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The measurement of phase space has always been an important topic in the field of accelerator physics,
playing an indispensable role in understanding the beam dynamics. The phase space distribution of the
injected beam is crucial for optimizing the multiturn accumulation injection process in synchrotrons.
However, directly and accurately measuring the phase space distribution is a challenging task. In this study,
we propose an innovative tomographic algorithm based on the measurement data of the accumulated beam
profile obtained from the wall current monitor (WCM) in a synchrotron, to reconstruct the longitudinal
phase space of the injected beam. Simulations were conducted for various initial distribution scenarios, and
the results showed that this algorithm can achieve a difference of about 4% in the rms momentum spread
between the initial and reconstructed phase space distribution of the injected beam. This algorithm has been
applied to the China Spallation Neutron Source and successfully measured the momentum spread of the
injected beam. Machine studies considering the phase error of the injected beam showed a high consistency
between the reconstructed beam profiles and the measurement results from the WCM on Rapid Cycling
Synchrotron. The research results demonstrate that this algorithm can be an effective approach for
measuring the momentum distribution of the injected beam in a synchrotron. Furthermore, this method also
has the potential to be extended to reconstruct the transverse phase space of the injected beam.
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I. INTRODUCTION

The measurement of phase space has always been a
crucial topic in the field of accelerator beam dynamics, and
tomography is one of the most commonly used methods for
achieving phase space measurements [1–7]. Typically,
tomography is based on beam profile data obtained at
different positions or under different conditions, and the
phase space distribution can be reconstructed through
iterative processes. The phase space distribution of the
injected beam is one of the key parameters and plays an
important role in optimizing the multiturn accumulation
injection process [7–10]. In this paper, a new tomographic
imaging algorithm is proposed to obtain the phase space
distribution of the injected beam by utilizing profile
measurement data accumulated from multiple turns of
injected beams. This method is applicable to various beam

profile measurement instruments, such as wall current
monitors (WCM), fast current transformers (FCT), strip
cameras, beam shape monitors, ionization profile monitors
(IPMs), and other relevant devices.
To provide a more specific introduction to this algorithm,

wewill take themeasurement of the momentum spread of an
injected beam in a synchrotron as an example, which is of
great significance for longitudinal injection, multiturn injec-
tion, and beam dynamics research in synchrotron [11–15].
Traditional measurement methods typically involve meas-
uring the envelope growth caused by the dispersion effect of
bending magnets in linac [16]. However, this method can be
only applicable when the beta function is much smaller than
the dispersion function and is commonly used in electron
accelerators. In proton linear accelerators, on the other hand,
it is often necessary to fit the beam’s energy spread by
measuring variations in the beam’s length [15], which places
higher demands on the precision and quantity of the
measurement components. Our algorithm mainly recon-
structs the initial longitudinal phase space of the injected
beam based on the profile data of accumulated beams from
the WCM in the synchrotron. Compared with the traditional
tomography that reconstructs based on the longitudinal beam
profile of a single-turn injected beam, this algorithm reduces
the requirement for WCM’s resolution.
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This algorithm is used on the China Spallation Neutron
Source (CSNS), whose accelerator part consists of an
80 MeV negative hydrogen linear accelerator and a
1.6 GeV Rapid Cycling Synchrotron (RCS) with a har-
monic number of 2, the main parameters of CSNS RCS are
listed in Table I. CSNS RCS is a high-intensity proton
accelerator, with a design beam power of 100 kW [17] and
has been operating at 140 kW since October 2022. Figure 1
shows the linac time structure corresponding to 100 kW of
CSNS. The linac rf frequency is 324MHz, and the length of
each micropulse is 3 ns. It is injected into RCS using a
multiturn painting method, with two bunches injected per
turn. When the chopping duty is 50%, the length of the
bunch and gap is 489 ns, that is, each bunch consists of
159 micropulses. The number of injection turns is about
200, and the corresponding pulse length of the beam is
391 μm. To reduce the beam loss caused by the transverse
space charge effect, CSNS RCS adopts the longitudinal
painting method to lower the longitudinal charge line
density [18]. And to control the longitudinal distribution
in RCS more accurately, the measurement of the longi-
tudinal phase space distribution of the injected beam is
essential, which is also the original intention of developing

