent numerical simulation results nor
experimental observations with the S-POD can be under-
stood on the basis of the incoherent picture [13,16–20]. The
collective (coherent) nature of the beam core needs to be
taken carefully into account to make reasonable predictions
about the stability of space-charge-dominated beams.
A universal guideline applicable to both linear and

circular accelerators was recently established to avoid
low-order resonances at high space-charge density [21,22].
Dangerous operating tunes at which non-negligible beam
loss may occur can be predicted with the stop-band
diagram rather than the necktie. The new type of stability
chart is based on the coherent betatron resonance condition
first conjectured in Ref. [13] from the one-dimensional
(1D) Vlasov theory in Ref. [23]. The proposed two-
dimensional (2D) condition was soon generalized to treat
coherent core resonances in bunched beams [24]. When the
transverse betatron tunes are equal as assumed here, we
expect core resonances of the mth order to be excited
around the lines defined by

n⊥σ⊥½1−Cmð1−η⊥Þ�þnkσk½1−Cmð1−ηkÞ�¼n180°; ð2Þ

where ðn⊥; nk; nÞ are integers, and Cm is a m-dependent
constant. η⊥ and ηk are the transverse and longitudinal root-
mean-squared (rms) tune depressions evaluated from the
three-dimensional (3D) rms envelope equations [25]. The
rms tune depression is a measure of beam density in phase
space, which ranges from 0 (high-density limit) to 1 (low-
density limit).
The coherent tune-shift factor Cm is always positive but

less than unity. It increases as the resonance order m
becomes higher. According to the pioneering work by
Sacherer [26], C1 ¼ 0 (dipole mode), C2 ¼ 0.75 (quadru-
pole mode), C3 ¼ 0.875 (sextupole mode), C4 ¼ 0.922
(octupole mode), etc., for a 1D sheet beam. Recent particle-
in-cell (PIC) simulations for coasting beams have con-
cluded the values of Cm roughly consistent with the Vlasov
prediction [16], i.e., C2 ≈ 0.7, C3 ≈ 0.8, and C4 ≈ 0.9.
Experimental determination of the Cm factor is

extremely difficult even with the S-POD and IBEX trap
systems [27,28]. For this purpose, precise information is
necessary as to how a coherent stop band of the mth order
shifts depending on the bunch density. Such information is
currently obtained from the simple ion-loss measurement,
but in that case, we cannot distinguish whether the
instability occurred collectively in the core or incoherently
in the tail. The size of Cm is usually underestimated when
we rely on ion-loss data [16].
Of particular note is the fact that the right-hand side of

Eq. (2) is not an integer multiple of 360° as in standard
resonance conditions but an integer multiple of 180°.
This leads to a two-fold increase of the density of
resonances in tune space. External driving fields originating
from machine imperfections and correction magnets
enhance coherent resonances of the same order but only
with even n in Eq. (2), while the natural Coulomb self-field
can drive all resonances regardless of the parity of n. The
procedure for drawing a stop-band diagram based on the
coherent picture is outlined in Ref. [21] (see also Ref. [22]
for more information).
Each coherent instability band is accompanied by an

incoherent resonance domain within which large-amplitude
particles in the beam tail might become unstable almost
independently. The order of the incoherent tail resonance
driven by the space-charge potential is twice higher than
that of the neighboring coherent instability. Space-charge-
induced resonances of tail particles adjacent to the coherent
core resonance band of Eq. (2) are activated under the
condition [22]

2n⊥ðσ⊥ − Δσ⊥Þ þ 2nkðσk − ΔσkÞ ¼ n360°; ð3Þ

where Δσ⊥ and Δσk are the space-charge-induced shifts of
betatron and synchrotron phase advances from the design
values ðσ⊥; σkÞ. These shifts ðΔσ⊥;ΔσkÞ are particle-
dependent and thus unobservable. As repeatedly empha-
sized in our previous works (see, for example, Ref. [16]