this algorithm. The main beam measurement diagnostics
devices used in the experiment include FCT and WCM.
The FCT on the Linac to Ring Beam Transport (LRBT)
measures the energy using the time-of-flight method, while
the WCM on the LRBT is used to measure the longitudinal
distribution of the injected beam. And the WCM on the
RCS is used to provide the longitudinal distribution of the
accumulated beam, which is also the primary input data for
the algorithm.
In this paper, we developed a new method based on

tomography algorithm to measure the initial phase space
distribution of the beam with the accumulated beam profile
data in a synchrotron. This approach ensures the recon-
struction of the injection beam’s phase space distribution
even when using accumulated beam profile data with lower
measurement device precision. This paper is organized as
follows: Sec. I is the introduction; Sec. II introduces the
structure of our algorithm, the related simulation results, and
the influence of injection phase error; Sec. III introduces the
application of the algorithm to CSNSRCS; and Sec. IVis the
conclusion.

II. PHASE SPACE RECONSTRUCTION
ALGORITHM

A. Introduction of algorithm

This algorithm is based on the algebraic reconstruction
technique (ART) [5] and involves multiple-turn accumu-
lation of the initially assumed beam phase space distribu-
tion, comparison with the accumulated beam profile data,
and iterative error correction. The errors between the
assumed initial beam distribution and the measured accu-
mulated beam profiles are backpropagated to refine the
initial assumption, ultimately yielding the reconstructed
longitudinal phase space distribution of the injected beam.
Like other ART algorithms, this algorithm also employs a
mapping for simulating the longitudinal dynamics of the
multiturn injection process. For further details, please refer
to Appendix A.
Figure 2 illustrates the reconstruction algorithm. First, a

phase space distribution is generated, and then the longi-
tudinal phase space distribution after injection is obtained
by tracking and superimposing the multiturn injected
bunches. By continuing the tracking calculation, the beam
shape can be obtained at different sampling turns. To
facilitate the evaluation of the discrepancy between the
reconstructed and the measured beam profiles, we define a
similarity factor Rn as shown in the following equation:

Rn ¼ 1 −
P

binsðNm;i − Ng;iÞ2
N2

total

;

where Rn is the similarity factor, Nm;i represents the
measured particle number of the ith data point, Ng;i

represents the reconstructed particle number of the ith data

TABLE I. Main parameters of the CSNS RCS.

Parameters (unit) Value

Circumference (m) 227.92
Harmonic number 2
Repetition rate (Hz) 25
Accelerating period (ms) 20
Injection kinetic energy spread (%) �0.05
Injection fundamental rf frequency (MHz) 1.022
Extraction fundamental rf frequency (MHz) 2.444
Number of particles per bunch 7.8 × 1012

Beam power on target (kW) 100
Injection kinetic energy (GeV) 0.08
Extraction kinetic energy (GeV) 1.6
Transition gamma 4.89
Chopper duty 0.5

FIG. 1. Time structure of the linac beam pulse.
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point, and Ntotal represents the total particle number. This
similarity factor can be used to quantify the closeness
between the reconstructed beam and the actual measured
values. A value closer to 1 indicates a higher similarity
between the reconstruction and the measurement. If the
minimum value of Rn does not meet the given requirement,
the maximum error value is iteratively backpropagated to
the initial distribution in a certain proportion. This iterative
process is repeated until the convergence criterion is
satisfied.

B. Simulation results and phase error analysis

Our algorithm is presented using a simulation example of
measuring the injected beam’s momentum spread in CSNS
RCS. To better reflect the real situation, some consider-
ations need to be taken into account when applying the
algorithm. First, in the most proton synchrotrons, the
longitudinal beam size is much larger than the transverse
beam size, so the longitudinal motion process can be
considered separately. Therefore, the mapping process only
considers the phase and the momentum spread. Second,
due to the low accuracy of linac energy measurement, the
beam injected into RCS may have a momentum offset, so

the algorithm itself needs to be able to restore this process.
In addition, the accurate injection phase of CSNS RCS
cannot be measured, so it is necessary to analyze the effect
of the injection phase error on the algorithm.
The objective is to determine the distribution of an

80.3 MeV beam based on a predefined structure in 2D
longitudinal phase space. The structure consists of a uni-
form distribution in the phase direction and a Gaussian
distribution in the momentum direction. An 80% chopper
duty was used, which means that the initial bunch length in
the phase direction is approximately 36°. As a result, each
bunch injected into the RCS is composed of 64 micro-
bunches, with the RCS rf frequency starting point being
approximately 1.022 MHz. The distribution function is
denoted by f0ðϕ; δÞ, and we assume that each bunch of the
multiturn injected beam is identical, and the longitudinal
phase distribution is always uniform and constant in length
according to this time structure. The initial distribution in
the momentum direction is given by a single-peak Gaussian
distribution. To improve the clarity of the WCM signal after
injection completion, the number of injection turns is set to
25. The longitudinal profile data of the beam, obtained for
phase space reconstruction, are collected after the injection.

FIG. 2. Demonstration diagram of tomography algorithm. First, a phase space distribution f0 is generated with a uniform distribution
in the phase direction and a Gaussian distribution in the momentum direction. Then the longitudinal phase space distribution after
injection is obtained by tracking and superimposing the multiturn injection bunches, in whichM0;T inj−i

is the longitudinal mapping from
0 to T inj−i turn. By continuing the tracking calculation, the beam shape can be obtained in different sampling turns. Here Nm;i represents
the measured particle number of the ith data point within the bins, Ng;i represents the reconstructed particle number of the ith data point
within the bins and Ntotal represents the total particle number. The gap between the reconstructed value and the measured value, denoted
as Rn, is calculated and used as a convergence criterion. If the minimum value of Rn does not meet the given requirement, the maximum
error value ϵ is scaled back to the initial distribution by a factor denoted as s. The iterative process continues until the convergence
criterion is met.
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The sampling range spans 60 turns, comprising 10 sets of
data, which correspond to approximately 180° of longi-
tudinal phase space rotation. Due to the low intensity in
measurement, the mapping process utilizes the longitudinal
motion equation without considering the longitudinal space
charge effects [18,19]. It is worth noting that in our
application scenario, the uniform distribution and beam
length (from 100 to 500 ns) can be inferred from the
longitudinal structure of the linac beam pulse, as depicted
in Fig. 1, along with the chopper duty. Therefore, the initial
beam profile is always known. This serves as the basis for
using the algorithm to measure the momentum spread from
the linac. Since its distributions in the phase and momen-
tum spread directions can be considered separately, the
cumulative probability density distribution function in the
momentum direction is calculated independently after each
iteration. Based on this distribution, an equivalent number of
particles is generated and combined with the phase of
particles to form phase space coordinates, which ensures
the 2D phase space uncorrelated in the subsequent iterations.
As shown in the upper part of Fig. 3, the different initial

distributions are provided as simulation results. From
Figs. 3(a)–3(e), they are, respectively, a single-peak
Gaussian distribution, a Gaussian distribution with momen-
tum offset, a double-peak Gaussian distribution, a triple-
peak Gaussian distribution, and a uniform distribution. The
corresponding reconstructed images for each initial distri-
bution are shown in Figs. 3(f)–3(j), and their minimum
similarity factors have all exceeded 99%. Table II presents
the rms values of the simulated (Sim.) and reconstructed
(Rec.) momentum distributions in Fig. 3. It can be observed
that the simulated and reconstructed values are very close
for different distributions. Apart from the double-peak
Gaussian distribution, the different values (Dif.) are less
than 4%, which also proves the accuracy of the algorithm.