FIG. 2. Waveforms of the focusing functions K⊥ðτÞ and KkðτÞ.
K⊥ðτÞ oscillates at 1 MHz while KkðτÞ at 2 MHz.
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together with Ref. [17]), the incoherent mechanism is
effective only in the beam tail, where Δσ⊥ and/or Δσk
are relatively small. Equation (3) is generally useless in
describing the stability of core particles that have large tune
shifts in the three directions.
We must avoid incoherent tail resonance regions as well

as low-order coherent core resonance bands to minimize
the possibility of undesired particle losses. In circular
machines, the incoherent resonance mechanism is probably
of higher importance from a practical point of view. Since
the tune depression is always close to unity in any
synchrotrons and storage rings, nonlinear coherent insta-
bilities in the beam core are not only weak but also
spontaneously damped before causing a detectable level
of beam loss [21,22]. In many cases, therefore, the
incoherent mechanism should be responsible for particle
losses observed in rings. It is, however, reasonable to avoid
all low-order coherent resonance bands for safety to ensure
the best beam quality. The coherent effect can be more
influential in linear machines, but it never means that space-
charge-induced resonances in linacs are essentially differ-
ent from those in rings. A large discrepancy in typical beam
density just changes a dominant instability mechanism that
leads to major beam loss.
A couple of beam stability maps based on the semi-

empirical resonance condition in Eq. (2) is depicted in
Fig. 3 for reference. Coherent resonance bands of up to the
third order (gray-shaded area) have been taken into con-
sideration. According to our past experience with S-POD
experiments, it is necessary to care about core resonances
of the second and third orders at least. Most of these low-
order stop bands (and/or tail resonances adjacent to them)
are observable as demonstrated in later sections. Provided
that a very high-density beammust be stored for a very long
period, it is advisable to pay attention to fourth-order
stop bands as well. In fact, we have detected a possible
signature of fourth-order core instability in the case of long-
term ion storage [20].
The widths of the stop bands in Fig. 3 are estimated

from the simple formula given in Ref. [21]. The number of
ions contained in the bunch is fixed all over the diagrams
at the value that makes the transverse tune depression at
ðσ⊥; σkÞ ¼ ð48.1°; 25.6°Þ equal to 0.95 in the upper panel
and to 0.80 in the lower panel. The same operating point
was used in the experiment to produce ion clouds in the
LPT (see Sec. V). We have assumed the ion bunch to be in
the equipartitioned state there [29]; the condition

εk
ε⊥

¼ η⊥σ⊥
ηkσk

ð4Þ

has been imposed at the ionization point.
The hatched areas in Fig. 3, where incoherent resonances

may take place in the beam tail under the condition in
Eq. (3), play a particularly important role in rings as

explained above, but even in linacs, should be avoided.
Note that the third-order difference resonance with
ðn⊥; nk; nÞ ¼ ð1;−2; 0Þ is missing; under the initial emit-
tance condition adopted here, this resonance is strongly
suppressed according to one of the findings in Ref. [24].
Figure 3 predicts the existence of many betatron and
synchrobetatron resonance bands, most of which were
actually observed in the previous S-POD experiment using
a static potential well in the axial direction [9]. A question
is whether the periodic modulation of the axial focusing
force adds any new feature beyond this theoretical expect-
ation. This is certainly an important issue relevant to the
basic design of any linac. Not only numerical but also
convincing experimental evidence is needed to give a
definitive answer to the question.

FIG. 3. Examples of stop-band diagrams (a) in the low-
density regime and (b) in the high-density regime. In both
cases, the bunch intensity and rms emittances have been fixed
in the whole tune space. The transverse rms tune depression at
the operating point ðσ⊥; σkÞ ¼ ð48.1°; 25.6°Þ has been adjusted
to η⊥ ¼ 0.95 in the upper panel and to η⊥ ¼ 0.80 in the lower.
Coherent core resonances of the second and third orders are
expected to occur within gray shaded areas, provided C2 ¼ 0.7
and C3 ¼ 0.8. Three integers written beside each band represent
ðn⊥; nk; nÞ in Eq. (2). Incoherent resonances of tail particles can
be excited within hatched areas. Pure synchrotron resonances
with n⊥ ¼ 0 have been ignored here because of the reason
discussed in Sec. IV.
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IV. NUMERICAL SIMULATION RESULTS