To demonstrate the generality of our method, we have
included in Appendix B the algorithm validation results
under different assumed longitudinal initial distributions.
However, given the practical constraints of our accelerator
in generating beams with other longitudinal distributions,
these results are unable to be experimentally measured and
applied. Consequently, the main text continues to focus on
the assumption of uniform distribution.
However, the phase of the beam cannot be precisely

determined though beam diagnostics elements when the
beam enters the synchrotron. Additionally, due to the weak
intensity of the single-pulse beam, the beam diagnostics
elements within the synchrotron are also unable to detect
the accurate phase of the beam. Therefore, when we have
the given initial beam distribution from the linac, we need
to consider the impact of phase errors on the accuracy of the
reconstruction process. Based on the five distributions
provided in Fig. 3, we analyzed the impact of different
phase error values on the minimum similarity factor, as
shown in Fig. 4. It is evident that the phase error has a
significant impact on the similarity factor. Taking the
Gaussian distribution as an example, with a phase error of
10°, the minimum similarity factor decreases to below 80%.
Although different distributions are affected differently by

FIG. 3. Comparisons between the simulation and reconstructed phase space with our algorithm. (a)–(e) are the assumed initial
distribution under different scenarios, while (f)–(j) show the corresponding reconstruction results obtained using the proposed method.

TABLE II. Comparison on the rms value of the simulated and
reconstructed momentum in five different initial distributions.

Initial distribution Sim. (%) Rec. (%) Dif. (%)

(a), (f) 0.130 0.134 2.99
(b), (g) 0.328 0.323 1.52
(c), (h) 0.328 0.350 6.28
(d), (i) 0.237 0.243 2.47
(e), (j) 0.388 0.403 3.72
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phase errors, all of them can maintain a minimum similarity
factor of 99% or higher when the phase error is within �3°.
After considering the phase error in the initial distribu-

tion, the minimum similarity factor can still be higher than
99%. Therefore, in the experiment, we scan the initial phase
of the injected beam with a step size of 3° to minimize the
impact of phase errors.

III. MEASUREMENT RESULT

Next, we take the CSNS RCS as an application example
to demonstrate the performance of this algorithm in the
experiment and highlight the considerations needed during
its implementation. It employs a multiturn H− stripping
injection method. In the experiment, we scanned the
chopper phase under the larger bunch lengths of the
injected beam to reduce the beam loss during the rf capture
process and used this as a criterion to determine the
injection phase. This approach was chosen because, in

the long bunch length mode, when the beam loss in the
dispersion section and the longitudinal emittance are at
their lowest, the injection phase closely approximates the 0°
phase of the rf bucket. The rf voltages are also calibrated by
using the synchronous oscillation frequency of the measured
data. Furthermore, the timing signal discrepancies are
corrected by comparing the difference in the peak turns
between the measured data and the reconstructed data. As
shown in Fig. 5, the results of one experimental recon-
struction are presented. Figure 5(a) represents the longi-
tudinal phase space of the beam from the linac, and Fig. 5(b)
shows the comparison between theWCMdata from different
turns on the RCS and the corresponding reconstructed
values. During the experiment, a total of 25 turns of the
beam were injected, with each turn having a bunch length of
35.5°. The rf frequency of the RCS during the experiment
was 1.02379 MHz, corresponding to a synchronous particle
energy of 80.3 MeV, and the cavity voltage was approx-
imately 46 kV. For the reconstruction, a total of 10 sets of
sampling data were used, spanning 54 turns, with the
longitudinal oscillation period being 114 turns, which
corresponds to approximately 170° of the longitudinal phase
space rotation. From (b), it can be observed that the
reconstructed data closely match the WCM data, with a
similarity factor maintained above 96.9%. The decrease in
the similarity factor compared to the 99% observed in the
simulation could be mainly attributed to errors in the initial
beam length estimation and inaccuracies in theWCMdata. In
this algorithm, the convergence criterion is based on min-
imizing the maximum error, or equivalently, maximizing the
similarity factor. As a result, during the iterative process, the
reconstruction prioritizes reducing the error associated with
the turns that have higher peak current densities, such as turns
59, 65, and 71 in Fig. 5(b), where the similarity factor is
particularly sensitive. This leads to a smoother reconstructed
distribution when the peak current density is high. However,
this approachmay also result in less accuratematching of the
top details for other turns [for example, turns 41, 47, and 89 in

FIG. 4. Influence of different phase errors on similarity calcu-
lation.

FIG. 5. Reconstruction results from experimental measurements at CSNS RCS are presented as follows: (a) reconstructed phase space
distribution. (b) Comparisons between the reconstructed and measured bunch shape in different turns.
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Fig. 5(b)]. Given that the intended application of this
algorithm is for scenarios where the WCM resolution is
inherently low, it is reasonable to prioritize data with higher
peak current densities as they are more reliable.

The measured Δp=p rms value in Fig. 5 is approx-
imately 0.276%, which falls within the permissible level of
the design value. And the longitudinal emittance is
0.0128 eVs, which falls within the same range as the

FIG. 6. Comparisons between the reconstructed and measured bunch shape were conducted under different conditions and turns.
Specifically, the chopper phase during measurement was set to −6° in (a),þ6° in (b), −6° with the initial phase optimized in (c), andþ6°
with the initial phase optimized in (d).
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emittance provided in Fig. 3. Therefore, the measured
values are within the validation range of the algorithm. Due
to the current lack of beam diagnostic elements in the linac,
there is no capability for cross comparison of this meas-
urement result. However, with the advancement of the
CSNS upgrade plan (CSNS-II), there is a plan of evaluating
the measurement accuracy of the algorithm through other
measurement methods in the future.
We also studied the influence of phase errors on the

similarity in the machine study. Figure 6 shows the
comparison between the reconstructed and measured
longitudinal distributions under different phase errors. In
Figs. 6(a) and 6(b), there are −6° andþ6° of chopper phase
difference compared to Fig. 5. It can be seen that with large
phase errors, the similarity also decreases significantly,
which is consistent with the simulation results in Fig. 4.
Figures 6(c) and 6(d) show the results obtained after
optimizing the injection phase in the initial assumption.
By comparing with (a) and (b), it can be seen that the error
between the reconstructed and measured distributions is
significantly improved. The similarity factor for the −6°
phase increases from 94.4% to 95.49%, while for the þ6°
phase, it increases from 80.36% to 92.1%.
Under ideal conditions, a phase error introduced from

either side (−6° or þ6°) should result in symmetrical
effects, akin to the pattern in Fig. 4, where phase variations
symmetrically affect the minimum similarity factor, with
both positive and negative phase errors having equivalent
impacts. However, symmetry is not consistently achieved
due to longitudinal oscillations and the possibility that the
optimal injection phase is nonzero, leading to a notable
difference in the minimum similarity factor in Figs. 6(a)
and 6(b). Other factors can also influence this process, such
as WCM errors, timing errors, and inaccuracies in the
mapping during measurement. These contribute to the
challenge of achieving an exact injection phase correction,
leading to ongoing differences even after optimization
efforts, as depicted in Figs. 6(c) and 6(d). However,
comparing the optimized phase [Figs. 6(c) and 6(d)] with
the unoptimized [Figs. 6(a) and 6(b)], it is evident that the
overall similarity is significantly improved after optimiza-
tion. Nevertheless, the importance of phase correction
cannot be overstated, as it is a key to preserve a high
similarity factor. This process is critical for maintaining the
measurement result of momentum spread within a margin
of error that is acceptable, thereby ensuring the accuracy
and dependability of beam diagnostics.
Although the similarity factor improved greatly after

optimizing the injection phase, there is still a certain gap
compared to the best injection phase found in the meas-
urement. To compare the impact of this similarity factor
difference on the measurement results, we compare the
momentum spread distributions obtained under three differ-
ent chopper phase settings, as shown in Fig. 7. It can be
seen that the maximum momentum spread is consistent in

all three cases, around 0.5%. However, their distributions
are quite different, which is reflected in the rms values. The
rms values for −6°, 0°, and 6° are 0.2953%, 0.276%, and
0.2323%, respectively, which is a 15.83% difference. This
result shows that the algorithm has a strong robustness to
phase errors when measuring the maximum momentum
spread, but it requires that the measured bunch can be well
located at the bucket center to improve the accuracy of the
measured distribution results.