Numerical simulations on 3D space-charge effects, even
with the help of modern high-performance computers, are
far more time-consuming than experimental simulations
with the S-POD. It is, however, still informative to see what
self-consistent simulation codes predict, even if we can
only consider a short transport distance. The PIC code
WARP was employed to simulate the dynamic behavior
of an intense beam governed by the Hamiltonian in
Eq. (1) [30]. In addition to the dominant linear potentials
for transverse and axial ion confinements, a weak sextupole
error field unavoidable in practice was introduced that
somewhat enhances third-order resonances. The amplitude
of this external nonlinear component is determined with a
Poisson solver, assuming random electrode misalignments
of 50 μm on rms average. The transport distance is limited
to 200 AG cells to save computational time.
We need to match the initial distribution of particles

in phase space very carefully to the external AG lattice,
including the effect of the strong Coulomb self-field
potential. Ideally, the distribution must be in an equilibrium
state reflecting a stationary solution to the Vlasov equation.
Such fine-grained matching is essential to identify weak
instabilities. If the initial matching is poor, a high-density
beam will suffer non-negligible emittance growth every-
where right after injection, which obscures weak signatures
of nonlinear resonances. We here start each PIC simulation
with a pseudoequilibrium Gaussian distribution, employing
the technique originally developed by Lund et al. [24,31].
Emittance growth rates numerically evaluated at about

3000 different operating points are color coded in Fig. 4.
All the stop bands predicted in Fig. 3 by the coherent
resonance theory can be seen though some of them are
weak. As expected, no pure synchrotron resonance with
n⊥ ¼ 0 is excited. Assuming a uniform bunch well-
matched to an external quadrupole focusing lattice, we
realize that the longitudinal space-charge force is insensi-
tive to the transverse envelope oscillation driven by the AG
lattice (see, for example, Ref. [11]). The actual period of the

longitudinal driving force is then a half of the transverse
FODO period. We can readily verify, by solving the 3D
envelope equations, that a matched beam executes almost
identical oscillation twice axially within a single transverse
AG cell [24]. Furthermore, the amplitude of the axial
envelope modulation is very small because the beam
receives not AG but weak focusing force in that direction.
These facts suggest that only weak synchrotron resonances
of the fourth order or higher can be excited in the range of
σk surveyed in Fig. 4. It should, however, be remembered
that various error fields and noise sources are inevitable in
real machines. Such imperfections affect the design perio-
dicity of the focusing lattice, which might enhance the
potential danger of low-order resonances especially above
the line σk ¼ 90°. A piece of information associated with
this issue is offered in the Appendix for reference.
The growth rate of each resonance depends on the

emittance condition of the incident beam. For instance,
if the transverse and longitudinal emittances are equalized
at the beginning, the difference resonance line with
ðn⊥; nk; nÞ ¼ ð1;−1; 0Þ disappears [24]. As mentioned in
the last section, the third-order difference resonance with
ðn⊥; nk; nÞ ¼ ð1;−2; 0Þ is invisible here. This is because
the equipartitioning condition in Eq. (4) has been imposed
at ðσ⊥; σkÞ ¼ ð48.1°; 25.6°Þ when we determine the initial
rms emittances. As the transverse tune is roughly twice
greater than the longitudinal value, the emittance ratio
εk=ε⊥ of the equipartitioned beam is close to two. Then, the
resonance band with ðn⊥; nk; nÞ ¼ ð1;−2; 0Þ is strongly
suppressed according to the theory in Ref. [24].
Phase-space matching in a real machine is not as precise

as numerically achieved here. Any beams probably have a
significant amount of tail particles at injection, which will
enhance emittance growth and resultant beam loss in the
tail resonance regions, i.e., the hatched areas in the stability
maps of Fig. 3. We also wish to point out the fact that the
incoherent tune spread of a Gaussian core is quite large at
the tune depression of 0.8; specifically, it exceeds 30° when
σ⊥ or σk goes beyond 90° per FODO cell. It thus seems

FIG. 4. PIC simulation results. The initial beam conditions are the same as assumed in Fig. 3. The highest emittance growth of the
three directions is used to choose the color at each operating point.
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impossible for the necktie diagram to provide a rational
explanation to the simulation data in Fig. 4.

V. EXPERIMENTAL RESULTS

In contrast to 3D multiparticle simulations, we only need
5 s or so in the S-POD experiment to complete a single
cycle of stability measurement at every operating point
even for extremely long-term ion storage over millions of
AG periods. More than 106 Arþ ions can be stored in the
LPT (Fig. 1) designed for short-bunch experiments. The
rms tune depression then reaches around 0.8 [32].
Following the earlier work [9], we first checked the best
operating point at which the number of confineable ions is
maximized. The result was almost identical to the previous
one (see Fig. 3 of Ref. [9]). In the present experiment, we
decided to use the operating point ðσ⊥; σkÞ ¼ ð48.1°; 25.6°Þ
for ionization. Since we prepare an ion cloud spending
about 1 s (a million AG periods), the bunch is most likely in
a sort of equilibrium state initially.
Another fact worthy of attention is that the ionization

occurs almost everywhere inside the LPT aperture. The
safety margin is, therefore, not so wide as in the case of
ordinary accelerators, which makes the S-POD experiment
more sensitive to transverse emittance growth. This is
important in detecting weak signals from coherent core
resonances because they spontaneously cease to develop as
the bunch density is reduced by the emittance growth. Since
most large-scale accelerators have a high safety margin, it is
probably difficult to identify nonlinear core resonances
from simple beam-loss measurement; careful phase-space
probing (emittance measurement) will be indispensable to
know what happens in the beam core.
After a specific number of Arþ ions are accumulated at

ðσ⊥; σkÞ ¼ ð48.1°; 25.6°Þ, the operating point is moved to a
target location in tune space within 100 μs and stay there
for a specific period. We then eject the ion cloud from the
LPT to count the number of surviving particles with the
MCP detector, but before the ejection, the operating point
must be returned to the original ionization spot. As
remarked in Sec. II, the transverse focusing force has been
somewhat weakened by the axial ion confinement

potential. Once the axial potential barrier on the detector
side is removed for ion extraction, this transverse defocus-
ing effect disappears, leading to a sudden increase of the
transverse phase advance. The betatron motion may then
become unstable due to overfocusing in the transverse
directions and, as a result, some ions would be lost before
arriving at the detector. No such extra ion losses are
expected at ðσ⊥; σkÞ ¼ ð48.1°; 25.6°Þ because σk is rela-
tively low (and thus, the transverse defocusing force created
by Vk is not so strong).
A wide range of tune space was surveyed to uncover

dangerous operating regions where serious beam loss may
occur in linacs. The number of ions surviving after 0.5 ms
was measured at about 2800 different operating points
distributed uniformly over the ranges 30° ≤ σ⊥ ≤ 150° and
27° ≤ σk ≤ 100°. The measurement results are compiled
into color-coded stability maps in Fig. 5 that visualize the
distribution of low-order instability bands at three different
Nin’s (the number of ions initially stored in the LPT). The
lifetime of an ion cloud is well above a second (106 AG
cells), which means that natural ion losses through colli-
sions with other ions and residual gas atoms are negligible
in such a short storage period of 0.5 ms.
At low intensity [Fig. 5(a)], there are two apparent

instability bands, one of which corresponds to ðn⊥; nk; nÞ ¼
ð3; 0; 2Þ and the other to (1,1,1). The former resonance is
particularly severe because it has been enhanced by third-
order error fields originating from misalignments of the
LPT electrodes. The wide ion-loss region around the upper-
left corner is largely due to a shrinkage of the LPT
acceptance [9].
At higher intensity [Figs. 5(b) and 5(c)], most of the

resonance stop bands foreseen in Fig. 3 have appeared. The
rms tune depression at Nin ≈ 2.7 × 106 should be near 0.8,
considering past S-POD data of long-bunch experiments
[32]. We recognize that all stop bands significantly shift in
the tune space from the positions of single-particle reso-
nance lines. Some of them are even curved just as the
theory in Sec. III predicts. The existence of the third-order
sum resonance with ðn⊥; nk; nÞ ¼ ð1; 2; 1Þ is still unclear,
which is consistent with the PIC simulation data in Fig. 4.