IV. CONCLUSION

In summary, we have presented a new tomography
algorithm based on the WCM data of accumulated beam
to measure the phase space distribution of the injected
beam. With this method, the longitudinal phase space
distribution can be reconstructed even when the precision
of longitudinal distribution measurement elements is rel-
atively low. By defining the similarity factor, we can
evaluate the accuracy of the reconstructed results and
analyze the influence of phase error on the measurement
results based on this. Simulation results indicate that the
difference values of the rms momentum spread between the
reconstructed and initial phase space distributions of the
injected beam using this algorithm can achieve about 4%.
The results demonstrate the feasibility of the algorithm for
measuring the momentum spread of the injected beam. This
algorithm solves the problem of the lack of effective
measurement of longitudinal initial distribution in CSNS
RCS and can also better integrate measurement results with
simulation results, promoting further research on longi-
tudinal behavior in synchrotron. This method is not limited
to longitudinal applications. By appropriately adjusting the
assumptions related to the initial beam distribution, map-
ping process, and iterative errors, this algorithm can also be
applied to measure the transverse phase space of the
injected beam, thus enabling the reconstruction of the

FIG. 7. Comparisons between the reconstructed initial momen-
tum distribution under different chopper phases.

RECONSTRUCTING PHASE SPACE OF INJECTION … PHYS. REV. ACCEL. BEAMS 27, 052804 (2024)

052804-7



six-dimensional phase space distribution of the injected
beam in a synchrotron. In the future, by combining the use
of IPM on the CSNS RCS, it is expected to reconstruct the
transverse phase space distribution of the injected beam.
We hope this could provide crucial insights for the study of
injection painting.
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APPENDIX A: LONGITUDINAL MAPPING

For a synchrotron with an rf cavity, the one-turn differ-
ence equation can be defined as follows:

δnþ1 ¼ δn þ
eV
β2E

½sinðϕnÞ − sinðϕsÞ�;

ϕnþ1 ¼ ϕn þ 2πhηδnþ1;

where e is the unit of charge, V is the rf voltage amplitude,
β and E are the relativistic velocity factor and the energy of
the synchronous particle, respectively, ϕs is the synchro-
nous phase, h is the harmonic number, and η is the phase
slip factor.

As depicted in Fig. 2, the longitudinal transfer matrix
M0;n from the 0th to the nth turn is derived from the above
equations. Both in reconstruction and simulation, we adopt
the particle-in-cell concept, initially generating approxi-
mately 200 000 macroparticles. Then, the density distribu-
tion of these macroparticles across the phase space grid
points (256 × 256 in this study) is determined and proc-
essed iteratively.

APPENDIX B: COMPARATIVE SIMULATION
ANALYSIS: GAUSSIAN AND GAMMA

DISTRIBUTIONS

As illustrated in the upper portion of Fig. 8, various
initial distributions are presented as outcomes of the
simulation. Specifically, Figs. 8(a) and 8(e) depict scenar-
ios with a Gamma distribution in the phase direction and a
Gaussian distribution in the momentum spread direction.
Figures 8(b) and 8(f) showcase a Gamma distribution in
the phase direction coupled with a uniform distribution in
the momentum spread direction. Additionally, Figs. 8(c)
and 8(g) represent instances where both the phase direc-
tion and momentum spread direction exhibit a Gaussian
distribution. Finally, Figs. 8(d) and 8(h) display phase
space with a Gaussian phase distribution and a uniform
momentum spread distribution.
Table III displays the rms values for both the simulated

(Sim.) and reconstructed (Rec.) momentum distributions as
depicted in Fig. 8. A comparison reveals that the simulated
and reconstructed values are highly consistent across
various distributions. The differences between these values,
indicated as “Dif.” in this table, are minimal, with a
discrepancy of less than 4%. This level of accuracy is

FIG. 8. Comparisons between the simulation and reconstructed phase space with our algorithm. (a)–(d) are the assumed initial
distribution under different scenarios, while (e)–(h) show the corresponding reconstruction results obtained using the proposed
method.
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consistent with what was observed for the uniform phase
distribution.
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