FIG. 5. Short-term stability maps experimentally obtained with the S-POD system. The period of ion storage is fixed at 0.5 ms (500
AG cells). The number of Arþ ions initially stored in the LPT is about (a) 1.0 × 103, (b) 1.0 × 106, and (c) 2.7 × 106.
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On the other hand, the stop band slightly above σ⊥ ¼ 90°
has caused serious trouble in the high-density regime. The
loss rate there is now higher than that on the third-order
resonance with ðn⊥; nk; nÞ ¼ ð3; 0; 2Þ driven by both
external error fields and the Coulomb self-field. This
observation strongly suggests that the resonance near
σ⊥ ¼ 90° is of the second order and driven mainly by
the space-charge potential.
Since the operating point moves back and forth in tune

space before the extraction of surviving ions, multiple
resonance crossing occurs when we survey a high-σ⊥ range
above 90°. At least, one of the three low-order resonance
bands with ðn⊥; nk; nÞ ¼ ð2; 0; 1Þ, (3,0,2), and (1,1,1) will
be crossed twice, which results in extra ion losses even at an
operating point free from resonance. The linear betatron
resonance is most influential at high density. This is the
reason for a slight reduction in the survival rate seen
everywhere in the region σ⊥ ≳ 90°.
A part of Fig. 5(b) is magnified in Fig. 6(b) with a

different color scale to highlight ion losses due to nonlinear
instability. The two stop bands crossing each other are
clearly space-charge-induced because they become almost

invisible at low ion density as indicated in Fig. 5(a). The
signature of the pure betatron resonance with ðn⊥; nk; nÞ ¼
ð3; 0; 1Þ has been repeatedly observed also in long-bunch
experiments [12,13,18]. The conventional incoherent res-
onance condition as in Eq. (3) says that these resonances
are highly nonlinear (of the sixth order), but then, we have
trouble explaining why many other resonances of the sixth
and lower orders are missing in the map. According to the
resonance theory in Sec. III, both stop bands are of the third
order (or due to accompanying incoherent losses of tail
particles). The stability chart in Fig. 6(a) based on Eq. (2)
looks in reasonable agreement with the experimental data.
A slight discrepancy in the stop-band locations should
probably come from an error in the theoretical estimate of
the rms tune depressions; Figure 6(b) suggests that the
bunch density in a high-σk range is a bit higher than our
expectation.
We now extend the ion storage period from 0.5 to 10 ms

corresponding to beam transport over 104 AG cells. The
result is shown in Fig. 7, where three different values of Nin
have been considered again. The extension of the storage
period makes several weak nonlinear stop-bands observ-
able. For instance, we newly discover a faint instability
band between the two betatron resonances along σ⊥ ≈ 60°
and 90°. That is believed to be caused by fifth-order error
fields. Such weak, highly nonlinear resonances should,
however, be much less dangerous than the low-order ones
and thus of no serious effect in practice, unless the machine
is extremely long or has strong error fields along the
beam line.

VI. CONCLUDING REMARKS

A detailed experimental study has been performed by
means of the S-POD, a tabletop LPT-based apparatus, to
reveal the collective nature of short hadron bunches
traveling in an AG focusing channel. The unique exper-
imental system allows us to make a wide-range survey in
tune space and thus offers indisputable evidence for the
existence of various resonance stop bands. In an earlier
study, the longitudinal potential well was static. We here

FIG. 6. Nonlinear stop bands in the range 50° < σ⊥ < 90°.
(a) Theoretically expected stop-band distribution corresponding
to the experiment in the right panel. (b) Enlargement of Fig. 5(b)
with a different color scale.

FIG. 7. Long-term stability maps experimentally obtained with the S-POD system. The period of ion storage is fixed at 10 ms (10,000
AG cells). The number of Arþ ions initially stored in the LPT is about (a) 1.0 × 103, (b) 1.0 × 106, and (c) 2.7 × 106.
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introduced a periodic modulation in the longitudinal ion
focusing force to model a lattice condition in typical DTLs
more precisely. It was found that this modification gives
rise to no substantial change in the resonance feature
elucidated by the previous study. Although the sinusoidal
focusing potential was used instead of a discrete waveform,
such simplification should have only little impact on the
overall feature of resonance.
In the low-density regime where the space-charge effect

is negligible, we can ensure the bunch stability over a wide
tune range as long as the transport distance (ion storage
period) is moderate. As illustrated in Fig. 5(a), no severe,
low-order resonances appear below the lines σ⊥ ¼ 120°
and σ⊥ þ σk ¼ 180° at least under the initial condition
of an ion cloud in the LPT. The former is a third-order
betatron resonance line enhanced by external error fields,
while the latter is the synchrobetatron sum resonance of the
lowest order.
At higher density, the coherent betatron resonance near

σ⊥ ¼ 90°, the so-called envelope instability [1–3], becomes
serious. In addition, several nonlinear betatron and syn-
chrobetatron resonance stop bands manifest themselves
below the phase advance of 90° per AG cell. These stop
bands move and even bend in tune space, as expected from
the resonance theory in Sec. III. Most ion losses observed
in the high-density regime can be understood as a conse-
quence of low-order coherent resonances in the core or
accompanying incoherent tail resonances of twice the
order. The new type of stability chart explains the exper-
imental observations fairly well, which is supported by
self-consistent numerical simulations. In contrast, the
conventional necktie diagram relying on the concept of
incoherent tune spread cannot provide a convincing explan-
ation for the experimental and numerical results.
The S-POD data and theory presented in this paper

should be useful not only in designing next-generation
DTLs but also in improving the performance of operating
hadron linacs. The new stability chart can be employed,
for example, to optimize the operating condition of a high-
intensity linac for emittance-growth minimization. If the
operating point is kept out of possible dangerous areas
predicted by the stop-band diagram, the beam will be
basically stable throughout the acceleration process. Each
stop-band indeed moves during acceleration, but the
instability areas are generally the widest at the linac
entrance. As the beam energy increases, the tune depres-
sions at a specific operating point approach unity. All
coherent resonance lines derived from Eq. (2) then shift
toward their nearby single-particle resonance lines, while
the widths of both coherent core and incoherent tail
resonance domains get gradually narrower. In most cases,
therefore, we simply have to pay attention to the initial
stop-band distribution and control the energy-dependent

variation of the bare phase advances, such that the operat-
ing point stays in a resonance-free area until the linac exit.
We identified various synchrobetatron coupling reso-

nance bands, but no noticeable synchrotron resonance with
n⊥ ¼ 0 was observed unlike in the transverse degrees of
freedom, where a few pure betatron resonances with nk ¼ 0

took place. The reason should be, in one word, the
discrepancy in periodicity between the betatron and syn-
chrotron motions; when the beam is well-matched to the
external focusing potential, the synchrotron phase advance
per actual oscillation period is not σk defined convention-
ally for the FODO period but a half of σk. The experimental
observation is consistent with the multiparticle simulation
results given in Sec. IV. Too large a synchrotron phase
advance is, however, not strongly recommended for safety
reasons. In fact, the natural acceptance and usable reso-
nance-free parameter space tend to diminish as σ⊥ and/or
σk become greater. We must keep it in mind that the linac
operating point generally moves as the beam is accelerated,
so a sufficiently large resonance-free area is needed to
avoid dangerous resonance crossing. We should also be
careful about possible negative effects from beam mis-
matches and error fields unavoidable in actual accelerators.
As suggested in the Appendix, the stability of the
synchrotron motion can be affected seriously when the
external beam focusing potential includes periodic error
components.
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APPENDIX: EXCITATION OF THE
LONGITUDINAL ENVELOPE INSTABILITY

The absence of serious noncoupling synchrotron res-
onance (n⊥ ¼ 0) under the lattice condition in Fig. 2 has
been well confirmed through self-consistent numerical
simulations in Sec. IV and also in Ref. [24]. An interest-
ing, practically important question is what happens if
the ideal lattice symmetry assumed here is broken. The
external electromagnetic forces acting upon a beam
always include some errors in reality. Such machine
imperfections may worsen the beam stability, strengthen-
ing original resonances, and even creating new stop
bands. As an example, let us consider a case where the
longitudinal rf field includes white noise; in particular, we
here focus on the impact of the noise component whose
wavelength is twice longer than the transverse AG period.
This is probably one of the worst cases in terms of
synchrotron resonance excitation.
Figure 8 shows PIC simulation data obtained with and

without the longitudinal rf noise. In the right panel, a low
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rf voltage is added to the two quadrupole sections on both
sides of the central section (see Fig. 1). The longitudinal
focusing function Kk is now the sum of the major cosine
wave depicted in Fig. 2 and an additional perturbing
rf wave of 0.5 MHz. The amplitude of the perturbation
is adjusted to 1% of the main focusing wave of 2 MHz.
A clear instability band has been formed above σk ¼ 90° in
Fig. 8(b) due to a pure synchrotron resonance. A relatively

high growth rate, compared with the other visible stop
bands (m ¼ 3), implies that this axial instability is likely of
the second order (m ¼ 2). In fact, the phase-space con-
figuration in Fig. 9 has indicated the excitation of second-
order resonance in the longitudinal direction.
The experimental confirmation of noncoupling syn-

chrotron resonance is a bit tricky because we have no
emittance monitor available at present. Unlike in the
transverse directions where four electrode rods are sitting
only 5 mm away from the LPT axis, there are no obstacles
in the longitudinal direction to remove weakly unstable
ions. An unambiguous signature of pure synchrotron
resonance is observable only when a sufficient number of
ions go beyond the potential barrier provided by Vk. In
this sense, the perturbation amplitude used for the PIC
simulation in Fig. 8(b) is too small as we see from the
resultant low emittance growth (less than 30% in 200
cells). In the experiment, therefore, we tried a much
higher voltage (20% of the primary focusing-wave
amplitude) to excite the synchrotron resonance strongly.
Figure 10 shows the result of a stability survey with the
S-POD, revealing the presence of the synchrotron reso-
nance just above σk of 90°. The numerical and exper-
imental observations here suggest that the use of a high σk
over 90° is risky in practice.

FIG. 8. PIC simulation results. (a) Emittance growth rates under the ideal rf focusing waveforms exhibited in Fig. 2. (b) Emittance
growth rates evaluated with a perturbation wave (0.5 MHz) added to the axial focusing functionKkðτÞ. The amplitude of the perturbation
voltage is chosen 1% of the primary focusing wave of 2 MHz. The bunch intensity has been fixed at the value that gives η⊥ ¼ 0.87 at the
ionization point.

FIG. 10. Stability map obtained with the S-POD at Nin ≈ 1.0 × 106. The ion storage period is fixed at 10 ms. (a) Ideal case:
reproduction of Fig. 7(b) for comparison. (b) Example with a longitudinal imperfection potential: the rf perturbation as considered in
Fig. 8(b) is added to Vk. The frequency of this additional field is the same as in the case of Fig. 8(b), but its amplitude has been set
20 times larger to enhance ion losses in the axial direction.

FIG. 9. Longitudinal phase-space configurations of the ion
bunch at ðσ⊥; σkÞ ¼ ð59.4°; 93.6°Þ in Fig. 8(b). (a) The distribu-
tion of ions at the entrance. (b) The distribution of ions at the 90th
AG cell. The abscissa and ordinate are the longitudinal canonical
variables scaled with their rms values at the entrance.
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